
Developer Guide

Amazon Simple Queue Service



Amazon Simple Queue Service Developer Guide

Amazon Simple Queue Service: Developer Guide



Amazon Simple Queue Service Developer Guide

Table of Contents

What is Amazon SQS? ..................................................................................................................... 1
Benefits of using Amazon SQS .................................................................................................................. 1
Basic architecture ......................................................................................................................................... 1

Distributed queues .................................................................................................................................. 2
Message lifecycle ..................................................................................................................................... 2

Differences between Amazon SQS, Amazon MQ, and Amazon SNS .................................................. 4
Getting started ................................................................................................................................ 6

Setting up ...................................................................................................................................................... 6
Step 1: Create an Amazon Web Services account and IAM user ................................................... 6
Step 2: Grant programmatic access .................................................................................................... 7
Step 3: Get ready to use the example code ...................................................................................... 8
Next steps ................................................................................................................................................. 8

Understanding the Amazon SQS console ............................................................................................... 9
Queue types ................................................................................................................................................ 10

Implementing request-response systems in Amazon SQS ........................................................... 13
Creating a standard queue ....................................................................................................................... 14

Creating a queue ................................................................................................................................... 14
Sending a message using a standard queue ................................................................................... 16

Creating a FIFO queue .............................................................................................................................. 17
Create a queue ...................................................................................................................................... 17
Sending a message using a FIFO queue .......................................................................................... 19

Common tasks ............................................................................................................................................ 20
Managing a queue ......................................................................................................................... 22

Editing a queue .......................................................................................................................................... 22
Receiving and deleting a message ......................................................................................................... 22
Confirming a queue is empty .................................................................................................................. 24
Deleting a queue ........................................................................................................................................ 25
Purging a queue ......................................................................................................................................... 26

Standard queues ............................................................................................................................ 27
Amazon SQS at-least-once delivery ....................................................................................................... 27
Queue and message identifiers ............................................................................................................... 28

Identifiers for standard queues ......................................................................................................... 28
FIFO queues ................................................................................................................................... 30

FIFO queue key terms ............................................................................................................................... 31

iii



Amazon Simple Queue Service Developer Guide

FIFO delivery logic ..................................................................................................................................... 32
Sending messages ................................................................................................................................ 32
Receiving messages .............................................................................................................................. 33
Retrying multiple times ....................................................................................................................... 34
Additional notes on FIFO behavior ................................................................................................... 35
Examples for better understanding .................................................................................................. 35

Exactly-once processing ............................................................................................................................ 36
Moving from a standard queue to a FIFO queue ................................................................................ 36
FIFO queue and Lambda concurrency behavior .................................................................................. 38

FIFO queue message grouping .......................................................................................................... 38
Lambda concurrency with FIFO queues ........................................................................................... 38
Use case example ................................................................................................................................. 39

High throughput for FIFO queues .......................................................................................................... 39
Use cases ................................................................................................................................................ 40
Partitions and data distribution ........................................................................................................ 40
Enabling high throughput for FIFO queues .................................................................................... 43

Queue and message identifiers ............................................................................................................... 44
Identifiers for FIFO queues ................................................................................................................. 28
Additional identifiers for FIFO queues ............................................................................................. 45

Quotas ............................................................................................................................................ 47
FIFO queue quotas ..................................................................................................................................... 47

Amazon SQS quotas ............................................................................................................................. 47
Standard queue quotas ............................................................................................................................. 48
Message quotas .......................................................................................................................................... 50
Policy quotas ............................................................................................................................................... 56

Features and capabilities .............................................................................................................. 58
Dead-letter queues .................................................................................................................................... 58

Using policies for dead-letter queues .............................................................................................. 59
Understanding message retention periods for dead-letter queues ............................................ 59
Configuring a dead-letter queue ....................................................................................................... 60
Configuring a dead-letter queue redrive ......................................................................................... 60
CloudTrail update and permission requirements ........................................................................... 70
Creating alarms for dead-letter queues using Amazon CloudWatch ......................................... 74

Message metadata for Amazon SQS ..................................................................................................... 74
Message attributes ............................................................................................................................... 75
Message system attributes ................................................................................................................. 79

iv



Amazon Simple Queue Service Developer Guide

Resources required to process messages .............................................................................................. 79
List queue pagination ................................................................................................................................ 80
Cost allocation tags ................................................................................................................................... 80
Short and long polling ............................................................................................................................. 81

Consuming messages using short polling ....................................................................................... 82
Consuming messages using long polling ........................................................................................ 83
Differences between long and short polling .................................................................................. 83

Visibility timeout ........................................................................................................................................ 83
Visibility timeout use cases ................................................................................................................ 84
Setting and adjusting the visibility timeout ................................................................................... 85
In flight messages and quotas ........................................................................................................... 85
Understanding visibility timeout in standard and FIFO queues .................................................. 86
Handling failures ................................................................................................................................... 86
Changing and terminating visibility timeout .................................................................................. 86
Best practices ......................................................................................................................................... 87

Fair queues .................................................................................................................................................. 87
Difference with FIFO queues .............................................................................................................. 89
Using fair queues .................................................................................................................................. 90
Fair queues CloudWatch metrics ....................................................................................................... 90

Delay queues ............................................................................................................................................... 91
Temporary queues ..................................................................................................................................... 92

Virtual queues ....................................................................................................................................... 92
Request-response messaging pattern (virtual queues) ................................................................. 94
Example scenario: Processing a login request ................................................................................ 94
Cleaning up queues .............................................................................................................................. 96

Message timers ........................................................................................................................................... 97
Accessing EventBridge pipes .................................................................................................................... 98
Managing large messages ........................................................................................................................ 99

Using the Extended Client Library for Java .................................................................................. 100
Using the Extended Client Library for Python ............................................................................. 106

Configuring Amazon SQS ............................................................................................................ 110
ABAC for Amazon SQS ........................................................................................................................... 110

What is ABAC? ..................................................................................................................................... 110
Why should I use ABAC in Amazon SQS? ...................................................................................... 111
Tagging for access control ................................................................................................................ 111
Creating IAM users and Amazon SQS queues .............................................................................. 112

v



Amazon Simple Queue Service Developer Guide

Testing attribute-based access control .......................................................................................... 115
Configuring queue parameters ............................................................................................................. 116
Configuring an access policy ................................................................................................................. 118
Configuring SSE-SQS for a queue ........................................................................................................ 118
Configuring SSE-KMS for a queue ....................................................................................................... 120
Configuring tags for a queue ................................................................................................................ 121
Subscribing a queue to a topic ............................................................................................................. 122

Cross-account subscriptions ............................................................................................................. 123
Cross-region subscriptions ................................................................................................................ 124

Configuring a Lambda trigger ............................................................................................................... 124
Prerequisites ........................................................................................................................................ 125

Automating notifications using EventBridge ..................................................................................... 126
Message attributes .................................................................................................................................. 126

Best practices ............................................................................................................................... 128
Error handling and problematic messages ......................................................................................... 128

Handling request errors in Amazon SQS ....................................................................................... 128
Capturing problematic messages in Amazon SQS ....................................................................... 129
Setting-up dead-letter queue retention in Amazon SQS ........................................................... 129

Message deduplication and grouping ................................................................................................. 129
Avoiding inconsistent message processing in Amazon SQS ...................................................... 130
Using the message deduplication ID .............................................................................................. 130
Using the message group ID ............................................................................................................ 132
Using the receive request attempt ID ............................................................................................ 134

Message processing and timing ............................................................................................................ 135
Processing messages in a timely manner in Amazon SQS ......................................................... 135
Setting-up long polling in Amazon SQS ....................................................................................... 136
Using the appropriate polling mode in Amazon SQS ................................................................. 137

Java SDK examples ...................................................................................................................... 138
Using server-side encryption ................................................................................................................. 138

Adding SSE to an existing queue .................................................................................................... 138
Disabling SSE for a queue ................................................................................................................ 139
Creating a queue with SSE ............................................................................................................... 140
Retrieving SSE attributes .................................................................................................................. 141

Configuring tags ....................................................................................................................................... 141
Listing tags ........................................................................................................................................... 141
Adding or updating tags ................................................................................................................... 142

vi



Amazon Simple Queue Service Developer Guide

Removing tags ..................................................................................................................................... 142
Sending message attributes .................................................................................................................. 143

Defining attributes ............................................................................................................................. 143
Sending a message with attributes ................................................................................................ 145

Using APIs .................................................................................................................................... 146
Making query API requests using Amazon JSON protocol .............................................................. 147

Constructing an endpoint ................................................................................................................. 147
Making a POST request ..................................................................................................................... 148
Interpreting Amazon SQS JSON API responses ........................................................................... 149
Amazon SQS Amazon JSON protocol FAQs .................................................................................. 150

Making query API requests using Amazon query protocol ............................................................. 153
Constructing an endpoint ................................................................................................................. 154
Making a GET request ....................................................................................................................... 154
Making a POST request ..................................................................................................................... 148
Interpreting Amazon SQS XML API responses ............................................................................. 156

Authenticating requests ......................................................................................................................... 157
Basic authentication process with HMAC-SHA ............................................................................. 158
Part 1: The request from the user .................................................................................................. 159
Part 2: The response from Amazon ................................................................................................ 160

Batch actions ............................................................................................................................................ 161
Batching message actions ................................................................................................................ 162
Enabling client-side buffering and request batching with Amazon SQS ................................. 163
Increasing throughput using horizontal scaling and action batching with Amazon SQS ..... 175

Working with Amazon SDKs .................................................................................................................. 187
Using JMS ..................................................................................................................................... 189

Prerequisites .............................................................................................................................................. 189
Using the Java Messaging Library ........................................................................................................ 190

Creating a JMS connection ............................................................................................................... 191
Creating an Amazon SQS queue ..................................................................................................... 191
Sending messages synchronously ................................................................................................... 192
Receiving messages synchronously ................................................................................................. 194
Receiving messages asynchronously .............................................................................................. 195
Using client acknowledge mode ..................................................................................................... 197
Using unordered acknowledge mode ............................................................................................. 198

Using the JMS Client with other Amazon SQS clients ..................................................................... 198
Working Java examples for using JMS with standard queues ........................................................ 200

vii



Amazon Simple Queue Service Developer Guide

ExampleConfiguration.java ............................................................................................................... 200
TextMessageSender.java .................................................................................................................... 203
SyncMessageReceiver.java ................................................................................................................. 204
AsyncMessageReceiver.java ............................................................................................................... 206
SyncMessageReceiverClientAcknowledge.java .............................................................................. 208
SyncMessageReceiverUnorderedAcknowledge.java ..................................................................... 212
SpringExampleConfiguration.xml .................................................................................................... 215
SpringExample.java ............................................................................................................................ 217
ExampleCommon.java ........................................................................................................................ 219

Supported JMS 1.1 implementations .................................................................................................. 221
Supported common interfaces ........................................................................................................ 221
Supported message types ................................................................................................................ 221
Supported message acknowledgment modes .............................................................................. 222
JMS-defined headers and reserved properties ............................................................................. 222

Tutorials ....................................................................................................................................... 224
Creating an Amazon SQS queue using Amazon CloudFormation .................................................. 224
Sending a message from a VPC ........................................................................................................... 226

Step 1: Create an Amazon EC2 key pair ........................................................................................ 227
Step 2: Create Amazon resources ................................................................................................... 227
Step 3: Confirm that your EC2 instance isn't publicly accessible .............................................. 228
Step 4: Create an Amazon VPC endpoint for Amazon SQS ....................................................... 229
Step 5: Send a message to your Amazon SQS queue ................................................................ 230

Code examples ............................................................................................................................. 232
Basics .......................................................................................................................................................... 233

Hello Amazon SQS ............................................................................................................................. 234
Actions .................................................................................................................................................. 246

Scenarios .................................................................................................................................................... 418
Create a messaging application ...................................................................................................... 419
Create a messenger application ...................................................................................................... 420
Create an Amazon Textract explorer application ......................................................................... 421
Create and publish to a FIFO topic ................................................................................................ 422
Detect people and objects in a video ............................................................................................ 435
Manage large messages using S3 ................................................................................................... 436
Process S3 event notifications ......................................................................................................... 440
Publish messages to queues ............................................................................................................ 443
Send and receive batches of messages ......................................................................................... 580

viii



Amazon Simple Queue Service Developer Guide

Use the Amazon Message Processing Framework for .NET with Amazon SQS ...................... 611
Use the Amazon SQS Java Messaging Library to work with the JMS interface ..................... 612
Work with queue tags ....................................................................................................................... 634

Serverless examples ................................................................................................................................ 638
Invoke a Lambda function from an Amazon SQS trigger .......................................................... 638
Reporting batch item failures for Lambda functions with an Amazon SQS trigger .............. 647

Troubleshooting ........................................................................................................................... 657
Access denied error ................................................................................................................................. 657

Amazon SQS queue policy and IAM policy ................................................................................... 658
Amazon Key Management Service (Amazon KMS) permissions ................................................ 658
VPC endpoint policy .......................................................................................................................... 660
Organization service control policy ................................................................................................ 660

API errors ................................................................................................................................................... 661
QueueDoesNotExist error ................................................................................................................. 661
InvalidAttributeValue error ............................................................................................................... 661
ReceiptHandle error ........................................................................................................................... 662

DLQ and DLQ redrive issues .................................................................................................................. 663
DLQ issues ............................................................................................................................................ 663
DLQ-redrive issues .............................................................................................................................. 664

FIFO throttling issues .............................................................................................................................. 666
Messages not returned for a ReceiveMessage API call .................................................................... 667

Empty queue ....................................................................................................................................... 667
In flight limit reached ........................................................................................................................ 667
Message delay ..................................................................................................................................... 668
Message is in flight ............................................................................................................................ 668
Polling method ................................................................................................................................... 668

Network errors .......................................................................................................................................... 668
ETIMEOUT error .................................................................................................................................. 668
UnknownHostException error .......................................................................................................... 670

Troubleshooting queues using X-Ray .................................................................................................. 671
Security ........................................................................................................................................ 672

Data protection ........................................................................................................................................ 672
Data encryption .................................................................................................................................. 673
Internetwork traffic privacy .............................................................................................................. 685
Using dual-stack endpoints for connectivity ................................................................................ 687

Identity and access management ......................................................................................................... 687

ix



Amazon Simple Queue Service Developer Guide

Audience ............................................................................................................................................... 687
Authenticating with identities ......................................................................................................... 688
Managing access using policies ....................................................................................................... 689
Overview ............................................................................................................................................... 690
How Amazon Simple Queue Service works with IAM ................................................................. 697
Amazon managed policies ................................................................................................................ 703
Troubleshooting .................................................................................................................................. 706
Using policies ....................................................................................................................................... 708

Logging and monitoring ........................................................................................................................ 755
Logging API calls ................................................................................................................................ 758
Monitoring queues ............................................................................................................................. 761

Compliance validation ............................................................................................................................ 780
Resilience ................................................................................................................................................... 780

Distributed queues ............................................................................................................................. 781
Infrastructure security ............................................................................................................................. 781
Best practices ............................................................................................................................................ 782

Make sure that queues aren't publicly accessible ........................................................................ 782
Implement least-privilege access .................................................................................................... 783
Use IAM roles for applications and Amazon services which require Amazon SQS access ..... 783
Implement server-side encryption .................................................................................................. 784
Enforce encryption of data in transit ............................................................................................. 784
Consider using VPC endpoints to access Amazon SQS ............................................................... 784

Related resources ........................................................................................................................ 785
Documentation history ............................................................................................................... 786

x



Amazon Simple Queue Service Developer Guide

What is Amazon Simple Queue Service?

Amazon Simple Queue Service (Amazon SQS) offers a secure, durable, and available hosted queue 
that lets you integrate and decouple distributed software systems and components. Amazon SQS 
offers common constructs such as dead-letter queues and cost allocation tags. It provides a generic 
web services API that you can access using any programming language that the Amazon SDK 
supports.

Benefits of using Amazon SQS

• Security – You control who can send messages to and receive messages from an Amazon SQS 
queue. You can choose to transmit sensitive data by protecting the contents of messages in 
queues by using default Amazon SQS managed server-side encryption (SSE), or by using custom
SSE keys managed in Amazon Key Management Service (Amazon KMS).

• Durability – For the safety of your messages, Amazon SQS stores them on multiple servers. 
Standard queues support at-least-once message delivery, and FIFO queues support exactly-once 
message processing and high-throughput mode.

• Availability – Amazon SQS uses redundant infrastructure to provide highly-concurrent access to 
messages and high availability for producing and consuming messages.

• Scalability – Amazon SQS can process each buffered request independently, scaling 
transparently to handle any load increases or spikes without any provisioning instructions.

• Reliability – Amazon SQS locks your messages during processing, so that multiple producers can 
send and multiple consumers can receive messages at the same time.

• Customization – Your queues don't have to be exactly alike—for example, you can set a default 
delay on a queue. You can store the contents of messages larger than 1 MiB using Amazon 
Simple Storage Service (Amazon S3) or Amazon DynamoDB, with Amazon SQS holding a pointer 
to the Amazon S3 object, or you can split a large message into smaller messages.

Basic Amazon SQS architecture

This section describes the components of a distributed messaging system and explains the lifecycle 
of an Amazon SQS message.

Benefits of using Amazon SQS 1



Amazon Simple Queue Service Developer Guide

Distributed queues

There are three main parts in a distributed messaging system: the components of your distributed 
system, your queue (distributed on Amazon SQS servers), and the messages in the queue.

In the following scenario, your system has several producers (components that send messages 
to the queue) and consumers (components that receive messages from the queue). The queue 
(which holds messages A through E) redundantly stores the messages across multiple Amazon SQS 
servers.

Message lifecycle

The following scenario describes the lifecycle of an Amazon SQS message in a queue, from creation 
to deletion.

Distributed queues 2



Amazon Simple Queue Service Developer Guide

A producer (Component 1) sends message A to a queue, and the message is distributed across the 
Amazon SQS servers redundantly.

When a consumer (Component 2) is ready to process messages, it consumes messages from the 
queue, and message A is returned. While message A is being processed, it remains in the queue and 
isn't returned to subsequent receive requests for the duration of the visibility timeout.

Message lifecycle 3



Amazon Simple Queue Service Developer Guide

The consumer (Component 2) deletes message A from the queue to prevent the message from 
being received and processed again when the visibility timeout expires.

Note

Amazon SQS automatically deletes messages that have been in a queue for more than 
the maximum message retention period. The default message retention period is 4 
days. However, you can set the message retention period to a value from 60 seconds to 
1,209,600 seconds (14 days) using the SetQueueAttributes action.

Differences between Amazon SQS, Amazon MQ, and Amazon 
SNS

Amazon SQS, Amazon SNS, and Amazon MQ offer highly scalable and easy-to-use managed 
messaging services, each designed for specific roles within distributed systems. Here's an enhanced 
overview of the differences between these services:

Amazon SQS decouples and scales distributed software systems and components as a queue 
service. It processes messages through a single subscriber typically, ideal for workflows where order 
and loss prevention are critical. For wider distribution, integrating Amazon SQS with Amazon SNS 
enables a fanout messaging pattern, effectively pushing messages to multiple subscribers at once.

Amazon SNS allows publishers to send messages to multiple subscribers through topics, which 
serve as communication channels. Subscribers receive published messages using a supported 
endpoint type, such as Amazon Data Firehose, Amazon SQS, Lambda, HTTP, email, mobile 
push notifications, and mobile text messages (SMS). This service is ideal for scenarios requiring 
immediate notifications, such as real-time user engagement or alarm systems. To prevent message 
loss when subscribers are offline, integrating Amazon SNS with Amazon SQS queue messages 
ensures consistent delivery.

Amazon MQ fits best with enterprises looking to migrate from traditional message brokers, 
supporting standard messaging protocols like AMQP and MQTT, along with Apache ActiveMQ and
RabbitMQ. It offers compatibility with legacy systems needing stable, reliable messaging without 
significant reconfiguration.

The following chart provides an overview of each services' resource type:

Differences between Amazon SQS, Amazon MQ, and Amazon SNS 4

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
http://www.amazonaws.cn/sns/
http://www.amazonaws.cn/amazon-mq/
https://aws.amazon.com/getting-started/hands-on/send-fanout-event-notifications/
https://docs.amazonaws.cn/firehose/latest/dev/what-is-this-service.html
https://docs.amazonaws.cn/lambda/latest/dg/welcome.html
http://activemq.apache.org/
https://www.rabbitmq.com/


Amazon Simple Queue Service Developer Guide

Resource type Amazon SNS Amazon SQS Amazon MQ

Synchronous No No Yes

Asynchronous Yes Yes Yes

Queues No Yes Yes

Publisher-subscriber 
messaging

Yes No Yes

Message brokers No No Yes

Both Amazon SQS and Amazon SNS are recommended for new applications that can benefit from 
nearly unlimited scalability and simple APIs. They generally offer more cost-effective solutions 
for high-volume applications with their pay-as-you-go pricing. We recommend Amazon MQ for 
migrating applications from existing message brokers that rely on compatibility with APIs such 
as JMS or protocols such as Advanced Message Queuing Protocol (AMQP), MQTT, OpenWire, and 
Simple Text Oriented Message Protocol (STOMP).

Differences between Amazon SQS, Amazon MQ, and Amazon SNS 5



Amazon Simple Queue Service Developer Guide

Getting started with Amazon SQS

This topic guides you through using the Amazon SQS console to create and manage standard 
queues and FIFO queues. You'll learn how to navigate the console, view queue attributes, and 
distinguish between queue types. Key tasks include sending, receiving, and configuring messages, 
adjusting parameters such as visibility timeout and message retention, and managing queue access 
through policies.

Topics

• Setting up Amazon SQS

• Understanding the Amazon SQS console

• Amazon SQS queue types

• Creating an Amazon SQS standard queue and sending a message

• Creating an Amazon SQS FIFO queue and sending a message

• Common tasks for getting started with Amazon SQS

Setting up Amazon SQS

Before you can use Amazon SQS for the first time, you must complete the following steps:

Step 1: Create an Amazon Web Services account and IAM user

To access any Amazon service, you first need to create an Amazon Web Services account, an 
Amazon.com account that can use Amazon products. You can use your Amazon Web Services 
account to view your activity and usage reports and to manage authentication and access.

To avoid using your Amazon Web Services account root user for Amazon SQS actions, it is a best 
practice to create an IAM user for each person who needs administrative access to Amazon SQS.

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Setting up 6

http://www.amazonaws.cn/
http://www.amazonaws.cn/


Amazon Simple Queue Service Developer Guide

Amazon sends you a confirmation email after the sign-up process is complete. At any time, 
you can view your current account activity and manage your account by going to http:// 
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by 
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for 
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To 
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform 
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM 
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Step 2: Grant programmatic access

To use Amazon SQS actions (for example, using Java or through the Amazon Command Line 
Interface), you need an access key ID and a secret access key.

Note

The access key ID and secret access key are specific to Amazon Identity and Access 
Management. Don't confuse them with credentials for other Amazon services, such as 
Amazon EC2 key pairs.

Users need programmatic access if they want to interact with Amazon outside of the Amazon Web 
Services Management Console. The Amazon APIs and the Amazon Command Line Interface require 
access keys. Whenever possible, create temporary credentials that consist of an access key ID, a 
secret access key, and a security token that indicates when the credentials expire.

To grant users programmatic access, choose one of the following options.

Step 2: Grant programmatic access 7

http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn//IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html


Amazon Simple Queue Service Developer Guide

Which user needs 
programmatic access?

To By

IAM Use short-term credentials to 
sign programmatic requests 
to the Amazon CLI or Amazon 
APIs (directly or by using the 
Amazon SDKs).

Following the instructions in
Using temporary credentials 
with Amazon resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to 
sign programmatic requests 
to the Amazon CLI or Amazon 
APIs (directly or by using the 
Amazon SDKs).

Following the instructions in
Managing access keys for IAM 
users in the IAM User Guide.

Step 3: Get ready to use the example code

This guide includes examples that use the Amazon SDK for Java. To run the example code, follow 
the set-up instructions in Getting Started with Amazon SDK for Java 2.0.

You can develop Amazon applications in other programming languages, such as Go, JavaScript, 
Python and Ruby. For more information, see Tools to Build on Amazon.

Note

You can explore Amazon SQS without writing code with tools such as the Amazon 
Command Line Interface (Amazon CLI) or Windows PowerShell. You can find Amazon CLI 
examples in the Amazon SQS section of the Amazon CLI Command Reference. You can find 
Windows PowerShell examples in the Amazon Simple Queue Service section of the Amazon 
Tools for PowerShell Cmdlet Reference.

Next steps

You are now ready for Getting started with managing Amazon SQS queues and messages using the 
Amazon Web Services Management Console.

Step 3: Get ready to use the example code 8

https://docs.amazonaws.cn//IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn//IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn//IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn//IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/
https://www.amazonaws.cn/developer/tools/#sdk
https://docs.amazonaws.cn/cli/latest/reference/sqs/index.html
https://docs.amazonaws.cn/powershell/latest/reference/
https://docs.amazonaws.cn/powershell/latest/reference/


Amazon Simple Queue Service Developer Guide

Understanding the Amazon SQS console

When you open the Amazon SQS console, choose Queues from the navigation pane. The Queues
page provides information about all of your queues in the active region.

Each queue entry provides essential information about the queue, including its type and key 
attributes. Standard queues, optimized for maximum throughput and best-effort message 
ordering, are distinguished from First-In-First-Out (FIFO) queues, which prioritize message ordering 
and uniqueness for applications requiring strict message sequencing.

Interactive elements and actions

From the Queues page, you have multiple options for managing your queues:

1. Quick Actions – Adjacent to each queue name, a dropdown menu offers quick access to 
common actions such as sending messages, viewing or deleting messages, configuring triggers, 
and deleting the queue itself.

2. Detailed View and Configuration – Clicking on a queue name opens its Details page, where you 
can delve deeper into queue settings and configurations. Here, you can adjust parameters like 
message retention period, visibility timeout, and maximum message size to tailor the queue to 
your application's requirements.

Understanding the Amazon SQS console 9



Amazon Simple Queue Service Developer Guide

Region selection and resource tags

Ensure you're in the correct Amazon Web Services Region to access and manage your queues 
effectively. Additionally, consider utilizing resource tags to organize and categorize your queues, 
enabling better resource management, cost allocation, and access control within your Amazon 
shared environment.

By leveraging the features and functionalities offered within the Amazon SQS console, you can 
efficiently manage your messaging infrastructure, optimize queue performance, and ensure reliable 
message delivery for your applications.

Amazon SQS queue types

Amazon SQS supports two types of queues: standard queues and FIFO queues. Use the following 
table to determine which queue best fits your needs.

Standard queues FIFO queues

Unlimited throughput – Standard queues 
support a very high, nearly unlimited 
number of API calls per second, per action 
(SendMessage , ReceiveMessage , or
DeleteMessage ). This high throughput 
makes them ideal for use cases that require 
processing large volumes of messages quickly, 

High throughput – When you use batching, 
FIFO queues process up to 3,000 messages 
per second per API method (SendMessa 
geBatch , ReceiveMessage , or
DeleteMessageBatch ). This throughput 
relies on 300 API calls per second, with each 
API call handling a batch of 10 messages. 

Queue types 10

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html


Amazon Simple Queue Service Developer Guide

Standard queues FIFO queues

such as real-time data streaming or large-sca 
le applications. While standard queues scale 
automatically with demand, it is essential to 
monitor usage patterns to ensure optimal 
performance, especially in regions with higher 
workloads.

At-least-once delivery – Guaranteed at-least- 
once delivery, meaning that every message 
is delivered at least once, but in some cases, 
a message may be delivered more than once 
due to retries or network delays. You should 
design your application to handle potential 
duplicate messages by using idempotent 
operations, which ensure that processing the 
same message multiple times will not affect 
the system’s state.

Best-effort ordering – Provides best-effort 
ordering, meaning that while Amazon SQS 
attempts to deliver messages in the order 
they were sent, it does not guarantee this. In 
some cases, messages may arrive out of order, 
especially under conditions of high throughpu 
t or failure recovery. For applications where 
the order of message processing is crucial, 
you should handle reordering logic within 
the application or use FIFO queues for strict 
ordering guarantees.

Durability and redundancy – Standard 
queues ensure high durability by storing 
multiple copies of each message across 
multiple Amazon Availability Zones. This 
ensures that messages are not lost, even in the 
event of infrastructure failures.

By enabling high throughput mode, you can 
scale up to 30,000 transactions per second 
(TPS) with relaxed ordering within message 
groups. Without batching, FIFO queues 
support up to 300 API calls per second per API 
method (SendMessage , ReceiveMessage , 
or DeleteMessage ). If you need more 
throughput, you can request a quota increase 
through the Amazon Support Center. To 
enable high-throughput mode, see Enabling 
high throughput for FIFO queues in Amazon 
SQS.

Exactly-once processing – FIFO queues deliver 
each message once and keep it available 
until you process and delete it. By using 
features like MessageDeduplicationId
or content-based deduplication, you prevent 
duplicate messages, even when retrying due 
to network issues or timeouts.

First-in-first-out delivery – FIFO queues 
ensure that you receive messages in the order 
they are sent within each message group. By 
distributing messages across multiple groups, 
you can process them in parallel while still 
maintaining the order within each group.

Queue types 11

https://console.amazonaws.cn/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-sqs
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html


Amazon Simple Queue Service Developer Guide

Standard queues FIFO queues

Visibility timeout – Amazon SQS allows you 
to configure a visibility timeout to control 
how long a message stays hidden after being 
received, ensuring that other consumers do 
not process the message until it has been fully 
handled or the timeout expires.

Queue types 12



Amazon Simple Queue Service Developer Guide

Standard queues FIFO queues

Use standard queues to send data between 
applications when throughput is crucial, for 
example:

• Decouple live user requests from intensive 
background work. Allow users to upload 
media quickly while you process tasks 
like resizing or encoding in the backgroun 
d, ensuring fast response times without 
overloading the system.

• Allocate tasks to multiple worker nodes.
Distribute a high number of credit card 
validation requests across multiple worker 
nodes, and handle duplicate messages with 
idempotent operations to avoid processing 
errors.

• Batch messages for future processing.
Queue multiple entries for batch additions 
to a database. Since message order isn’t 
guaranteed, design your system to handle 
out-of-order processing if necessary.

Use FIFO queues to send data between 
applications when the order of events is 
important, for example:

• Make sure that user-entered commands 
are run in the right order. This is a key use 
case for FIFO queues, where command order 
is crucial. For example, if a user performs a 
sequence of actions in an application, FIFO 
queues ensure the actions are processed in 
the same order they were entered.

• Display the correct product price by 
sending price modifications in the right 
order. FIFO queues ensure that multiple 
updates to a product's price arrive and are 
processed sequentially. Without FIFO, a 
price reduction might be processed after a 
price increase, causing incorrect data to be 
displayed.

• Prevent a student from enrolling in a 
course before registering for an account.
By using FIFO queues, you ensure that the 
registration process occurs in the correct 
sequence. The system processes the account 
registration first and then the course 
enrollment, preventing the enrollment 
request from being executed prematurely.

Implementing request-response systems in Amazon SQS

When implementing a request-response or remote procedure call (RPC) system, keep the following 
best practices in mind:

Implementing request-response systems in Amazon SQS 13



Amazon Simple Queue Service Developer Guide

• Create reply queues on start-up – Instead of creating reply queues per message, create them 
on start-up, per producer. Use a correlation ID message attribute to map replies to requests 
efficiently.

• Avoid sharing reply queues among producers – Ensure that each producer has its own reply 
queue. Sharing reply queues can result in a producer receiving response messages intended for 
another producer.

For more information about implementing the request-response pattern using the Temporary 
Queue Client, see Request-response messaging pattern (virtual queues).

Creating an Amazon SQS standard queue and sending a 
message

You can create a standard queue and send messages using the Amazon SQS console. This topic also 
emphasizes best practices, including avoiding sensitive information in queue names and utilizing 
managed server-side encryption.

Creating a standard queue using the Amazon SQS console

Important

On August 17, 2022, default server-side encryption (SSE) was applied to all Amazon SQS 
queues.
Do not add personally identifiable information (PII) or other confidential or sensitive 
information in queue names. Queue names are accessible to many Amazon Web Services, 
including billing and CloudWatch logs. Queue names are not intended to be used for 
private or sensitive data.

To create an Amazon SQS standard queue

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. Choose Create queue.

3. For Type, the Standard queue type is set by default.

Creating a standard queue 14

https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

Note

You can't change the queue type after you create the queue.

4. Enter a Name for your queue.

5. (Optional) The console sets default values for the queue configuration parameters. Under
Configuration, you can set new values for the following parameters:

a. For Visibility timeout , enter the duration and units. The range is from 0 seconds to 12 
hours. The default value is 30 seconds.

b. For Message retention period, enter the duration and units. The range is from 1 minute to 
14 days. The default value is 4 days.

c. For Delivery delay, enter the duration and units. The range is from 0 seconds to 15 
minutes. The default value is 0 seconds.

d. For Maximum message size, enter a value. The range is from 1 KiB to 1024 KiB. The 
default value is 1024 KiB.

e. For Receive message wait time, enter a value. The range is from 0 to 20 seconds. The 
default value is 0 seconds, which sets short polling. Any non-zero value sets long polling.

6. (Optional) Define an Access policy. The access policy defines the accounts, users, and roles 
that can access the queue. The access policy also defines the actions (such as SendMessage,
ReceiveMessage, or DeleteMessage) that the users can access. The default policy allows 
only the queue owner to send and receive messages.

To define the access policy, do one of the following:

• Choose Basic to configure who can send messages to the queue and who can receive 
messages from the queue. The console creates the policy based on your choices and displays 
the resulting access policy in the read-only JSON panel.

• Choose Advanced to modify the JSON access policy directly. This allows you to specify a 
custom set of actions that each principal (account, user, or role) can perform.

7. For Redrive allow policy, choose Enabled. Select one of the following: Allow all, By queue, 
or Deny all. When choosing By queue, specify a list of up to 10 source queues by the Amazon 
Resource Name (ARN).

8. Amazon SQS provides managed server-side encryption by default. To choose an encryption 
key type, or to disable Amazon SQS managed server-side encryption, expand Encryption. 

Creating a queue 15

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html


Amazon Simple Queue Service Developer Guide

For more on encryption key types, see Configuring server-side encryption for a queue using 
SQS-managed encryption keys and Configuring server-side encryption for a queue using the 
Amazon SQS console.

Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the 
encrypted queue will be rejected. Amazon SQS security best practises recommend 
against using anonymous requests. If you wish to send anonymous requests to an 
Amazon SQS queue, make sure to disable SSE.

9. (Optional) To configure a dead-letter queue to receive undeliverable messages, expand Dead-
letter queue.

10. (Optional) To add tags to the queue, expand Tags.

11. Choose Create queue. Amazon SQS creates the queue and displays the queue's Details page.

Amazon SQS propagates information about the new queue across the system. Because Amazon 
SQS is a distributed system, you might experience a slight delay before the console displays the 
queue on the Queues page.

Sending a message using a standard queue

After your queue has been created, you can send a message to it.

1. From the left navigation pane, choose Queues. From the queue list, select the queue that you 
created.

2. From Actions, choose Send and receive messages.

The console displays the Send and receive messages page.

3. In the Message body, enter the message text.

4. For a standard queue, you can enter a value for Delivery delay and choose the units. For 
example, enter 60 and choose seconds. For more information, see Amazon SQS message 
timers.

5. Choose Send message.

When your message is sent, the console displays a success message. Choose View details to 
display information about the sent message.

Sending a message using a standard queue 16



Amazon Simple Queue Service Developer Guide

Creating an Amazon SQS FIFO queue and sending a message

You can create an Amazon SQS FIFO queue and send messages using the console. This topic 
explains how to set up queue parameters, including visibility timeout, message retention, and 
deduplication, while following security best practices such as avoiding sensitive information 
in queue names and enabling server-side encryption. It also covers defining access policies, 
configuring dead-letter queues, and sending messages with FIFO-specific attributes like message 
group ID and deduplication ID.

Creating a FIFO queue using the Amazon SQS console

You can use the Amazon SQS console to create FIFO queues. The console provides default values 
for all settings except for the queue name.

Important

On August 17, 2022, default server-side encryption (SSE) was applied to all Amazon SQS 
queues.
Do not add personally identifiable information (PII) or other confidential or sensitive 
information in queue names. Queue names are accessible to many Amazon Web Services, 
including billing and CloudWatch logs. Queue names are not intended to be used for 
private or sensitive data.

To create an Amazon SQS FIFO queue

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. Choose Create queue.

3. For Type, the Standard queue type is set by default. To create a FIFO queue, choose FIFO.

Note

You can't change the queue type after you create the queue.

4. Enter a Name for your queue.

Creating a FIFO queue 17

https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

The name of a FIFO queue must end with the .fifo suffix. The suffix counts towards the 80-
character queue name quota. To determine whether a queue is FIFO, you can check whether 
the queue name ends with the suffix.

5. (Optional) The console sets default values for the queue configuration parameters. Under
Configuration, you can set new values for the following parameters:

a. For Visibility timeout , enter the duration and units. The range is from 0 seconds to 12 
hours. The default value is 30 seconds.

b. For Message retention period, enter the duration and units. The range is from 1 minute to 
14 days. The default value is 4 days.

c. For Delivery delay, enter the duration and units. The range is from 0 seconds to 15 
minutes. The default value is 0 seconds.

d. For Maximum message size, enter a value. The range is from 1 KiB to 1024 KiB. The 
default value is 1024 KiB.

e. For Receive message wait time, enter a value. The range is from 0 to 20 seconds. The 
default value is 0 seconds, which sets short polling. Any non-zero value sets long polling.

f. For a FIFO queue, choose Content-based deduplication to enable content-based 
deduplication. The default setting is disabled.

g. (Optional) For a FIFO queue to enable higher throughput for sending and receiving 
messages in the queue, choose Enable high throughput FIFO.

Choosing this option changes the related options (Deduplication scope and FIFO 
throughput limit) to the required settings for enabling high throughput for FIFO queues. 
If you change any of the settings required for using high throughput FIFO, normal 
throughput is in effect for the queue, and deduplication occurs as specified. For more 
information, see High throughput for FIFO queues in Amazon SQS and Amazon SQS 
message quotas.

6. (Optional) Define an Access policy. The access policy defines the accounts, users, and roles 
that can access the queue. The access policy also defines the actions (such as SendMessage,
ReceiveMessage, or DeleteMessage) that the users can access. The default policy allows 
only the queue owner to send and receive messages.

To define the access policy, do one of the following:

Create a queue 18

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html


Amazon Simple Queue Service Developer Guide

• Choose Basic to configure who can send messages to the queue and who can receive 
messages from the queue. The console creates the policy based on your choices and displays 
the resulting access policy in the read-only JSON panel.

• Choose Advanced to modify the JSON access policy directly. This allows you to specify a 
custom set of actions that each principal (account, user, or role) can perform.

7. For Redrive allow policy, choose Enabled. Select one of the following: Allow all, By queue, 
or Deny all. When choosing By queue, specify a list of up to 10 source queues by the Amazon 
Resource Name (ARN).

8. Amazon SQS provides managed server-side encryption by default. To choose an encryption 
key type, or to disable Amazon SQS managed server-side encryption, expand Encryption. 
For more on encryption key types, see Configuring server-side encryption for a queue using 
SQS-managed encryption keys and Configuring server-side encryption for a queue using the 
Amazon SQS console.

Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the 
encrypted queue will be rejected. Amazon SQS security best practises recommend 
against using anonymous requests. If you wish to send anonymous requests to an 
Amazon SQS queue, make sure to disable SSE.

9. (Optional) To configure a dead-letter queue to receive undeliverable messages, expand Dead-
letter queue.

10. (Optional) To add tags to the queue, expand Tags.

11. Choose Create queue. Amazon SQS creates the queue and displays the queue's Details page.

Amazon SQS propagates information about the new queue across the system. Because Amazon 
SQS is a distributed system, you might experience a slight delay before the console displays the 
queue on the Queues page.

After creating a queue, you can send messages to it, and receive and delete messages. You can also
edit any of the queue configuration settings except the queue type.

Sending a message using a FIFO queue

After you create your queue, you can send a message to it.

Sending a message using a FIFO queue 19



Amazon Simple Queue Service Developer Guide

1. From the left navigation pane, choose Queues. From the queue list, select the queue that you 
created.

2. From Actions, choose Send and receive messages.

The console displays the Send and receive messages page.

3. In the Message body, enter the message text.

4. For a First-In-First-Out (FIFO) queue, enter a Message group ID. For more information, see
FIFO queue delivery logic in Amazon SQS.

5. (Optional) For a FIFO queue, you can enter a Message deduplication ID. If you enabled 
content-based deduplication for the queue, the message deduplication ID isn't required. For 
more information, see FIFO queue delivery logic in Amazon SQS.

6. FIFO queues does not support timers on individual messages. For more information, see
Amazon SQS message timers.

7. Choose Send message.

When your message is sent, the console displays a success message. Choose View details to 
display information about the sent message.

Common tasks for getting started with Amazon SQS

Once you've created a queue and learned how to send, receive, and delete messages, you might 
want to try the following:

• Trigger a Lambda function to process incoming messages automatically, enabling event-driven 
workflows without the need for continuous polling.

• Configure queues, including SSE and other features.

• Send a message with attributes.

• Send a message from a VPC.

• Discover the functionality and architecture of Amazon SQS.

• Discover guidelines and caveats that will help you make the most of Amazon SQS.

• Explore the Amazon SQS examples for an Amazon SDK, such as the Amazon SDK for Java 2.x 
Developer Guide.

• Learn about Amazon SQS Amazon CLI commands.

• Learn about Amazon SQS API actions.

Common tasks 20

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/
https://docs.aws.amazon.com/cli/latest/reference/sqs/
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_Operations.html


Amazon Simple Queue Service Developer Guide

• Learn how to interact with Amazon SQS programmatically. See Working with APIs and explore 
the Amazon Development Center:

• Java

• JavaScript

• PHP

• Python

• Ruby

• Windows & .NET

• Learn how to monitor costs and resources.

• Learn how to protect your data.

• Learn more about the Amazon SQS workflow.

Common tasks 21

https://aws.amazon.com/developer/
http://www.amazonaws.cn/java/
http://www.amazonaws.cn/javascript/
http://www.amazonaws.cn/php/
http://www.amazonaws.cn/python/
http://www.amazonaws.cn/ruby/
http://www.amazonaws.cn/net/


Amazon Simple Queue Service Developer Guide

Managing an Amazon SQS queue

Learn how to manage Amazon SQS queues using the console, including editing queue settings, 
receiving and deleting messages, confirming queue emptiness, and deleting or purging queues. 
Understand best practices for efficient message handling, such as using long polling, managing 
visibility timeouts, and verifying metrics through monitoring dashboards or the Amazon CLI. Follow 
practical steps to maintain queues and handle messages effectively while minimizing disruptions.

Editing an Amazon SQS queue using the console

You can use the Amazon SQS console to edit queue configuration parameters (except the queue 
type) and modify or remove features as needed.

To edit an Amazon SQS queue (console)

1. Open the Queues page of the Amazon SQS console.

2. Select a queue, and then choose Edit.

3. (Optional) Under Configuration, update the queue's configuration parameters.

4. (Optional) To update the access policy, under Access policy, modify the JSON policy.

5. (Optional) To update a dead-letter queue redrive allow policy, expand Redrive allow policy.

6. (Optional) To update or remove encryption, expand Encryption.

7. (Optional) To add, update, or remove a dead-letter queue (which allows you to receive 
undeliverable messages), expand Dead-letter queue.

8. (Optional) To add, update, or remove the tags for the queue, expand Tags.

9. Choose Save.

• The console displays the Details page for the queue.

Receiving and deleting a message in Amazon SQS

After sending messages to an Amazon SQS queue, you can retrieve and delete them to process 
your application workflow. This process ensures secure and reliable message handling. This topic 
walks you through retrieving and deleting messages using the Amazon SQS console and explains 
key settings to optimize this operation. The following are key concepts for receiving and deleting 
messages:

Editing a queue 22

https://console.aws.amazon.com/sqs/#/queues


Amazon Simple Queue Service Developer Guide

1. Receiving messages

• When you retrieve messages from an Amazon SQS queue, you cannot target specific 
messages. Instead, specify the maximum number of messages to retrieve in a single request 
(up to 10).

• Due to Amazon SQS's distributed nature, retrieving from a queue with few messages may 
return an empty response. To mitigate this:

• Use long polling, which waits until a message is available or the poll times out. This 
approach reduces unnecessary polling costs and improves efficiency.

• Re-issue the request if needed.

2. Message visibility and deletion

• Messages are not deleted automatically after retrieval. This feature ensures you can reprocess 
messages in case of application failures or network disruptions.

• After processing, you must explicitly send a delete request to remove the message 
permanently. This action confirms successful handling.

• Messages retrieved using the Amazon SQS console remain visible for re-retrieval. Adjust the 
visibility timeout setting for automated environments to temporarily hide messages from 
other consumers while they are being processed.

3. Visibility timeout

• This setting determines how long a message remains hidden after retrieval. Set an appropriate 
timeout to ensure messages are processed only once and to prevent duplication during 
distributed processing.

To receive and delete a message using the console

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

3. On the Queues page, choose the queue you want to receive messages from, and then select
Send and receive messages.

4. On the Send and receive messages page, select Poll for messages.

Amazon SQS displays a progress bar indicating the polling duration. Messages retrieved will 
appear in the Messages section, showing:

• Message ID
Receiving and deleting a message 23

https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

• Sent date

• Size

• Receive count

5. To delete messages, choose the ones you want to remove and select Delete.

Confirm deletion in the Delete Messages dialog box by selecting Delete.

For more details on advanced operations, including API-based message retrieval and deletion, see 
the Amazon SQS API Reference Guide.

Confirming that an Amazon SQS queue is empty

In most cases, you can use long polling to determine if a queue is empty. In rare cases, you might 
receive empty responses even when a queue still contains messages, especially if you specified a 
low value for Receive message wait time when you created the queue. This section describes how 
to confirm that a queue is empty.

To confirm that a queue is empty (console)

1. Stop all producers from sending messages.

2. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

3. In the navigation pane, choose Queues.

4. On the Queues page, choose a queue.

5. Choose the Monitoring tab.

6. At the top right of the Monitoring dashboards, choose the down arrow next to the Refresh 
symbol. From the dropdown menu, choose Auto refresh. Leave the Refresh interval at 1 
Minute.

7. Observe the following dashboards:

• Approximate Number Of Messages Delayed

• Approximate Number Of Messages Not Visible

• Approximate Number Of Messages Visible

When all of them show 0 values for several minutes, the queue is empty.

Confirming a queue is empty 24

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_Operations.html
https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

To confirm that a queue is empty (Amazon CLI, Amazon API)

1. Stop all producers from sending messages.

2. Repeatedly run one of the following commands:

• Amazon CLI: get-queue-attributes

• Amazon API: GetQueueAttributes

3. Observe the metrics for the following attributes:

• ApproximateNumberOfMessagesDelayed

• ApproximateNumberOfMessagesNotVisible

• ApproximateNumberOfMessagesVisible

When all of them are 0 for several minutes, the queue is empty.

If you rely on Amazon CloudWatch metrics, make sure that you see multiple consecutive zero data 
points before considering that queue empty. For more information on CloudWatch metrics, see
Available CloudWatch metrics for Amazon SQS.

Deleting an Amazon SQS queue

If you no longer use an Amazon SQS queue and don’t plan to use it in the near future, delete the 
queue.

Tip

If you want to verify that a queue is empty before you delete it, see Confirming that an 
Amazon SQS queue is empty.

You can delete a queue even when it isn't empty. To delete the messages in a queue but not the 
queue itself, purge the queue.

To delete a queue (console)

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

Deleting a queue 25

https://docs.amazonaws.cn/cli/latest/reference/get-queue-attributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

3. On the Queues page, choose the queue to delete.

4. Choose Delete.

5. In the Delete queue dialog box, confirm the deletion by entering delete.

6. Choose Delete.

To delete a queue (Amazon CLI and API)

Choose the appropriate method to delete your queue based on your needs:

• Amazon CLI: aws sqs delete-queue

• Amazon API: DeleteQueue

Purging messages from an queue using the Amazon SQS 
console

To keep an Amazon SQS queue but remove all its messages, you can purge the queue. This will 
delete all messages, including those that are currently invisible (in flight). The purge process can 
take up to 60 seconds, so wait the full 60 seconds regardless of the queue’s size.

Important

When you purge a queue, you can't retrieve any of the deleted messages.

To purge a queue (console)

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

3. On the Queues page, choose the queue to purge.

4. From Actions, choose Purge.

5. In the Purge queue dialog box, confirm the purge by entering purge and choosing Purge.

• All messages are purged from the queue. The console displays a confirmation banner.

Purging a queue 26

https://docs.amazonaws.cn/cli/latest/reference/sqs/delete-queue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

Amazon SQS standard queues

Amazon SQS provides standard queues as the default queue type, supporting a nearly 
unlimited number of API calls per second for actions like SendMessage, ReceiveMessage, and
DeleteMessage. Standard queues ensure at-least-once message delivery, but due to the highly 
distributed architecture, more than one copy of a message might be delivered, and messages 
may occasionally arrive out of order. Despite this, standard queues make a best-effort attempt to 
maintain the order in which messages are sent.

When you send a message using SendMessage, Amazon SQS redundantly stores the message in 
multiple availability zones (AZs) before acknowledging it. This redundancy ensures that no single 
computer, network, or AZ failure can render the messages inaccessible.

You can create and configure queues using the Amazon SQS console. For detailed instructions, see
Creating a standard queue using the Amazon SQS console. For Java-specific examples, see Amazon 
SQS Java SDK examples.

Use cases for standard queues

Standard message queues are suitable for various scenarios, as long as your application can handle 
messages that might arrive more than once or out of order. Examples include:

• Decoupling live user requests from intensive background work – Users can upload media while 
the system resizes or encodes it in the background.

• Allocating tasks to multiple worker nodes – For example, handling a high volume of credit card 
validation requests.

• Batching messages for future processing – Scheduling multiple entries to be added to a 
database at a later time.

For information on quotas related to standard queues, see Amazon SQS standard queue quotas.

For best practices of working with standard queues, see Amazon SQS best practices.

Amazon SQS at-least-once delivery

Amazon SQS stores copies of your messages on multiple servers for redundancy and high 
availability. On rare occasions, one of the servers that stores a copy of a message might be 
unavailable when you receive or delete a message.

Amazon SQS at-least-once delivery 27

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html


Amazon Simple Queue Service Developer Guide

If this occurs, the copy of the message isn't deleted on the server that is unavailable, and you 
might get that message copy again when you receive messages. Design your applications to be
idempotent (they should not be affected adversely when processing the same message more than 
once).

Amazon SQS queue and message identifiers

This topic describes the identifiers of standard and FIFO queues. These identifiers can help you find 
and manipulate specific queues and messages.

Identifiers for Amazon SQS standard queues

For more information about the following identifiers, see the Amazon Simple Queue Service API 
Reference.

Queue name and URL

When you create a new queue, you must specify a queue name unique for your Amazon account 
and region. Amazon SQS assigns each queue you create an identifier called a queue URL that 
includes the queue name and other Amazon SQS components. Whenever you want to perform an 
action on a queue, you provide its queue URL.

The following is the queue URL for a queue named MyQueue owned by a user with the AWS 
account number 123456789012.

https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue

You can retrieve the URL of a queue programmatically by listing your queues and parsing the string 
that follows the account number. For more information, see ListQueues.

Message ID

Each message receives a system-assigned message ID that Amazon SQS returns to you in the
SendMessage response. This identifier is useful for identifying messages. The maximum length of 
a message ID is 100 characters.

Receipt handle

Every time you receive a message from a queue, you receive a receipt handle for that message. 
This handle is associated with the action of receiving the message, not with the message itself. To 

Queue and message identifiers 28

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html


Amazon Simple Queue Service Developer Guide

delete the message or to change the message visibility, you must provide the receipt handle (not 
the message ID). Thus, you must always receive a message before you can delete it (you can't put 
a message into the queue and then recall it). The maximum length of a receipt handle is 1,024 
characters.

Important

If you receive a message more than once, each time you receive it, you get a different 
receipt handle. You must provide the most recently received receipt handle when you 
request to delete the message (otherwise, the message might not be deleted).

The following is an example of a receipt handle broken across three lines.

MbZj6wDWli+JvwwJaBV+3dcjk2YW2vA3+STFFljTM8tJJg6HRG6PYSasuWXPJB+Cw
Lj1FjgXUv1uSj1gUPAWV66FU/WeR4mq2OKpEGYWbnLmpRCJVAyeMjeU5ZBdtcQ+QE
auMZc8ZRv37sIW2iJKq3M9MFx1YvV11A2x/KSbkJ0=

Identifiers for standard queues 29



Amazon Simple Queue Service Developer Guide

Amazon SQS FIFO queues

FIFO (First-In-First-Out) queues have all the capabilities of the standard queues, but are designed 
to enhance messaging between applications when the order of operations and events is critical, or 
where duplicates can't be tolerated.

The most important features of FIFO queues are FIFO (First-In-First-Out) delivery and exactly-once 
processing:

• The order in which messages are sent and received is strictly preserved and a message is 
delivered once and remains unavailable until a consumer processes and deletes it.

• Duplicates aren't introduced into the queue.

Additionally, FIFO queues support message groups that allow multiple ordered message groups 
within a single queue. There is no quota to the number of message groups within a FIFO queue.

Examples of situations where you might use FIFO queues include the following:

1. E-commerce order management system where order is critical

2. Integrating with a third-party systems where events need to be processed in order

3. Processing user-entered inputs in the order entered

4. Communications and networking – Sending and receiving data and information in the same 
order

5. Computer systems – Making sure that user-entered commands are run in the right order

6. Educational institutes – Preventing a student from enrolling in a course before registering for an 
account

7. Online ticketing system – Where tickets are distributed on a first come first serve basis

Note

FIFO queues also provide exactly-once processing, but have a limited number of 
transactions per second (TPS). You can use Amazon SQS high throughput mode with your 
FIFO queue to increase your transaction limit. For details on using high throughput mode, 
see High throughput for FIFO queues in Amazon SQS. For information on throughput 
quotas, see the section called “Message quotas”.

30



Amazon Simple Queue Service Developer Guide

Amazon SQS FIFO queues are available in all Regions where Amazon SQS is available.

For more on using FIFO queues with complex ordering, see Solving Complex Ordering Challenges 
with Amazon SQS FIFO Queues.

For information about how to create and configure queues using the Amazon SQS console, see
Creating a standard queue using the Amazon SQS console. For Java examples, see Amazon SQS 
Java SDK examples.

For best practices for working with FIFO queues, see Amazon SQS best practices.

Amazon SQS FIFO queue key terms

The following key terms can help you better understand the functionality of FIFO queues. For more 
information, see the Amazon Simple Queue Service API Reference.

Clients

The Amazon SQS Buffered Asynchronous Client doesn't currently support FIFO queues.

Message deduplication ID

A token used in Amazon SQS FIFO queues to uniquely identify messages and prevent 
duplication. If multiple messages with the same deduplication ID are sent within a 5 minute 
deduplication interval, they are treated as duplicates, and only one copy is delivered. If you 
don't specify a deduplication ID and content-based deduplication is enabled, Amazon SQS 
generates a deduplication ID by hashing the message body. This mechanism ensures exactly-
once delivery by eliminating duplicate messages within the specified time frame.

Note

Amazon SQS continues tracking the deduplication ID even after the message has been 
received and deleted.

Message group ID

In FIFO (First-In-First-Out) queues, MessageGroupId is an attribute that organizes messages 
into distinct groups. Messages within the same message group are always processed one at 
a time, in strict order, ensuring that no two messages from the same group are processed 

FIFO queue key terms 31

https://amazonaws-china.com/blogs/compute/solving-complex-ordering-challenges-with-amazon-sqs-fifo-queues/
https://amazonaws-china.com/blogs/compute/solving-complex-ordering-challenges-with-amazon-sqs-fifo-queues/
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/


Amazon Simple Queue Service Developer Guide

simultaneously. In standard queues, using MessageGroupId enables fair queues. If strict 
ordering is required, use a FIFO queue.

Receive request attempt ID

The receive request attempt ID is a unique token used to deduplicate ReceiveMessage calls in 
Amazon SQS.

Sequence number

The large, non-consecutive number that Amazon SQS assigns to each message.

Services

If your application uses multiple Amazon services, or a mix of Amazon and external services, it is 
important to understand which service functionality doesn't support FIFO queues.

Some Amazon or external services that send notifications to Amazon SQS might not be 
compatible with FIFO queues, despite allowing you to set a FIFO queue as a target.

The following features of Amazon services aren't currently compatible with FIFO queues:

• Amazon S3 Event Notifications

• Auto Scaling Lifecycle Hooks

• Amazon IoT Rule Actions

• Amazon Lambda Dead-Letter Queues

For information about compatibility of other services with FIFO queues, see your service 
documentation.

FIFO queue delivery logic in Amazon SQS

The following concepts clarify how Amazon SQS FIFO queues handle the sending and receiving of 
messages, particularly when dealing with message ordering and message group IDs.

Sending messages

Amazon SQS FIFO queues preserve message order using unique deduplication IDs and message 
group IDs. This topic highlights the importance of message group IDs for maintaining strict 
ordering within groups and highlights best practices for ensuring reliable, ordered message 
delivery across multiple producers.

FIFO delivery logic 32

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/NotificationHowTo.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.amazonaws.cn/iot/latest/developerguide/iot-rule-actions.html
https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html#invocation-dlq


Amazon Simple Queue Service Developer Guide

1. Order preservation

• When multiple messages are sent in succession to a FIFO queue with unique message 
deduplication IDs, Amazon SQS stores them and acknowledges their transmission. These 
messages are then received and processed in the exact order they were transmitted.

2. Message group ID

• In FIFO queues, messages are ordered based on their message group ID. If multiple producers 
or threads send messages with the same message group ID, Amazon SQS ensures they are 
stored and processed in the order they arrive.

• Best practice: To guarantee strict message order across multiple producers, assign a unique 
message group ID for all messages from each producer.

3. Per-group ordering

• FIFO queue logic applies on a per message group ID basis:

• Each message group ID represents a distinct, ordered group of messages.

• Within a message group ID, all messages are sent and received in strict order.

• Messages with different message group IDs may arrive or be processed out of order relative 
to one another.

• Requirement - You must associate a message group ID with each message. If a message is 
sent without a group ID, the action fails.

• Single group scenario - If you require all messages to be processed in strict order, use the 
same message group ID for every message.

Receiving messages

Amazon SQS FIFO queues handle message retrieval, including batch processing, FIFO order 
guarantees, and limitations on requesting specific message group IDs. This topic explains how 
Amazon SQS retrieves messages within and across message group IDs while maintaining strict 
ordering and visibility rules.

1. Batch retrieval

• When receiving messages from a FIFO queue with multiple message group IDs, Amazon SQS:

• Attempts to return as many messages as possible with the same message group ID in a 
single call.

• Allows other consumers to process messages from different message group IDs 
concurrently.

Receiving messages 33



Amazon Simple Queue Service Developer Guide

• Important clarification

• You may receive multiple messages from the same message group ID in one batch (up to 10 
messages in a single call using the MaxNumberOfMessages parameter).

• However, you can't receive additional messages from the same message group ID in 
subsequent requests until:

• The currently received messages are deleted, or

• They become visible again (for example, after the visibility timeout expires).

2. FIFO order guarantee

• Messages retrieved in a batch retain their FIFO order within the group.

• If fewer than 10 messages are available for the same message group ID, Amazon SQS may 
include messages from other message group IDs in the same batch, but each group retains 
FIFO order.

3. Consumer limitations

• You cannot explicitly request to receive messages from a specific message group ID.

Retrying multiple times

Producers and consumers can safely retry failed actions in Amazon SQS FIFO queues without 
disrupting message order or introducing duplicates. This topic highlights how deduplication IDs 
and visibility timeouts ensure message integrity during retries.

1. Producer retries

• If a SendMessage action fails, the producer can retry sending the message multiple times 
with the same message deduplication ID.

• As long as the producer receives at least one acknowledgment before the deduplication 
interval expires, retries:

• Do not introduce duplicate messages.

• Do not disrupt message order.

2. Consumer retries

• If a ReceiveMessage action fails, the consumer can retry as many times as necessary using 
the same receive request attempt ID.

• As long as the consumer receives at least one acknowledgment before the visibility timeout 
expires, retries:

Retrying multiple times 34

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

• Do not disrupt message order.

Additional notes on FIFO behavior

Learn about handling visibility timeouts, enabling parallel processing with multiple message group 
IDs, and ensuring strict sequential processing in single-group scenarios.

1. Handling visibility timeout

• When a message is retrieved but not deleted, it remains invisible until the visibility timeout 
expires.

• No additional messages from the same message group ID are returned until the first message 
is deleted or becomes visible again.

2. Concurrency and parallel processing

• FIFO queues allow parallel processing of messages across different message group IDs.

• To maximize concurrency, design your system with multiple message group IDs for 
independent workflows.

3. Single group scenarios

• For strict sequential processing of all messages in a FIFO queue, use a single message group ID 
for all messages in the queue.

Examples for better understanding

The following are practical scenarios illustrating FIFO queue behavior in Amazon SQS.

1. Scenario 1: Single group ID

• A producer sends five messages with the same message group ID Group A.

• A consumer receives these messages in FIFO order. Until the consumer deletes these messages 
or the visibility timeout expires, no additional messages from Group A are received.

2. Scenario 2: Multiple group IDs

• A producer sends five messages to Group A and 5 to Group B.

• Consumer 1 processes messages from Group A, while Consumer 2 processes messages from 
Group B. This enables parallel processing with strict ordering maintained within each group.

3. Scenario 3: Batch retrieval

• A producer sends seven messages to Group A and three to Group B.

Additional notes on FIFO behavior 35



Amazon Simple Queue Service Developer Guide

• A single consumer retrieves up to 10 messages. If the queue allows, it may return:

• Seven messages from Group A and three from Group B (or fewer if fewer messages are 
available from a single group).

Exactly-once processing in Amazon SQS

Unlike standard queues, FIFO queues don't introduce duplicate messages. FIFO queues help you 
avoid sending duplicates to a queue. If you retry the SendMessage action within the 5-minute 
deduplication interval, Amazon SQS doesn't introduce any duplicates into the queue.

To configure deduplication, you must do one of the following:

• Enable content-based deduplication. This instructs Amazon SQS to use a SHA-256 hash 
to generate the message deduplication ID using the body of the message—but not the 
attributes of the message. For more information, see the documentation on the CreateQueue,
GetQueueAttributes, and SetQueueAttributes actions in the Amazon Simple Queue 
Service API Reference.

• Explicitly provide the message deduplication ID (or view the sequence number) for the message. 
For more information, see the documentation on the SendMessage, SendMessageBatch, and
ReceiveMessage actions in the Amazon Simple Queue Service API Reference.

Moving from a standard queue to a FIFO queue in Amazon SQS

If your existing application uses standard queues and you want to take advantage of the ordering 
or exactly-once processing features of FIFO queues, you need to configure both the queue and your 
application correctly.

Key considerations

• Creating a FIFO Queue: You cannot convert an existing standard queue into a FIFO queue. You 
must either create a new FIFO queue for your application or delete the existing standard queue 
and recreate it as a FIFO queue.

• Delay Parameter: FIFO queues do not support per-message delays, only per-queue delays. If 
your application sets the DelaySeconds parameter on each message, you must modify it to set
DelaySeconds on the entire queue instead.

Exactly-once processing 36

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

• Message Group ID: Provide a message group ID for every sent message. This ID enables parallel 
processing of messages while maintaining their respective order. Use a granular business 
dimension for the message group ID to better scale with FIFO queues. The more message group 
IDs you distribute messages to, the greater the number of messages available for consumption.

• High Throughput Mode: Use the recommended high throughput mode for FIFO queues to 
achieve increased throughput. For more information on messaging quotas, see Amazon SQS 
message quotas.

Checklist for moving to FIFO queues

Before sending messages to a FIFO queue, confirm the following:

1. Configure delay settings

• Modify your application to remove per-message delays.

• Set the DelaySeconds parameter on the entire queue.

2. Set message group IDs

• Organize messages into message groups by specifying a message group ID based on a 
business dimension.

• Use more granular business dimensions to improve scalability.

3. Handle message deduplication

• If your application can't send messages with identical message bodies, provide a unique 
message deduplication ID for each message.

• If your application sends messages with unique message bodies, enable content-based 
deduplication.

4. Configure the consumer

• Generally, no code changes are needed for the consumer.

• If processing messages takes a long time and the visibility timeout is set high, consider 
adding a receive request attempt ID to each ReceiveMessage action. This helps retry receive 
attempts in case of networking failures and prevents queues from pausing due to failed 
receive attempts.

By following these steps, you can ensure your application works correctly with FIFO queues, 
taking full advantage of their ordering and exactly-once processing features. For more detailed 
information, see the  Amazon Simple Queue Service API Reference.
Moving from a standard queue to a FIFO queue 37

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/


Amazon Simple Queue Service Developer Guide

Amazon SQS FIFO queue and Lambda concurrency behavior

By using a FIFO (First-In-First-Out) queue with Lambda, you can ensure ordered processing of 
messages within each message group. The Lambda function will not run multiple instances for the 
same message group simultaneously, thereby maintaining the order. However, it can scale up to 
handle multiple message groups in parallel, ensuring efficient processing of your queue's workload. 
The following points describe the behavior of Lambda functions when processing messages from 
an Amazon SQS FIFO queue with respect to message group IDs:

• Single instance per message group: At any point in time, only one Lambda instance will be 
processing messages from a specific message group ID. This ensures that messages within the 
same group are processed in order, maintaining the integrity of the FIFO sequence.

• Concurrent processing of different groups: Lambda can concurrently process messages from 
different message group IDs using multiple instances. This means that while one instance of 
the Lambda function is handling messages from one message group ID, other instances can 
simultaneously handle messages from other message group IDs, leveraging the concurrency 
capabilities of Lambda to process multiple groups in parallel.

FIFO queue message grouping

FIFO queues ensure that messages are processed in the exact order they are sent. They use a
message group ID to group messages that should be processed sequentially.

Messages within the same message group are processed in order, and only one message from each 
group is processed at a time to maintain this order.

Lambda concurrency with FIFO queues

After you create your queue, you can send a message to it.

When you set up a Lambda function to process messages from an Amazon SQS FIFO queue, 
Lambda respects the ordering guarantees provided by the FIFO queue. The following points 
describe the behavior of Lambda functions in terms of concurrency and scaling when processing 
messages from an Amazon SQS FIFO queue when using message group IDs.

• Concurrency within message groups: Only one Lambda instance processes messages for a 
particular message group ID at a time. This ensures that messages within a group are handled 
sequentially.

FIFO queue and Lambda concurrency behavior 38



Amazon Simple Queue Service Developer Guide

• Scaling and multiple message groups:While Lambda can scale up to process messages 
concurrently, this scaling occurs across different message groups. If you have multiple message 
groups, Lambda can process multiple groups in parallel, with each group being handled by a 
separate Lambda instance.

For more information, see Scaling and concurrency in Lambda in the Amazon Lambda Operator 
Guide.

Use case example

Suppose your FIFO queue receives messages with the same message group ID, and your Lambda 
function has a high concurrency limit (up to 1000).

If a message from group ID 'A' is being processed and another message from group ID 'A' arrives, 
the second message will not trigger a new Lambda instance until the first message is fully 
processed.

However, if messages from group IDs 'A' and 'B' arrive, both messages can be processed 
concurrently by separate Lambda instances.

High throughput for FIFO queues in Amazon SQS

High throughput FIFO queues in Amazon SQS efficiently manage high message throughput while 
maintaining strict message order, ensuring reliability and scalability for applications processing 
numerous messages. This solution is ideal for scenarios demanding both high throughput and 
ordered message delivery.

Amazon SQS high throughput FIFO queues are not necessary in scenarios where strict message 
ordering is not crucial and where the volume of incoming messages is relatively low or sporadic. 
For instance, if you have a small-scale application that processes infrequent or non-sequential 
messages, the added complexity and cost associated with high throughput FIFO queues may not 
be justified. Additionally, if your application does not require the enhanced throughput capabilities 
provided by high throughput FIFO queues, opting for a standard Amazon SQS queue might be 
more cost-effective and simpler to manage.

To enhance request capacity in high throughput FIFO queues, increasing the number of message 
groups is recommended. For more information on high throughput message quotas, see Amazon 
SQS service quotas in the Amazon Web Services General Reference.

Use case example 39

https://docs.amazonaws.cn/lambda/latest/operatorguide/scaling-concurrency.html
https://docs.amazonaws.cn/general/latest/gr/sqs-service.html#limits_sqs.html
https://docs.amazonaws.cn/general/latest/gr/sqs-service.html#limits_sqs.html


Amazon Simple Queue Service Developer Guide

For information per-queue quotas and data distribution strategies, see Amazon SQS message 
quotas and Partitions and data distribution for high throughput for SQS FIFO queues.

Use cases for high throughput for Amazon SQS FIFO queues

The following use cases highlight the diverse applications of high throughput FIFO queues, 
showcasing their effectiveness across industries and scenarios:

1. Real-time data processing: Applications dealing with real-time data streams, such as event 
processing or telemetry data ingestion, can benefit from high throughput FIFO queues to handle 
the continuous influx of messages while preserving their order for accurate analysis.

2. E-commerce order processing: In e-commerce platforms where maintaining the order of 
customer transactions is critical, high throughput FIFO queues ensure that orders are processed 
sequentially and without delays, even during peak shopping seasons.

3. Financial services: Financial institutions handling high-frequency trading or transactional data 
rely on high throughput FIFO Queues to process market data and transactions with minimal 
latency while adhering to strict regulatory requirements for message ordering.

4. Media streaming: Streaming platforms and media distribution services utilize high throughput 
FIFO queues to manage the delivery of media files and streaming content, ensuring smooth 
playback experiences for users while maintaining the correct order of content delivery.

Partitions and data distribution for high throughput for SQS FIFO 
queues

Amazon SQS stores FIFO queue data in partitions. A partition is an allocation of storage for a queue 
that is automatically replicated across multiple Availability Zones within an Amazon Region. You 
don't manage partitions. Instead, Amazon SQS handles partition management.

For FIFO queues, Amazon SQS modifies the number of partitions in a queue in the following 
situations:

• If the current request rate approaches or exceeds what the existing partitions can support, 
additional partitions are allocated until the queue reaches the regional quota. For information on 
quotas, see Amazon SQS message quotas.

• If the current partitions have low utilization, the number of partitions may be reduced.

Use cases 40



Amazon Simple Queue Service Developer Guide

Partition management occurs automatically in the background and is transparent to your 
applications. Your queue and messages are available at all times.

Distributing data by message group IDs

To add a message to a FIFO queue, Amazon SQS uses the value of each message’s message group 
ID as input to an internal hash function. The output value from the hash function determines which 
partition stores the message.

The following diagram shows a queue that spans multiple partitions. The queue’s message group 
ID is based on item number. Amazon SQS uses its hash function to determine where to store a new 
item; in this case, it's based on the hash value of the string item0. Note that the items are stored 
in the same order in which they are added to the queue. Each item's location is determined by the 
hash value of its message group ID.

Note

Amazon SQS is optimized for uniform distribution of items across a FIFO queue's partitions, 
regardless of the number of partitions. Amazon recommends that you use message group 
IDs that can have a large number of distinct values.

Partitions and data distribution 41



Amazon Simple Queue Service Developer Guide

Optimizing partition utilization

Each partition supports up to 3,000 messages per second with batching, or up to 300 messages per 
second for send, receive, and delete operations in supported regions. For more information on high 
throughput message quotas, see Amazon SQS service quotas in the Amazon Web Services General 
Reference.

When using batch APIs, each message is routed based on the process described in Distributing data 
by message group IDs. Messages that are routed to the same partition are grouped and processed 
in a single transaction.

To optimize partition utilization for the SendMessageBatch API, Amazon recommends batching 
messages with the same message group IDs when possible.

To optimize partition utilization for the DeleteMessageBatch and
ChangeMessageVisibilityBatch APIs, Amazon recommends using ReceiveMessage requests 
with the MaxNumberOfMessages parameter set to 10, and batching the receipt-handles returned 
by a single ReceiveMessage request.

In the following example, a batch of messages with various message group IDs is sent. The batch is 
split into three groups, each of which counts against the quota for the partition.

Partitions and data distribution 42

https://docs.amazonaws.cn/general/latest/gr/sqs-service.html#limits_sqs.html


Amazon Simple Queue Service Developer Guide

Note

Amazon SQS only guarantees that messages with the same message group ID's internal 
hash function are grouped within a batch request. Depending on the output of the internal 
hash function and the number of partitions, messages with different message group IDs 
might be grouped. Since the hash function or number of partitions can change at any time, 
messages that are grouped at one point may not be grouped later.

Enabling high throughput for FIFO queues in Amazon SQS

You can enable high throughput for any new or existing FIFO queue. The feature includes three 
new options when you create and edit FIFO queues:

• Enable high throughput FIFO – Makes higher throughput available for messages in the current 
FIFO queue.

• Deduplication scope – Specifies whether deduplication occurs at the queue or message group 
level.

• FIFO throughput limit – Specifies whether the throughput quota on messages in the FIFO queue 
is set at the queue or message group level.

To enable high throughput for a FIFO queue (console)

1. Start creating or editing a FIFO queue.

2. When specifying options for the queue, choose Enable high throughput FIFO.

Enabling high throughput for FIFO queues sets the related options as follows:

• Deduplication scope is set to Message group, the required setting for using high 
throughput for FIFO queues.

• FIFO throughput limit is set to Per message group ID, the required setting for using high 
throughput for FIFO queues.

If you change any of the settings required for using high throughput for FIFO queues, normal 
throughput is in effect for the queue, and deduplication occurs as specified.

3. Continue specifying all options for the queue. When you finish, choose Create queue or Save.

Enabling high throughput for FIFO queues 43



Amazon Simple Queue Service Developer Guide

After creating or editing the FIFO queue, you can send messages to it and receive and delete 
messages, all at a higher TPS. For high throughput quotas, see Message throughput in Amazon SQS 
message quotas.

FIFO queue and message identifiers in Amazon SQS

This section describes the identifiers of FIFO queues. These identifiers can help you find and 
manipulate specific queues and messages.

Identifiers for FIFO queues in Amazon SQS

For more information about the following identifiers, see the Amazon Simple Queue Service API 
Reference.

Queue name and URL

When you create a new queue, you must specify a queue name unique for your Amazon account 
and region. Amazon SQS assigns each queue you create an identifier called a queue URL that 
includes the queue name and other Amazon SQS components. Whenever you want to perform an 
action on a queue, you provide its queue URL.

The name of a FIFO queue must end with the .fifo suffix. The suffix counts towards the 80-
character queue name quota. To determine whether a queue is FIFO, you can check whether the 
queue name ends with the suffix.

The following is the queue URL for a FIFO queue named MyQueue owned by a user with the AWS 
account number 123456789012.

https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue.fifo

You can retrieve the URL of a queue programmatically by listing your queues and parsing the string 
that follows the account number. For more information, see ListQueues.

Message ID

Each message receives a system-assigned message ID that Amazon SQS returns to you in the
SendMessage response. This identifier is useful for identifying messages. The maximum length of 
a message ID is 100 characters.

Queue and message identifiers 44

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html


Amazon Simple Queue Service Developer Guide

Receipt handle

Every time you receive a message from a queue, you receive a receipt handle for that message. 
This handle is associated with the action of receiving the message, not with the message itself. To 
delete the message or to change the message visibility, you must provide the receipt handle (not 
the message ID). Thus, you must always receive a message before you can delete it (you can't put 
a message into the queue and then recall it). The maximum length of a receipt handle is 1,024 
characters.

Important

If you receive a message more than once, each time you receive it, you get a different 
receipt handle. You must provide the most recently received receipt handle when you 
request to delete the message (otherwise, the message might not be deleted).

The following is an example of a receipt handle (broken across three lines).

MbZj6wDWli+JvwwJaBV+3dcjk2YW2vA3+STFFljTM8tJJg6HRG6PYSasuWXPJB+Cw
Lj1FjgXUv1uSj1gUPAWV66FU/WeR4mq2OKpEGYWbnLmpRCJVAyeMjeU5ZBdtcQ+QE
auMZc8ZRv37sIW2iJKq3M9MFx1YvV11A2x/KSbkJ0=

Additional identifiers for Amazon SQS FIFO queues

For more information about the following identifiers, see Exactly-once processing in Amazon SQS
and the Amazon Simple Queue Service API Reference.

Message deduplication ID

A token used in Amazon SQS FIFO queues to uniquely identify messages and prevent duplication. 
If multiple messages with the same deduplication ID are sent within a 5 minute deduplication 
interval, they are treated as duplicates, and only one copy is delivered. If you don't specify 
a deduplication ID and content-based deduplication is enabled, Amazon SQS generates a 
deduplication ID by hashing the message body. This mechanism ensures exactly-once delivery by 
eliminating duplicate messages within the specified time frame.

Message group ID

The MessageGroupId is an attribute used only in Amazon SQS FIFO (First-In-First-Out) queues 
to organize messages into distinct groups. Messages within the same message group are always 

Additional identifiers for FIFO queues 45

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/


Amazon Simple Queue Service Developer Guide

processed one at a time, in strict order, ensuring that no two messages from the same group are 
processed simultaneously. Standard queues do not use MessageGroupId and do not provide 
ordering guarantees. If strict ordering is required, use a FIFO queue instead.

Sequence number

The large, non-consecutive number that Amazon SQS assigns to each message.

Additional identifiers for FIFO queues 46



Amazon Simple Queue Service Developer Guide

Amazon SQS quotas

This topic explains the quotas and limitations for Amazon SQS FIFO and standard queues, detailing 
how they impact queue creation, configuration, and message handling. Learn about constraints like 
message retention limits, in-flight message caps, and throughput thresholds, as well as strategies 
to maximize efficiency through batching, API call optimization, and long polling. This topic also 
covers naming conventions, tagging rules, and methods for requesting quota increases to meet 
high-demand workloads, ensuring effective queue management and optimal performance.

Amazon SQS FIFO queue quotas

Amazon SQS quotas

The following table lists quotas related to FIFO queues.

Quota Description

Delay queue The default (minimum) delay for a queue is 0 seconds. 
The maximum is 15 minutes.

Listed queues 1,000 queues per ListQueues  request.

Long polling wait time The maximum long polling wait time is 20 seconds.

Message groups There is no quota to the number of message groups 
within a FIFO queue.

Messages per queue (backlog) The number of messages that an Amazon SQS queue 
can store is unlimited.

Messages per queue (in flight) FIFO queues support a maximum of 120,000 in-flight 
messages (messages received by a consumer but not yet 
deleted). If this limit is reached, Amazon SQS does not 
return an error, but processing may be impacted. You 
can request an increase beyond this limit by contacting
Amazon Support.

FIFO queue quotas 47

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/awssupport/latest/user/create-service-quota-increase.html


Amazon Simple Queue Service Developer Guide

Quota Description

Queue name The name of a FIFO queue must end with the .fifo
suffix. The suffix counts towards the 80-character queue 
name quota. To determine whether a queue is FIFO, you 
can check whether the queue name ends with the suffix.

We don't recommend adding more than 50 tags to a 
queue. Tagging supports Unicode characters in UTF-8.

The tag Key is required, but the tag Value is optional.

The tag Key and tag Value are case-sensitive.

The tag Key and tag Value can include Unicode 
alphanumeric characters in UTF-8 and whitespaces. The 
following special characters are allowed: _ . : / = + 
- @

The tag Key or Value must not include the reserved 
prefix aws: (you can't delete tag keys or values with this 
prefix).

The maximum tag Key length is 128 Unicode characters 
in UTF-8. The tag Key must not be empty or null.

The maximum tag Value length is 256 Unicode 
characters in UTF-8. The tag Value may be empty or 
null.

Queue tag

Tagging actions are limited to 30 TPS per Amazon Web 
Services account. If your application requires a higher 
throughput, submit a request.

Amazon SQS standard queue quotas

The following table lists quotas related to standard queues.

Standard queue quotas 48

https://console.amazonaws.cn/servicequotas/home/services/sqs/quotas


Amazon Simple Queue Service Developer Guide

Quota Description

Delay queue The default (minimum) delay for a queue is 0 seconds. 
The maximum is 15 minutes.

Listed queues 1,000 queues per ListQueues  request.

Long polling wait time The maximum long polling wait time is 20 seconds.

Messages per queue (backlog) The number of messages that an Amazon SQS queue 
can store is unlimited.

Messages per queue (in flight) For most standard queues (depending on queue traffic 
and message backlog), there can be a maximum of 
approximately 120,000 in flight messages (received 
from a queue by a consumer, but not yet deleted from 
the queue). If you reach this quota while using short 
polling, Amazon SQS returns the OverLimit  error 
message. If you use long polling, Amazon SQS returns 
no error messages. To avoid reaching the quota, you 
should delete messages from the queue after they're 
processed. You can also increase the number of queues 
you use to process your messages. To request a quota 
increase, submit a support request.

Queue name A queue name can have up to 80 characters. The 
following characters are accepted: alphanumeric 
characters, hyphens (-), and underscores (_).

Note

Queue names are case-sensitive (for example,   
  Test-queue  and test-queue  are  different 
queues).

Queue tag We don't recommend adding more than 50 tags to a 
queue. Tagging supports Unicode characters in UTF-8.

Standard queue quotas 49

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://console.amazonaws.cn/servicequotas/home/services/sqs/quotas


Amazon Simple Queue Service Developer Guide

Quota Description

The tag Key is required, but the tag Value is optional.

The tag Key and tag Value are  case-sensitive.

The tag Key and tag Value can include  Unicode 
alphanumeric characters in UTF-8 and whitespaces. The 
following special characters are allowed: _ . : / = + 
- @

The tag Key or Value must not include the  reserved 
prefix aws: (you can't delete tag keys or values  with 
this prefix).

The maximum tag Key length is 128 Unicode characters 
in  UTF-8. The tag Key must not be empty or null.

The maximum tag Value length is 256 Unicode 
characters in UTF-8. The tag Value may be empty or 
null.

Tagging actions are limited to 30 TPS per Amazon Web 
Services account. If your application requires a higher 
throughput, submit a request.

Amazon SQS message quotas

The following table lists quotas related to messages.

Quota Description

Batched message ID A batched message ID can have up to 80 characters. 
The following characters are accepted: alphanumeric 
characters, hyphens (-), and underscores (_).

Message attributes A message can contain up to 10 metadata attributes.

Message quotas 50

https://console.amazonaws.cn/servicequotas/home/services/sqs/quotas


Amazon Simple Queue Service Developer Guide

Quota Description

Message batch A single message batch request can include a maximum 
of 10 messages. For more information, see Configuring  
AmazonSQSBufferedAsyncClient in the Amazon SQS 
batch actions section.

Message content A message can include only XML, JSON, and unformatt 
ed text. The following Unicode characters are allowed:
#x9 | #xA | #xD | #x20 to #xD7FF | #xE000 to #xFFFD |
#x10000 to #x10FFFF

Any characters not included in this list are rejected. 
For more information, see the W3C specification for 
characters.

Message group ID MessageGroupId  is required for FIFO queues. If you 
don't provide a MessageGroupId  when sending a 
message to a FIFO queue, the action fails. In standard 
queues, using MessageGroupId  enables fair queues. 
We recommend that you include a MessageGroupId
in all messages when using fair queues.

The length of MessageGroupId  is 128 characters. 
Valid values: alphanumeric characters and punctuation
(!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~) .

Message retention By default, a message is retained for 4 days. The 
minimum is 60 seconds (1 minute). The maximum is 
1,209,600 seconds (14 days).

Message quotas 51

https://www.w3.org/TR/REC-xml/#charsets
https://www.w3.org/TR/REC-xml/#charsets


Amazon Simple Queue Service Developer Guide

Quota Description

Message throughput Standard queues

Standard queues support a very high, nearly unlimited 
number of API calls per second, per action (SendMessa 
ge , ReceiveMessage , or DeleteMessage ). This 
high throughput makes them ideal for use cases that 
require processing large volumes of messages quickly, 
such as real-time data streaming or large-scale applicati 
ons. While standard queues scale automatically with 
demand, it is essential to monitor usage patterns to 
ensure optimal performance, especially in regions with 
higher workloads.

Message quotas 52

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html


Amazon Simple Queue Service Developer Guide

Quota Description

FIFO queues

• Each partition in a FIFO queue is limited to 300 
transactions per second, per API action (SendMessa 
ge , ReceiveMessage , and DeleteMessage ). 
This limit applies specifically to non-high throughput 
mode. By switching to high throughput mode, you can 
surpass this default limit. To enable high-throughput 
mode, see Enabling high throughput for FIFO queues 
in Amazon SQS.

• If you use batching, non-high throughput FIFO queues 
support up to 3,000 messages per second, per API 
action (SendMessage , ReceiveMessage , and
DeleteMessage ). The 3,000 messages per second 
represent 300 API calls, each with a batch of 10 
messages.

High throughput for FIFO queues

Amazon SQS FIFO limits are based on the number of API 
requests, not message limits. For high throughput mode, 
these API request limits are as follows:

Transaction throughput limits (Non-batching API 
calls)

These limits define how frequently each API operation 
(such as SendMessage, ReceiveMessage, or DeleteMes 
sage) can be performed independently, ensuring 
efficient system performance within the allowed 
transactions per second (TPS).

The following limits are based on non-batched API calls:

• US East (N. Virginia), US West (Oregon), and Europe 
(Ireland): Up to 70,000 transactions per second (TPS).

Message quotas 53

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html


Amazon Simple Queue Service Developer Guide

Quota Description

• US East (Ohio) and Europe (Frankfurt): Up to 19,000 
TPS.

• Asia Pacific (Mumbai), Asia Pacific (Singapore), Asia 
Pacific (Sydney), and Asia Pacific (Tokyo): Up to 9,000 
TPS.

• Europe (London) and South America (São Paulo): Up 
to 4,500 TPS.

• All other Amazon Web Services Regions: Default 
throughput of 2,400 TPS.

Maximizing throughput with batching

Processes multiple messages in a single API call, which 
significantly increasing efficiency. Instead of handling 
each message individually, batching allows you to send, 
receive, or delete up to 10 messages in a single API 
request. This reduces the total number of API calls, 
allowing you to process more messages per second 
while staying within the transaction limits (TPS) for the 
region, maximizing throughput and system performan 
ce. For more information, see Increasing throughput usi 
ng horizontal scaling and action batching with Amazon 
SQS.

The following limits are based on batched API calls:

• US East (N. Virginia), US West (Oregon), and Europe 
(Ireland): Up to 700,000 messages per second (10x the 
non-batch limit of 70,000 TPS).

• US East (Ohio) and Europe (Frankfurt): Up to 190,000 
messages per second.

• Asia Pacific (Mumbai), Asia Pacific (Singapore), Asia 
Pacific (Sydney), and Asia Pacific (Tokyo): Up to 90,000 
messages per second.

Message quotas 54



Amazon Simple Queue Service Developer Guide

Quota Description

• Europe (London) and South America (São Paulo): Up 
to 45,000 messages per second.

• All other Amazon Web Services Regions: Up to 24,000 
messages per second.

Optimizing throughput beyond batching

While batching can greatly increase throughput, it’s 
important to consider other strategies for optimizing 
FIFO performance:

• Distribute messages across multiple message 
group IDs – Since messages within a single group are 
processed sequentially, distributing your workload 
across multiple message groups allows for better 
parallelism and higher overall throughput. For more 
information, see Partitions and data distribution for 
high throughput for SQS FIFO queues.

• Efficient use of API calls – Minimize unnecessa 
ry API calls, such as frequent visibility changes or 
repeated message deletions, to optimize the use of 
your available TPS and improve efficiency.

• Use long poll receives – Utilize long polling by 
setting WaitTimeSeconds  in your receive requests 
to reduce empty responses when no messages are 
available, lowering unnecessary API calls and making 
better use of your TPS quota.

• Requesting throughput increases – If your applicati 
on requires throughput higher than the default limits, 
request an increase using the Service Quotas console. 
This can be necessary for high-demand workloads or 
in regions with lower default limits. To enable high-
throughput mode, see Enabling high throughput for 
FIFO queues in Amazon SQS.

Message quotas 55

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#SQS-ReceiveMessage-request-WaitTimeSeconds
https://console.amazonaws.cn/servicequotas/home/services/sqs/quotas


Amazon Simple Queue Service Developer Guide

Quota Description

Message timer The default (minimum) delay for a message is 0 seconds. 
The maximum is 15 minutes.

Message size The minimum message size is 1 byte (1 character). The 
maximum is 1,048,576 bytes (1 MiB).

To send messages larger than 1 MiB, you can use the
Amazon SQS Extended Client Library for Java and the
Amazon SQS Extended Client Library for Python. This 
library allows you to send an Amazon SQS message that 
contains a reference to a message payload in Amazon 
S3. The maximum payload size is 2 GB.

Note

This extended library works only for synchrono 
us clients.

Message visibility timeout The default visibility timeout for a message is 30 
seconds. The minimum is 0 seconds. The maximum is 12 
hours.

Policy information The maximum quota is 8,192 bytes, 20 statements, 50 
principals, or 10 conditions. For more information, see
Amazon SQS policy quotas.

Amazon SQS policy quotas

The following table lists quotas related to policies.

Name Maximum

Bytes 8,192

Conditions 10

Policy quotas 56

https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://github.com/awslabs/amazon-sqs-python-extended-client-lib


Amazon Simple Queue Service Developer Guide

Name Maximum

Principals 50

Statements 20

Actions per statement 7

Policy quotas 57



Amazon Simple Queue Service Developer Guide

Amazon SQS features and capabilities

This topic provides commonly used features in Amazon SQS for managing message queues, 
optimizing performance, ensuring reliable message delivery, and handling message processing 
efficiently.

Using dead-letter queues in Amazon SQS

Amazon SQS supports dead-letter queues (DLQs), which source queues can target for messages 
that are not processed successfully. DLQs are useful for debugging your application because you 
can isolate unconsumed messages to determine why processing did not succeed. For optimal 
performance, it is a best practice to keep the source queue and DLQ within the same Amazon Web 
Services account and Region. Once messages are in a dead-letter queue, you can:

• Examine logs for exceptions that might have caused messages to be moved to a dead-letter 
queue.

• Analyze the contents of messages moved to the dead-letter queue to diagnose application 
issues.

• Determine whether you have given your consumer sufficient time to process messages.

• Move messages out of the dead-letter queue using dead-letter queue redrive.

You must first create a new queue before configuring it as a dead-letter queue. For information 
about configuring a dead-letter queue using the Amazon SQS console, see Configure a dead-letter 
queue using the Amazon SQS console. For help with dead-letter queues, such as how to configure 
an alarm for any messages moved to a dead-letter queue, see Creating alarms for dead-letter 
queues using Amazon CloudWatch.

Note

Don't use a dead-letter queue with a FIFO queue if you don't want to break the exact order 
of messages or operations. For example, don't use a dead-letter queue with instructions 
in an Edit Decision List (EDL) for a video editing suite, where changing the order of edits 
changes the context of subsequent edits.

Dead-letter queues 58



Amazon Simple Queue Service Developer Guide

Using policies for dead-letter queues

Use a redrive policy to specify the maxReceiveCount. The maxReceiveCount is the number of 
times a consumer can receive a message from a source queue before it is moved to a dead-letter 
queue. For example, if the maxReceiveCount is set to a low value such as 1, one failure to receive 
a message would cause the message to move to the dead-letter queue. To ensure that your system 
is resilient against errors, set the maxReceiveCount high enough to allow for sufficient retries.

For standard queues with a redrive policy where maxReceiveCount is greater than 3, if a message 
is received 3 or more times without being deleted, SQS moves it to the back of the queue. The
ApproximateAgeOfOldestMessage metric then reflects the age of the next message that hasn’t 
exceeded this threshold.

The redrive allow policy specifies which source queues can access the dead-letter queue. You can 
choose whether to allow all source queues, allow specific source queues, or deny all source queues 
use of the dead-letter queue. The default allows all source queues to use the dead-letter queue. 
If you choose to allow specific queues using the byQueue option, you can specify up to 10 source 
queues using the source queue Amazon Resource Name (ARN). If you specify denyAll, the queue 
cannot be used as a dead-letter queue.

Understanding message retention periods for dead-letter queues

For standard queues, the expiration of a message is always based on its original enqueue 
timestamp. When a message is moved to a dead-letter queue, the enqueue timestamp is 
unchanged. The ApproximateAgeOfOldestMessage metric indicates when the message moved 
to the dead-letter queue, not when the message was originally sent. For example, assume that 
a message spends 1 day in the original queue before it's moved to a dead-letter queue. If the 
dead-letter queue's retention period is 4 days, the message is deleted from the dead-letter queue 
after 3 days and the ApproximateAgeOfOldestMessage is 3 days. Thus, it is a best practice to 
always set the retention period of a dead-letter queue to be longer than the retention period of 
the original queue.

For FIFO queues, the enqueue timestamp resets when the message is moved to a dead-letter 
queue. The ApproximateAgeOfOldestMessage metric indicates when the message moved to 
the dead-letter queue. In the same example above, the message is deleted from the dead-letter 
queue after four days and the ApproximateAgeOfOldestMessage is four days.

Using policies for dead-letter queues 59



Amazon Simple Queue Service Developer Guide

Configure a dead-letter queue using the Amazon SQS console

A dead-letter queue (DLQ) is a queue that receives messages that were not successfully processed 
from another queue, known as the source queue. Amazon SQS does not create the dead-letter 
queue automatically. You must first create the queue before using it as a dead-letter queue. When 
configuring a DLQ, the queue type must match the source queue type—a FIFO queue can only use 
a FIFO DLQ, and a standard queue can only use a standard DLQ. You can configure a dead-letter 
queue when you create or edit a queue. For more details, see Using dead-letter queues in Amazon 
SQS .

To configure a dead-letter queue for an existing queue (console)

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

3. Select the source queue (the queue that will send failed messages to the dead-letter queue), 
then choose Edit.

4. Scroll to the Dead-letter queue section and toggle Enabled.

5. Under Dead-letter queue settings, choose the Amazon Resource Name (ARN) of an existing 
queue that you want to use as the dead-letter queue.

6. Set the Maximum receives value, which defines how many times a message can be received 
before being sent to the dead-letter queue (valid range: 1 to 1,000).

7. Choose Save.

Learn how to configure a dead-letter queue redrive in Amazon SQS

Use dead-letter queue redrive to move unconsumed messages from a dead-letter queue to another 
destination for processing. By default, dead-letter queue redrive moves messages from a dead-
letter queue to a source queue. However, you can also configure any other queue as the redrive 
destination if both queues are the same type. For example, if the dead-letter queue is a FIFO 
queue, the redrive destination queue must be a FIFO queue as well. Additionally, you can configure 
the redrive velocity to set the rate at which Amazon SQS moves messages.

Note

When a message is moved from a FIFO queue to a FIFO DLQ, the original message's 
deduplication ID will be replaced with the original message's ID. This is to make sure that 

Configuring a dead-letter queue 60

https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

the DLQ deduplication will not prevent storing of two independent messages that happen 
to share a deduplication ID.

Dead-letter queues redrive messages in the order they are received, starting with the oldest 
message. However, the destination queue ingests the redriven messages, as well as new messages 
from other producers, according to the order in which it receives them. For example, if a producer 
is sending messages to a source FIFO queue when simultaneously receiving redriven messages 
from a dead letter queue, the redriven messages will interweave with the new messages from the 
producer.

Note

The redrive task resets the retention period. All redriven messages are considered new 
messages with a new messageID and enqueueTime are assigned to redriven messages.

Configuring a dead-letter queue redrive for an existing standard queue using the 
Amazon SQS API

You can configure a dead-letter queue redrive using the StartMessageMoveTask,
ListMessageMoveTasks, and CancelMessageMoveTask API actions:

API action Description

StartMessageMoveTask Starts an asynchronous task to move 
messages from a specified source queue to a 
specified destination queue.

ListMessageMoveTasks Gets the most recent message movement 
tasks (up to 10) under a  specific source queue.

CancelMessageMoveTask Cancels a specified message movement task. 
A message movement can  only be cancelled 
when the current status is RUNNING.

Configuring a dead-letter queue redrive 61

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CancelMessageMoveTask.html


Amazon Simple Queue Service Developer Guide

Configuring a dead-letter queue redrive for an existing standard queue using the 
Amazon SQS console

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

3. Choose the name of queue that you have configured as a dead-letter queue.

4. Choose Start DLQ redrive.

5. Under Redrive configuration, for Message destination, do either of the following:

• To redrive messages to their source queue, choose Redrive to source queue(s).

• To redrive messages to another queue, choose Redrive to custom destination. Then, enter 
the Amazon Resource Name (ARN) of an existing destination queue.

6. Under Velocity control settings, choose one of the following:

• System optimized - Redrive dead-letter queue messages at the maximum number of 
messages per second.

• Custom max velocity - Redrive dead-letter queue messages with a custom maximum rate of 
messages per second. The maximum allowed rate is 500 messages per second.

• It is recommended to start with a small value for Custom max velocity and verify that the 
source queue doesn't get overwhelmed with messages. From there, gradually ramp-up the 
Custom max velocity value, continuing to monitor the state of the source queue.

7. When you finish configuring the dead-letter queue redrive, choose Redrive messages.

Important

Amazon SQS doesn't support filtering and modifying messages while redriving them 
from the dead-letter queue.
A dead-letter queue redrive task can run a maximum of 36 hours. Amazon SQS 
supports a maximum of 100 active redrive tasks per account.

8. If you want to cancel the message redrive task, on the Details page for your queue, choose
Cancel DLQ redrive. When canceling an in progress message redrive, any messages that 
have already been successfully moved to their move destination queue will remain in the 
destination queue.

Configuring a dead-letter queue redrive 62

https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

Configuring queue permissions for dead-letter queue redrive

You can give user access to specific dead-letter queue actions by adding permissions to your policy. 
The minimum required permissions for a dead-letter queue redrive are as follows:

Minimum 
Permissions

Required API methods

To start a 
message redrive

•
Add the sqs:StartMessageMoveTask ,   sqs:ReceiveMessage

,   sqs:DeleteMessage , and   sqs:GetQueueAttributes  of 
the dead-letter  queue. If either the dead-letter queue or the original   
 source queue are encrypted (also known as an SSE queue),    kms:Decry 
pt  for any KMS key that has been  used to encrypt the messages is also 
required.

•
Add the sqs:SendMessage  of the destination  queue. If the destinati 
on queue is encrypted,   kms:GenerateDataKey  and   kms:Decry 
pt are also required.

To cancel an in-
progress message 
redrive

•
Add the sqs:CancelMessageMoveTask ,   sqs:ReceiveMessage

,   sqs:DeleteMessage , and   sqs:GetQueueAttributes  of the 
dead-letter  queue. If the dead-letter queue is encrypted (also known as  
 an SSE  queue), kms:Decrypt  is also required.

To show a 
message move 
status

•
Add the sqs:ListMessageMoveTasks  and   sqs:GetQu 
eueAttributes  of the dead-letter  queue.

To configure permissions for an encrypted queue pair (a source queue with a dead-letter 
queue)

Use the following steps to configure minimum permissions for a dead-letter queue (DLQ) redrive:

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation pane, select Policies.

Configuring a dead-letter queue redrive 63

https://console.amazonaws.cn/iam/


Amazon Simple Queue Service Developer Guide

3. Create a new policy and add the following permissions. Attach the policy to the IAM user or
role that will perform the redrive operation.

• Permissions for the DLQ (source queue):

• sqs:StartMessageMoveTask

• sqs:CancelMessageMoveTask

• sqs:ListMessageMoveTasks

• sqs:ReceiveMessage

• sqs:DeleteMessage

• sqs:GetQueueAttributes

• sqs:ListDeadLetterSourceQueues

• Specify the Resource ARN of the DLQ (source queue) (for example, "arn:aws-
cn:sqs:<DLQ_region>:<DLQ_accountId>:<DLQ_name>").

• Permissions for destination queue:

• sqs:SendMessage

• Specify the Resource ARN of the destination queue (for example, "arn:aws-
cn:sqs:<DestQueue_region>:<DestQueue_accountId>:<DestQueue_name>").

• Permissions for KMS keys:

• kms:Decrypt (Needed to decrypt messages in the DLQ.)

• kms:GenerateDataKey (Needed to encrypt messages in the destination queue.)

• Resource ARNs:

• The ARN of the KMS key used to encrypt messages in the DLQ (source queue) (for 
example, "arn:aws-cn:kms:<region>:<accountId>:key/<SourceQueueKeyId>").

• The ARN of the KMS key used to encrypt messages in the destination queue (for 
example, "arn:aws-
cn:kms:<region>:<accountId>:key/<DestinationQueueKeyId>").

Your access policy should resemble the following:

JSON

{ 
    "Version":"2012-10-17",        Configuring a dead-letter queue redrive 64

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html


Amazon Simple Queue Service Developer Guide

    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "sqs:StartMessageMoveTask", 
                "sqs:CancelMessageMoveTask", 
                "sqs:ListMessageMoveTasks", 
                "sqs:ReceiveMessage", 
                "sqs:DeleteMessage", 
                "sqs:GetQueueAttributes", 
                "sqs:ListDeadLetterSourceQueues" 
            ], 
            "Resource": "arn:aws-cn:sqs:us-west-1:123456789012:<DLQ_name>", 
            "Condition": { 
                "StringEquals": { 
                    "aws:ResourceTag/QueueRole": "source" 
                } 
            } 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "sqs:SendMessage", 
            "Resource": "arn:aws-cn:sqs:us-
west-1:123456789012:<DestQueue_name>", 
            "Condition": { 
                "StringEquals": { 
                    "aws:ResourceTag/QueueRole": "destination" 
                } 
            } 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "kms:Decrypt", 
                "kms:GenerateDataKey" 
            ], 
            "Resource": [ 
                "arn:aws-cn:kms:us-
west-1:123456789012:key/<SourceQueueKeyId>", 
                "arn:aws-cn:kms:us-west-1:123456789012:key/<DestQueueKeyId>" 
            ] 
        } 
    ]

Configuring a dead-letter queue redrive 65



Amazon Simple Queue Service Developer Guide

}

To configure permissions using a non-encrypted queue pair (a source queue with a dead-letter 
queue)

Follow these steps to configure the minimum permissions required for handling a standard,
unencrypted dead-letter queue (DLQ). Required minimum permissions are to receive, delete and
get attributes from the dead-letter queue, and send attributes to the source queue.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation pane, select Policies.

3. Create a new policy and add the following permissions. Attach the policy to the IAM user or
role that will perform the redrive operation.

• Permissions for the DLQ (source queue):

• sqs:StartMessageMoveTask

• sqs:CancelMessageMoveTask

• sqs:ListMessageMoveTasks

• sqs:ReceiveMessage

• sqs:DeleteMessage

• sqs:ListDeadLetterSourceQueues

• Specify the Resource ARN of the DLQ (source queue) (for example, "arn:aws-
cn:sqs:<DLQ_region>:<DLQ_accountId>:<DLQ_name>").

• Permissions for destination queue:

• sqs:SendMessage

• Specify the Resource ARN of the destination queue (for example, "arn:aws-
cn:sqs:<DestQueue_region>:<DestQueue_accountId>:<DestQueue_name>").

Your access policy should resemble the following:

JSON

{ 
    "Version":"2012-10-17",        

Configuring a dead-letter queue redrive 66

https://console.amazonaws.cn/iam/
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html


Amazon Simple Queue Service Developer Guide

    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "sqs:StartMessageMoveTask", 
                "sqs:CancelMessageMoveTask", 
                "sqs:ListMessageMoveTasks", 
                "sqs:ReceiveMessage", 
                "sqs:DeleteMessage", 
                "sqs:GetQueueAttributes", 
                "sqs:ListDeadLetterSourceQueues" 
            ], 
            "Resource": "arn:aws:sqs:us-west-1:111122223333:<DLQ_name>", 
            "Condition": { 
                "StringEquals": { 
                    "aws:ResourceTag/QueueRole": "source" 
                } 
            } 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "sqs:SendMessage", 
            "Resource": "arn:aws:sqs:us-
west-1:111122223333:<DestQueue_name>", 
            "Condition": { 
                "StringEquals": { 
                    "aws:ResourceTag/QueueRole": "destination" 
                } 
            } 
        } 
    ]
}

Using dead-letter queue redrive with VPC endpoint access control

When you restrict queue access to specific VPCs using the aws:sourceVpc condition, you need to 
make an exception for Amazon services to enable dead-letter queue (DLQ) redrive functionality. 
This is because the Amazon SQS service operates outside your VPC when moving messages.

To allow DLQ redrive operations, add the aws:CalledViaLast condition to your queue policy. 
This allows Amazon SQS to make API calls on your behalf while maintaining VPC restrictions for 
direct access.

Configuring a dead-letter queue redrive 67



Amazon Simple Queue Service Developer Guide

To allow both VPC-restricted access and DLQ redrive:

1. Use the aws:CalledViaLast condition in your queue policy.

2. Apply the policy to both the source queue and the DLQ

3. Maintain VPC restrictions for direct access from other sources

Here is an example policy that implements these requirements:

JSON

{ 
  "Version":"2012-10-17",        
  "Id": "SQSRedriveWithVpcRestriction", 
  "Statement": [ 
    { 
      "Sid": "DenyOutsideVPCUnlessAWSService_DestQueue", 
      "Effect": "Deny", 
      "Principal": "*", 
      "Action": "sqs:*", 
      "Resource": "arn:aws:sqs:*:111122223333:DestQueue", 
      "Condition": { 
        "StringNotEquals": { 
          "aws:SourceVpc": "vpc-1234567890abcdef0" 
        }, 
        "StringNotEqualsIfExists": {  
          "aws:CalledViaLast": "sqs.amazonaws.com" 
        } 
      } 
    }, 
    { 
      "Sid": "DenyOutsideVPCUnlessAWSService_DLQ", 
      "Effect": "Deny", 
      "Principal": "*", 
      "Action": "sqs:*", 
      "Resource": "arn:aws:sqs:*:111122223333:Dlq", 
      "Condition": { 
        "StringNotEquals": { 
          "aws:SourceVpc": "vpc-1234567890abcdef0" 
        }, 
        "StringNotEqualsIfExists": {  
          "aws:CalledViaLast": "sqs.amazonaws.com" 

Configuring a dead-letter queue redrive 68



Amazon Simple Queue Service Developer Guide

        } 
      } 
    } 
  ]
}

• Replace the placeholder values with your actual values

• This policy uses a "deny" statement with conditions, which is more secure than using "allow" 
statements

• The StringNotEqualsIfExists operator handles cases where the condition key might not be 
present in the request context.

Alternatively, you can use the aws:ViaAWSService condition key to allow service-based access 
while maintaining VPC restrictions. This condition key indicates whether the request comes 
from an Amazon service. Here is an example policy that uses aws:ViaAWSService instead of
aws:CalledViaLast:

JSON

{ 
  "Version":"2012-10-17",        
  "Id": "SQSRedriveWithVpcRestriction", 
  "Statement": [ 
    { 
      "Sid": "DenyOutsideVPCUnlessAWSService_DestQueue", 
      "Effect": "Deny", 
      "Principal": "*", 
      "Action": "sqs:*", 
      "Resource": "arn:aws:sqs:*:111122223333:DestQueue", 
      "Condition": { 
        "StringNotEquals": { 
          "aws:SourceVpc": "vpc-1234567890abcdef0" 
        }, 
        "BoolIfExists": { 
          "aws:ViaAWSService": "false" 
        } 
      } 
    }, 

Configuring a dead-letter queue redrive 69



Amazon Simple Queue Service Developer Guide

    { 
      "Sid": "DenyOutsideVPCUnlessAWSService_DLQ", 
      "Effect": "Deny", 
      "Principal": "*", 
      "Action": "sqs:*", 
      "Resource": "arn:aws:sqs:*:111122223333:Dlq", 
      "Condition": { 
        "StringNotEquals": { 
          "aws:SourceVpc": "vpc-1234567890abcdef0" 
        }, 
        "BoolIfExists": { 
          "aws:ViaAWSService": "false" 
        } 
      } 
    } 
  ]
}

The BoolIfExists operator with aws:ViaAWSService condition ensures that requests are allowed 
when they come from services while maintaining VPC restrictions for direct access. This can be 
simpler to understand and maintain, as it directly checks if the request is made by an Amazon 
service rather than checking which service made the last call.

For more information on condition keys used in IAM and resource policies, see IAM JSON policy 
elements: Condition.

CloudTrail update and permission requirements for Amazon SQS dead-
letter queue redrive

On June 8, 2023, Amazon SQS introduced dead-letter queue (DLQ) redrive for Amazon SDK and 
Amazon Command Line Interface (CLI). This capability is an addition to the already supported DLQ 
redrive for the Amazon console. If you've previously used the Amazon console to redrive dead-
letter queue messages, you may be affected by the following changes:

CloudTrail event renaming

On October 15, 2023, the CloudTrail event names for dead-letter queue redrive will change on the 
Amazon SQS console. If you've set alarms for these CloudTrail events, you must update them now. 
The following are the new CloudTrail event names for DLQ redrive:

CloudTrail update and permission requirements 70



Amazon Simple Queue Service Developer Guide

Previous event name New event name

CreateMoveTask StartMessageMoveTask

CancelMoveTask CancelMessageMoveTask

Updated permissions

Included with the SDK and CLI release, Amazon SQS has also updated queue permissions for DLQ 
redrive to adhere to security best practices. Use the following queue permission types to redrive 
messages from your DLQs.

1. Action-based permissions (update for the DLQ API actions)

2. Managed Amazon SQS policy permissions

3. Permission policy that uses sqs:* wildcard

Important

To use the DLQ redrive for SDK or CLI, you are required to have a DLQ redrive permission 
policy that matches one of the above options.

If your queue permissions for DLQ redrive don't match one of the options above, you must update 
your permissions by August 31, 2023. Between now and August 31, 2023, your account will be able 
to redrive messages using the permissions you configured using the Amazon console only in the 
regions where you have previously used the DLQ redrive. For example, say you had "Account A" in 
both us-east-1 and eu-west-1. "Account A" was used to redrive messages on the Amazon console in 
us-east-1 prior to June 8, 2023, but not in eu-west-1. Between June 8, 2023 and August 31, 2023, 
if "Account A’s" policy permissions don't match one of the options above, it can only be used to 
redrive messages on the Amazon console in us-east-1, and not in eu-west-1.

Important

If your DLQ redrive permissions do not match one of these options after August 31, 2023, 
your account will no longer be able to redrive DLQ messages using the Amazon console.

CloudTrail update and permission requirements 71



Amazon Simple Queue Service Developer Guide

However, if you used the DLQ redrive feature on the Amazon Console during August 2023, 
you have an extension until October 15, 2023 to adopt the new permissions according to 
one of these options.
For more information, see the section called “Identifying impacted policies”.

The following are queue permission examples for each DLQ redrive option. When using server-side 
encrypted (SSE) queues, the corresponding Amazon KMS key permission is required.

Action-based

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "sqs:ReceiveMessage", 
                "sqs:DeleteMessage", 
                "sqs:GetQueueAttributes", 
                "sqs:StartMessageMoveTask", 
                "sqs:ListMessageMoveTasks", 
                "sqs:CancelMessageMoveTask" 
            ], 
            "Resource": "arn:aws-cn:sqs:us-west-1:123456789012:<DLQ_name>" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "sqs:SendMessage", 
            "Resource": "arn:aws-cn:sqs:us-west-1:123456789012:<DestQueue_name>" 
        } 
    ]
}

Managed policy

The following managed policies contain the required updated permissions:

CloudTrail update and permission requirements 72



Amazon Simple Queue Service Developer Guide

• AmazonSQSFullAccess – Includes the following dead-letter queue redrive tasks: start, cancel, 
and list.

• AmazonSQSReadOnlyAccess – Provides read-only access, and includes the list dead-letter queue 
redrive task.

Permission Policy that uses sqs* wildcard

JSON

{ 
  "Version":"2012-10-17",        
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": "sqs:*", 
      "Resource": "*" 
    } 
  ]
}

CloudTrail update and permission requirements 73



Amazon Simple Queue Service Developer Guide

Identifying impacted policies

If you are using customer managed policies (CMPs), you can use Amazon CloudTrail and IAM to 
identify the policies impacted by the queue permissions update.

Note

If you are using AmazonSQSFullAccess and AmazonSQSReadOnlyAccess, no further 
action is required.

1. Sign in to the Amazon CloudTrail console.

2. On the Event history page, under Look up attributes, use the drop down menu to select Event 
name. Then, search for CreateMoveTask.

3. Choose an event to open the Details page. In the Event records section, retrieve the
UserName or RoleName from the userIdentity ARN.

4. Sign into IAM console.

• For users, choose Users. Select the user with the UserName identified in the previous step.

• For roles, choose Roles. Search for the user with the RoleName identified in the previous 
step.

5. On the Details page, in the Permissions section, review any policies with the sqs: prefix in
Action, or review policies that have Amazon SQS queue defined in Resource.

Creating alarms for dead-letter queues using Amazon CloudWatch

Set up a CloudWatch alarm to monitor messages in a dead-letter queue using the
ApproximateNumberOfMessagesVisible metric. For detailed instructions, see Creating 
CloudWatch alarms for Amazon SQS metrics. When the alarm triggers, indicating messages have 
been moved to the dead-letter queue, you can poll the queue to review and retrieve them.

Message metadata for Amazon SQS

Use message attributes to add custom metadata to Amazon SQS messages for your applications. 
Use message system attributes to store metadata for integration with other Amazon Web Services 
services, such as Amazon X-Ray.

Creating alarms for dead-letter queues using Amazon CloudWatch 74



Amazon Simple Queue Service Developer Guide

Amazon SQS message attributes

Amazon SQS allows you to include structured metadata (such as timestamps, geospatial data, 
signatures, and identifiers) with messages using message attributes. Each message can have up 
to 10 attributes. Message attributes are optional and separate from the message body (however, 
they are sent alongside it). Your consumer can use message attributes to handle a message in a 
particular way without having to process the message body first. For information about sending 
messages with attributes using the Amazon SQS console, see Sending a message with attributes 
using Amazon SQS.

Note

Don't confuse message attributes with message system attributes: Whereas you can 
use message attributes to attach custom metadata to Amazon SQS messages for your 
applications, you can use message system attributes to store metadata for other Amazon 
services, such as Amazon X-Ray.

Topics

• Message attribute components

• Message attribute data types

• Calculating the MD5 message digest for message attributes

Message attribute components

Important

All components of a message attribute are included in the 1 MiB message size restriction.
The Name, Type, Value, and the message body must not be empty or null.

Each message attribute consists of the following components:

• Name – The message attribute name can contain the following characters: A-Z, a-z, 0-9, 
underscore (_), hyphen (-), and period (.). The following restrictions apply:

• Can be up to 256 characters long

• Can't start with AWS. or Amazon. (or any casing variations)

Message attributes 75



Amazon Simple Queue Service Developer Guide

• Is case-sensitive

• Must be unique among all attribute names for the message

• Must not start or end with a period

• Must not have periods in a sequence

• Type – The message attribute data type. Supported types include String, Number, and Binary. 
You can also add custom information for any data type. The data type has the same restrictions 
as the message body (for more information, see SendMessage in the Amazon Simple Queue 
Service API Reference). In addition, the following restrictions apply:

• Can be up to 256 characters long

• Is case-sensitive

• Value – The message attribute value. For String data types, the attribute values has the same 
restrictions as the message body.

Message attribute data types

Message attribute data types instruct Amazon SQS how to handle the corresponding message 
attribute values. For example, if the type is Number, Amazon SQS validates numerical values.

Amazon SQS supports the logical data types String, Number, and Binary with optional custom 
data type labels with the format .custom-data-type

• String – String attributes can store Unicode text using any valid XML characters.

• Number – Number attributes can store positive or negative numerical values. A number can have 
up to 38 digits of precision, and it can be between 10^-128 and 10^+126.

Note

Amazon SQS removes leading and trailing zeroes.

• Binary – Binary attributes can store any binary data such as compressed data, encrypted data, or 
images.

• Custom – To create a custom data type, append a custom-type label to any data type. For 
example:

• Number.byte, Number.short, Number.int, and Number.float can help distinguish 
between number types.

Message attributes 76

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html


Amazon Simple Queue Service Developer Guide

• Binary.gif and Binary.png can help distinguish between file types.

Note

Amazon SQS doesn't interpret, validate, or use the appended data.
The custom-type label has the same restrictions as the message body.

Calculating the MD5 message digest for message attributes

If you use the Amazon SDK for Java, you can skip this section. The
MessageMD5ChecksumHandler class of the SDK for Java supports MD5 message digests for 
Amazon SQS message attributes.

If you use either the Query API or one of the Amazon SDKs that doesn't support MD5 message 
digests for Amazon SQS message attributes, you must use the following guidelines to perform the 
MD5 message digest calculation.

Note

Always include custom data type suffixes in the MD5 message-digest calculation.

Overview

The following is an overview of the MD5 message digest calculation algorithm:

1. Sort all message attributes by name in ascending order.

2. Encode the individual parts of each attribute (Name, Type, and Value) into a buffer.

3. Compute the message digest of the entire buffer.

The following diagram shows the encoding of the MD5 message digest for a single message 
attribute:

Message attributes 77



Amazon Simple Queue Service Developer Guide

To encode a single Amazon SQS message attribute

1. Encode the name: the length (4 bytes) and the UTF-8 bytes of the name.

2. Encode the data type: the length (4 bytes) and the UTF-8 bytes of the data type.

3. Encode the transport type (String or Binary) of the value (1 byte).

Note

The logical data types String and Number use the String transport type.
The logical data type Binary uses the Binary transport type.

a. For the String transport type, encode 1.

b. For the Binary transport type, encode 2.

4. Encode the attribute value.

a. For the String transport type, encode the attribute value: the length (4 bytes) and the 
UTF-8 bytes of the value.

b. For the Binary transport type, encode the attribute value: the length (4 bytes) and the 
raw bytes of the value.

Message attributes 78



Amazon Simple Queue Service Developer Guide

Amazon SQS message system attributes

Whereas you can use message attributes to attach custom metadata to Amazon SQS 
messages for your applications, you can use message system attributes to store metadata 
for other Amazon services, such as Amazon X-Ray. For more information, see the
MessageSystemAttribute request parameter of the SendMessage and SendMessageBatch
API actions, the AWSTraceHeader attribute of the ReceiveMessage API action, and the
MessageSystemAttributeValue data type in the Amazon Simple Queue Service API Reference.

Message system attributes are structured exactly like message attributes, with the following 
exceptions:

• Currently, the only supported message system attribute is AWSTraceHeader. Its type must be
String and its value must be a correctly formatted Amazon X-Ray trace header string.

• The size of a message system attribute doesn't count towards the total size of a message.

Resources required to process Amazon SQS messages

Amazon SQS provides estimates of the approximate number of delayed, visible, and not visible 
messages in a queue to help you assess the resources needed for processing. For more information 
about visibility, see Amazon SQS visibility timeout.

Note

For some metrics, the result is approximate because of the distributed architecture of 
Amazon SQS. In most cases, the count should be close to the actual number of messages in 
the queue.

The following table lists the attribute name to use with the GetQueueAttributes action:

Task Attribute name

Get the approximate number of messages 
available for retrieval from the queue.

ApproximateNumberOfMessages 
Visible

Get the approximate number of messages in 
the queue that are delayed and not available 

ApproximateNumberOfMessages 
Delayed

Message system attributes 79

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_MessageSystemAttributeValue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html


Amazon Simple Queue Service Developer Guide

Task Attribute name

for reading immediately. This can happen 
when the queue is configured as a delay queue 
or when a message has been sent with a delay 
parameter.

Get the approximate number of messages 
that are in flight. Messages are considered to 
be in flight if they have been sent to a client 
but have not yet been deleted or have not yet 
reached the end of their visibility window.

ApproximateNumberOfMessages 
NotVisible

Amazon SQS list queue pagination

The listQueues and listDeadLetterQueues API methods support optional pagination 
controls. By default, these API methods return up to 1000 queues in the response message. You 
can set the MaxResults parameter to return fewer results in each response.

Set parameter MaxResults in the listQueues or listDeadLetterQueues request to specify 
the maximum number of results to be returned in the response. If you do not set MaxResults, the 
response includes a maximum of 1,000 results and the NextToken value in the response is null.

If you set MaxResults, the response includes a value for NextToken if there are additional results 
to display. Use NextToken as a parameter in your next request to listQueues to receive the next 
page of results. If there are no additional results to display, the NextToken value in the response is 
null.

Amazon SQS cost allocation tags

To organize and identify your Amazon SQS queues for cost allocation, you can add metadata tags
that identify a queue's purpose, owner, or environment. This is especially useful when you have 
many queues. To configure tags using the Amazon SQS console, see the section called “Configuring 
tags for a queue”

You can use cost allocation tags to organize your Amazon bill to reflect your own cost structure. 
To do this, sign up to get your Amazon Web Services account bill to include tag keys and values. 

List queue pagination 80

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html


Amazon Simple Queue Service Developer Guide

For more information, see Setting Up a Monthly Cost Allocation Report in the Amazon Billing User 
Guide.

Each tag consists of a key-value pair that you define. For example, you can easily identify your
production and testing queues if you tag your queues as follows:

Queue Key Value

MyQueueA QueueType Production

MyQueueB QueueType Testing

Note

When you use queue tags, keep the following guidelines in mind:

• We don't recommend adding more than 50 tags to a queue. Tagging supports Unicode 
characters in UTF-8.

• Tags don't have any semantic meaning. Amazon SQS interprets tags as character strings.

• Tags are case-sensitive.

• A new tag with a key identical to that of an existing tag overwrites the existing tag.

• Tagging actions are limited to 30 TPS per Amazon Web Services account. If your 
application requires a higher throughput, submit a request.

For a full list of tag restrictions, see Amazon SQS standard queue quotas.

Amazon SQS short and long polling

Amazon SQS offers short and long polling options for receiving messages from a queue. Consider 
your application's requirements for responsiveness and cost efficiency when choosing between 
these two polling options:

• Short polling (default) – The ReceiveMessage request queries a subset of servers (based on 
a weighted random distribution) to find available messages and sends an immediate response, 
even if no messages are found.

Short and long polling 81

https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/configurecostallocreport.html#allocation-report
https://console.amazonaws.cn/servicequotas/home/services/sqs/quotas
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

• Long polling – ReceiveMessage queries all servers for messages, sending a response once at 
least one message is available, up to the specified maximum. An empty response is sent only 
if the polling wait time expires. This option can reduce the number of empty responses and 
potentially lower costs.

The following sections explain the details of short polling and long polling.

Consuming messages using short polling

When you consume messages from a queue (FIFO or standard) using short polling, Amazon SQS 
samples a subset of its servers (based on a weighted random distribution) and returns messages 
from only those servers. Thus, a particular ReceiveMessage request might not return all of your 
messages. However, if you have fewer than 1,000 messages in your queue, a subsequent request 
will return your messages. If you keep consuming from your queues, Amazon SQS samples all of its 
servers, and you receive all of your messages.

The following diagram shows the short-polling behavior of messages returned from a standard 
queue after one of your system components makes a receive request. Amazon SQS samples several 
of its servers (in gray) and returns messages A, C, D, and B from these servers. Message E isn't 
returned for this request, but is returned for a subsequent request.

Consuming messages using short polling 82

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

Consuming messages using long polling

When the wait time for the ReceiveMessage API action is greater than 0, long polling is in 
effect. The maximum long polling wait time is 20 seconds. Long polling helps reduce the cost of 
using Amazon SQS by eliminating the number of empty responses (when there are no messages 
available for a ReceiveMessage request) and false empty responses (when messages are available 
but aren't included in a response). For information about enabling long polling for a new or 
existing queue using the Amazon SQS console, see the Configuring queue parameters using the 
Amazon SQS console. For best practices, see Setting-up long polling in Amazon SQS.

Long polling offers the following benefits:

• Reduce empty responses by allowing Amazon SQS to wait until a message is available in 
a queue before sending a response. Unless the connection times out, the response to the
ReceiveMessage request contains at least one of the available messages, up to the maximum 
number of messages specified in the ReceiveMessage action. In rare cases, you might receive 
empty responses even when a queue still contains messages, especially if you specify a low value 
for the ReceiveMessageWaitTimeSeconds parameter.

• Reduce false empty responses by querying all—rather than a subset of—Amazon SQS servers.

• Return messages as soon as they become available.

For information about how to confirm that a queue is empty, see Confirming that an Amazon SQS 
queue is empty.

Differences between long and short polling

Short polling occurs when the WaitTimeSeconds parameter of a ReceiveMessage request is set 
to 0 in one of two ways:

• The ReceiveMessage call sets WaitTimeSeconds to 0.

• The ReceiveMessage call doesn’t set WaitTimeSeconds, but the queue attribute
ReceiveMessageWaitTimeSeconds is set to 0.

Amazon SQS visibility timeout

When you receive a message from an Amazon SQS queue, it remains in the queue but becomes 
temporarily invisible to other consumers. This invisibility is controlled by the visibility timeout, 

Consuming messages using long polling 83

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#SQS-ReceiveMessage-request-WaitTimeSeconds
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#SQS-ReceiveMessage-request-WaitTimeSeconds
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html


Amazon Simple Queue Service Developer Guide

which ensures that other consumers cannot process the same message while you are working on it. 
Amazon SQS offers two options for deleting messages after processing:

• Manual deletion – You explicitly delete messages using the DeleteMessage action.

• Automatic deletion – Supported in certain Amazon SDKs, messages are automatically deleted 
upon successful processing, simplifying workflows.

Visibility timeout use cases

Manage long-running tasks – Use the visibility timeout to handle tasks that require extended 
processing times. Set an appropriate visibility timeout for messages that require extended 
processing time. This ensures that other consumers don't pick up the same message while it's being 
processed, preventing duplicate work and maintaining system efficiency.

Implement retry mechanisms – Extend the visibility timeout programmatically for tasks that fail 
to complete within the initial timeout. If a task fails to complete within the initial visibility timeout, 
you can extend the timeout programmatically. This allows your system to retry processing the 
message without it becoming visible to other consumers, improving fault tolerance and reliability. 
Combine with Dead-Letter Queues (DLQs) to manage persistent failures.

Coordinate distributed systems – Use SQS visibility timeout to coordinate tasks across distributed 
systems. Set visibility timeouts that align with your expected processing times for different 
components. This helps maintain consistency and prevents race conditions in complex, distributed 
architectures.

Optimize resource utilization – Adjust SQS visibility timeouts to optimize resource utilization in 
your application. By setting appropriate timeouts, you can ensure that messages are processed 

Visibility timeout use cases 84

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html


Amazon Simple Queue Service Developer Guide

efficiently without tying up resources unnecessarily. This leads to better overall system 
performance and cost-effectiveness.

Setting and adjusting the visibility timeout

The visibility timeout starts as soon as a message is delivered to you. During this period, you're 
expected to process and delete the message. If you don't delete it before the timeout expires, 
the message becomes visible again in the queue and can be retrieved by another consumer. 
The default visibility timeout for a queue is 30 seconds, but you can adjust this to match 
the time your application needs to process and delete a message. You can also set a specific 
visibility timeout for individual messages without changing the queue's overall setting. Use the
ChangeMessageVisibility action to programmatically extend or shorten the timeout as 
needed.

In flight messages and quotas

In Amazon SQS, in-flight messages are messages that have been received by a consumer but not 
yet deleted. For standard queues, there's a limit of approximately 120,000 in-flight messages, 
depending on queue traffic and message backlog. If you reach this limit, Amazon SQS returns 
an OverLimit error, indicating that no additional messages can be received until some in-flight 
messages are deleted. For FIFO queues, limits depend on active message groups.

• When using short polling – If this limit is reached while using short polling, Amazon SQS will 
return an OverLimit error, indicating that no additional messages can be received until some 
in-flight messages are deleted.

• When using long polling – If you are using long polling, Amazon SQS does not return an error 
when the in-flight message limit is reached. Instead, it will not return any new messages until the 
number of in-flight messages drops below the limit.

To manage in-flight messages effectively:

1. Prompt deletion – Delete messages (manually or automatically) after processing to reduce the 
in-flight count.

2. Monitor with CloudWatch – Set alarms for high in-flight counts to prevent reaching the limit.

3. Distribute load – If you're processing a high volume of messages, use additional queues or 
consumers to balance load and avoid bottlenecks.

4. Request a quota increase – Submit a request to Amazon Support if higher limits are required.

Setting and adjusting the visibility timeout 85

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.amazonaws.cn/awssupport/latest/user/create-service-quota-increase.html


Amazon Simple Queue Service Developer Guide

Understanding visibility timeout in standard and FIFO queues

In both standard and FIFO (First-In-First-Out) queues, the visibility timeout helps prevent multiple 
consumers from processing the same message simultaneously. However, due to the at-least-once 
delivery model of Amazon SQS, there's no absolute guarantee that a message won't be delivered 
more than once during the visibility timeout period.

• Standard queues – The visibility timeout in standard queues prevents multiple consumers from 
processing the same message at the same time. However, because of the at-least-once delivery 
model, Amazon SQS doesn't guarantee that a message won’t be delivered more than once within 
the visibility timeout period.

• FIFO queues – For FIFO queues, messages with the same message group ID are processed in a 
strict sequence. When a message with a message group ID is in-flight, subsequent messages in 
that group are not made available until the in-flight message is either deleted or the visibility 
timeout expires. However, this doesn’t "lock" the group indefinitely– each message is processed 
in sequence, and only when each message is deleted or becomes visible again will the next 
message in that group be available to consumers. This approach ensures ordered processing 
within the group without unnecessarily locking the group from delivering messages.

Handling failures

If you don't process and delete a message before the visibility timeout expires—due to application 
errors, crashes, or connectivity problems—the message becomes visible again in the queue. It can 
then be retrieved by the same or a different consumer for another processing attempt. This ensures 
that messages aren't lost even if the initial processing fails. However, setting the visibility timeout 
too high can delay the reappearance of unprocessed messages, potentially slowing down retries. 
It's crucial to set an appropriate visibility timeout based on the expected processing time for timely 
message handling.

Changing and terminating visibility timeout

You can change or terminate the visibility timeout using the ChangeMessageVisibility action:

• Changing the timeout – Adjust the visibility timeout dynamically using
ChangeMessageVisibility. This allows you to extend or reduce timeout durations to match 
processing needs.

Understanding visibility timeout in standard and FIFO queues 86

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html


Amazon Simple Queue Service Developer Guide

• Terminating the timeout – If you decide not to process a received message, terminate 
its visibility timeout by setting the VisibilityTimeout to 0 seconds through the
ChangeMessageVisibility action. This immediately makes the message available for other 
consumers to process.

Best practices

Use the following best practices for managing visibility timeouts in Amazon SQS, including setting, 
adjusting, and extending timeouts, as well as handling unprocessed messages using Dead-Letter 
Queues (DLQs).

• Setting and adjusting the timeout. Start by setting the visibility timeout to match the 
maximum time your application typically needs to process and delete a message. If you're unsure 
about the exact processing time, begin with a shorter timeout (for example, 2 minutes) and 
extend it as necessary. Implement a heartbeat mechanism to periodically extend the visibility 
timeout, ensuring the message remains invisible until processing is complete. This minimizes 
delays in reprocessing unhandled messages and prevents premature visibility.

• Extending the timeout and handling the 12-Hour limit. If your processing time varies or may 
exceed the initially set timeout, use the ChangeMessageVisibility action to extend the 
visibility timeout while processing the message. Keep in mind that the visibility timeout has 
a maximum limit of 12 hours from when the message is first received. Extending the timeout 
doesn't reset this 12-hour limit. If your processing requires more time than this limit, consider 
using Amazon Step Functions or breaking the task into smaller steps.

• Handling unprocessed messages. To manage messages that fail multiple processing attempts, 
configure a Dead-Letter Queue (DLQ). This ensures that messages that can't be processed after 
several retries are captured separately for further analysis or handling, preventing them from 
repeatedly circulating in the main queue.

Amazon SQS fair queues

Amazon SQS fair queues automatically mitigates the noisy-neighbor impact in multi-tenant queues 
that contain messages from multiple logical entities, such as customers, client applications, or 
message types. In these shared queue environments, one critical performance metric is dwell time, 
which measures the total time messages spend in a queue from arrival to processing. When one 
tenant creates a backlog in the queue by publishing more messages than the system can handle, 
fair queues minimizes the impact on dwell time for other tenants.

Best practices 87



Amazon Simple Queue Service Developer Guide

Steady state

The following diagram illustrates a multi-tenant queue containing messages from four distinct 
tenants (labeled A, B, C, and D). The queue operates in a steady state, and there is no message 
backlog as consumers receive messages as soon as they appear in the queue. All tenants experience 
low dwell times. Not all consumer capacity is fully utilized in this steady state.

Noisy neighbor impact

Noisy neighbor impact occurs when one tenant in a multi-tenant queue creates a backlog, 
increasing message dwell time for all other tenants. A tenant can become a noisy neighbor by 
sending a larger volume of messages than other tenants, or when consumers take longer to 
process messages from that particular tenant.

This diagram illustrates how increased traffic from Tenant A creates a backlog in the queue. 
Consumers are busy processing the messages from only Tenant A, while messages from other 
tenants wait in the backlog, leading to higher dwell times for all tenants.

Mitigation with fair queues

Amazon SQS detects noisy neighbors by monitoring message distribution among tenants during 
processing (the "in-flight" state). When a tenant has a disproportionately large number of in-

Fair queues 88



Amazon Simple Queue Service Developer Guide

flight messages compared to others, Amazon SQS identifies that tenant as a noisy neighbor and 
prioritizes message delivery for other tenants. This approach reduces the dwell time impact to the 
other tenants.

This diagram illustrates how Amazon SQS fair queues addresses the noisy neighbor problem. When 
one tenant (Tenant A) becomes noisy, Amazon SQS prioritizes returning messages from other 
tenants (B, C, and D). This prioritization helps maintain low dwell times for quiet tenants Tenants 
B, C, and D, while the dwell time for Tenant A's messages is elevated until the queue backlog is 
consumed without impacting other tenants.

Note

Amazon SQS does not limit the consumption rate per tenant. It allows consumers to receive 
messages from noisy neighbor tenants when there is consumer capacity and the queue has 
no other messages to return. Like Amazon SQS standard queues, fair queues allow virtually 
unlimited throughput, and there are no limits on the number of tenants you could have in 
your queue.

Difference with FIFO queues

FIFO queues maintain strict ordering by limiting the number of in-flight messages from each 
tenant. While this prevents noisy neighbors, it limits throughput for each tenant. Fair queues are 
designed for multi-tenant scenarios where high throughput, low dwell time, and fair resource 
allocation are priorities. Fair queues allow multiple consumers to process messages from the same 
tenant concurrently while helping all tenants maintain consistent dwell times.

Difference with FIFO queues 89



Amazon Simple Queue Service Developer Guide

Using fair queues

Your message producers can add a tenant identifier by setting a MessageGroupId on an outgoing 
message:

// Send message with tenant identifier  
SendMessageRequest request = new SendMessageRequest()     
    .withQueueUrl(queueUrl)     
    .withMessageBody(messageBody)     
    .withMessageGroupId("tenant-123"); // Tenant identifier  
sqs.sendMessage(request);

The fairness capability will be applied automatically in all Amazon SQS standard queues for 
messages with the MessageGroupId property. It does not require any change in the consumer code, 
it has no impact on API latency, and it does not come with any throughput limitations.

Fair queues CloudWatch metrics

Amazon SQS provides additional CloudWatch metrics to help you monitor the mitigation of noisy 
neighbor impact. As an example, you can compare Approximate..InQuietGroups metrics 
with standard queue-level metrics. During traffic surges for a specific tenant, the general queue-
level metrics might reveal increasing backlogs or older message ages. However, looking at the 
quiet groups in isolation, you can identify that most non-noisy message groups or tenants are not 
impacted.

Below you can find an example where the standard queue backlog metric 
(ApproximateNumberOfMessagesVisible) increases due to a noisy tenant while the backlog for 
non-noisy tenants (ApproximateNumberOfMessagesVisibleInQuietGroups) remains low.

For a complete list of Amazon SQS CloudWatch metrics and their descriptions, see CloudWatch 
metrics for Amazon SQS.

Using fair queues 90



Amazon Simple Queue Service Developer Guide

Amazon SQS delay queues

Delay queues let you postpone the delivery of new messages to consumers for a number 
of seconds, for example, when your consumer application needs additional time to process 
messages. If you create a delay queue, any messages that you send to the queue remain invisible 
to consumers for the duration of the delay period. The default (minimum) delay for a queue is 0 
seconds. The maximum is 15 minutes. For information about configuring delay queues using the 
console see Configuring queue parameters using the Amazon SQS console.

Note

For standard queues, the per-queue delay setting is not retroactive—changing the setting 
doesn't affect the delay of messages already in the queue.
For FIFO queues, the per-queue delay setting is retroactive—changing the setting affects 
the delay of messages already in the queue.

Delay queues are similar to visibility timeouts because both features make messages unavailable to 
consumers for a specific period of time. The difference between the two is that, for delay queues, 
a message is hidden when it is first added to queue, whereas for visibility timeouts a message is 
hidden only after it is consumed from the queue. The following diagram illustrates the relationship 
between delay queues and visibility timeouts.

Extended scheduling options

While Amazon SQS delay queues and message timers allow scheduling of message delivery up 
to 15 minutes in the future, you may require more flexible scheduling capabilities. In such cases, 
consider using EventBridge Scheduler, which enables you to schedule billions of one-time or 

Delay queues 91

https://docs.amazonaws.cn/scheduler/latest/UserGuide/what-is-scheduler.html


Amazon Simple Queue Service Developer Guide

recurring API actions without time limitations. EventBridge Scheduler is the recommended solution 
for advanced message scheduling use cases.

To set delay seconds on individual messages, rather than on an entire queue, use message timers to 
allow Amazon SQS to use the message timer's DelaySeconds value instead of the delay queue's
DelaySeconds value. EventBridge Scheduler also supports scheduling individual messages.

Amazon SQS temporary queues

Temporary queues help you save development time and deployment costs when using common 
message patterns such as request-response. You can use the Temporary Queue Client to create 
high-throughput, cost-effective, application-managed temporary queues.

The client maps multiple temporary queues—application-managed queues created on demand for 
a particular process—onto a single Amazon SQS queue automatically. This allows your application 
to make fewer API calls and have a higher throughput when the traffic to each temporary queue 
is low. When a temporary queue is no longer in use, the client cleans up the temporary queue 
automatically, even if some processes that use the client aren't shut down cleanly.

The following are the benefits of temporary queues:

• They serve as lightweight communication channels for specific threads or processes.

• They can be created and deleted without incurring additional cost.

• They are API-compatible with static (normal) Amazon SQS queues. This means that existing 
code that sends and receives messages can send messages to and receive messages from virtual 
queues.

Virtual queues

Virtual queues are local data structures that the Temporary Queue Client creates. Virtual queues let 
you combine multiple low-traffic destinations into a single Amazon SQS queue. For best practices, 
see Avoid reusing the same message group ID with virtual queues.

Note

• Creating a virtual queue creates only temporary data structures for consumers to receive 
messages in. Because a virtual queue makes no API calls to Amazon SQS, virtual queues 
incur no cost.

Temporary queues 92

https://docs.amazonaws.cn/scheduler/latest/UserGuide/what-is-scheduler.html
https://github.com/awslabs/amazon-sqs-java-temporary-queues-client


Amazon Simple Queue Service Developer Guide

• TPS quotas apply to all virtual queues across a single host queue. For more information, 
see Amazon SQS message quotas.

The AmazonSQSVirtualQueuesClient wrapper class adds support for attributes related to 
virtual queues. To create a virtual queue, you must call the CreateQueue API action using the
HostQueueURL attribute. This attribute specifies the existing queue that hosts the virtual queues.

The URL of a virtual queue is in the following format.

https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue#MyVirtualQueueName

When a producer calls the SendMessage or SendMessageBatch API action on a virtual queue 
URL, the Temporary Queue Client does the following:

1. Extracts the virtual queue name.

2. Attaches the virtual queue name as an additional message attribute.

3. Sends the message to the host queue.

While the producer sends messages, a background thread polls the host queue and sends received 
messages to virtual queues according to the corresponding message attributes.

While the consumer calls the ReceiveMessage API action on a virtual queue URL, the Temporary 
Queue Client blocks the call locally until the background thread sends a message into the virtual 
queue. (This process is similar to message prefetching in the Buffered Asynchronous Client: a single 
API action can provide messages to up to 10 virtual queues.) Deleting a virtual queue removes any 
client-side resources without calling Amazon SQS itself.

The AmazonSQSTemporaryQueuesClient class turns all queues it creates into temporary 
queues automatically. It also creates host queues with the same queue attributes automatically, 
on demand. These queues' names share a common, configurable prefix (by default,
__RequesterClientQueues__) that identifies them as temporary queues. This allows the client 
to act as a drop-in replacement that optimizes existing code which creates and deletes queues. The 
client also includes the AmazonSQSRequester and AmazonSQSResponder interfaces that allow 
two-way communication between queues.

Virtual queues 93



Amazon Simple Queue Service Developer Guide

Request-response messaging pattern (virtual queues)

The most common use case for temporary queues is the request-response messaging pattern, 
where a requester creates a temporary queue for receiving each response message. To avoid 
creating an Amazon SQS queue for each response message, the Temporary Queue Client lets you 
create and delete multiple temporary queues without making any Amazon SQS API calls. For more 
information, see Implementing request-response systems.

The following diagram shows a common configuration using this pattern.

Example scenario: Processing a login request

The following example scenario shows how you can use the AmazonSQSRequester and
AmazonSQSResponder interfaces to process a user's login request.

On the client side

public class LoginClient { 

Request-response messaging pattern (virtual queues) 94



Amazon Simple Queue Service Developer Guide

    // Specify the Amazon SQS queue to which to send requests. 
    private final String requestQueueUrl; 

    // Use the AmazonSQSRequester interface to create 
    // a temporary queue for each response. 
    private final AmazonSQSRequester sqsRequester =  
            AmazonSQSRequesterClientBuilder.defaultClient(); 

    LoginClient(String requestQueueUrl) { 
        this.requestQueueUrl = requestQueueUrl; 
    } 

    // Send a login request. 
    public String login(String body) throws TimeoutException { 
        SendMessageRequest request = new SendMessageRequest() 
                .withMessageBody(body) 
                .withQueueUrl(requestQueueUrl); 

        // If no response is received, in 20 seconds, 
        // trigger the TimeoutException. 
        Message reply = sqsRequester.sendMessageAndGetResponse(request,  
                20, TimeUnit.SECONDS); 

        return reply.getBody(); 
    }
}

Sending a login request does the following:

1. Creates a temporary queue.

2. Attaches the temporary queue's URL to the message as an attribute.

3. Sends the message.

4. Receives a response from the temporary queue.

5. Deletes the temporary queue.

6. Returns the response.

Example scenario: Processing a login request 95



Amazon Simple Queue Service Developer Guide

On the server side

The following example assumes that, upon construction, a thread is created to poll the queue 
and call the handleLoginRequest() method for every message. In addition, doLogin() is an 
assumed method.

public class LoginServer { 

    // Specify the Amazon SQS queue to poll for login requests. 
    private final String requestQueueUrl; 

    // Use the AmazonSQSResponder interface to take care 
    // of sending responses to the correct response destination. 
    private final AmazonSQSResponder sqsResponder =  
            AmazonSQSResponderClientBuilder.defaultClient(); 

    LoginServer(String requestQueueUrl) { 
        this.requestQueueUrl = requestQueueUrl; 
    } 

    // Process login requests from the client. 
    public void handleLoginRequest(Message message) { 

        // Process the login and return a serialized result. 
        String response = doLogin(message.getBody()); 

        // Extract the URL of the temporary queue from the message attribute 
        // and send the response to the temporary queue. 
        sqsResponder.sendResponseMessage(MessageContent.fromMessage(message),  
                new MessageContent(response));   
    }
}

Cleaning up queues

To make sure that Amazon SQS reclaims any in-memory resources used by virtual queues, when 
your application no longer needs the Temporary Queue Client, it should call the shutdown()
method. You can also use the shutdown() method of the AmazonSQSRequester interface.

The Temporary Queue Client also provides a way to eliminate orphaned host queues. For each 
queue that receives an API call over a period of time (by default, five minutes), the client uses the
TagQueue API action to tag a queue that remains in use.

Cleaning up queues 96



Amazon Simple Queue Service Developer Guide

Note

Any API action taken on a queue marks it as non-idle, including a ReceiveMessage action 
that returns no messages.

The background thread uses the ListQueues and ListTags API actions to check all queues with 
the configured prefix, deleting any queues that haven't been tagged for at least five minutes. In 
this way, if one client doesn't shut down cleanly, the other active clients clean up after it. In order 
to reduce the duplication of work, all clients with the same prefix communicate through a shared, 
internal work queue named after the prefix.

Amazon SQS message timers

Message timers allow you to set an initial invisibility period for a message when it's added to 
a queue. For example, if you send a message with a 45-second timer, it remains hidden from 
consumers for the first 45 seconds. The default (minimum) delay for a message is 0 seconds. The 
maximum is 15 minutes. For information about sending messages with timers using the console, 
see Sending a message using a standard queue.

Note

FIFO queues don't support timers on individual messages.

To set a delay period on an entire queue, rather than on individual messages, use delay queues. 
A message timer setting for an individual message overrides any DelaySeconds value on an 
Amazon SQS delay queue.

Extended scheduling options

While Amazon SQS delay queues and message timers allow scheduling of message delivery up 
to 15 minutes in the future, you may require more flexible scheduling capabilities. In such cases, 
consider using EventBridge Scheduler, which enables you to schedule billions of one-time or 
recurring API actions without time limitations. EventBridge Scheduler is the recommended solution 
for advanced message scheduling use cases.

Message timers 97

https://docs.amazonaws.cn/scheduler/latest/UserGuide/what-is-scheduler.html


Amazon Simple Queue Service Developer Guide

Accessing Amazon EventBridge Pipes through the Amazon SQS 
console

Amazon EventBridge Pipes connect sources to targets. Pipes are intended for point-to-point 
integrations between supported sources and targets, with support for advanced transformations 
and enrichment. EventBridge Pipes provide a highly scalable way to connect your Amazon SQS 
queue to Amazon services such as Step Functions, Amazon SQS, and API Gateway, as well as third-
party software as a service (SaaS) applications like Salesforce.

To set up a pipe, you choose the source, add optional filtering, define optional enrichment, and 
choose the target for the event data.

On the details page for an Amazon SQS queue, you can view the pipes that use that queue as their 
source. From there, you can also:

• Launch the EventBridge console to view pipe details.

• Launch the EventBridge console to create a new pipe with the queue as its source.

For more information on configuring an Amazon SQS queue as a pipe source, see Amazon SQS 
queue as a source in the Amazon EventBridge User Guide. For more information about EventBridge 
Pipes in general, see EventBridge Pipes.

To access EventBridge pipes for a given Amazon SQS queue

1. Open the Queues page of the Amazon SQS console.

2. Select a queue.

3. On the queue detail page, choose the EventBridge Pipes tab.

The EventBridge Pipes tab includes a list of any pipes currently configured to use the selected 
queue as a source, including:

• pipe name

• current status

• pipe target

• when the pipe was last modified

4. View more pipe details or create a new pipe, if desired:

Accessing EventBridge pipes 98

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes-sqs.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes-sqs.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes.html
https://console.aws.amazon.com/sqs/#/queues


Amazon Simple Queue Service Developer Guide

• To access more details about a pipe:

Choose the pipe name.

This launches the Pipe details page of the EventBridge console.

• To create a new pipe:

Choose Connect Amazon SQS queue to pipe.

This launches the Create pipe page of the EventBridge console, with the Amazon SQS queue 
specified as the pipe source. For more information, see Creating an EventBridge pipe in the
Amazon EventBridge User Guide.

Important

A message on an Amazon SQS queue is read by a single pipe and then deleted from 
the queue after being processed, whether or not the message matches the filter you 
can configured for that pipe. Proceed with caution when configuring multiple pipes to 
use the same queue as their source.

Managing large Amazon SQS messages with Extended Client 
Library and Amazon Simple Storage Service

Use the Amazon SQS Extended Client Library for Java and Amazon SQS Extended Client Library for 
Python to send large messages, especially for payloads between 256 KB and 2 GB. These libraries 
store the message payload in an Amazon S3 bucket and send a reference to the stored object in the 
Amazon SQS queue.

Note

The Amazon SQS Extended Client Libraries are compatible with both standard and FIFO 
queues.

Managing large messages 99

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes-create.html
https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://github.com/awslabs/amazon-sqs-python-extended-client-lib/
https://github.com/awslabs/amazon-sqs-python-extended-client-lib/


Amazon Simple Queue Service Developer Guide

Managing large Amazon SQS messages using Java and Amazon S3

Use the Amazon SQS Extended Client Library for Java with Amazon S3 to manage large Amazon 
SQS messages, particularly for payloads ranging from 256 KB to 2 GB. The library stores the 
message payload in an Amazon S3 bucket and sends a message containing a reference to the 
stored object in the Amazon SQS queue.

With the Amazon SQS Extended Client Library for Java, you can:

• Specify whether messages are always stored in Amazon S3 or only when the size of a message 
exceeds 256 KB

• Send a message that references a single message object stored in an S3 bucket

• Retrieve the message object from an Amazon S3 bucket

• Delete the message object from an Amazon S3 bucket

Prerequisites

The following example uses the Amazon Java SDK. To install and set up the SDK, see Set up the 
Amazon SDK for Java in the Amazon SDK for Java Developer Guide.

Before you run the example code, configure your Amazon credentials. For more information, see
Set up Amazon Credentials and Region for Development in the Amazon SDK for Java Developer 
Guide.

The SDK for Java and Amazon SQS Extended Client Library for Java require the J2SE Development 
Kit 8.0 or later.

Note

You can use the Amazon SQS Extended Client Library for Java to manage Amazon SQS 
messages using Amazon S3 only with the Amazon SDK for Java. You can't do this with the 
Amazon CLI, the Amazon SQS console, the Amazon SQS HTTP API, or any of the other 
Amazon SDKs.

Using the Extended Client Library for Java 100

https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup-install.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup-install.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup.html#setup-credentials
http://www.amazonaws.cn/sdkforjava/


Amazon Simple Queue Service Developer Guide

Amazon SDK for Java 2.x Example: Using Amazon S3 to manage large Amazon 
SQS messages

The following SDK for SDK for Java 2.x example uses the Extended Client Library for Java to work 
with large messages. In the constructor, the following code:

• Creates an Amazon S3 bucket with a random name

• Creates an SQS queue that begins with MyQueue

• Wraps a standard Java SDK Amazon S3 client in an instance of a AmazonSQSExtendedClient

In the sendAnReceiveMessage method, the example sends a random message that is stored 
in an Amazon S3 bucket because it is more than 256 KB (the standard maximum message size). 
Finally, the method retrieves the message and displays information about it to the console.

You can view the full example in https://github.com/awsdocs/aws-doc-sdk-examples/blob/ 
94d1b24df12deda0f4fd91433b8231fed6d18b85/javav2/example_code/sqs/src/main/java/com/ 
example/sqs/SqsExtendedClientExample.java#L1.

/* 
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://www.amazonaws.cn/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed 
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 * 
 */ 
              
             import com.amazon.sqs.javamessaging.AmazonSQSExtendedClient;
import com.amazon.sqs.javamessaging.ExtendedClientConfiguration;
import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.BucketLifecycleConfiguration;
import software.amazon.awssdk.services.s3.model.CreateBucketRequest;

Using the Extended Client Library for Java 101

https://github.com/awsdocs/aws-doc-sdk-examples/blob/94d1b24df12deda0f4fd91433b8231fed6d18b85/javav2/example_code/sqs/src/main/java/com/example/sqs/SqsExtendedClientExample.java#L1
https://github.com/awsdocs/aws-doc-sdk-examples/blob/94d1b24df12deda0f4fd91433b8231fed6d18b85/javav2/example_code/sqs/src/main/java/com/example/sqs/SqsExtendedClientExample.java#L1
https://github.com/awsdocs/aws-doc-sdk-examples/blob/94d1b24df12deda0f4fd91433b8231fed6d18b85/javav2/example_code/sqs/src/main/java/com/example/sqs/SqsExtendedClientExample.java#L1


Amazon Simple Queue Service Developer Guide

import software.amazon.awssdk.services.s3.model.DeleteBucketRequest;
import software.amazon.awssdk.services.s3.model.DeleteObjectRequest;
import software.amazon.awssdk.services.s3.model.ExpirationStatus;
import software.amazon.awssdk.services.s3.model.LifecycleExpiration;
import software.amazon.awssdk.services.s3.model.LifecycleRule;
import software.amazon.awssdk.services.s3.model.LifecycleRuleFilter;
import software.amazon.awssdk.services.s3.model.ListObjectVersionsRequest;
import software.amazon.awssdk.services.s3.model.ListObjectVersionsResponse;
import software.amazon.awssdk.services.s3.model.ListObjectsV2Request;
import software.amazon.awssdk.services.s3.model.ListObjectsV2Response;
import software.amazon.awssdk.services.s3.model.PutBucketLifecycleConfigurationRequest;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;
import software.amazon.awssdk.services.sqs.model.CreateQueueResponse;
import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest;
import software.amazon.awssdk.services.sqs.model.DeleteQueueRequest;
import software.amazon.awssdk.services.sqs.model.Message;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageResponse;
import software.amazon.awssdk.services.sqs.model.SendMessageRequest;

import java.util.Arrays;
import java.util.List;
import java.util.UUID;

/** 
 * Examples of using Amazon SQS Extended Client Library for Java 2.x 
 * 
 */
public class SqsExtendedClientExamples { 
    // Create an Amazon S3 bucket with a random name. 
    private final static String amzn-s3-demo-bucket = UUID.randomUUID() + "-" 
            + DateTimeFormat.forPattern("yyMMdd-hhmmss").print(new DateTime()); 

    public static void main(String[] args) { 

        /* 
         * Create a new instance of the builder with all defaults (credentials 
         * and region) set automatically. For more information, see 
         * Creating Service Clients in the AWS SDK for Java Developer Guide. 
         */ 
        final S3Client s3 = S3Client.create(); 

Using the Extended Client Library for Java 102



Amazon Simple Queue Service Developer Guide

        /* 
         * Set the Amazon S3 bucket name, and then set a lifecycle rule on the 
         * bucket to permanently delete objects 14 days after each object's 
         * creation date. 
         */ 
        final LifecycleRule lifeCycleRule = LifecycleRule.builder() 
                .expiration(LifecycleExpiration.builder().days(14).build()) 
                .filter(LifecycleRuleFilter.builder().prefix("").build()) 
                .status(ExpirationStatus.ENABLED) 
                .build(); 
        final BucketLifecycleConfiguration lifecycleConfig = 
 BucketLifecycleConfiguration.builder() 
                .rules(lifeCycleRule) 
                .build(); 

        // Create the bucket and configure it 
        s3.createBucket(CreateBucketRequest.builder().bucket(amzn-s3-demo-
bucket).build()); 
        
 s3.putBucketLifecycleConfiguration(PutBucketLifecycleConfigurationRequest.builder() 
                .bucket(amzn-s3-demo-bucket) 
                .lifecycleConfiguration(lifecycleConfig) 
                .build()); 
        System.out.println("Bucket created and configured."); 

        // Set the Amazon SQS extended client configuration with large payload support 
 enabled 
        final ExtendedClientConfiguration extendedClientConfig = new 
 ExtendedClientConfiguration().withPayloadSupportEnabled(s3, amzn-s3-demo-bucket); 

        final SqsClient sqsExtended = new 
 AmazonSQSExtendedClient(SqsClient.builder().build(), extendedClientConfig); 

        // Create a long string of characters for the message object 
        int stringLength = 300000; 
        char[] chars = new char[stringLength]; 
        Arrays.fill(chars, 'x'); 
        final String myLongString = new String(chars); 

        // Create a message queue for this example 
        final String queueName = "MyQueue-" + UUID.randomUUID(); 
        final CreateQueueResponse createQueueResponse = 
 sqsExtended.createQueue(CreateQueueRequest.builder().queueName(queueName).build()); 
        final String myQueueUrl = createQueueResponse.queueUrl(); 

Using the Extended Client Library for Java 103



Amazon Simple Queue Service Developer Guide

        System.out.println("Queue created."); 

        // Send the message 
        final SendMessageRequest sendMessageRequest = SendMessageRequest.builder() 
                .queueUrl(myQueueUrl) 
                .messageBody(myLongString) 
                .build(); 
        sqsExtended.sendMessage(sendMessageRequest); 
        System.out.println("Sent the message."); 

        // Receive the message 
        final ReceiveMessageResponse receiveMessageResponse = 
 sqsExtended.receiveMessage(ReceiveMessageRequest.builder().queueUrl(myQueueUrl).build()); 
        List<Message> messages = receiveMessageResponse.messages(); 

        // Print information about the message 
        for (Message message : messages) { 
            System.out.println("\nMessage received."); 
            System.out.println("  ID: " + message.messageId()); 
            System.out.println("  Receipt handle: " + message.receiptHandle()); 
            System.out.println("  Message body (first 5 characters): " + 
 message.body().substring(0, 5)); 
        } 

        // Delete the message, the queue, and the bucket 
        final String messageReceiptHandle = messages.get(0).receiptHandle(); 
        
 sqsExtended.deleteMessage(DeleteMessageRequest.builder().queueUrl(myQueueUrl).receiptHandle(messageReceiptHandle).build()); 
        System.out.println("Deleted the message."); 

        
 sqsExtended.deleteQueue(DeleteQueueRequest.builder().queueUrl(myQueueUrl).build()); 
        System.out.println("Deleted the queue."); 

        deleteBucketAndAllContents(s3); 
        System.out.println("Deleted the bucket."); 

    } 

    private static void deleteBucketAndAllContents(S3Client client) { 
        ListObjectsV2Response listObjectsResponse = 
 client.listObjectsV2(ListObjectsV2Request.builder().bucket(amzn-s3-demo-
bucket).build()); 

Using the Extended Client Library for Java 104



Amazon Simple Queue Service Developer Guide

        listObjectsResponse.contents().forEach(object -> { 
            client.deleteObject(DeleteObjectRequest.builder().bucket(amzn-s3-demo-
bucket).key(object.key()).build()); 
        }); 

        ListObjectVersionsResponse listVersionsResponse = 
 client.listObjectVersions(ListObjectVersionsRequest.builder().bucket(amzn-s3-demo-
bucket).build()); 

        listVersionsResponse.versions().forEach(version -> { 
            client.deleteObject(DeleteObjectRequest.builder().bucket(amzn-s3-demo-
bucket).key(version.key()).versionId(version.versionId()).build()); 
        }); 

        client.deleteBucket(DeleteBucketRequest.builder().bucket(amzn-s3-demo-
bucket).build()); 
    }
} 
         

You can use Apache Maven to configure and build Amazon SQS Extended Client for your Java 
project, or to build the SDK itself. Specify individual modules from the SDK that you use in your 
application.

<properties> 
    <aws-java-sdk.version>2.20.153</aws-java-sdk.version>
</properties>

<dependencies> 
    <dependency> 
      <groupId>software.amazon.awssdk</groupId> 
      <artifactId>sqs</artifactId> 
      <version>${aws-java-sdk.version}</version> 
    </dependency> 
    <dependency> 
      <groupId>software.amazon.awssdk</groupId> 
      <artifactId>s3</artifactId> 
      <version>${aws-java-sdk.version}</version> 
    </dependency> 
    <dependency> 
      <groupId>com.amazonaws</groupId> 
      <artifactId>amazon-sqs-java-extended-client-lib</artifactId> 

Using the Extended Client Library for Java 105

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html


Amazon Simple Queue Service Developer Guide

      <version>2.0.4</version> 
    </dependency> 

    <dependency> 
      <groupId>joda-time</groupId> 
      <artifactId>joda-time</artifactId> 
      <version>2.12.6</version> 
    </dependency>
</dependencies> 
          

Managing large Amazon SQS messages using Python and Amazon S3

Use the Amazon SQS Amazon SQS Extended Client Library for Python with Amazon S3 to manage 
large Amazon SQS messages, especially for payloads between 256 KB and 2 GB. The library stores 
the message payload in an Amazon S3 bucket and sends a message containing a reference to the 
stored object in the Amazon SQS queue.

With the Amazon SQS Extended Client Library for Python, you can:

• Specify whether payloads are always stored in Amazon S3, or only stored in Amazon S3 when a 
payload size exceeds 256 KB

• Send a message that references a single message object stored in an Amazon S3 bucket

• Retrieve the corresponding payload object from an Amazon S3 bucket

• Delete the corresponding payload object from an Amazon S3 bucket

Prerequisites

The following are the prerequisites for using the Amazon SQS Extended Client Library for Python:

• An Amazon account with the necessary credentials. To create an Amazon account, navigate to 
the Amazon home page , and then choose Create an Amazon Account . Follow the instructions. 
For information about credentials, see Credentials.

• An Amazon SDK: The example on this page uses Amazon Python SDK Boto3. To install and 
set up the SDK, see the Amazon SDK for Python documentation in the Amazon SDK for Python 
Developer Guide

• Python 3.x (or later) and pip.

• The Amazon SQS Extended Client Library for Python, available from PyPI

Using the Extended Client Library for Python 106

https://github.com/awslabs/amazon-sqs-python-extended-client-lib/
https://aws.amazon.com/
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html
https://pypi.org/project/amazon-sqs-extended-client/


Amazon Simple Queue Service Developer Guide

Note

You can use the Amazon SQS Extended Client Library for Python to manage Amazon SQS 
messages using Amazon S3 only with the Amazon SDK for Python. You can't do this with 
the Amazon CLI, the Amazon SQS console, the Amazon SQS HTTP API, or any of the other 
Amazon SDKs.

Configuring message storage

The Amazon SQS Extended Client makes uses the following message attributes to configure the 
Amazon S3 message storage options:

• large_payload_support: The Amazon S3 bucket name to store large messages.

• always_through_s3: If True, then all messages are stored in Amazon S3. If False, messages 
smaller than 256 KB will not be serialized to the s3 bucket. The default is False.

• use_legacy_attribute: If True, all published messages use the Legacy reserved message 
attribute (SQSLargePayloadSize) instead of the current reserved message attribute 
(ExtendedPayloadSize).

Managing large Amazon SQS messages with Extended Client Library for Python

The following example creates an Amazon S3 bucket with a random name. It then creates an 
Amazon SQS queue named MyQueue and sends a message that is stored in an S3 bucket and is 
more than 256 KB to the queue. Finally, the code retrieves the message, returns information about 
it, and then deletes the message, the queue, and the bucket.

import boto3
import sqs_extended_client

#Set the Amazon SQS extended client configuration with large payload.
sqs_extended_client = boto3.client("sqs", region_name="us-east-1")
sqs_extended_client.large_payload_support = "amzn-s3-demo-bucket"  
sqs_extended_client.use_legacy_attribute = False

# Create an SQS message queue for this example. Then, extract the queue URL.
queue = sqs_extended_client.create_queue( 

Using the Extended Client Library for Python 107



Amazon Simple Queue Service Developer Guide

    QueueName = "MyQueue"
)
queue_url = sqs_extended_client.get_queue_url( 
    QueueName = "MyQueue"
)['QueueUrl']

# Create the S3 bucket and allow message objects to be stored in the bucket.  
sqs_extended_client.s3_client.create_bucket(Bucket=sqs_extended_client.large_payload_support)

# Sending a large message
small_message = "s"
large_message = small_message * 300000 # Shall cross the limit of 256 KB

send_message_response = sqs_extended_client.send_message( 
    QueueUrl=queue_url, 
    MessageBody=large_message
)
assert send_message_response['ResponseMetadata']['HTTPStatusCode'] == 200

# Receiving the large message
receive_message_response = sqs_extended_client.receive_message( 
    QueueUrl=queue_url, 
    MessageAttributeNames=['All']
)
assert receive_message_response['Messages'][0]['Body'] == large_message
receipt_handle = receive_message_response['Messages'][0]['ReceiptHandle']

# Deleting the large message
# Set to True for deleting the payload from S3
sqs_extended_client.delete_payload_from_s3 = True  
delete_message_response = sqs_extended_client.delete_message( 
    QueueUrl=queue_url, 
    ReceiptHandle=receipt_handle
)

assert delete_message_response['ResponseMetadata']['HTTPStatusCode'] == 200

# Deleting the queue
delete_queue_response = sqs_extended_client.delete_queue( 
    QueueUrl=queue_url
)

assert delete_queue_response['ResponseMetadata']['HTTPStatusCode'] == 200 

Using the Extended Client Library for Python 108



Amazon Simple Queue Service Developer Guide

        

Using the Extended Client Library for Python 109



Amazon Simple Queue Service Developer Guide

Configuring Amazon SQS queues using the Amazon SQS 
console

Use the Amazon SQS console to configure and manage Amazon SQS queues and features. You can 
also:

• Enable server-side encryption for enhanced security.

• Associate a dead-letter queue to handle unprocessed messages.

• Set up a trigger to invoke an Lambda function for event-driven processing.

Attribute-based access control for Amazon SQS

What is ABAC?

Attribute-based access control (ABAC) is an authorization process that defines permissions based 
on tags that are attached to users and Amazon resources. ABAC provides granular and flexible 
access control based on attributes and values, reduces security risk related to reconfigured role-
based policies, and centralizes auditing and access policy management. For more details about 
ABAC, see What is ABAC for Amazon in the IAM User Guide.

Amazon SQS supports ABAC by allowing you to control access to your Amazon SQS queues based 
on the tags and aliases that are associated with an Amazon SQS queue. The tag and alias condition 
keys that enable ABAC in Amazon SQS authorize IAM principals to use Amazon SQS queues without 
editing policies or managing grants. To learn more about ABAC condition keys, see Condition keys 
for Amazon SQS in the Service Authorization Reference.

With ABAC, you can use tags to configure IAM access permissions and policies for your Amazon 
SQS queues, which helps you to scale your permissions management. You can create a single 
permissions policy in IAM using tags that you add to each business role—without having to update 
the policy each time you add a new resource. You can also attach tags to IAM principals to create 
an ABAC policy. You can design ABAC policies to allow Amazon SQS operations when the tag on 
the IAM user role that's making the call matches the Amazon SQS queue tag. To learn more about 
tagging in Amazon, see Amazon Tagging Strategies and Amazon SQS cost allocation tags.

ABAC for Amazon SQS 110

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonsqs.html#amazonsqs-policy-keys
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonsqs.html#amazonsqs-policy-keys
https://docs.amazonaws.cn/general/latest/gr/aws_tagging.html


Amazon Simple Queue Service Developer Guide

Note

ABAC for Amazon SQS is currently available in all Amazon Commercial Regions where 
Amazon SQS is available, with the following exceptions:

• Asia Pacific (Hyderabad)

• Asia Pacific (Melbourne)

• Europe (Spain)

• Europe (Zurich)

Why should I use ABAC in Amazon SQS?

Here are some benefits of using ABAC in Amazon SQS:

• ABAC for Amazon SQS requires fewer permissions policies. You don't have to create different 
policies for different job functions. You can use resource and request tags that apply to more 
than one queue, which reduces operational overhead.

• Use ABAC to scale teams quickly. Permissions for new resources are automatically granted based 
on tags when resources are appropriately tagged during their creation.

• Use permissions on the IAM principal to restrict resource access. You can create tags for the 
IAM principal and use them to restrict access to specific actions that match the tags on the IAM 
principal. This helps you to automate the process of granting request permissions.

• Track who's accessing your resources. You can determine the identity of a session by looking at 
user attributes in Amazon CloudTrail.

Topics

• Tagging for access control in Amazon SQS

• Creating IAM users and Amazon SQS queues

• Testing attribute-based access control in Amazon SQS

Tagging for access control in Amazon SQS

The following is an example of using tags for access control in Amazon SQS. The IAM policy 
restricts an IAM user to all Amazon SQS actions for all queues that include a resource tag with 

Why should I use ABAC in Amazon SQS? 111



Amazon Simple Queue Service Developer Guide

the key environment and the value production. For more information, see Attribute-based access 
control with tags and Amazon Organizations.

JSON

{ 
  "Version":"2012-10-17",        
  "Statement": [ 
    { 
      "Sid": "AllowAccessForProd", 
      "Effect": "Allow", 
      "Action": "sqs:*", 
      "Resource": "*", 
      "Condition": { 
        "StringEquals": { 
          "aws:ResourceTag/environment": "prod" 
        } 
      } 
    } 
  ]
}

Creating IAM users and Amazon SQS queues

The following examples explain how to create an ABAC policy to control access to Amazon SQS 
using the Amazon Web Services Management Console and Amazon CloudFormation.

Using the Amazon Web Services Management Console

Create an IAM user

1. Sign in to the Amazon Web Services Management Console and open the IAM console at
https://console.amazonaws.cn/iam/.

2. Choose User from the left navigation pane.

3. Choose Add Users and enter a name in the User name text box.

4. Select the Access key - Programmatic access box and choose Next:Permissions.

5. Choose Next:Tags.

6. Add the tag key as environment and the tag value as beta.

Creating IAM users and Amazon SQS queues 112

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_tagging_abac.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_tagging_abac.html
https://console.amazonaws.cn/iam/


Amazon Simple Queue Service Developer Guide

7. Choose Next:Review and then choose Create user.

8. Copy and store the access key ID and secret access key in a secure location.

Add IAM user permissions

1. Select the IAM user that you created.

2. Choose Add inline policy.

3. On the JSON tab, paste the following policy:

4. Choose Review policy.

5. Choose Create policy.

Using Amazon CloudFormation

Use the following sample Amazon CloudFormation template to create an IAM user with an inline 
policy attached and an Amazon SQS queue:

AWSTemplateFormatVersion: "2010-09-09"
Description: "CloudFormation template to create IAM user with custom inline policy"
Resources: 
    IAMPolicy: 
        Type: "Amazon::IAM::Policy" 
        Properties: 
            PolicyDocument: | 
                { 
                    "Version": "2012-10-17",        
                    "Statement": [ 
                        { 
                            "Sid": "AllowAccessForSameResTag", 
                            "Effect": "Allow", 
                            "Action": [ 
                                "sqs:SendMessage", 
                                "sqs:ReceiveMessage", 
                                "sqs:DeleteMessage" 
                            ], 
                            "Resource": "*", 
                            "Condition": { 
                                "StringEquals": { 
                                    "aws:ResourceTag/environment": "${aws:PrincipalTag/
environment}" 
                                } 

Creating IAM users and Amazon SQS queues 113



Amazon Simple Queue Service Developer Guide

                            } 
                        }, 
                        { 
                            "Sid": "AllowAccessForSameReqTag", 
                            "Effect": "Allow", 
                            "Action": [ 
                                "sqs:CreateQueue", 
                                "sqs:DeleteQueue", 
                                "sqs:SetQueueAttributes", 
                                "sqs:tagqueue" 
                            ], 
                            "Resource": "*", 
                            "Condition": { 
                                "StringEquals": { 
                                    "aws:RequestTag/environment": "${aws:PrincipalTag/
environment}" 
                                } 
                            } 
                        }, 
                        { 
                            "Sid": "DenyAccessForProd", 
                            "Effect": "Deny", 
                            "Action": "sqs:*", 
                            "Resource": "*", 
                            "Condition": { 
                                "StringEquals": { 
                                    "aws:ResourceTag/stage": "prod" 
                                } 
                            } 
                        } 
                    ] 
                } 
                 
            Users:  
              - "testUser" 
            PolicyName: tagQueuePolicy 

    IAMUser: 
        Type: "AWS::IAM::User" 
        Properties: 
            Path: "/" 
            UserName: "testUser" 
            Tags:  
              -  

Creating IAM users and Amazon SQS queues 114



Amazon Simple Queue Service Developer Guide

                Key: "environment" 
                Value: "beta"

Testing attribute-based access control in Amazon SQS

The following examples show you how to test attribute-based access control in Amazon SQS.

Create a queue with the tag key set to environment and the tag value set to prod

Run this Amazon CLI command to test creating the queue with the tag key set to environment and 
the tag value set to prod. If you don't have Amazon CLI, you can download and configure it for your 
machine.

aws sqs create-queue --queue-name prodQueue —region us-east-1 —tags "environment=prod"

You receive an AccessDenied error from the Amazon SQS endpoint:

An error occurred (AccessDenied) when calling the CreateQueue operation: Access to the 
 resource <queueUrl> is denied.

This is because the tag value on the IAM user does not match the tag passed in the CreateQueue
API call. Remember that we applied a tag to the IAM user with the key set to environment and 
the value set to beta.

Create a queue with the tag key set to environment and the tag value set to beta

Run the this CLI command to test creating a queue with the tag key set to environment and the 
tag value set to beta.

aws sqs create-queue --queue-name betaQueue —region us-east-1 —tags "environment=beta"

You receive a message confirming the successful creation of the queue, similar to the one below.

{
"QueueUrl": "<queueUrl>“
}

Sending a message to a queue

Run this CLI command to test sending a message to a queue.

Testing attribute-based access control 115

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html


Amazon Simple Queue Service Developer Guide

aws sqs send-message --queue-url <queueUrl> --message-body testMessage

The response shows a successful message delivery to the Amazon SQS queue. The IAM user 
permission allows you to send a message to a queue that has a beta tag. The response includes
MD5OfMessageBody and MessageId containing the message.

{
"MD5OfMessageBody": "<MD5OfMessageBody>",
"MessageId": "<MessageId>"
}

Configuring queue parameters using the Amazon SQS console

When creating or editing a queue, you can configure the following parameters:

• Visibility timeout – The length of time that a message received from a queue (by one consumer) 
won't be visible to the other message consumers. For more information, see Visibility timeout.

Note

Using the console to configure the visibility timeout configures the timeout value for all 
of the messages in the queue. To configure the timeout for single or multiple messages, 
you must use one of the Amazon SDKs.

• Message retention period – The amount of time that Amazon SQS retains messages that remain 
in the queue. By default, the queue retains messages for four days. You can configure a queue to 
retain messages for up to 14 days. For more information, see Message retention period.

• Delivery delay – The amount of time that Amazon SQS will delay before delivering a message 
that is added to the queue. For more information, see Delivery delay.

• Maximum message size – The maximum message size for this queue. For more information, see
Maximum message size.

• Receive message wait time – The maximum amount of time that Amazon SQS waits for 
messages to become available after the queue gets a receive request. For more information, see
Amazon SQS short and long polling.

• Enable content-based deduplication – Amazon SQS can automatically create deduplication IDs 
based on the body of the message. For more information, see Amazon SQS FIFO queues.

Configuring queue parameters 116

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html


Amazon Simple Queue Service Developer Guide

• Enable high throughput FIFO – Use to enable high throughput for messages in the queue. 
Choosing this option changes the related options (Deduplication scope and FIFO throughput 
limit) to the required settings for enabling high throughput for FIFO queues. For more 
information, see High throughput for FIFO queues in Amazon SQS and Amazon SQS message 
quotas.

• Redrive allow policy: defines which source queues can use this queue as the dead-letter queue. 
For more information, see Using dead-letter queues in Amazon SQS .

To configure queue parameters for an existing queue (console)

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues. Choose a queue and choose Edit.

3. Scroll to the Configuration section.

4. For Visibility timeout , enter the duration and units. The range is 0 seconds to 12 hours. The 
default value is 30 seconds.

5. For Message retention period, enter the duration and units. The range is 1 minute to 14 days. 
The default value is 4 days.

6. For a standard queue, enter a value for Receive message wait time. The range is 0 to 20 
seconds. The default value is 0 seconds, which sets short polling. Any non-zero value sets long 
polling.

7. For Delivery delay, enter the duration and units. The range is 0 seconds to 15 minutes. The 
default value is 0 seconds.

8. For Maximum message size, enter a value. The range is from 1 KiB to 1024 KiB. The default 
value is 1024 KiB.

9. For a FIFO queue, choose Enable content-based deduplication to enable content-based 
deduplication. The default setting is disabled.

10. (Optional) For a FIFO queue to enable higher throughput for sending and receiving messages 
in the queue, choose Enable high throughput FIFO.

Choosing this option changes the related options (Deduplication scope and FIFO throughput 
limit) to the required settings for enabling high throughput for FIFO queues. If you change any 
of the settings required for using high throughput FIFO, normal throughput is in effect for the 
queue, and deduplication occurs as specified. For more information, see High throughput for 
FIFO queues in Amazon SQS and Amazon SQS message quotas.

Configuring queue parameters 117

https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

11. For Redrive allow policy, choose Enabled. Select from the following: Allow all (default), By 
queue or Deny all. When choosing By queue, specify a list of up to 10 source queues by the 
Amazon Resource Name (ARN).

12. When you finish configuring the queue parameters, choose Save.

Configuring an access policy in Amazon SQS

When you edit a queue, you can configure its access policy to control who can interact with it.

• The access policy defines which accounts, users, and roles have permissions to access the queue.

• It specifies the allowed actions, such as SendMessage, ReceiveMessage, or DeleteMessage.

• By default, only the queue owner has permission to send and receive messages.

To configure the access policy for an existing queue (console)

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

3. Choose a queue and choose Edit.

4. Scroll to the Access policy section.

5. Edit the access policy statements in the input box. For more on access policy statements, see
Identity and access management in Amazon SQS.

6. When you finish configuring the access policy, choose Save.

Configuring server-side encryption for a queue using SQS-
managed encryption keys

In addition to the default Amazon SQS managed server-side encryption (SSE) option, Amazon 
SQS managed SSE (SSE-SQS) lets you create custom managed server-side encryption that uses 
SQS-managed encryption keys to protect sensitive data sent over message queues. With SSE-SQS, 
you don't need to create and manage encryption keys, or modify your code to encrypt your data. 
SSE-SQS lets you transmit data securely and helps you meet strict encryption compliance and 
regulatory requirements at no additional cost.

Configuring an access policy 118

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

SSE-SQS protects data at rest using 256-bit Advanced Encryption Standard (AES-256) encryption. 
SSE encrypts messages as soon as Amazon SQS receives them. Amazon SQS stores messages in 
encrypted form and decrypts them only when sending them to an authorized consumer.

Note

• The default SSE option is only effective when you create a queue without specifying 
encryption attributes.

• Amazon SQS allows you to turn off all queue encryption. Therefore, turning off KMS-SSE, 
will not automatically enable SQS-SSE. If you wish to enable SQS-SSE after turning off 
KMS-SSE, you must add an attribute change in the request.

To configure SSE-SQS encryption for a queue (console)

Note

Any new queue created using the HTTP (non-TLS) endpoint will not enable SSE-SQS 
encryption by default. It is a security best practice to create Amazon SQS queues using 
HTTPS or Signature Version 4 endpoints.

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

3. Choose a queue, and then choose Edit.

4. Expand Encryption.

5. For Server-side encryption, choose Enabled (default).

Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the 
encrypted queue will be rejected. Amazon SQS security best practises recommend 
against using anonymous requests. If you wish to send anonymous requests to an 
Amazon SQS queue, make sure to disable SSE.

6. Select Amazon SQS key (SSE-SQS). There is no additional fee for using this option.

Configuring SSE-SQS for a queue 119

https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html
https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

7. Choose Save.

Configuring server-side encryption for a queue using the 
Amazon SQS console

To protect the data in a queue’s messages, Amazon SQS has server-side encryption (SSE) enabled 
by default for all newly created queues. Amazon SQS integrates with the Amazon Web Services Key 
Management Service (Amazon Web Services KMS) to manage KMS keys for server-side encryption 
(SSE). For information about using SSE, see Encryption at rest in Amazon SQS.

The KMS key that you assign to your queue must have a key policy that includes permissions for all 
principals that are authorized to use the queue. For information, see Key Management.

If you aren't the owner of the KMS key, or if you log in with an account that doesn't have
kms:ListAliases and kms:DescribeKey permissions, you won't be able to view information 
about the KMS key on the Amazon SQS console. Ask the owner of the KMS key to grant you these 
permissions. For more information, see Key Management.

When you create or edit a queue, you can configure SSE-KMS.

To configure SSE-KMS for an existing queue (console)

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

3. Choose a queue, and then choose Edit.

4. Expand Encryption.

5. For Server-side encryption, choose Enabled (default).

Note

With SSE enabled, anonymous SendMessage and ReceiveMessage requests to the 
encrypted queue will be rejected. Amazon SQS security best practises recommend 
against using anonymous requests. If you wish to send anonymous requests to an 
Amazon SQS queue, make sure to disable SSE.

6. Select Amazon Key Management Service key (SSE-KMS).

Configuring SSE-KMS for a queue 120

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#master_keys
https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

The console displays the Description, the Account, and the KMS key ARN of the KMS key.

7. Specify the KMS key ID for the queue. For more information, see Key terms.

a. Choose the Choose a KMS key alias option.

b. The default key is the Amazon Web Services managed KMS key for Amazon SQS. To use 
this key, choose it from the KMS key list.

c. To use a custom KMS key from your Amazon Web Services account, choose it from the
KMS key list. For instructions on creating custom KMS keys, see Creating Keys in the
Amazon Web Services Key Management Service Developer Guide.

d. To use a custom KMS key that is not in the list, or a custom KMS key from another Amazon 
Web Services account, choose Enter the KMS key alias and enter the KMS key Amazon 
Resource Name (ARN).

8. (Optional) For Data key reuse period, specify a value between 1 minute and 24 hours. The 
default is 5 minutes. For more information, see Understanding the data key reuse period.

9. When you finish configuring SSE-KMS, choose Save.

Configuring cost allocation tags for a queue using the Amazon 
SQS console

To organize and identify your Amazon SQS queues, you can add cost allocation tags. For more 
information, see Amazon SQS cost allocation tags.

• The Tagging tab on the Details page displays the queue's tags.

• You can add or modify tags when creating or editing a queue.

To configure tags for an existing queue (console)

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

3. Choose a queue and choose Edit.

4. Scroll to the Tags section.

5. Add, modify, or remove the queue tags:

a. To add a tag, choose Add new tag, enter a Key and Value, and then choose Add new tag.

Configuring tags for a queue 121

https://docs.amazonaws.cn/kms/latest/developerguide/create-keys.html
https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

b. To update a tag, change its Key and Value.

c. To remove a tag, choose Remove next to its key-value pair.

6. When you finish configuring the tags, choose Save.

Subscribing a queue to an Amazon SNS topic using the Amazon 
SQS console

You can subscribe one or more Amazon SQS queues to an Amazon SNS topic. When you publish 
a message to a topic, Amazon SNS sends the message to each subscribed queue. Amazon SQS 
manages the subscription and handles the required permissions. For more information about 
Amazon SNS, see What is Amazon SNS? in the Amazon Simple Notification Service Developer Guide.

When you subscribe an Amazon SQS queue to an Amazon SNS topic, Amazon SNS uses HTTPS 
to forward messages to Amazon SQS. For information about using Amazon SNS with encrypted 
Amazon SQS queues, see Configure KMS permissions for Amazon services.

Important

Amazon SQS supports a maximum of 20 statements for each access policy. Subscribing to 
an Amazon SNS topic adds one such statement. Exceeding this amount will result in a failed 
topic subscription delivery.

To subscribe a queue to an Amazon SNS topic (console)

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

3. From the list of queues, choose the queue to subscribe to the Amazon SNS topic.

4. From Actions, choose Subscribe to Amazon SNS topic.

5. From the Specify an Amazon SNS topic available for this queue menu, choose the Amazon 
SNS topic for your queue.

If the SNS topic isn't listed, choose Enter Amazon SNS topic ARN and then enter the topic's 
Amazon Resource Name (ARN).

6. Choose Save.

Subscribing a queue to a topic 122

https://docs.amazonaws.cn/sns/latest/dg/welcome.html
https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

7. To verify the subscription, publish a message to the topic and view the message in the queue. 
For more information, see Amazon SNS message publishing in the Amazon Simple Notification 
Service Developer Guide.

Cross-account subscriptions

If your Amazon SQS queue and Amazon SNS topic are in different Amazon Web Services accounts, 
additional permissions are required.

Topic owner (Account A)

Modify the Amazon SNS topic's access policy to allow the Amazon SQS queue's Amazon Web 
Services account to subscribe. Example policy statement:

{ 
  "Effect": "Allow", 
  "Principal": { "AWS": "arn:aws-cn:iam::111122223333:root" }, 
  "Action": "sns:Subscribe", 
  "Resource": "arn:aws-cn:sns:us-east-1:123456789012:MyTopic"
}

This policy allows account 111122223333 to subscribe to MyTopic.

Queue owner (Account B)

Modify the Amazon SQS queue's access policy to allow the Amazon SNS topic to send messages. 
Example policy statement:

{ 
  "Effect": "Allow", 
  "Principal": { "Service": "sns.amazonaws.com" }, 
  "Action": "sqs:SendMessage", 
  "Resource": "arn:aws-cn:sqs:us-east-1:111122223333:MyQueue", 
  "Condition": { 
    "ArnEquals": { "aws:SourceArn": "arn:aws-cn:sns:us-east-1:123456789012:MyTopic" } 
  }
}

This policy allows MyTopic to send messages to MyQueue.

Cross-account subscriptions 123

https://docs.amazonaws.cn/sns/latest/dg/sns-publishing.html


Amazon Simple Queue Service Developer Guide

Cross-region subscriptions

To subscribe to an Amazon SNS topic in a different Amazon Web Services Region, ensure that:

• The Amazon SNS topic's access policy allows cross-region subscriptions.

• The Amazon SQS queue's access policy permits the Amazon SNS topic to send messages across 
regions.

For more information, Sending Amazon SNS messages to an Amazon SQS queue or Amazon 
Lambda function in a different Region in the Amazon Simple Notification Service Developer Guide.

Configuring an Amazon SQS queue to trigger an Amazon 
Lambda function

You can use a Lambda function to process messages from an Amazon SQS queue. Lambda polls the 
queue and invokes your function synchronously, passing a batch of messages as an event.

Configuring visibility timeout

Set the queue's visibility timeout to at least six times the function timeout. This ensures Lambda 
has enough time to retry if a function is throttled while processing a previous batch.

Using a dead-letter queue (DLQ)

Specify a dead-letter queue to capture messages that the Lambda function fails to process.

Handling multiple queues and functions

A Lambda function can process multiple queues by creating a separate event source for each 
queue. You can also associate multiple Lambda functions with the same queue.

Permissions for encrypted queues

If you associate an encrypted queue with a Lambda function but Lambda doesn't poll for 
messages, add the kms:Decrypt permission to your Lambda execution role.

Restrictions

The queue and Lambda function must be in the same Amazon Web Services Region.

For implementation details, see Using Amazon Lambda with Amazon SQS in the Amazon Lambda 
Developer Guide.

Cross-region subscriptions 124

https://docs.amazonaws.cn/sns/latest/dg/sns-cross-region-delivery.html
https://docs.amazonaws.cn/sns/latest/dg/sns-cross-region-delivery.html
https://docs.amazonaws.cn/lambda/latest/dg/configuration-function-common.html#configuration-common-summary
https://docs.amazonaws.cn/lambda/latest/dg/with-sqs.html


Amazon Simple Queue Service Developer Guide

Prerequisites

To configure Lambda function triggers, you must meet the following requirements:

• If you use a user, your Amazon SQS role must include the following permissions:

• lambda:CreateEventSourceMapping

• lambda:ListEventSourceMappings

• lambda:ListFunctions

• The Lambda execution role must include the following permissions:

• sqs:DeleteMessage

• sqs:GetQueueAttributes

• sqs:ReceiveMessage

• If you associate an encrypted queue with a Lambda function, add the kms:Decrypt permission 
to the Lambda execution role.

For more information, see Overview of managing access in Amazon SQS.

To configure a queue to trigger a Lambda function (console)

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

3. On the Queues page, choose the queue to configure.

4. On the queue's page, choose the Lambda triggers tab.

5. On the Lambda triggers page, choose a Lambda trigger.

If the list doesn't include the Lambda trigger that you need, choose Configure Lambda 
function trigger. Enter the Amazon Resource Name (ARN) of the Lambda function or choose 
an existing resource. Then choose Save.

6. Choose Save. The console saves the configuration and displays the Details page for the queue.

On the Details page, the Lambda triggers tab displays the Lambda function and its status. It 
takes approximately 1 minute for the Lambda function to become associated with your queue.

7. To verify the results of the configuration, send a message to your queue and then view the 
triggered Lambda function in the Lambda console.

Prerequisites 125

https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

Automating notifications from Amazon services to Amazon SQS 
using Amazon EventBridge

Amazon EventBridge allows you to automate Amazon Web Services services and respond to events, 
such as application issues or resource changes, in near real-time.

• You can create rules to filter specific events and define automated actions when a rule matches 
an event.

• EventBridge supports multiple targets, including Amazon SQS standard and FIFO queues, which 
receive events in JSON format.

For more information, see Amazon EventBridge targets in the Amazon EventBridge User Guide.

Sending a message with attributes using Amazon SQS

For standard and FIFO queues, you can include structured metadata to messages, including 
timestamps, geospatial data, signatures, and identifiers . For more information, see Amazon SQS 
message attributes.

To send a message with attributes to a queue using the Amazon SQS console

1. Open the Amazon SQS console at https://console.amazonaws.cn/sqs/.

2. In the navigation pane, choose Queues.

3. On the Queues page, choose a queue.

4. Choose Send and receive messages.

5. Enter the message attribute parameters.

a. In the name text box, enter a unique name of up to 256 characters.

b. For the attribute type, choose String, Number, or Binary.

c. (Optional) Enter a custom data type. For example, you could add byte, int, or float as 
custom data types for Number.

d. In the value text box, enter the message attribute value.

Automating notifications using EventBridge 126

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-targets.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/
https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

6. To add another message attribute., choose Add new attribute.

7. You can modify the attribute values any time before sending the message.

8. To delete an attribute, choose Remove. To delete the first attribute, close Message attributes.

9. When you finish adding attributes to the message, choose Send message. Your message is 
sent and the console displays a success message. To view information about the message 
attributes of the sent message, choose View details. Choose Done to close the Message 
details dialog box.

Message attributes 127



Amazon Simple Queue Service Developer Guide

Amazon SQS best practices

Amazon SQS manages and processes message queues, enabling different parts of an application 
to exchange messages reliably and at scale. This topic covers key operational best practices, 
including using long polling to reduce empty responses, implementing dead-letter queues to 
handle processing errors, and optimizing queue permissions for security.

Topics

• Amazon SQS error handling and problematic messages

• Amazon SQS message deduplication and grouping

• Amazon SQS message processing and timing

Amazon SQS error handling and problematic messages

This topic provides detailed instructions on managing and mitigating errors in Amazon SQS, 
including techniques for handling request errors, capturing problematic messages, and configuring 
dead-letter queue retention to ensure message reliability.

Topics

• Handling request errors in Amazon SQS

• Capturing problematic messages in Amazon SQS

• Setting-up dead-letter queue retention in Amazon SQS

Handling request errors in Amazon SQS

To handle request errors, use one of the following strategies:

• If you use an Amazon SDK, you already have automatic retry and backoff logic at your disposal. 
For more information, see Error Retries and Exponential Backoff in Amazon in the Amazon Web 
Services General Reference.

• If you don't use the Amazon SDK features for retry and backoff, allow a pause (for example, 200 
ms) before retrying the ReceiveMessage action after receiving no messages, a timeout, or an 
error message from Amazon SQS. For subsequent use of ReceiveMessage that gives the same 
results, allow a longer pause (for example, 400 ms).

Error handling and problematic messages 128

https://docs.amazonaws.cn/general/latest/gr/api-retries.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

Capturing problematic messages in Amazon SQS

To capture all messages that can't be processed, and to collect accurate CloudWatch metrics, 
configure a dead-letter queue.

• The redrive policy redirects messages to a dead-letter queue after the source queue fails to 
process a message a specified number of times.

• Using a dead-letter queue decreases the number of messages and reduces the possibility of 
exposing you to poison pill messages (messages that are received but can't be processed).

• Including a poison pill message in a queue can distort the ApproximateAgeOfOldestMessage
CloudWatch metric by giving an incorrect age of the poison pill message. Configuring a dead-
letter queue helps avoid false alarms when using this metric.

Setting-up dead-letter queue retention in Amazon SQS

For standard queues, the expiration of a message is always based on its original enqueue 
timestamp. When a message is moved to a dead-letter queue, the enqueue timestamp is 
unchanged. The ApproximateAgeOfOldestMessage metric indicates when the message moved 
to the dead-letter queue, not when the message was originally sent. For example, assume that 
a message spends 1 day in the original queue before it's moved to a dead-letter queue. If the 
dead-letter queue's retention period is 4 days, the message is deleted from the dead-letter queue 
after 3 days and the ApproximateAgeOfOldestMessage is 3 days. Thus, it is a best practice to 
always set the retention period of a dead-letter queue to be longer than the retention period of 
the original queue.

For FIFO queues, the enqueue timestamp resets when the message is moved to a dead-letter 
queue. The ApproximateAgeOfOldestMessage metric indicates when the message moved to 
the dead-letter queue. In the same example above, the message is deleted from the dead-letter 
queue after 4 days and the ApproximateAgeOfOldestMessage is 4 days.

Amazon SQS message deduplication and grouping

This topic provides best practices for ensuring consistent message processing in Amazon SQS. It 
explains how to use:

• MessageDeduplicationId to prevent duplicate messages in FIFO queues.

• MessageGroupId to manage message ordering within distinct message groups.

Capturing problematic messages in Amazon SQS 129

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html#API_SendMessage_RequestSyntax
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html


Amazon Simple Queue Service Developer Guide

Topics

• Avoiding inconsistent message processing in Amazon SQS

• Using the message deduplication ID in Amazon SQS

• Using the message group ID with Amazon SQS FIFO Queues

• Using the Amazon SQS receive request attempt ID

Avoiding inconsistent message processing in Amazon SQS

Because Amazon SQS is a distributed system, it is possible for a consumer to not receive a message 
even when Amazon SQS marks the message as delivered while returning successfully from a
ReceiveMessage API method call. In this case, Amazon SQS records the message as delivered at 
least once, although the consumer has never received it. Because no additional attempts to deliver 
messages are made under these conditions, we don't recommend setting the number of maximum 
receives to 1 for a dead-letter queue.

Using the message deduplication ID in Amazon SQS

MessageDeduplicationId is a token used only in Amazon SQS FIFO queues to prevent duplicate 
message delivery. It ensures that within a 5-minute deduplication window, only one instance of a 
message with the same deduplication ID is processed and delivered.

If Amazon SQS has already accepted a message with a specific deduplication ID, any subsequent 
messages with the same ID will be acknowledged but not delivered to consumers.

Note

Amazon SQS continues tracking the deduplication ID even after the message has been 
received and deleted.

Topics

• When to provide a message deduplication ID in Amazon SQS

• Enabling deduplication for a single-producer/consumer system in Amazon SQS

• Outage recovery scenarios in Amazon SQS

• Configuring visibility timeouts in Amazon SQS

Avoiding inconsistent message processing in Amazon SQS 130

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html


Amazon Simple Queue Service Developer Guide

When to provide a message deduplication ID in Amazon SQS

A producer should specify a message deduplication ID in the following scenarios:

• When sending identical message bodies that must be treated as unique.

• When sending messages with the same content but different message attributes, ensuring each 
message is processed separately.

• When sending messages with different content (for example, a retry counter in the message 
body) but requiring Amazon SQS to recognize them as duplicates.

Enabling deduplication for a single-producer/consumer system in Amazon SQS

If you have a single producer and a single consumer, and messages are unique because they include 
an application-specific message ID in the body, follow these best practices:

• Enable content-based deduplication for the queue (each of your messages has a unique body). 
The producer can omit the message deduplication ID.

• When content-based deduplication is enabled for an Amazon SQS FIFO queue, and a message 
is sent with a deduplication ID, the SendMessage deduplication ID overrides the generated 
content-based deduplication ID.

• Although the consumer isn't required to provide a receive request attempt ID for each request, 
it's a best practice because it allows fail-retry sequences to execute faster.

• You can retry send or receive requests because they don't interfere with the ordering of 
messages in FIFO queues.

Outage recovery scenarios in Amazon SQS

The deduplication process in FIFO queues is time-sensitive. When designing your application, 
ensure that both the producer and consumer can recover from client or network outages without 
introducing duplicates or processing failures.

Producer considerations

• Amazon SQS enforces a 5-minute deduplication window.

• If a producer retries a SendMessage request after 5-minutes, Amazon SQS treats it as a new 
message, potentially creating duplicates.

Using the message deduplication ID 131

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html


Amazon Simple Queue Service Developer Guide

Consumer considerations

• If a consumer fails to process a message before the visibility timeout expires, another consumer 
may receive and process it, leading to duplicate processing.

• Adjust the visibility timeout based on your application's processing time.

• Use the ChangeMessageVisibility API to extend the timeout while a message is still being 
processed.

• If a message repeatedly fails to process, route it to a dead-letter queue (DLQ) instead of allowing 
it to be reprocessed indefinitely.

• The producer must be aware of the deduplication interval of the queue. Amazon SQS has a 
deduplication interval of 5 minutes. Retrying SendMessage requests after the deduplication 
interval expires can introduce duplicate messages into the queue. For example, a mobile device 
in a car sends messages whose order is important. If the car loses cellular connectivity for a 
period of time before receiving an acknowledgement, retrying the request after regaining 
cellular connectivity can create a duplicate.

• The consumer must have a visibility timeout that minimizes the risk of being unable to process 
messages before the visibility timeout expires. You can extend the visibility timeout while the 
messages are being processed by calling the ChangeMessageVisibility action. However, if 
the visibility timeout expires, another consumer can immediately begin to process the messages, 
causing a message to be processed multiple times. To avoid this scenario, configure a dead-letter 
queue.

Configuring visibility timeouts in Amazon SQS

To ensure reliable message processing, set the visibility timeout to be longer than the Amazon SDK 
read timeout. This applies when using the ReceiveMessage API with both short polling and long 
polling. A longer visibility timeout prevents messages from becoming available to other consumers 
before the original request completes, reducing the risk of duplicate processing.

Using the message group ID with Amazon SQS FIFO Queues

In FIFO (First-In-First-Out) queues, MessageGroupId is an attribute that organizes messages into 
distinct groups. Messages within the same message group are always processed one at a time, in 
strict order, ensuring that no two messages from the same group are processed simultaneously. In 

Using the message group ID 132

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html


Amazon Simple Queue Service Developer Guide

standard queues, using MessageGroupId enables fair queues. If strict ordering is required, use a 
FIFO queue.

Topics

• Interleaving multiple ordered message groups in Amazon SQS

• Preventing duplicate processing in a multiple-producer/consumer system in Amazon SQS

• Avoid large message backlogs with the same message group ID in Amazon SQS

• Avoid reusing the same message group ID with virtual queues in Amazon SQS

Interleaving multiple ordered message groups in Amazon SQS

To interleave multiple ordered message groups within a single FIFO queue, assign a
MessageGroupId to each group (for example, session data for different users). This allows 
multiple consumers to read from the queue simultaneously while ensuring that messages within 
the same group are processed in order.

When a message with a specific MessageGroupId is being processed and is invisible, no other 
consumer can process messages from that same group until the visibility timeout expires or the 
message is deleted.

Preventing duplicate processing in a multiple-producer/consumer system in 
Amazon SQS

In a high-throughput, low-latency system where message ordering is not a priority, producers can 
assign a unique MessageGroupId to each message. This ensures that Amazon SQS FIFO queues 
eliminate duplicates, even in a multiple-producer/multiple-consumer setup. While this approach 
prevents duplicate messages, it does not guarantee message ordering since each message is 
treated as its own independent group.

In any system with multiple producers and consumers, there is always a risk of duplicate delivery. 
If a consumer fails to process a message before the visibility timeout expires, Amazon SQS makes 
the message available again, potentially allowing another consumer to pick it up. To mitigate this, 
ensure proper message acknowledgment and visibility timeout settings based on processing time.

Using the message group ID 133

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html


Amazon Simple Queue Service Developer Guide

Avoid large message backlogs with the same message group ID in Amazon SQS

FIFO queues support a maximum of 120,000 in-flight messages (messages received by a consumer 
but not yet deleted). If this limit is reached, Amazon SQS does not return an error, but processing 
may be impacted. You can request an increase beyond this limit by contacting Amazon Support.

FIFO queues scan the first 120,000 messages to determine available message groups. If a large 
backlog builds up in a single message group, messages from other groups sent later will remain 
blocked until the backlog is processed.

Note

A message backlog can occur when a consumer repeatedly fails to process a message. This 
could be due to message content issues or consumer-side failures. To prevent message 
processing delays, configure a dead-letter queue to move unprocessed messages after 
multiple failed attempts. This ensures that other messages in the same message group can 
be processed, preventing system bottlenecks.

Avoid reusing the same message group ID with virtual queues in Amazon SQS

When using virtual queues with a shared host queue, avoid reusing the same MessageGroupId
across different virtual queues. If multiple virtual queues share the same host queue and contain 
messages with the same MessageGroupId, those messages can block each other, preventing 
efficient processing. To ensure smooth message processing, assign unique MessageGroupId
values for messages in different virtual queues.

Using the Amazon SQS receive request attempt ID

The receive request attempt ID is a unique token used to deduplicate ReceiveMessage calls in 
Amazon SQS. During a network outage or connectivity issue between your application and Amazon 
SQS, it is best practice to:

• Provide a receive request attempt ID when making a ReceiveMessage call.

• Retry using the same receive request attempt ID if the operation fails.

Using the receive request attempt ID 134

https://docs.amazonaws.cn/awssupport/latest/user/create-service-quota-increase.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

Amazon SQS message processing and timing

This topic provides a comprehensive guidance on optimizing the speed and efficiency of message 
handling in Amazon SQS, including strategies for timely message processing, selecting the best 
polling mode, and configuring long polling for improved performance.

Topics

• Processing messages in a timely manner in Amazon SQS

• Setting-up long polling in Amazon SQS

• Using the appropriate polling mode in Amazon SQS

Processing messages in a timely manner in Amazon SQS

Setting the visibility timeout depends on how long it takes your application to process and delete 
a message. For example, if your application requires 10 seconds to process a message and you 
set the visibility timeout to 15 minutes, you must wait for a relatively long time to attempt to 
process the message again if the previous processing attempt fails. Alternatively, if your application 
requires 10 seconds to process a message but you set the visibility timeout to only 2 seconds, a 
duplicate message is received by another consumer while the original consumer is still working on 
the message.

To make sure that there is sufficient time to process messages, use one of the following strategies:

• If you know (or can reasonably estimate) how long it takes to process a message, extend the 
message's visibility timeout to the maximum time it takes to process and delete the message. For 
more information, see Configuring the Visibility Timeout.

• If you don't know how long it takes to process a message, create a heartbeat for your consumer 
process: Specify the initial visibility timeout (for example, 2 minutes) and then—as long as your 
consumer still works on the message—keep extending the visibility timeout by 2 minutes every 
minute.

Important

The maximum visibility timeout is 12 hours from the time that Amazon SQS receives the
ReceiveMessage request. Extending the visibility timeout does not reset the 12 hour 
maximum.

Message processing and timing 135



Amazon Simple Queue Service Developer Guide

Additionally, you may be unable to set the timeout on an individual message to the full 
12 hours (e.g. 43,200 seconds) since the ReceiveMessage request initiates the timer. 
For example, if you receive a message and immediately set the 12 hour maximum by 
sending a ChangeMessageVisibility call with VisibilityTimeout equal to 43,200 
seconds, it will likely fail. However, using a value of 43,195 seconds will work unless 
there is a significant delay between requesting the message via ReceiveMessage and 
updating the visibility timeout. If your consumer needs longer than 12 hours, consider 
using Step Functions.

Setting-up long polling in Amazon SQS

When the wait time for the ReceiveMessage API action is greater than 0, long polling is in 
effect. The maximum long polling wait time is 20 seconds. Long polling helps reduce the cost of 
using Amazon SQS by eliminating the number of empty responses (when there are no messages 
available for a ReceiveMessage request) and false empty responses (when messages are available 
but aren't included in a response). For more information, see Amazon SQS short and long polling.

For optimal message processing, use the following strategies:

• In most cases, you can set the ReceiveMessage wait time to 20 seconds. If 20 seconds is too 
long for your application, set a shorter ReceiveMessage wait time (1 second minimum). If you 
don't use an Amazon SDK to access Amazon SQS, or if you configure an Amazon SDK to have 
a shorter wait time, you might have to modify your Amazon SQS client to either allow longer 
requests or use a shorter wait time for long polling.

• If you implement long polling for multiple queues, use one thread for each queue instead of 
a single thread for all queues. Using a single thread for each queue allows your application to 
process the messages in each of the queues as they become available, while using a single thread 
for polling multiple queues might cause your application to become unable to process messages 
available in other queues while the application waits (up to 20 seconds) for the queue which 
doesn't have any available messages.

Setting-up long polling in Amazon SQS 136

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

Important

To avoid HTTP errors, make sure that the HTTP response timeout for ReceiveMessage
requests is longer than the WaitTimeSeconds parameter. For more information, see
ReceiveMessage.

Using the appropriate polling mode in Amazon SQS

• Long polling lets you consume messages from your Amazon SQS queue as soon as they become 
available.

• To reduce the cost of using Amazon SQS and to decrease the number of empty receives to an 
empty queue (responses to the ReceiveMessage action which return no messages), enable 
long polling. For more information, see Amazon SQS Long Polling.

• To increase efficiency when polling for multiple threads with multiple receives, decrease the 
number of threads.

• Long polling is preferable over short polling in most cases.

• Short polling returns responses immediately, even if the polled Amazon SQS queue is empty.

• To satisfy the requirements of an application that expects immediate responses to the
ReceiveMessage request, use short polling.

• Short polling is billed the same as long polling.

Using the appropriate polling mode in Amazon SQS 137

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

Amazon SQS Java SDK examples

The Amazon SDK for Java allows you build Java applications that interact with Amazon SQS and 
other Amazon Web Services services.

• To install and set up the SDK, see Getting started in the Amazon SDK for Java 2.x Developer 
Guide.

• For basic queue operations—such as creating a queue or sending a message—see  Working with 
Amazon SQS Message Queues in the Amazon SDK for Java 2.x Developer Guide.

• This guide also includes examples of additional Amazon SQS features, such as:

• Using server-side encryption with Amazon SQS queues

• Configuring tags for an Amazon SQS queue

• Sending message attributes to an Amazon SQS queue

Using server-side encryption with Amazon SQS queues

Use the Amazon SDK for Java to add server-side encryption (SSE) to an Amazon SQS queue. Each 
queue uses an Amazon Key Management Service (Amazon KMS) KMS key to generate the data 
encryption keys. This example uses the Amazon managed KMS key for Amazon SQS.

For more information about using SSE and the role of the KMS key, see Encryption at rest in 
Amazon SQS.

Adding SSE to an existing queue

To enable server-side encryption for an existing queue, use the SetQueueAttributes method to 
set the KmsMasterKeyId attribute.

The following code example sets the Amazon KMS key as the Amazon managed KMS key for 
Amazon SQS. The example also sets the Amazon KMS key reuse period to 140 seconds.

Before you run the example code, make sure that you have set your Amazon credentials. For more 
information, see Set up Amazon Credentials and Region for Development in the Amazon SDK for 
Java 2.x Developer Guide.

    public static void addEncryption(String queueName, String kmsMasterKeyAlias) { 

Using server-side encryption 138

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/getting-started.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/sqs-examples.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/sqs-examples.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup.html#setup-credentials


Amazon Simple Queue Service Developer Guide

        SqsClient sqsClient = SqsClient.create(); 

        GetQueueUrlRequest urlRequest = GetQueueUrlRequest.builder() 
                .queueName(queueName) 
                .build(); 

        GetQueueUrlResponse getQueueUrlResponse; 
        try { 
            getQueueUrlResponse = sqsClient.getQueueUrl(urlRequest); 
        } catch (QueueDoesNotExistException e) { 
            LOGGER.error(e.getMessage(), e); 
            throw new RuntimeException(e); 
        } 
        String queueUrl = getQueueUrlResponse.queueUrl(); 

        Map<QueueAttributeName, String> attributes = Map.of( 
                QueueAttributeName.KMS_MASTER_KEY_ID, kmsMasterKeyAlias, 
                QueueAttributeName.KMS_DATA_KEY_REUSE_PERIOD_SECONDS, "140" // Set the 
 data key reuse period to 140 seconds. 
        );                                                                  // This is 
 how long SQS can reuse the data key before requesting a new one from KMS. 

        SetQueueAttributesRequest attRequest = SetQueueAttributesRequest.builder() 
                .queueUrl(queueUrl) 
                .attributes(attributes) 
                .build(); 
        try { 
            sqsClient.setQueueAttributes(attRequest); 
            LOGGER.info("The attributes have been applied to {}", queueName); 
        } catch (InvalidAttributeNameException | InvalidAttributeValueException e) { 
            LOGGER.error(e.getMessage(), e); 
            throw new RuntimeException(e); 
        } finally { 
            sqsClient.close(); 
        } 
    }
 

Disabling SSE for a queue

To disable server-side encryption for an existing queue, set the KmsMasterKeyId attribute to an 
empty string using the SetQueueAttributes method.

Disabling SSE for a queue 139



Amazon Simple Queue Service Developer Guide

Important

null isn't a valid value for KmsMasterKeyId.

Creating a queue with SSE

To enable SSE when you create the queue, add the KmsMasterKeyId attribute to the
CreateQueue API method.

The following example creates a new queue with SSE enabled. The queue uses the Amazon 
managed KMS key for Amazon SQS. The example also sets the Amazon KMS key reuse period to 
160 seconds.

Before you run the example code, make sure that you have set your Amazon credentials. For more 
information, see Set up Amazon Credentials and Region for Development in the Amazon SDK for 
Java 2.x Developer Guide.

// Create an SqsClient for the specified Region.
SqsClient sqsClient = SqsClient.builder().region(Region.US_WEST_1).build();

// Create a hashmap for the attributes. Add the key alias and reuse period to the 
 hashmap.
HashMap<QueueAttributeName, String> attributes = new HashMap<QueueAttributeName, 
 String>();
final String kmsMasterKeyAlias = "alias/aws/sqs";  // the alias of the Amazon managed 
 KMS key for Amazon SQS.
attributes.put(QueueAttributeName.KMS_MASTER_KEY_ID, kmsMasterKeyAlias);
attributes.put(QueueAttributeName.KMS_DATA_KEY_REUSE_PERIOD_SECONDS, "140");     

// Add the attributes to the CreateQueueRequest.
CreateQueueRequest createQueueRequest = 
                CreateQueueRequest.builder() 
                        .queueName(queueName) 
                        .attributes(attributes) 
                        .build();
sqsClient.createQueue(createQueueRequest); 
    

Creating a queue with SSE 140

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup.html#setup-credentials


Amazon Simple Queue Service Developer Guide

Retrieving SSE attributes

For information about retrieving queue attributes, see Examples in the Amazon Simple Queue 
Service API Reference.

To retrieve the KMS key ID or the data key reuse period for a particular queue, 
run the GetQueueAttributes method and retrieve the KmsMasterKeyId and
KmsDataKeyReusePeriodSeconds values.

Configuring tags for an Amazon SQS queue

Use cost-allocation tags to help organize and identify your Amazon SQS queues. The following 
examples show how to configure tags using the Amazon SDK for Java. For more information, see
Amazon SQS cost allocation tags.

Before you run the example code, make sure that you have set your Amazon credentials. For more 
information, see Set up Amazon Credentials and Region for Development in the Amazon SDK for 
Java 2.x Developer Guide.

Listing tags

To list the tags for a queue, use the ListQueueTags method.

// Create an SqsClient for the specified region.
SqsClient sqsClient = SqsClient.builder().region(Region.US_WEST_1).build();

// Get the queue URL.
String queueName = "MyStandardQ1";
GetQueueUrlResponse getQueueUrlResponse = 
        
 sqsClient.getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
String queueUrl = getQueueUrlResponse.queueUrl();

// Create the ListQueueTagsRequest.
final ListQueueTagsRequest listQueueTagsRequest =  
                                  
 ListQueueTagsRequest.builder().queueUrl(queueUrl).build();

// Retrieve the list of queue tags and print them.
final ListQueueTagsResponse listQueueTagsResponse = 
                                  sqsClient.listQueueTags(listQueueTagsRequest);

Retrieving SSE attributes 141

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html#API_GetQueueAttributes_Examples
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup.html#setup-credentials


Amazon Simple Queue Service Developer Guide

System.out.println(String.format("ListQueueTags: \tTags for queue %s are %s.\n", 
                queueName, listQueueTagsResponse.tags() )); 
    

Adding or updating tags

To add or update tag values for a queue, use the TagQueue method.

 // Create an SqsClient for the specified Region.
SqsClient sqsClient = SqsClient.builder().region(Region.US_WEST_1).build();

// Get the queue URL.
String queueName = "MyStandardQ1";
GetQueueUrlResponse getQueueUrlResponse = 
        
 sqsClient.getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build());
String queueUrl = getQueueUrlResponse.queueUrl();  

// Build a hashmap of the tags.
final HashMap<String, String> addedTags = new HashMap<>(); 
        addedTags.put("Team", "Development"); 
        addedTags.put("Priority", "Beta"); 
        addedTags.put("Accounting ID", "456def");

//Create the TagQueueRequest and add them to the queue.
final TagQueueRequest tagQueueRequest = TagQueueRequest.builder() 
        .queueUrl(queueUrl) 
        .tags(addedTags) 
        .build();
sqsClient.tagQueue(tagQueueRequest); 
    

Removing tags

To remove one or more tags from the queue, use the UntagQueue method. The following example 
removes the Accounting ID tag.

 
// Create the UntagQueueRequest.
final UntagQueueRequest untagQueueRequest = UntagQueueRequest.builder() 
        .queueUrl(queueUrl) 
        .tagKeys("Accounting ID") 

Adding or updating tags 142



Amazon Simple Queue Service Developer Guide

        .build(); 
         
// Remove the tag from this queue.
sqsClient.untagQueue(untagQueueRequest);    
    

Sending message attributes to an Amazon SQS queue

You can include structured metadata (such as timestamps, geospatial data, signatures, and 
identifiers) with messages using message attributes. For more information, see Amazon SQS 
message attributes.

Before you run the example code, make sure that you have set your Amazon credentials. For more 
information, see Set up Amazon Credentials and Region for Development in the Amazon SDK for 
Java 2.x Developer Guide.

Defining attributes

To define an attribute for a message, add the following code, which uses the
MessageAttributeValue data type. For more information, see Message attribute components
and Message attribute data types.

The Amazon SDK for Java automatically calculates the message body and message attribute 
checksums and compares them with the data that Amazon SQS returns. For more information, see 
the Amazon SDK for Java 2.x Developer Guide and Calculating the MD5 message digest for message 
attributes for other programming languages.

String

This example defines a String attribute named Name with the value Jane.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("Name", new MessageAttributeValue()
.withDataType("String")
.withStringValue("Jane"));

Number

This example defines a Number attribute named AccurateWeight with the value
230.000000000000000001.

Sending message attributes 143

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup.html#setup-credentials
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_MessageAttributeValue.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/


Amazon Simple Queue Service Developer Guide

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("AccurateWeight", new MessageAttributeValue()
.withDataType("Number")
.withStringValue("230.000000000000000001"));

Binary

This example defines a Binary attribute named ByteArray with the value of an uninitialized 
10-byte array.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("ByteArray", new MessageAttributeValue()
.withDataType("Binary")
.withBinaryValue(ByteBuffer.wrap(new byte[10])));

String (custom)

This example defines the custom attribute String.EmployeeId named EmployeeId with the 
value ABC123456.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("EmployeeId", new MessageAttributeValue()
.withDataType("String.EmployeeId")
.withStringValue("ABC123456"));

Number (custom)

This example defines the custom attribute Number.AccountId named AccountId with the 
value 000123456.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("AccountId", new MessageAttributeValue()
.withDataType("Number.AccountId")
.withStringValue("000123456"));

Note

Because the base data type is Number, the ReceiveMessage method returns 123456.

Defining attributes 144

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

Binary (custom)

This example defines the custom attribute Binary.JPEG named ApplicationIcon with the 
value of an uninitialized 10-byte array.

final Map<String, MessageAttributeValue> messageAttributes = new HashMap<>();
messageAttributes.put("ApplicationIcon", new MessageAttributeValue()
.withDataType("Binary.JPEG")
.withBinaryValue(ByteBuffer.wrap(new byte[10])));

Sending a message with attributes

This example adds the attributes to the SendMessageRequest before sending the message.

// Send a message with an attribute.
final SendMessageRequest sendMessageRequest = new SendMessageRequest();
sendMessageRequest.withMessageBody("This is my message text.");
sendMessageRequest.withQueueUrl(myQueueUrl);
sendMessageRequest.withMessageAttributes(messageAttributes);
sqs.sendMessage(sendMessageRequest);

Important

If you send a message to a First-In-First-Out (FIFO) queue, make sure that the
sendMessage method executes after you provide the message group ID.
If you use the SendMessageBatch method instead of SendMessage, you must specify 
message attributes for each message in the batch.

Sending a message with attributes 145

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html


Amazon Simple Queue Service Developer Guide

Using APIs with Amazon SQS

This topic provides information about constructing Amazon SQS endpoints, making query API 
requests using the GET and POST methods, and using batch API actions. For detailed information 
about Amazon SQS actions—including parameters, errors, examples, and data types, see the
Amazon Simple Queue Service API Reference.

To access Amazon SQS using a variety of programming languages, you can also use Amazon SDKs, 
which contain the following automatic functionality:

• Cryptographically signing your service requests

• Retrying requests

• Handling error responses

For more information, see the section called “Working with Amazon SDKs”.

For command line tool information, see the Amazon SQS sections in the Amazon CLI Command 
Reference and the Amazon Tools for PowerShell Cmdlet Reference.

Amazon SQS APIs with Amazon JSON protocol

Amazon SQS uses Amazon JSON protocol as the transport mechanism for all Amazon SQS APIs on 
the specified Amazon SDK versions. Amazon JSON protocol provides a higher throughput, lower 
latency, and faster application-to-application communication. Amazon JSON protocol is more 
efficient in serialization/deserialization of requests and responses when compared to Amazon 
query protocol. If you still prefer to use the Amazon query protocol with SQS APIs, see What 
languages are supported for Amazon JSON protocol used in Amazon SQS APIs? for the Amazon 
SDK versions that support Amazon SQS Amazon query protocol.

Amazon SQS uses Amazon JSON protocol to communicate between Amazon SDK clients (for 
example, Java, Python, Golang, JavaScript) and the Amazon SQS server. An HTTP request of an 
Amazon SQS API operation accepts JSON formatted input. The Amazon SQS operation is executed, 
and the execution response is sent back to the SDK client in JSON format. Compared to Amazon 
query, Amazon JSON is simpler, faster, and more efficient to transport data between client and 
server.

• Amazon JSON protocol acts as a mediator between the Amazon SQS client and server.

146

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_Operations.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_Types.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/
http://www.amazonaws.cn/tools/#sdk
https://docs.amazonaws.cn/cli/latest/reference/sqs/index.html
https://docs.amazonaws.cn/cli/latest/reference/sqs/index.html
https://docs.amazonaws.cn/powershell/latest/reference/


Amazon Simple Queue Service Developer Guide

• The server doesn’t understand the programming language in which the Amazon SQS operation is 
created, but it understands the Amazon JSON protocol.

• The Amazon JSON protocol uses the serialization (convert object to JSON format) and de-
serialization (convert JSON format to object) between Amazon SQS client and server.

For more information about Amazon JSON protocol with Amazon SQS, see Amazon SQS Amazon 
JSON protocol FAQs.

Amazon JSON protocol is available on the specified Amazon SDK version. To review SDK version 
and release dates across language variants, see the Amazon SDKs and Tools version support matrix
in the Amazon SDKs and Tools Reference Guide

Making query API requests using Amazon JSON protocol in 
Amazon SQS

This topic explains how to construct an Amazon SQS endpoint, make POST requests, and interpret 
responses.

Note

Amazon JSON protocol is supported for most language variants. For a full list of supported 
language variants, see What languages are supported for Amazon JSON protocol used in 
Amazon SQS APIs?.

Constructing an endpoint

To work with Amazon SQS queues, you must construct an endpoint. For information about Amazon 
SQS endpoints, see the following pages in the Amazon Web Services General Reference:

• Regional endpoints

• Amazon Simple Queue Service endpoints and quotas

Every Amazon SQS endpoint is independent. For example, if two queues are named MyQueue
and one has the endpoint sqs.us-east-2.amazonaws.com while the other has the endpoint
sqs.eu-west-2.amazonaws.com, the two queues don't share any data with each other.

Making query API requests using Amazon JSON protocol 147

https://docs.amazonaws.cn/sdkref/latest/guide/version-support-matrix.html
https://docs.amazonaws.cn/general/latest/gr/rande.html#regional-endpoints
https://docs.amazonaws.cn/general/latest/gr/sqs-service


Amazon Simple Queue Service Developer Guide

The following is an example of an endpoint that makes a request to create a queue.

POST / HTTP/1.1
Host: sqs.us-west-2.amazonaws.com
X-Amz-Target: AmazonSQS.CreateQueue
X-Amz-Date: <Date>
Content-Type: application/x-amz-json-1.0
Authorization: <AuthParams>
Content-Length: <PayloadSizeBytes>
Connection: Keep-Alive  
{ 
    "QueueName":"MyQueue", 
    "Attributes": { 
        "VisibilityTimeout": "40" 
    }, 
    "tags": { 
        "QueueType": "Production" 
    }
}

Note

Queue names and queue URLs are case sensitive.
The structure of AUTHPARAMS depends on the signature of the API request. For more 
information, see Signing Amazon API Requests in the Amazon Web Services General 
Reference.

Making a POST request

An Amazon SQS POST request sends query parameters as a form in the body of an HTTP request.

The following is an example of an HTTP header with X-Amz-Target set to
AmazonSQS.<operationName>, and an HTTP header with Content-Type set to application/
x-amz-json-1.0.

POST / HTTP/1.1
Host: sqs.<region>.<domain>
X-Amz-Target: AmazonSQS.SendMessage
X-Amz-Date: <Date>
Content-Type: application/x-amz-json-1.0

Making a POST request 148

https://docs.amazonaws.cn/general/latest/gr/signing_aws_api_requests.html


Amazon Simple Queue Service Developer Guide

Authorization: <AuthParams>
Content-Length: <PayloadSizeBytes>
Connection: Keep-Alive  
{ 
    "QueueUrl": "https://sqs.<region>.<domain>/<awsAccountId>/<queueName>/", 
    "MessageBody": "This is a test message"
}

This HTTP POST request sends a message to an Amazon SQS queue.

Note

Both HTTP headers X-Amz-Target and Content-Type are required.
Your HTTP client might add other items to the HTTP request, according to the client's HTTP 
version.

Interpreting Amazon SQS JSON API responses

When you send a request to Amazon SQS, it returns a JSON response with the results. The 
response structure depends on the API action you used.

To understand the details of these responses, see:

• The specific API action in the API actions in the Amazon Simple Queue Service API Reference

• The Amazon SQS Amazon JSON protocol FAQs

Successful JSON response structure

If the request is successful, the main response element is x-amzn-RequestId, which contains 
the Universal Unique Identifier (UUID) of the request, as well as other appended response field(s). 
For example, the following CreateQueue response contains the QueueUrl field, which, in turn, 
contains the URL of the created queue.

HTTP/1.1 200 OK
x-amzn-RequestId: <requestId>
Content-Length: <PayloadSizeBytes>
Date: <Date>
Content-Type: application/x-amz-json-1.0
{ 

Interpreting Amazon SQS JSON API responses 149

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_Operations.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html


Amazon Simple Queue Service Developer Guide

    "QueueUrl":"https://sqs.us-east-1.amazonaws.com/111122223333/MyQueue"
}

JSON error response structure

If a request is unsuccessful, Amazon SQS returns the main response, including the HTTP header 
and the body.

In the HTTP header, x-amzn-RequestId contains the UUID of the request. x-amzn-query-
error contains two pieces of information: the type of error, and whether the error was a producer 
or consumer error.

In the response body, "__type" indicates other error details, and Message indicates the error 
condition in a readable format.

The following is an example error response in JSON format:

HTTP/1.1 400 Bad Request
x-amzn-RequestId: 66916324-67ca-54bb-a410-3f567a7a0571
x-amzn-query-error: AWS.SimpleQueueService.NonExistentQueue;Sender
Content-Length: <PayloadSizeBytes>
Date: <Date>
Content-Type: application/x-amz-json-1.0
{ 
    "__type": "com.amazonaws.sqs#QueueDoesNotExist", 
    "message": "The specified queue does not exist."
}

Amazon SQS Amazon JSON protocol FAQs

This topic covers frequently asked questions about using Amazon JSON protocol with Amazon SQS.

What is Amazon JSON protocol, and how does it differ from existing Amazon SQS 
API requests and responses?

JSON is one of the most widely used and accepted wiring methods for communication between 
heterogeneous systems. Amazon SQS uses JSON as a medium to communicate between an 
Amazon SDK client (for example, Java, Python, Golang, JavaScript) and Amazon SQS server. An 
HTTP request of an Amazon SQS API operation accepts input in the form of JSON. The Amazon 
SQS operation is executed and the response of execution is shared back to the SDK client in the 

Amazon SQS Amazon JSON protocol FAQs 150



Amazon Simple Queue Service Developer Guide

form of JSON. Compared to Amazon query, JSON is more efficient at transporting data between 
client and server.

• Amazon SQS Amazon JSON protocol acts as a mediator between Amazon SQS client and server.

• The server doesn’t understand the programming language in which the Amazon SQS operation is 
created, but it understands the Amazon JSON protocol.

• The Amazon SQS Amazon JSON protocol uses the serialization (convert object to JSON format) 
and deserialization (convert JSON format to object) between the Amazon SQS client and server.

How do I get started with Amazon JSON protocols for Amazon SQS?

To get started with the latest Amazon SDK version to achieve faster messaging for Amazon SQS, 
upgrade your Amazon SDK to the specified version or any subsequent version. To learn more about 
SDK clients, see the Guide column in the table below.

The following is a list of SDK versions across language variants for Amazon JSON protocol for use 
with Amazon SQS APIs:

Language SDK client repository Required SDK client 
version

Guide

C++ aws/aws-sdk-cpp 1.11.98 Amazon SDK for C++

Golang 1.x aws/aws-sdk-go v1.47.7 Amazon SDK for Go

Golang 2.x aws/aws-sdk-go-v2 v1.28.0 Amazon SDK for Go 
V2

Java 1.x aws/aws-sdk-java 1.12.585 Amazon SDK for Java

Java 2.x aws/aws-sdk-java-v2 2.21.19 Amazon SDK for Java

JavaScript v2.x aws/aws-sdk-js JavaScript on 
Amazon

Amazon SQS Amazon JSON protocol FAQs 151

https://github.com/aws/aws-sdk-cpp
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.198
https://aws.amazon.com/sdk-for-cpp/
https://github.com/aws/aws-sdk-go
https://github.com/aws/aws-sdk-go/releases/tag/v1.47.7
https://aws.amazon.com/sdk-for-go/
https://github.com/aws/aws-sdk-go-v2
https://github.com/aws/aws-sdk-go-v2/blob/release-2023-11-09/service/sqs/CHANGELOG.md#v1270-2023-11-09
https://aws.github.io/aws-sdk-go-v2/docs/
https://aws.github.io/aws-sdk-go-v2/docs/
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java/releases/tag/1.12.585
https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-java-v2
https://github.com/aws/aws-sdk-java-v2/releases/tag/2.21.19
https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-js
https://aws.amazon.com/developer/language/javascript/
https://aws.amazon.com/developer/language/javascript/


Amazon Simple Queue Service Developer Guide

Language SDK client repository Required SDK client 
version

Guide

JavaScript v3.x aws/aws-sdk-js-v3 v3.447.0 JavaScript on 
Amazon

.NET aws/aws-sdk-net 3.7.681.0 Amazon SDK for .NET

PHP aws/aws-sdk-php 3.285.2 Amazon SDK for PHP

Python-boto3  boto/boto3 1.28.82 Amazon SDK for 
Python (Boto3)

Python-botocore  boto/botocore 1.31.82 Amazon SDK for 
Python (Boto3)

awscli Amazon  CLI 1.29.82 AmazonCommand 
Line Interface

Ruby aws/aws-sdk-ruby 1.67.0 Amazon SDK for 
Ruby

What are the risks of enabling JSON protocol for my Amazon SQS workloads?

If you are using a custom implementation of Amazon SDK or a combination of custom clients 
and Amazon SDK to interact with Amazon SQS that generates Amazon Query based (aka XML-
based) responses, it may be incompatible with Amazon JSON protocol. If you encounter any issues, 
contact Amazon Support.

What if I am already on the latest Amazon SDK version, but my open sourced 
solution does not support JSON?

You must change your SDK version to the version previous to what you are using. See How do I 
get started with Amazon JSON protocols for Amazon SQS? for more information. Amazon SDK 
versions listed in How do I get started with Amazon JSON protocols for Amazon SQS? uses JSON 

Amazon SQS Amazon JSON protocol FAQs 152

https://github.com/aws/aws-sdk-js-v3
https://github.com/aws/aws-sdk-js-v3/releases/tag/v3.447.0
https://aws.amazon.com/developer/language/javascript/
https://aws.amazon.com/developer/language/javascript/
https://github.com/aws/aws-sdk-net
https://github.com/aws/aws-sdk-net/releases/tag/3.7.681.0
https://aws.amazon.com/sdk-for-net/
https://github.com/aws/aws-sdk-php
https://github.com/aws/aws-sdk-php/releases/tag/3.285.2
https://aws.amazon.com/sdk-for-php/
https://github.com/boto/boto3
https://github.com/boto/boto3/releases/tag/1.28.82
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://github.com/boto/botocore/
https://github.com/boto/botocore/releases/tag/1.31.82
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://github.com/aws/aws-cli
https://github.com/aws/aws-cli/releases/tag/1.29.82
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://github.com/aws/aws-sdk-ruby
https://rubygems.org/gems/aws-sdk-sqs/versions/1.67.0
https://aws.amazon.com/sdk-for-ruby/
https://aws.amazon.com/sdk-for-ruby/


Amazon Simple Queue Service Developer Guide

wire protocol for Amazon SQS APIs. If you change your Amazon SDK to the previous version, your 
Amazon SQS APIs will use the Amazon query.

What languages are supported for Amazon JSON protocol used in Amazon SQS 
APIs?

Amazon SQS supports all language variants where Amazon SDKs are generally available (GA). 
Currently, we don't support Kotlin, Rust, or Swift. To learn more about other language variants, see
Tools to Build on Amazon.

What regions are supported for Amazon JSON protocol used in Amazon SQS APIs

Amazon SQS supports Amazon JSON protocol in all Amazon regions where Amazon SQS is 
available.

What latency improvements can I expect when upgrading to the specified 
Amazon SDK versions for Amazon SQS using the Amazon JSON protocol?

Amazon JSON protocol is more efficient at serialization and deserialization of requests and 
responses when compared to Amazon query protocol. Based on Amazon performance tests for a 
5 KB message payload, JSON protocol for Amazon SQS reduces end-to-end message processing 
latency by up to 23%, and reduces application client side CPU and memory usage.

Will Amazon query protocol be deprecated?

Amazon query protocol will continue to be supported. You can continue using Amazon query 
protocol as long as your Amazon SDK version is set any previous version other that what is listed in
How do I get started with Amazon JSON protocols for Amazon SQS.

Where can I find more information about Amazon JSON protocol?

You can find more information about JSON protocol at Amazon JSON 1.0 protocol in the Smithy
documentation. For more about Amazon SQS API requests using Amazon JSON protocol, see
Making query API requests using Amazon JSON protocol in Amazon SQS.

Making query API requests using Amazon query protocol in 
Amazon SQS

This topic explains how to construct an Amazon SQS endpoint, make GET and POST requests, and 
interpret responses.

Making query API requests using Amazon query protocol 153

https://aws.amazon.com/developer/tools/
https://docs.amazonaws.cn/general/latest/gr/sqs-service.html
https://smithy.io/2.0/aws/protocols/aws-json-1_0-protocol.html


Amazon Simple Queue Service Developer Guide

Constructing an endpoint

In order to work with Amazon SQS queues, you must construct an endpoint. For information about 
Amazon SQS endpoints, see the following pages in the Amazon Web Services General Reference:

• Regional endpoints

• Amazon Simple Queue Service endpoints and quotas

Every Amazon SQS endpoint is independent. For example, if two queues are named MyQueue
and one has the endpoint sqs.us-east-2.amazonaws.com while the other has the endpoint
sqs.eu-west-2.amazonaws.com, the two queues don't share any data with each other.

The following is an example of an endpoint which makes a request to create a queue.

https://sqs.eu-west-2.amazonaws.com/    
?Action=CreateQueue
&DefaultVisibilityTimeout=40
&QueueName=MyQueue
&Version=2012-11-05
&AUTHPARAMS

Note

Queue names and queue URLs are case sensitive.
The structure of AUTHPARAMS depends on the signature of the API request. For more 
information, see Signing Amazon API Requests in the Amazon Web Services General 
Reference.

Making a GET request

An Amazon SQS GET request is structured as a URL which consists of the following:

• Endpoint – The resource that the request is acting on (the queue name and URL), for example:
https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue

• Action – The action that you want to perform on the endpoint. A question mark (?) separates 
the endpoint from the action, for example: ?Action=SendMessage&MessageBody=Your
%20Message%20Text

Constructing an endpoint 154

https://docs.amazonaws.cn/general/latest/gr/rande.html#sqs_region
https://docs.amazonaws.cn/general/latest/gr/sqs-service
https://docs.amazonaws.cn/general/latest/gr/signing_aws_api_requests.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_Operations.html


Amazon Simple Queue Service Developer Guide

• Parameters – Any request parameters. Each parameter is separated by an ampersand (&), for 
example: &Version=2012-11-05&AUTHPARAMS

The following is an example of a GET request that sends a message to an Amazon SQS queue.

https://sqs.us-east-2.amazonaws.com/123456789012/MyQueue
?Action=SendMessage&MessageBody=Your%20message%20text
&Version=2012-11-05
&AUTHPARAMS

Note

Queue names and queue URLs are case sensitive.
Because GET requests are URLs, you must URL-encode all parameter values. Because spaces 
aren't allowed in URLs, each space is URL-encoded as %20. The rest of the example isn't 
URL-encoded to make it easier to read.

Making a POST request

An Amazon SQS POST request sends query parameters as a form in the body of an HTTP request.

The following is an example of an HTTP header with Content-Type set to application/x-
www-form-urlencoded.

POST /123456789012/MyQueue HTTP/1.1
Host: sqs.us-east-2.amazonaws.com
Content-Type: application/x-www-form-urlencoded

The header is followed by a form-urlencoded GET request that sends a message to an Amazon 
SQS queue. Each parameter is separated by an ampersand (&).

Action=SendMessage
&MessageBody=Your+Message+Text
&Expires=2020-10-15T12%3A00%3A00Z
&Version=2012-11-05
&AUTHPARAMS

Making a POST request 155

https://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2


Amazon Simple Queue Service Developer Guide

Note

Only the Content-Type HTTP header is required. The AUTHPARAMS is the same as for the 
GET request.
Your HTTP client might add other items to the HTTP request, according to the client's HTTP 
version.

Interpreting Amazon SQS XML API responses

When you send a request to Amazon SQS, it returns an XML response containing the results of 
the request. To understand the structure and details of these responses, refer to the specific API 
actions in the Amazon Simple Queue Service API Reference.

Successful XML response structure

If the request is successful, the main response element is named after the action, with Response
appended (for example, ActionNameResponse).

This element contains the following child elements:

• ActionNameResult – Contains an action-specific element. For example, the
CreateQueueResult element contains the QueueUrl element which, in turn, contains the URL 
of the created queue.

• ResponseMetadata – Contains the RequestId which, in turn, contains the Universal Unique 
Identifier (UUID) of the request.

The following is an example successful response in XML format:

<CreateQueueResponse 
   xmlns=https://sqs.us-east-2.amazonaws.com/doc/2012-11-05/ 
   xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance 
   xsi:type=CreateQueueResponse> 
   <CreateQueueResult> 
      <QueueUrl>https://sqs.us-east-2.amazonaws.com/770098461991/queue2</QueueUrl> 
   </CreateQueueResult> 
   <ResponseMetadata> 
      <RequestId>cb919c0a-9bce-4afe-9b48-9bdf2412bb67</RequestId> 
   </ResponseMetadata>

Interpreting Amazon SQS XML API responses 156

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_Operations.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_Operations.html


Amazon Simple Queue Service Developer Guide

</CreateQueueResponse>

XML error response structure

If a request is unsuccessful, Amazon SQS always returns the main response element
ErrorResponse. This element contains an Error element and a RequestId element.

The Error element contains the following child elements:

• Type – Specifies whether the error was a producer or consumer error.

• Code – Specifies the type of error.

• Message – Specifies the error condition in a readable format.

• Detail – (Optional) Specifies additional details about the error.

The RequestId element contains the UUID of the request.

The following is an example error response in XML format:

<ErrorResponse> 
   <Error> 
      <Type>Sender</Type> 
      <Code>InvalidParameterValue</Code> 
      <Message> 
         Value (quename_nonalpha) for parameter QueueName is invalid. 
         Must be an alphanumeric String of 1 to 80 in length. 
      </Message> 
   </Error> 
   <RequestId>42d59b56-7407-4c4a-be0f-4c88daeea257</RequestId>
</ErrorResponse>

Authenticating requests for Amazon SQS

Authentication is the process of identifying and verifying the party that sends a request. During 
the first stage of authentication, Amazon verifies the identity of the producer and whether the 
producer is registered to use Amazon (for more information, see Step 1: Create an Amazon Web 
Services account and IAM user). Next, Amazon abides by the following procedure:

1. The producer (sender) obtains the necessary credential.

2. The producer sends a request and the credential to the consumer (receiver).

Authenticating requests 157

http://www.amazonaws.cn/


Amazon Simple Queue Service Developer Guide

3. The consumer uses the credential to verify whether the producer sent the request.

4. One of the following happens:

• If authentication succeeds, the consumer processes the request.

• If authentication fails, the consumer rejects the request and returns an error.

Basic authentication process with HMAC-SHA

When you access Amazon SQS using the Query API, you must provide the following items to 
authenticate your request:

• The Amazon Access Key ID that identifies your Amazon Web Services account, which Amazon 
uses to look up your Secret Access Key.

• The HMAC-SHA request signature, calculated using your Secret Access Key (a shared secret 
known only to you and Amazon—for more information, see RFC2104). The Amazon SDK handles 
the signing process; however, if you submit a query request over HTTP or HTTPS, you must 
include a signature in every query request.

1. Derive a Signature Version 4 Signing Key. For more information, see Deriving the Signing Key 
with Java.

Note

Amazon SQS supports Signature Version 4, which provides improved SHA256-based 
security and performance over previous versions. When you create new applications 
that use Amazon SQS, use Signature Version 4.

2. Base64-encode the request signature. The following sample Java code does this:

package amazon.webservices.common;

// Define common routines for encoding data in Amazon requests.
public class Encoding { 

    /* Perform base64 encoding of input bytes. 
     * rawData is the array of bytes to be encoded. 
     * return is the base64-encoded string representation of rawData. 
     */ 
    public static String EncodeBase64(byte[] rawData) { 

Basic authentication process with HMAC-SHA 158

http://www.faqs.org/rfcs/rfc2104.html
http://www.amazonaws.cn/code/
https://docs.amazonaws.cn/general/latest/gr/signature-v4-examples.html#signature-v4-examples-java
https://docs.amazonaws.cn/general/latest/gr/signature-v4-examples.html#signature-v4-examples-java


Amazon Simple Queue Service Developer Guide

        return Base64.encodeBytes(rawData); 
    }
}

• The timestamp (or expiration) of the request. The timestamp that you use in the request must 
be a dateTime object, with the complete date, including hours, minutes, and seconds. For 
example: 2007-01-31T23:59:59Z Although this isn't required, we recommend providing the 
object using the Coordinated Universal Time (Greenwich Mean Time) time zone.

Note

Make sure that your server time is set correctly. If you specify a timestamp (rather than 
an expiration), the request automatically expires 15 minutes after the specified time 
(Amazon doesn't process requests with timestamps more than 15 minutes earlier than 
the current time on Amazon servers).
If you use .NET, you must not send overly specific timestamps (because of different 
interpretations of how extra time precision should be dropped). In this case, you should 
manually construct dateTime objects with precision of no more than one millisecond.

Part 1: The request from the user

The following is the process you must follow to authenticate Amazon requests using an HMAC-SHA 
request signature.

Part 1: The request from the user 159

http://www.w3.org/TR/xmlschema-2/#dateTime


Amazon Simple Queue Service Developer Guide

1. Construct a request to Amazon.

2. Calculate a keyed-hash message authentication code (HMAC-SHA) signature using your Secret 
Access Key.

3. Include the signature and your Access Key ID in the request, and then send the request to 
Amazon.

Part 2: The response from Amazon

Amazon begins the following process in response.

Part 2: The response from Amazon 160



Amazon Simple Queue Service Developer Guide

1. Amazon uses the Access Key ID to look up your Secret Access Key.

2. Amazon generates a signature from the request data and the Secret Access Key, using the 
same algorithm that you used to calculate the signature you sent in the request.

3. One of the following happens:

• If the signature that Amazon generates matches the one you send in the request, Amazon 
considers the request to be authentic.

• If the comparison fails, the request is discarded, and Amazon returns an error.

Amazon SQS batch actions

Amazon SQS provides batch actions to help you reduce costs and manipulate up to 10 messages 
with a single action. These batch actions include:

• SendMessageBatch

• DeleteMessageBatch

Batch actions 161

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html


Amazon Simple Queue Service Developer Guide

• ChangeMessageVisibilityBatch

Using batch actions, you can perform multiple operations in a single API call, which helps optimize 
performance and reduce costs. You can take advantage of batch functionality using the query API 
or any Amazon SDK that supports Amazon SQS batch actions.

Important Details

• Message Size Limit: The total size of all messages sent in a single SendMessageBatch call 
cannot exceed 1,048,576 bytes (1 MiB)

• Permissions: You cannot set permissions explicitly for SendMessageBatch,
DeleteMessageBatch, or ChangeMessageVisibilityBatch. Instead, setting permissions 
for SendMessage, DeleteMessage, or ChangeMessageVisibility sets permissions for the 
corresponding batch versions of the actions.

• Console Support: The Amazon SQS console does not support batch actions. You must use the 
query API or an Amazon SDK to perform batch operations.

Batching message actions

To further optimize costs and efficiency, consider the following best practices for batching message 
actions:

• Batch API Actions: Use the Amazon SQS batch API actions actions to send, receive, and delete 
messages, and to change the message visibility timeout for multiple messages with a single 
action. This reduces the number of API calls and associated costs.

• Client-Side Buffering and Long Polling: Combine client-side buffering with request batching 
by using long polling together with the  buffered asynchronous client included with the Amazon 
SDK for Java. This approach helps to minimize the number of requests and optimizes the 
handling of large volumes of messages.

Note

The Amazon SQS Buffered Asynchronous Client doesn't currently support FIFO queues.

Batching message actions 162

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html


Amazon Simple Queue Service Developer Guide

Enabling client-side buffering and request batching with Amazon SQS

The Amazon SDK for Java includes AmazonSQSBufferedAsyncClient which accesses Amazon 
SQS. This client allows for simple request batching using client-side buffering. Calls made from the 
client are first buffered and then sent as a batch request to Amazon SQS.

Client-side buffering allows up to 10 requests to be buffered and sent as a batch request, 
decreasing your cost of using Amazon SQS and reducing the number of sent requests.
AmazonSQSBufferedAsyncClient buffers both synchronous and asynchronous calls. Batched 
requests and support for long polling can also help increase throughput. For more information, see
Increasing throughput using horizontal scaling and action batching with Amazon SQS.

Because AmazonSQSBufferedAsyncClient implements the same interface 
as AmazonSQSAsyncClient, migrating from AmazonSQSAsyncClient to
AmazonSQSBufferedAsyncClient typically requires only minimal changes to your existing code.

Note

The Amazon SQS Buffered Asynchronous Client doesn't currently support FIFO queues.

Using AmazonSQSBufferedAsyncClient

Before you begin, complete the steps in Setting up Amazon SQS.

Amazon SDK for Java 1.x

For Amazon SDK for Java 1.x, you can create a new AmazonSQSBufferedAsyncClient based on 
the following example:

// Create the basic Amazon SQS async client
final AmazonSQSAsync sqsAsync = new AmazonSQSAsyncClient(); 
  
// Create the buffered client
final AmazonSQSAsync bufferedSqs = new AmazonSQSBufferedAsyncClient(sqsAsync);

After you create the new AmazonSQSBufferedAsyncClient, you can use it to send multiple 
requests to Amazon SQS (just as you can with AmazonSQSAsyncClient), for example:

final CreateQueueRequest createRequest = new 
 CreateQueueRequest().withQueueName("MyQueue"); 

Enabling client-side buffering and request batching with Amazon SQS 163

http://www.amazonaws.cn/sdkforjava/


Amazon Simple Queue Service Developer Guide

 
final CreateQueueResult res = bufferedSqs.createQueue(createRequest); 
  
final SendMessageRequest request = new SendMessageRequest();
final String body = "Your message text" + System.currentTimeMillis();
request.setMessageBody( body );
request.setQueueUrl(res.getQueueUrl()); 
  
final Future<SendMessageResult> sendResult = bufferedSqs.sendMessageAsync(request); 
  
final ReceiveMessageRequest receiveRq = new ReceiveMessageRequest() 
    .withMaxNumberOfMessages(1) 
    .withQueueUrl(queueUrl);
final ReceiveMessageResult rx = bufferedSqs.receiveMessage(receiveRq);

Configuring AmazonSQSBufferedAsyncClient

AmazonSQSBufferedAsyncClient is preconfigured with settings that work for most use cases. 
You can further configure AmazonSQSBufferedAsyncClient, for example:

1. Create an instance of the QueueBufferConfig class with the required configuration 
parameters.

2. Provide the instance to the AmazonSQSBufferedAsyncClient constructor.

// Create the basic Amazon SQS async client
final AmazonSQSAsync sqsAsync = new AmazonSQSAsyncClient(); 
  
final QueueBufferConfig config = new QueueBufferConfig() 
    .withMaxInflightReceiveBatches(5) 
    .withMaxDoneReceiveBatches(15); 
  
// Create the buffered client
final AmazonSQSAsync bufferedSqs = new AmazonSQSBufferedAsyncClient(sqsAsync, config);

QueueBufferConfig configuration parameters

Parameter Default value Description

longPoll true
When longPoll is set 
to true,   AmazonSQS 

Enabling client-side buffering and request batching with Amazon SQS 164



Amazon Simple Queue Service Developer Guide

Parameter Default value Description

BufferedAsyncClient
attempts to  use long polling 
when it consumes messages.

longPollWaitTimeou 
tSeconds

20 s
The maximum amount of 
time (in seconds) which a  
  ReceiveMessage  call 
blocks off on the  server, 
waiting for messages to 
appear in the queue before  
 returning with an empty 
receive result.

Note

When long polling is 
disabled, this setting 
has no  effect.

Enabling client-side buffering and request batching with Amazon SQS 165



Amazon Simple Queue Service Developer Guide

Parameter Default value Description

maxBatchOpenMs 200 ms
The maximum amount of 
time (in milliseconds) that an  
 outgoing call waits for other 
calls with which it batches   
messages of the same type.

The higher the setting, the 
fewer batches are required to  
 perform the same amount 
of work (however, the first 
call in  a batch has to spend a 
longer time waiting).

When you set this parameter 
to 0, submitted  request 
s don't wait for other 
requests, effectively  disabling 
batching.

Enabling client-side buffering and request batching with Amazon SQS 166



Amazon Simple Queue Service Developer Guide

Parameter Default value Description

maxBatchSize 10 requests per batch
The maximum number of 
messages that are batched 
together   in a single request. 
The higher the setting, the 
fewer  batches are required 
to carry out the same number 
of  requests.

Note

10 requests per batch 
is the maximum 
allowed value for  
 Amazon SQS.

maxBatchSizeBytes 1 MiB
The maximum size of a 
message batch, in bytes, that 
the  client attempts to send 
to Amazon SQS.

Note

1 MiB is the maximum 
allowed value for 
Amazon SQS.

Enabling client-side buffering and request batching with Amazon SQS 167



Amazon Simple Queue Service Developer Guide

Parameter Default value Description

maxDoneReceiveBatc 
hes

10 batches
The maximum number 
of receive batches that  
  AmazonSQSBufferedA 
syncClient  prefetches 
and  stores client-side.

The higher the setting, the 
more receive requests can be  
 satisfied without having to 
make a call to Amazon SQS 
(however,  the more messages 
are prefetched, the longer 
they remain in  the buffer, 
causing their own visibility 
timeout to  expire).

Note

0 indicates that 
all message pre-
fetching  is disabled 
and messages are 
consumed only on  
 demand.

Enabling client-side buffering and request batching with Amazon SQS 168



Amazon Simple Queue Service Developer Guide

Parameter Default value Description

maxInflightOutboun 
dBatches

5 batches
The maximum number of 
active outbound batches that 
can be  processed at the same 
time.

The higher the setting, the 
faster outbound batches can 
be  sent (subject to quotas 
such as CPU or bandwidth 
) and the  more threads are 
consumed by   AmazonSQS 
BufferedAsyncClient .

Enabling client-side buffering and request batching with Amazon SQS 169



Amazon Simple Queue Service Developer Guide

Parameter Default value Description

maxInflightReceive 
Batches

10 batches
The maximum number of 
active receive batches that 
can be  processed at the same 
time.

The higher the setting, 
the more messages can be 
received   (subject to quotas 
such as CPU or bandwidth 
), and the more  threads are 
consumed by   AmazonSQS 
BufferedAsyncClient .

Note

0 indicates that 
all message pre-
fetching  is disabled 
and messages are 
consumed only on  
 demand.

Enabling client-side buffering and request batching with Amazon SQS 170



Amazon Simple Queue Service Developer Guide

Parameter Default value Description

visibilityTimeoutS 
econds

-1
When this parameter is set to 
a positive, non-zero value,  t 
he visibility timeout set here 
overrides the visibility  timeou 
t set on the queue from which 
messages are  consumed.

Note

-1 indicates that the 
default setting is  sele 
cted for the queue.
You can't set visibility 
timeout to   0.

Amazon SDK for Java 2.x

For Amazon SDK for Java 2.x, you can create a new SqsAsyncBatchManager based on the 
following example:

// Create the basic Sqs Async Client
SqsAsyncClient sqs = SqsAsyncClient.builder()  
    .region(Region.US_EAST_1)  
    .build();

// Create the batch manager
SqsAsyncBatchManager sqsAsyncBatchManager = sqs.batchManager();

After you create the new SqsAsyncBatchManager, you can use it to send multiple requests to 
Amazon SQS (just as you can with SqsAsyncClient), for example:

final String queueName = "MyAsyncBufferedQueue" + UUID.randomUUID();
final CreateQueueRequest request = 
 CreateQueueRequest.builder().queueName(queueName).build();

Enabling client-side buffering and request batching with Amazon SQS 171



Amazon Simple Queue Service Developer Guide

final String queueUrl = sqs.createQueue(request).join().queueUrl();
System.out.println("Queue created: " + queueUrl);

// Send messages
CompletableFuture<SendMessageResponse> sendMessageFuture;
for (int i = 0; i < 10; i++) { 
    final int index = i; 
    sendMessageFuture = sqsAsyncBatchManager.sendMessage( 
            r -> r.messageBody("Message " + index).queueUrl(queueUrl)); 
    SendMessageResponse response= sendMessageFuture.join(); 
    System.out.println("Message " + response.messageId() + " sent!");
}

// Receive messages with customized configurations
CompletableFuture<ReceiveMessageResponse> receiveResponseFuture = 
 customizedBatchManager.receiveMessage( 
        r -> r.queueUrl(queueUrl) 
                .waitTimeSeconds(10) 
                .visibilityTimeout(20) 
                .maxNumberOfMessages(10)
);
System.out.println("You have received " + 
 receiveResponseFuture.join().messages().size() + " messages in total.");

// Delete messages
DeleteQueueRequest deleteQueueRequest =  
 DeleteQueueRequest.builder().queueUrl(queueUrl).build();
int code = sqs.deleteQueue(deleteQueueRequest).join().sdkHttpResponse().statusCode();
System.out.println("Queue is deleted, with statusCode " + code);

Configuring SqsAsyncBatchManager

SqsAsyncBatchManager is preconfigured with settings that work for most use cases. You can 
further configure SqsAsyncBatchManager, for example:

Creating custom configuration via SqsAsyncBatchManager.Builder:

SqsAsyncBatchManager customizedBatchManager = SqsAsyncBatchManager.builder()  
    .client(sqs) 
    .scheduledExecutor(Executors.newScheduledThreadPool(5)) 
    .overrideConfiguration(b -> b  
        .maxBatchSize(10) 

Enabling client-side buffering and request batching with Amazon SQS 172



Amazon Simple Queue Service Developer Guide

        .sendRequestFrequency(Duration.ofMillis(200)) 
        .receiveMessageMinWaitDuration(Duration.ofSeconds(10)) 
        .receiveMessageVisibilityTimeout(Duration.ofSeconds(20))  
        .receiveMessageAttributeNames(Collections.singletonList("*")) 
        
 .receiveMessageSystemAttributeNames(Collections.singletonList(MessageSystemAttributeName.ALL))) 
    .build();

BatchOverrideConfiguration parameters

Parameter Default value Description

maxBatchSize
10 requests per batch

The maximum number of 
messages that are batched   
together in a single request. 
The higher the setting, the  
 fewer batches are required 
to carry out the same number 
of  requests.

Note

The maximum 
allowed value for 
Amazon SQS is 10 
requests per  batch.

sendRequestFrequency
200 ms

The maximum amount of 
time (in milliseconds) that an  
 outgoing call waits for other 
calls with which it batches   
messages of the same type.

The higher the setting, the 
fewer batches are required to  
 perform the same amount 
of work (however, the first 
call in  a batch has to spend a 
longer time waiting).

Enabling client-side buffering and request batching with Amazon SQS 173



Amazon Simple Queue Service Developer Guide

Parameter Default value Description

When you set this parameter 
to 0, submitted  request 
s don't wait for other 
requests, effectively  disabling 
batching.

receiveMessageVisi 
bilityTimeout -1

When this parameter is set to 
a positive, non-zero   value, 
the visibility timeout set 
here overrides the  visibility 
timeout set on the queue 
from which messages are  
 consumed.

Note

 1 indicates that the 
default setting is  sele 
cted for the queue. 
You can't set visibility 
timeout   to 0.

receiveMessageMinW 
aitDuration 50 ms

The minimal amount of 
time (in milliseconds) that a  
receiveMessage  call waits 
for available  messages to 
be fetched. The higher the 
setting, the fewer  batches 
are required to carry out the 
same number of  request.

Enabling client-side buffering and request batching with Amazon SQS 174



Amazon Simple Queue Service Developer Guide

Increasing throughput using horizontal scaling and action batching 
with Amazon SQS

Amazon SQS supports high-throughput messaging. For details on throughput limits, refer to
Amazon SQS message quotas.

To maximize throughput:

• Scale producers and consumers horizontally by adding more instances of each.

• Use action batching to send or receive multiple messages in a single request, reducing API call 
overhead.

Horizontal scaling

Because you access Amazon SQS through an HTTP request-response protocol, the request latency
(the interval between initiating a request and receiving a response) limits the throughput that 
you can achieve from a single thread using a single connection. For example, if the latency from 
an Amazon EC2-based client to Amazon SQS in the same region averages 20 ms, the maximum 
throughput from a single thread over a single connection averages 50 TPS.

Horizontal scaling involves increasing the number of message producers (which make
SendMessage requests) and consumers (which make ReceiveMessage and DeleteMessage
requests) in order to increase your overall queue throughput. You can scale horizontally in three 
ways:

• Increase the number of threads per client

• Add more clients

• Increase the number of threads per client and add more clients

When you add more clients, you achieve essentially linear gains in queue throughput. For example, 
if you double the number of clients, you also double the throughput.

Action batching

Batching performs more work during each round trip to the service (for example, when you send 
multiple messages with a single SendMessageBatch request). The Amazon SQS batch actions are
SendMessageBatch, DeleteMessageBatch, and ChangeMessageVisibilityBatch. To take 

Increasing throughput using horizontal scaling and action batching with Amazon SQS 175

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html


Amazon Simple Queue Service Developer Guide

advantage of batching without changing your producers or consumers, you can use the Amazon 
SQS Buffered Asynchronous Client.

Note

Because ReceiveMessage can process 10 messages at a time, there is no
ReceiveMessageBatch action.

Batching distributes the latency of the batch action over the multiple messages in a batch request, 
rather than accept the entire latency for a single message (for example, a SendMessage request). 
Because each round trip carries more work, batch requests make more efficient use of threads and 
connections, improving throughput.

You can combine batching with horizontal scaling to provide throughput with fewer threads, 
connections, and requests than individual message requests. You can use batched Amazon SQS 
actions to send, receive, or delete up to 10 messages at a time. Because Amazon SQS charges by 
the request, batching can substantially reduce your costs.

Batching can introduce some complexity for your application (for example, you application must 
accumulate messages before sending them, or it sometimes must wait longer for a response). 
However, batching can be still effective in the following cases:

• Your application generates many messages in a short time, so the delay is never very long.

• A message consumer fetches messages from a queue at its discretion, unlike typical message 
producers that need to send messages in response to events they don't control.

Important

A batch request might succeed even though individual messages in the batch failed. 
After a batch request, always check for individual message failures and retry the action if 
necessary.

Increasing throughput using horizontal scaling and action batching with Amazon SQS 176

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html


Amazon Simple Queue Service Developer Guide

Working Java example for single-operation and batch requests

Prerequisites

Add the aws-java-sdk-sqs.jar, aws-java-sdk-ec2.jar, and commons-logging.jar
packages to your Java build class path. The following example shows these dependencies in a 
Maven project pom.xml file.

<dependencies> 
    <dependency> 
        <groupId>com.amazonaws</groupId> 
        <artifactId>aws-java-sdk-sqs</artifactId> 
        <version>LATEST</version> 
    </dependency> 
    <dependency> 
        <groupId>com.amazonaws</groupId> 
        <artifactId>aws-java-sdk-ec2</artifactId> 
        <version>LATEST</version> 
    </dependency> 
    <dependency> 
        <groupId>commons-logging</groupId> 
        <artifactId>commons-logging</artifactId> 
        <version>LATEST</version> 
    </dependency>
</dependencies>

SimpleProducerConsumer.java

The following Java code example implements a simple producer-consumer pattern. The main 
thread spawns a number of producer and consumer threads that process 1 KB messages for 
a specified time. This example includes producers and consumers that make single-operation 
requests and those that make batch requests.

/* 
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://www.amazonaws.cn/apache2.0 
 * 

Increasing throughput using horizontal scaling and action batching with Amazon SQS 177



Amazon Simple Queue Service Developer Guide

 * or in the "license" file accompanying this file. This file is distributed 
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 * 
 */

import com.amazonaws.AmazonClientException;
import com.amazonaws.ClientConfiguration;
import com.amazonaws.services.sqs.AmazonSQS;
import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
import com.amazonaws.services.sqs.model.*;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.Scanner;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;

/** 
 * Start a specified number of producer and consumer threads, and produce-consume 
 * for the least of the specified duration and 1 hour. Some messages can be left 
 * in the queue because producers and consumers might not be in exact balance. 
 */
public class SimpleProducerConsumer { 

    // The maximum runtime of the program. 
    private final static int MAX_RUNTIME_MINUTES = 60; 
    private final static Log log = LogFactory.getLog(SimpleProducerConsumer.class); 

    public static void main(String[] args) throws InterruptedException { 

        final Scanner input = new Scanner(System.in); 

        System.out.print("Enter the queue name: "); 
        final String queueName = input.nextLine(); 

        System.out.print("Enter the number of producers: "); 
        final int producerCount = input.nextInt(); 

Increasing throughput using horizontal scaling and action batching with Amazon SQS 178



Amazon Simple Queue Service Developer Guide

        System.out.print("Enter the number of consumers: "); 
        final int consumerCount = input.nextInt(); 

        System.out.print("Enter the number of messages per batch: "); 
        final int batchSize = input.nextInt(); 

        System.out.print("Enter the message size in bytes: "); 
        final int messageSizeByte = input.nextInt(); 

        System.out.print("Enter the run time in minutes: "); 
        final int runTimeMinutes = input.nextInt(); 

        /* 
         * Create a new instance of the builder with all defaults (credentials 
         * and region) set automatically. For more information, see Creating 
         * Service Clients in the Amazon SDK for Java Developer Guide. 
         */ 
        final ClientConfiguration clientConfiguration = new ClientConfiguration() 
                .withMaxConnections(producerCount + consumerCount); 

        final AmazonSQS sqsClient = AmazonSQSClientBuilder.standard() 
                .withClientConfiguration(clientConfiguration) 
                .build(); 

        final String queueUrl = sqsClient 
                .getQueueUrl(new GetQueueUrlRequest(queueName)).getQueueUrl(); 

        // The flag used to stop producer, consumer, and monitor threads. 
        final AtomicBoolean stop = new AtomicBoolean(false); 

        // Start the producers. 
        final AtomicInteger producedCount = new AtomicInteger(); 
        final Thread[] producers = new Thread[producerCount]; 
        for (int i = 0; i < producerCount; i++) { 
            if (batchSize == 1) { 
                producers[i] = new Producer(sqsClient, queueUrl, messageSizeByte, 
                        producedCount, stop); 
            } else { 
                producers[i] = new BatchProducer(sqsClient, queueUrl, batchSize, 
                        messageSizeByte, producedCount, 
                        stop); 
            } 
            producers[i].start(); 

Increasing throughput using horizontal scaling and action batching with Amazon SQS 179



Amazon Simple Queue Service Developer Guide

        } 

        // Start the consumers. 
        final AtomicInteger consumedCount = new AtomicInteger(); 
        final Thread[] consumers = new Thread[consumerCount]; 
        for (int i = 0; i < consumerCount; i++) { 
            if (batchSize == 1) { 
                consumers[i] = new Consumer(sqsClient, queueUrl, consumedCount, 
                        stop); 
            } else { 
                consumers[i] = new BatchConsumer(sqsClient, queueUrl, batchSize, 
                        consumedCount, stop); 
            } 
            consumers[i].start(); 
        } 

        // Start the monitor thread. 
        final Thread monitor = new Monitor(producedCount, consumedCount, stop); 
        monitor.start(); 

        // Wait for the specified amount of time then stop. 
        Thread.sleep(TimeUnit.MINUTES.toMillis(Math.min(runTimeMinutes, 
                MAX_RUNTIME_MINUTES))); 
        stop.set(true); 

        // Join all threads. 
        for (int i = 0; i < producerCount; i++) { 
            producers[i].join(); 
        } 

        for (int i = 0; i < consumerCount; i++) { 
            consumers[i].join(); 
        } 

        monitor.interrupt(); 
        monitor.join(); 
    } 

    private static String makeRandomString(int sizeByte) { 
        final byte[] bs = new byte[(int) Math.ceil(sizeByte * 5 / 8)]; 
        new Random().nextBytes(bs); 
        bs[0] = (byte) ((bs[0] | 64) & 127); 
        return new BigInteger(bs).toString(32); 
    } 

Increasing throughput using horizontal scaling and action batching with Amazon SQS 180



Amazon Simple Queue Service Developer Guide

    /** 
     * The producer thread uses {@code SendMessage} 
     * to send messages until it is stopped. 
     */ 
    private static class Producer extends Thread { 
        final AmazonSQS sqsClient; 
        final String queueUrl; 
        final AtomicInteger producedCount; 
        final AtomicBoolean stop; 
        final String theMessage; 

        Producer(AmazonSQS sqsQueueBuffer, String queueUrl, int messageSizeByte, 
                 AtomicInteger producedCount, AtomicBoolean stop) { 
            this.sqsClient = sqsQueueBuffer; 
            this.queueUrl = queueUrl; 
            this.producedCount = producedCount; 
            this.stop = stop; 
            this.theMessage = makeRandomString(messageSizeByte); 
        } 

        /* 
         * The producedCount object tracks the number of messages produced by 
         * all producer threads. If there is an error, the program exits the 
         * run() method. 
         */ 
        public void run() { 
            try { 
                while (!stop.get()) { 
                    sqsClient.sendMessage(new SendMessageRequest(queueUrl, 
                            theMessage)); 
                    producedCount.incrementAndGet(); 
                } 
            } catch (AmazonClientException e) { 
                /* 
                 * By default, AmazonSQSClient retries calls 3 times before 
                 * failing. If this unlikely condition occurs, stop. 
                 */ 
                log.error("Producer: " + e.getMessage()); 
                System.exit(1); 
            } 
        } 
    } 

Increasing throughput using horizontal scaling and action batching with Amazon SQS 181



Amazon Simple Queue Service Developer Guide

    /** 
     * The producer thread uses {@code SendMessageBatch} 
     * to send messages until it is stopped. 
     */ 
    private static class BatchProducer extends Thread { 
        final AmazonSQS sqsClient; 
        final String queueUrl; 
        final int batchSize; 
        final AtomicInteger producedCount; 
        final AtomicBoolean stop; 
        final String theMessage; 

        BatchProducer(AmazonSQS sqsQueueBuffer, String queueUrl, int batchSize, 
                      int messageSizeByte, AtomicInteger producedCount, 
                      AtomicBoolean stop) { 
            this.sqsClient = sqsQueueBuffer; 
            this.queueUrl = queueUrl; 
            this.batchSize = batchSize; 
            this.producedCount = producedCount; 
            this.stop = stop; 
            this.theMessage = makeRandomString(messageSizeByte); 
        } 

        public void run() { 
            try { 
                while (!stop.get()) { 
                    final SendMessageBatchRequest batchRequest = 
                            new SendMessageBatchRequest().withQueueUrl(queueUrl); 

                    final List<SendMessageBatchRequestEntry> entries = 
                            new ArrayList<SendMessageBatchRequestEntry>(); 
                    for (int i = 0; i < batchSize; i++) 
                        entries.add(new SendMessageBatchRequestEntry() 
                                .withId(Integer.toString(i)) 
                                .withMessageBody(theMessage)); 
                    batchRequest.setEntries(entries); 

                    final SendMessageBatchResult batchResult = 
                            sqsClient.sendMessageBatch(batchRequest); 
                    producedCount.addAndGet(batchResult.getSuccessful().size()); 

                    /* 
                     * Because SendMessageBatch can return successfully, but 
                     * individual batch items fail, retry the failed batch items. 

Increasing throughput using horizontal scaling and action batching with Amazon SQS 182



Amazon Simple Queue Service Developer Guide

                     */ 
                    if (!batchResult.getFailed().isEmpty()) { 
                        log.warn("Producer: retrying sending " 
                                + batchResult.getFailed().size() + " messages"); 
                        for (int i = 0, n = batchResult.getFailed().size(); 
                             i < n; i++) { 
                            sqsClient.sendMessage(new 
                                    SendMessageRequest(queueUrl, theMessage)); 
                            producedCount.incrementAndGet(); 
                        } 
                    } 
                } 
            } catch (AmazonClientException e) { 
                /* 
                 * By default, AmazonSQSClient retries calls 3 times before 
                 * failing. If this unlikely condition occurs, stop. 
                 */ 
                log.error("BatchProducer: " + e.getMessage()); 
                System.exit(1); 
            } 
        } 
    } 

    /** 
     * The consumer thread uses {@code ReceiveMessage} and {@code DeleteMessage} 
     * to consume messages until it is stopped. 
     */ 
    private static class Consumer extends Thread { 
        final AmazonSQS sqsClient; 
        final String queueUrl; 
        final AtomicInteger consumedCount; 
        final AtomicBoolean stop; 

        Consumer(AmazonSQS sqsClient, String queueUrl, AtomicInteger consumedCount, 
                 AtomicBoolean stop) { 
            this.sqsClient = sqsClient; 
            this.queueUrl = queueUrl; 
            this.consumedCount = consumedCount; 
            this.stop = stop; 
        } 

        /* 
         * Each consumer thread receives and deletes messages until the main 
         * thread stops the consumer thread. The consumedCount object tracks the 

Increasing throughput using horizontal scaling and action batching with Amazon SQS 183



Amazon Simple Queue Service Developer Guide

         * number of messages that are consumed by all consumer threads, and the 
         * count is logged periodically. 
         */ 
        public void run() { 
            try { 
                while (!stop.get()) { 
                    try { 
                        final ReceiveMessageResult result = sqsClient 
                                .receiveMessage(new 
                                        ReceiveMessageRequest(queueUrl)); 

                        if (!result.getMessages().isEmpty()) { 
                            final Message m = result.getMessages().get(0); 
                            sqsClient.deleteMessage(new 
                                    DeleteMessageRequest(queueUrl, 
                                    m.getReceiptHandle())); 
                            consumedCount.incrementAndGet(); 
                        } 
                    } catch (AmazonClientException e) { 
                        log.error(e.getMessage()); 
                    } 
                } 
            } catch (AmazonClientException e) { 
                /* 
                 * By default, AmazonSQSClient retries calls 3 times before 
                 * failing. If this unlikely condition occurs, stop. 
                 */ 
                log.error("Consumer: " + e.getMessage()); 
                System.exit(1); 
            } 
        } 
    } 

    /** 
     * The consumer thread uses {@code ReceiveMessage} and {@code 
     * DeleteMessageBatch} to consume messages until it is stopped. 
     */ 
    private static class BatchConsumer extends Thread { 
        final AmazonSQS sqsClient; 
        final String queueUrl; 
        final int batchSize; 
        final AtomicInteger consumedCount; 
        final AtomicBoolean stop; 

Increasing throughput using horizontal scaling and action batching with Amazon SQS 184



Amazon Simple Queue Service Developer Guide

        BatchConsumer(AmazonSQS sqsClient, String queueUrl, int batchSize, 
                      AtomicInteger consumedCount, AtomicBoolean stop) { 
            this.sqsClient = sqsClient; 
            this.queueUrl = queueUrl; 
            this.batchSize = batchSize; 
            this.consumedCount = consumedCount; 
            this.stop = stop; 
        } 

        public void run() { 
            try { 
                while (!stop.get()) { 
                    final ReceiveMessageResult result = sqsClient 
                            .receiveMessage(new ReceiveMessageRequest(queueUrl) 
                                    .withMaxNumberOfMessages(batchSize)); 

                    if (!result.getMessages().isEmpty()) { 
                        final List<Message> messages = result.getMessages(); 
                        final DeleteMessageBatchRequest batchRequest = 
                                new DeleteMessageBatchRequest() 
                                        .withQueueUrl(queueUrl); 

                        final List<DeleteMessageBatchRequestEntry> entries = 
                                new ArrayList<DeleteMessageBatchRequestEntry>(); 
                        for (int i = 0, n = messages.size(); i < n; i++) 
                            entries.add(new DeleteMessageBatchRequestEntry() 
                                    .withId(Integer.toString(i)) 
                                    .withReceiptHandle(messages.get(i) 
                                            .getReceiptHandle())); 
                        batchRequest.setEntries(entries); 

                        final DeleteMessageBatchResult batchResult = sqsClient 
                                .deleteMessageBatch(batchRequest); 
                        consumedCount.addAndGet(batchResult.getSuccessful().size()); 

                        /* 
                         * Because DeleteMessageBatch can return successfully, 
                         * but individual batch items fail, retry the failed 
                         * batch items. 
                         */ 
                        if (!batchResult.getFailed().isEmpty()) { 
                            final int n = batchResult.getFailed().size(); 
                            log.warn("Producer: retrying deleting " + n 
                                    + " messages"); 

Increasing throughput using horizontal scaling and action batching with Amazon SQS 185



Amazon Simple Queue Service Developer Guide

                            for (BatchResultErrorEntry e : batchResult 
                                    .getFailed()) { 

                                sqsClient.deleteMessage( 
                                        new DeleteMessageRequest(queueUrl, 
                                                messages.get(Integer 
                                                        .parseInt(e.getId())) 
                                                        .getReceiptHandle())); 

                                consumedCount.incrementAndGet(); 
                            } 
                        } 
                    } 
                } 
            } catch (AmazonClientException e) { 
                /* 
                 * By default, AmazonSQSClient retries calls 3 times before 
                 * failing. If this unlikely condition occurs, stop. 
                 */ 
                log.error("BatchConsumer: " + e.getMessage()); 
                System.exit(1); 
            } 
        } 
    } 

    /** 
     * This thread prints every second the number of messages produced and 
     * consumed so far. 
     */ 
    private static class Monitor extends Thread { 
        private final AtomicInteger producedCount; 
        private final AtomicInteger consumedCount; 
        private final AtomicBoolean stop; 

        Monitor(AtomicInteger producedCount, AtomicInteger consumedCount, 
                AtomicBoolean stop) { 
            this.producedCount = producedCount; 
            this.consumedCount = consumedCount; 
            this.stop = stop; 
        } 

        public void run() { 
            try { 
                while (!stop.get()) { 

Increasing throughput using horizontal scaling and action batching with Amazon SQS 186



Amazon Simple Queue Service Developer Guide

                    Thread.sleep(1000); 
                    log.info("produced messages = " + producedCount.get() 
                            + ", consumed messages = " + consumedCount.get()); 
                } 
            } catch (InterruptedException e) { 
                // Allow the thread to exit. 
            } 
        } 
    }
}

Monitoring volume metrics from the example run

Amazon SQS automatically generates volume metrics for sent, received, and deleted messages. 
You can access those metrics and others through the Monitoring tab for your queue or on the
CloudWatch console.

Note

The metrics can take up to 15 minutes after the queue starts to become available.

Using Amazon SQS with an Amazon SDK

Amazon software development kits (SDKs) are available for many popular programming languages. 
Each SDK provides an API, code examples, and documentation that make it easier for developers to 
build applications in their preferred language.

SDK documentation

Amazon CLI

Amazon SDK for Java

Amazon SDK for JavaScript

Amazon SDK for .NET

Amazon SDK for PHP

Working with Amazon SDKs 187

https://console.amazonaws.cn/cloudwatch/home
https://docs.amazonaws.cn/cli
https://docs.amazonaws.cn/sdk-for-java
https://docs.amazonaws.cn/sdk-for-javascript
https://docs.amazonaws.cn/sdk-for-net
https://docs.amazonaws.cn/sdk-for-php


Amazon Simple Queue Service Developer Guide

SDK documentation

Amazon Tools for PowerShell

Amazon SDK for Python (Boto3)

Amazon SDK for Ruby

Amazon SDK for SAP ABAP

Working with Amazon SDKs 188

https://docs.amazonaws.cn/powershell
https://docs.amazonaws.cn/pythonsdk
https://docs.amazonaws.cn/sdk-for-ruby
https://docs.amazonaws.cn/sdk-for-sapabap


Amazon Simple Queue Service Developer Guide

Using JMS with Amazon SQS

The Amazon SQS Java Messaging Library is a Java Message Service (JMS) interface for Amazon SQS 
that lets you take advantage of Amazon SQS in applications that already use JMS. The interface 
lets you use Amazon SQS as the JMS provider with minimal code changes. Together with the 
Amazon SDK for Java, the Amazon SQS Java Messaging Library lets you create JMS connections 
and sessions, as well as producers and consumers that send and receive messages to and from 
Amazon SQS queues.

The library supports sending and receiving messages to a queue (the JMS point-to-point model) 
according to the JMS 1.1 specification. The library supports sending text, byte, or object messages 
synchronously to Amazon SQS queues. The library also supports receiving objects synchronously or 
asynchronously.

For information about features of the Amazon SQS Java Messaging Library that support the JMS 
1.1 specification, see Amazon SQS supported JMS 1.1 implementations and the Amazon SQS FAQs.

Prerequisites for working with JMS and Amazon SQS

Before you begin, you must have the following prerequisites:

• SDK for Java

There are two ways to include the SDK for Java in your project:

• Download and install the SDK for Java.

• Use Maven to get the Amazon SQS Java Messaging Library.

Note

The SDK for Java is included as a dependency.
The SDK for Java and Amazon SQS Extended Client Library for Java require the J2SE 
Development Kit 8.0 or later.

For information about downloading the SDK for Java, see SDK for Java.

• Amazon SQS Java Messaging Library

Prerequisites 189

http://docs.oracle.com/javaee/6/api/javax/jms/package-summary.html
http://www.amazonaws.cn/sqs/faqs/
http://www.amazonaws.cn/sdkforjava/
http://www.amazonaws.cn/sdkforjava/


Amazon Simple Queue Service Developer Guide

If you don't use Maven, you must add the amazon-sqs-java-messaging-lib.jar package 
to the Java class path. For information about downloading the library, see Amazon SQS Java 
Messaging Library.

Note

The Amazon SQS Java Messaging Library includes support for Maven and the Spring 
Framework.
For code samples that use Maven, the Spring Framework, and the Amazon SQS Java 
Messaging Library, see Working Java examples for using JMS with Amazon SQS standard 
queues.

<dependency> 
  <groupId>com.amazonaws</groupId> 
  <artifactId>amazon-sqs-java-messaging-lib</artifactId> 
  <version>1.0.4</version> 
  <type>jar</type>
</dependency>

• Amazon SQS Queue

Create a queue using the Amazon Web Services Management Console for Amazon SQS, the
CreateQueue API, or the wrapped Amazon SQS client included in the Amazon SQS Java 
Messaging Library.

• For information about creating a queue with Amazon SQS using either the Amazon Web 
Services Management Console or the CreateQueue API, see Creating a Queue.

• For information about using the Amazon SQS Java Messaging Library, see Using the Amazon 
SQS Java Messaging Library.

Using the Amazon SQS Java Messaging Library

To get started using the Java Message Service (JMS) with Amazon SQS, use the code examples in 
this section. The following sections show how to create a JMS connection and a session, and how to 
send and receive a message.

The wrapped Amazon SQS client object included in the Amazon SQS Java Messaging Library checks 
if an Amazon SQS queue exists. If the queue doesn't exist, the client creates it.

Using the Java Messaging Library 190

https://github.com/awslabs/amazon-sqs-java-messaging-lib
https://github.com/awslabs/amazon-sqs-java-messaging-lib
http://maven.apache.org/
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/


Amazon Simple Queue Service Developer Guide

Creating a JMS connection

Before you begin, see the prerequisites in Prerequisites for working with JMS and Amazon SQS.

1. Create a connection factory and call the createConnection method against the factory.

// Create a new connection factory with all defaults (credentials and region) set 
 automatically
SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
        new ProviderConfiguration(), 
        AmazonSQSClientBuilder.defaultClient() 
        ); 
  
// Create the connection.
SQSConnection connection = connectionFactory.createConnection();

The SQSConnection class extends javax.jms.Connection. Together with the JMS 
standard connection methods, SQSConnection offers additional methods, such as
getAmazonSQSClient and getWrappedAmazonSQSClient. Both methods let you perform 
administrative operations not included in the JMS specification, such as creating new queues. 
However, the getWrappedAmazonSQSClient method also provides a wrapped version of the 
Amazon SQS client used by the current connection. The wrapper transforms every exception 
from the client into an JMSException, allowing it to be more easily used by existing code that 
expects JMSException occurrences.

2. You can use the client objects returned from getAmazonSQSClient and
getWrappedAmazonSQSClient to perform administrative operations not included in the 
JMS specification (for example, you can create an Amazon SQS queue).

If you have existing code that expects JMS exceptions, then you should use
getWrappedAmazonSQSClient:

• If you use getWrappedAmazonSQSClient, the returned client object transforms all 
exceptions into JMS exceptions.

• If you use getAmazonSQSClient, the exceptions are all Amazon SQS exceptions.

Creating an Amazon SQS queue

The wrapped client object checks if an Amazon SQS queue exists.

Creating a JMS connection 191



Amazon Simple Queue Service Developer Guide

If a queue doesn't exist, the client creates it. If the queue does exist, the function doesn't 
return anything. For more information, see the "Create the queue if needed" section in the
TextMessageSender.java example.

To create a standard queue

// Get the wrapped client
AmazonSQSMessagingClientWrapper client = connection.getWrappedAmazonSQSClient(); 
  
// Create an SQS queue named MyQueue, if it doesn't already exist
if (!client.queueExists("MyQueue")) { 
    client.createQueue("MyQueue");
}

To create a FIFO queue

// Get the wrapped client
AmazonSQSMessagingClientWrapper client = connection.getWrappedAmazonSQSClient();

// Create an Amazon SQS FIFO queue named MyQueue.fifo, if it doesn't already exist
if (!client.queueExists("MyQueue.fifo")) { 
    Map<String, String> attributes = new HashMap<String, String>(); 
    attributes.put("FifoQueue", "true"); 
    attributes.put("ContentBasedDeduplication", "true"); 
    client.createQueue(new 
 CreateQueueRequest().withQueueName("MyQueue.fifo").withAttributes(attributes));
}

Note

The name of a FIFO queue must end with the .fifo suffix.
For more information about the ContentBasedDeduplication attribute, see Exactly-
once processing in Amazon SQS.

Sending messages synchronously

1. When the connection and the underlying Amazon SQS queue are ready, create a 
nontransacted JMS session with AUTO_ACKNOWLEDGE mode.

Sending messages synchronously 192



Amazon Simple Queue Service Developer Guide

// Create the nontransacted session with AUTO_ACKNOWLEDGE mode
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

2. To send a text message to the queue, create a JMS queue identity and a message producer.

// Create a queue identity and specify the queue name to the session
Queue queue = session.createQueue("MyQueue"); 
  
// Create a producer for the 'MyQueue'
MessageProducer producer = session.createProducer(queue);

3. Create a text message and send it to the queue.

• To send a message to a standard queue, you don't need to set any additional parameters.

// Create the text message
TextMessage message = session.createTextMessage("Hello World!"); 
  
// Send the message
producer.send(message);
System.out.println("JMS Message " + message.getJMSMessageID());

• To send a message to a FIFO queue, you must set the message group ID. You can also set a 
message deduplication ID. For more information, see Amazon SQS FIFO queue key terms.

// Create the text message
TextMessage message = session.createTextMessage("Hello World!");

// Set the message group ID
message.setStringProperty("JMSXGroupID", "Default");

// You can also set a custom message deduplication ID
// message.setStringProperty("JMS_SQS_DeduplicationId", "hello");
// Here, it's not needed because content-based deduplication is enabled for the 
 queue

// Send the message
producer.send(message);
System.out.println("JMS Message " + message.getJMSMessageID());
System.out.println("JMS Message Sequence Number " + 
 message.getStringProperty("JMS_SQS_SequenceNumber"));

Sending messages synchronously 193



Amazon Simple Queue Service Developer Guide

Receiving messages synchronously

1. To receive messages, create a consumer for the same queue and invoke the start method.

You can call the start method on the connection at any time. However, the consumer doesn't 
begin to receive messages until you call it.

// Create a consumer for the 'MyQueue'
MessageConsumer consumer = session.createConsumer(queue);
// Start receiving incoming messages
connection.start();

2. Call the receive method on the consumer with a timeout set to 1 second, and then print the 
contents of the received message.

• After receiving a message from a standard queue, you can access the contents of the 
message.

// Receive a message from 'MyQueue' and wait up to 1 second
Message receivedMessage = consumer.receive(1000); 
  
// Cast the received message as TextMessage and display the text
if (receivedMessage != null) { 
    System.out.println("Received: " + ((TextMessage) receivedMessage).getText());
}

• After receiving a message from a FIFO queue, you can access the contents of the message 
and other, FIFO-specific message attributes, such as the message group ID, message 
deduplication ID, and sequence number. For more information, see Amazon SQS FIFO queue 
key terms.

// Receive a message from 'MyQueue' and wait up to 1 second
Message receivedMessage = consumer.receive(1000);

// Cast the received message as TextMessage and display the text
if (receivedMessage != null) { 
    System.out.println("Received: " + ((TextMessage) receivedMessage).getText()); 
    System.out.println("Group id: " + 
 receivedMessage.getStringProperty("JMSXGroupID")); 
    System.out.println("Message deduplication id: " + 
 receivedMessage.getStringProperty("JMS_SQS_DeduplicationId")); 

Receiving messages synchronously 194



Amazon Simple Queue Service Developer Guide

    System.out.println("Message sequence number: " + 
 receivedMessage.getStringProperty("JMS_SQS_SequenceNumber"));
}

3. Close the connection and the session.

// Close the connection (and the session).
connection.close();

The output looks similar to the following:

JMS Message ID:8example-588b-44e5-bbcf-d816example2
Received: Hello World!

Note

You can use the Spring Framework to initialize these objects.
For additional information, see SpringExampleConfiguration.xml,
SpringExample.java, and the other helper classes in ExampleConfiguration.java
and ExampleCommon.java in the Working Java examples for using JMS with Amazon SQS 
standard queues section.

For complete examples of sending and receiving objects, see TextMessageSender.java and
SyncMessageReceiver.java.

Receiving messages asynchronously

In the example in Using the Amazon SQS Java Messaging Library, a message is sent to MyQueue
and received synchronously.

The following example shows how to receive the messages asynchronously through a listener.

1. Implement the MessageListener interface.

class MyListener implements MessageListener { 
  
    @Override 
    public void onMessage(Message message) { 

Receiving messages asynchronously 195



Amazon Simple Queue Service Developer Guide

        try { 
            // Cast the received message as TextMessage and print the text to 
 screen. 
            System.out.println("Received: " + ((TextMessage) message).getText()); 
        } catch (JMSException e) { 
            e.printStackTrace(); 
        } 
    }
}

The onMessage method of the MessageListener interface is called when you receive a 
message. In this listener implementation, the text stored in the message is printed.

2. Instead of explicitly calling the receive method on the consumer, set the message listener of 
the consumer to an instance of the MyListener implementation. The main thread waits for 
one second.

// Create a consumer for the 'MyQueue'.
MessageConsumer consumer = session.createConsumer(queue); 
  
// Instantiate and set the message listener for the consumer.
consumer.setMessageListener(new MyListener()); 
  
// Start receiving incoming messages.
connection.start(); 
  
// Wait for 1 second. The listener onMessage() method is invoked when a message is 
 received.
Thread.sleep(1000);

The rest of the steps are identical to the ones in the Using the Amazon SQS Java 
Messaging Library example. For a complete example of an asynchronous consumer, see
AsyncMessageReceiver.java in Working Java examples for using JMS with Amazon SQS 
standard queues.

The output for this example looks similar to the following:

JMS Message ID:8example-588b-44e5-bbcf-d816example2
Received: Hello World!

Receiving messages asynchronously 196



Amazon Simple Queue Service Developer Guide

Using client acknowledge mode

The example in Using the Amazon SQS Java Messaging Library uses AUTO_ACKNOWLEDGE mode 
where every received message is acknowledged automatically (and therefore deleted from the 
underlying Amazon SQS queue).

1. To explicitly acknowledge the messages after they're processed, you must create the session 
with CLIENT_ACKNOWLEDGE mode.

// Create the non-transacted session with CLIENT_ACKNOWLEDGE mode.
Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE);

2. When the message is received, display it and then explicitly acknowledge it.

// Cast the received message as TextMessage and print the text to screen. Also 
 acknowledge the message.
if (receivedMessage != null) { 
    System.out.println("Received: " + ((TextMessage) receivedMessage).getText()); 
    receivedMessage.acknowledge(); 
    System.out.println("Acknowledged: " + message.getJMSMessageID());
}

Note

In this mode, when a message is acknowledged, all messages received before this 
message are implicitly acknowledged as well. For example, if 10 messages are received, 
and only the 10th message is acknowledged (in the order the messages are received), 
then all of the previous nine messages are also acknowledged.

The rest of the steps are identical to the ones in the Using the Amazon SQS Java Messaging Library
example. For a complete example of a synchronous consumer with client acknowledge mode, see
SyncMessageReceiverClientAcknowledge.java in Working Java examples for using JMS 
with Amazon SQS standard queues.

The output for this example looks similar to the following:

JMS Message ID:4example-aa0e-403f-b6df-5e02example5
Received: Hello World!

Using client acknowledge mode 197



Amazon Simple Queue Service Developer Guide

Acknowledged: ID:4example-aa0e-403f-b6df-5e02example5

Using unordered acknowledge mode

When using CLIENT_ACKNOWLEDGE mode, all messages received before an explicitly-
acknowledged message are acknowledged automatically. For more information, see Using client 
acknowledge mode.

The Amazon SQS Java Messaging Library provides another acknowledgement mode. When using
UNORDERED_ACKNOWLEDGE mode, all received messages must be individually and explicitly 
acknowledged by the client, regardless of their reception order. To do this, create a session with
UNORDERED_ACKNOWLEDGE mode.

// Create the non-transacted session with UNORDERED_ACKNOWLEDGE mode.
Session session = connection.createSession(false, SQSSession.UNORDERED_ACKNOWLEDGE);

The remaining steps are identical to the ones in the Using client acknowledge mode example. 
For a complete example of a synchronous consumer with UNORDERED_ACKNOWLEDGE mode, see
SyncMessageReceiverUnorderedAcknowledge.java.

In this example, the output looks similar to the following:

JMS Message ID:dexample-73ad-4adb-bc6c-4357example7
Received: Hello World!
Acknowledged: ID:dexample-73ad-4adb-bc6c-4357example7

Using the Java Message Service with other Amazon SQS clients

Using the Amazon SQS Java Message Service (JMS) Client with the Amazon SDK limits Amazon SQS 
message size to 256 KB. However, you can create a JMS provider using any Amazon SQS client. For 
example, you can use the JMS Client with the Amazon SQS Extended Client Library for Java to send 
an Amazon SQS message that contains a reference to a message payload (up to 2 GB) in Amazon 
S3. For more information, see Managing large Amazon SQS messages using Java and Amazon S3.

The following Java code example creates the JMS provider for the Extended Client Library.

See the prerequisites in Prerequisites for working with JMS and Amazon SQS before testing this 
example.

Using unordered acknowledge mode 198



Amazon Simple Queue Service Developer Guide

AmazonS3 s3 = new AmazonS3Client(credentials);
Region s3Region = Region.getRegion(Regions.US_WEST_2);
s3.setRegion(s3Region); 
  
// Set the Amazon S3 bucket name, and set a lifecycle rule on the bucket to
// permanently delete objects a certain number of days after each object's creation 
 date.
// Next, create the bucket, and enable message objects to be stored in the bucket.
BucketLifecycleConfiguration.Rule expirationRule = new 
 BucketLifecycleConfiguration.Rule();
expirationRule.withExpirationInDays(14).withStatus("Enabled");
BucketLifecycleConfiguration lifecycleConfig = new 
 BucketLifecycleConfiguration().withRules(expirationRule); 
  
s3.createBucket(s3BucketName);
s3.setBucketLifecycleConfiguration(s3BucketName, lifecycleConfig);
System.out.println("Bucket created and configured.");

// Set the SQS extended client configuration with large payload support enabled.
ExtendedClientConfiguration extendedClientConfig = new ExtendedClientConfiguration() 
    .withLargePayloadSupportEnabled(s3, s3BucketName); 
  
AmazonSQS sqsExtended = new AmazonSQSExtendedClient(new AmazonSQSClient(credentials), 
 extendedClientConfig);
Region sqsRegion = Region.getRegion(Regions.US_WEST_2);
sqsExtended.setRegion(sqsRegion);

The following Java code example creates the connection factory:

// Create the connection factory using the environment variable credential provider.
// Pass the configured Amazon SQS Extended Client to the JMS connection factory.
SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
        new ProviderConfiguration(), 
        sqsExtended 
        ); 
  
// Create the connection.
SQSConnection connection = connectionFactory.createConnection();

Using the JMS Client with other Amazon SQS clients 199



Amazon Simple Queue Service Developer Guide

Working Java examples for using JMS with Amazon SQS 
standard queues

The following code examples show how to use the Java Message Service (JMS) with Amazon SQS 
standard queues. For more information about working with FIFO queues, see To create a FIFO 
queue, Sending messages synchronously, and Receiving messages synchronously. (Receiving 
messages synchronously is the same for standard and FIFO queues. However, messages in FIFO 
queues contain more attributes.)

See the prerequisites in Prerequisites for working with JMS and Amazon SQS before testing the 
following examples.

ExampleConfiguration.java

The following Java SDK v 1.x code example sets the default queue name, the region, and the 
credentials to be used with the other Java examples.

/* 
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://www.amazonaws.cn/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed 
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 * 
 */

public class ExampleConfiguration { 
    public static final String DEFAULT_QUEUE_NAME = "SQSJMSClientExampleQueue"; 
     
    public static final Region DEFAULT_REGION = Region.getRegion(Regions.US_EAST_2); 
     
    private static String getParameter( String args[], int i ) { 
        if( i + 1 >= args.length ) { 
            throw new IllegalArgumentException( "Missing parameter for " + args[i] ); 

Working Java examples for using JMS with standard queues 200



Amazon Simple Queue Service Developer Guide

        } 
        return args[i+1]; 
    } 
     
    /** 
     * Parse the command line and return the resulting config. If the config parsing 
 fails 
     * print the error and the usage message and then call System.exit 
     *  
     * @param app the app to use when printing the usage string 
     * @param args the command line arguments 
     * @return the parsed config 
     */ 
    public static ExampleConfiguration parseConfig(String app, String args[]) { 
        try { 
            return new ExampleConfiguration(args); 
        } catch (IllegalArgumentException e) { 
            System.err.println( "ERROR: " + e.getMessage() ); 
            System.err.println(); 
            System.err.println( "Usage: " + app + " [--queue <queue>] [--region 
 <region>] [--credentials <credentials>] "); 
            System.err.println( "  or" ); 
            System.err.println( "       " + app + " <spring.xml>" ); 
            System.exit(-1); 
            return null; 
        } 
    } 
     
    private ExampleConfiguration(String args[]) { 
        for( int i = 0; i < args.length; ++i ) { 
            String arg = args[i]; 
            if( arg.equals( "--queue" ) ) { 
                setQueueName(getParameter(args, i)); 
                i++; 
            } else if( arg.equals( "--region" ) ) { 
                String regionName = getParameter(args, i); 
                try { 
                    setRegion(Region.getRegion(Regions.fromName(regionName))); 
                } catch( IllegalArgumentException e ) { 
                    throw new IllegalArgumentException( "Unrecognized region " + 
 regionName );   
                } 
                i++; 
            } else if( arg.equals( "--credentials" ) ) { 

ExampleConfiguration.java 201



Amazon Simple Queue Service Developer Guide

                String credsFile = getParameter(args, i); 
                try { 
                    setCredentialsProvider( new 
 PropertiesFileCredentialsProvider(credsFile) ); 
                } catch (AmazonClientException e) { 
                    throw new IllegalArgumentException("Error reading credentials from 
 " + credsFile, e ); 
                } 
                i++; 
            } else { 
                throw new IllegalArgumentException("Unrecognized option " + arg); 
            } 
        } 
    } 
     
    private String queueName = DEFAULT_QUEUE_NAME; 
    private Region region = DEFAULT_REGION; 
    private AWSCredentialsProvider credentialsProvider = new 
 DefaultAWSCredentialsProviderChain(); 
     
    public String getQueueName() { 
        return queueName; 
    } 
     
    public void setQueueName(String queueName) { 
        this.queueName = queueName; 
    } 
     
    public Region getRegion() { 
        return region; 
    } 
     
    public void setRegion(Region region) { 
        this.region = region; 
    } 
  
    public AWSCredentialsProvider getCredentialsProvider() { 
        return credentialsProvider; 
    } 
     
    public void setCredentialsProvider(AWSCredentialsProvider credentialsProvider) { 
        // Make sure they're usable first 
        credentialsProvider.getCredentials(); 
        this.credentialsProvider = credentialsProvider; 

ExampleConfiguration.java 202



Amazon Simple Queue Service Developer Guide

    }
}

TextMessageSender.java

The following Java code example creates a text message producer.

/* 
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://www.amazonaws.cn/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed 
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 * 
 */

public class TextMessageSender { 
    public static void main(String args[]) throws JMSException { 
        ExampleConfiguration config = 
 ExampleConfiguration.parseConfig("TextMessageSender", args); 
         
        ExampleCommon.setupLogging(); 
         
        // Create the connection factory based on the config        
        SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
                new ProviderConfiguration(), 
                AmazonSQSClientBuilder.standard() 
                        .withRegion(config.getRegion().getName()) 
                        .withCredentials(config.getCredentialsProvider()) 
                ); 
         
        // Create the connection 
        SQSConnection connection = connectionFactory.createConnection(); 
         
        // Create the queue if needed 
        ExampleCommon.ensureQueueExists(connection, config.getQueueName()); 

TextMessageSender.java 203



Amazon Simple Queue Service Developer Guide

            
        // Create the session 
        Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); 
        MessageProducer producer = 
 session.createProducer( session.createQueue( config.getQueueName() ) ); 
         
        sendMessages(session, producer); 
  
        // Close the connection. This closes the session automatically 
        connection.close(); 
        System.out.println( "Connection closed" ); 
    } 
  
    private static void sendMessages( Session session, MessageProducer producer ) { 
        BufferedReader inputReader = new BufferedReader( 
            new InputStreamReader( System.in, Charset.defaultCharset() ) ); 
         
        try { 
            String input; 
            while( true ) {  
                System.out.print( "Enter message to send (leave empty to exit): " ); 
                input = inputReader.readLine(); 
                if( input == null || input.equals("" ) ) break; 
                 
                TextMessage message = session.createTextMessage(input); 
                producer.send(message); 
                System.out.println( "Send message " + message.getJMSMessageID() ); 
            } 
        } catch (EOFException e) { 
            // Just return on EOF 
        } catch (IOException e) { 
            System.err.println( "Failed reading input: " + e.getMessage() ); 
        } catch (JMSException e) { 
            System.err.println( "Failed sending message: " + e.getMessage() ); 
            e.printStackTrace(); 
        } 
    }
}

SyncMessageReceiver.java

The following Java code example creates a synchronous message consumer.

SyncMessageReceiver.java 204



Amazon Simple Queue Service Developer Guide

/* 
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://www.amazonaws.cn/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed 
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 * 
 */

public class SyncMessageReceiver {
public static void main(String args[]) throws JMSException { 
    ExampleConfiguration config = 
 ExampleConfiguration.parseConfig("SyncMessageReceiver", args); 
     
    ExampleCommon.setupLogging(); 
     
    // Create the connection factory based on the config 
    SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
            new ProviderConfiguration(), 
            AmazonSQSClientBuilder.standard() 
                    .withRegion(config.getRegion().getName()) 
                    .withCredentials(config.getCredentialsProvider()) 
            ); 
     
    // Create the connection 
    SQSConnection connection = connectionFactory.createConnection(); 
     
    // Create the queue if needed 
    ExampleCommon.ensureQueueExists(connection, config.getQueueName()); 
         
    // Create the session 
    Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE); 
    MessageConsumer consumer = 
 session.createConsumer( session.createQueue( config.getQueueName() ) ); 

    connection.start(); 

SyncMessageReceiver.java 205



Amazon Simple Queue Service Developer Guide

    
    receiveMessages(session, consumer); 

    // Close the connection. This closes the session automatically 
    connection.close(); 
    System.out.println( "Connection closed" );
}

private static void receiveMessages( Session session, MessageConsumer consumer ) { 
    try { 
        while( true ) { 
            System.out.println( "Waiting for messages"); 
            // Wait 1 minute for a message 
            Message message = consumer.receive(TimeUnit.MINUTES.toMillis(1)); 
            if( message == null ) { 
                System.out.println( "Shutting down after 1 minute of silence" ); 
                break; 
            } 
            ExampleCommon.handleMessage(message); 
            message.acknowledge(); 
            System.out.println( "Acknowledged message " + message.getJMSMessageID() ); 
        } 
    } catch (JMSException e) { 
        System.err.println( "Error receiving from SQS: " + e.getMessage() ); 
        e.printStackTrace(); 
    }
}
}

AsyncMessageReceiver.java

The following Java code example creates an asynchronous message consumer.

/* 
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://www.amazonaws.cn/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed 

AsyncMessageReceiver.java 206



Amazon Simple Queue Service Developer Guide

 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 * 
 */

public class AsyncMessageReceiver { 
    public static void main(String args[]) throws JMSException, InterruptedException { 
        ExampleConfiguration config = 
 ExampleConfiguration.parseConfig("AsyncMessageReceiver", args); 
          
        ExampleCommon.setupLogging();           
          
        // Create the connection factory based on the config 
        SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
                new ProviderConfiguration(), 
                AmazonSQSClientBuilder.standard() 
                        .withRegion(config.getRegion().getName()) 
                        .withCredentials(config.getCredentialsProvider()) 
                ); 
          
        // Create the connection 
        SQSConnection connection = connectionFactory.createConnection(); 
          
        // Create the queue if needed 
        ExampleCommon.ensureQueueExists(connection, config.getQueueName()); 
              
        // Create the session 
        Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE); 
        MessageConsumer consumer = 
 session.createConsumer( session.createQueue( config.getQueueName() ) ); 
          
        // No messages are processed until this is called 
        connection.start(); 

        ReceiverCallback callback = new ReceiverCallback(); 
        consumer.setMessageListener( callback ); 
          
        callback.waitForOneMinuteOfSilence(); 
        System.out.println( "Returning after one minute of silence" ); 

        // Close the connection. This closes the session automatically 
        connection.close(); 
        System.out.println( "Connection closed" ); 

AsyncMessageReceiver.java 207



Amazon Simple Queue Service Developer Guide

    } 
     
     
    private static class ReceiverCallback implements MessageListener { 
        // Used to listen for message silence 
        private volatile long timeOfLastMessage = System.nanoTime(); 
          
        public void waitForOneMinuteOfSilence() throws InterruptedException { 
            for(;;) { 
                long timeSinceLastMessage = System.nanoTime() - timeOfLastMessage; 
                long remainingTillOneMinuteOfSilence =  
                    TimeUnit.MINUTES.toNanos(1) - timeSinceLastMessage; 
                if( remainingTillOneMinuteOfSilence < 0 ) { 
                    break; 
                } 
                TimeUnit.NANOSECONDS.sleep(remainingTillOneMinuteOfSilence); 
            } 
        } 
          

        @Override 
        public void onMessage(Message message) { 
            try { 
                ExampleCommon.handleMessage(message); 
                message.acknowledge(); 
                System.out.println( "Acknowledged message " + 
 message.getJMSMessageID() ); 
                timeOfLastMessage = System.nanoTime(); 
            } catch (JMSException e) { 
                System.err.println( "Error processing message: " + e.getMessage() ); 
                e.printStackTrace(); 
            } 
        } 
    }
}

SyncMessageReceiverClientAcknowledge.java

The following Java code example creates a synchronous consumer with client acknowledge mode.

/* 
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 

SyncMessageReceiverClientAcknowledge.java 208



Amazon Simple Queue Service Developer Guide

 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://www.amazonaws.cn/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed 
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 * 
 */

/** 
 * An example class to demonstrate the behavior of CLIENT_ACKNOWLEDGE mode for received 
 messages. This example 
 * complements the example given in {@link SyncMessageReceiverUnorderedAcknowledge} for 
 UNORDERED_ACKNOWLEDGE mode. 
 * 
 * First, a session, a message producer, and a message consumer are created. Then, two 
 messages are sent. Next, two messages 
 * are received but only the second one is acknowledged. After waiting for the 
 visibility time out period, an attempt to 
 * receive another message is made. It's shown that no message is returned for this 
 attempt since in CLIENT_ACKNOWLEDGE mode, 
 * as expected, all the messages prior to the acknowledged messages are also 
 acknowledged. 
 * 
 * This ISN'T the behavior for UNORDERED_ACKNOWLEDGE mode. Please see {@link 
 SyncMessageReceiverUnorderedAcknowledge} 
 * for an example. 
 */
public class SyncMessageReceiverClientAcknowledge { 
  
    // Visibility time-out for the queue. It must match to the one set for the queue 
 for this example to work. 
    private static final long TIME_OUT_SECONDS = 1; 
  
    public static void main(String args[]) throws JMSException, InterruptedException { 
        // Create the configuration for the example 
        ExampleConfiguration config = 
 ExampleConfiguration.parseConfig("SyncMessageReceiverClientAcknowledge", args); 
  
        // Setup logging for the example 

SyncMessageReceiverClientAcknowledge.java 209



Amazon Simple Queue Service Developer Guide

        ExampleCommon.setupLogging(); 
  
        // Create the connection factory based on the config 
        SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
                new ProviderConfiguration(), 
                AmazonSQSClientBuilder.standard() 
                        .withRegion(config.getRegion().getName()) 
                        .withCredentials(config.getCredentialsProvider()) 
                ); 
  
        // Create the connection 
        SQSConnection connection = connectionFactory.createConnection(); 
  
        // Create the queue if needed 
        ExampleCommon.ensureQueueExists(connection, config.getQueueName()); 
  
        // Create the session  with client acknowledge mode 
        Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE); 
  
        // Create the producer and consume 
        MessageProducer producer = 
 session.createProducer(session.createQueue(config.getQueueName())); 
        MessageConsumer consumer = 
 session.createConsumer(session.createQueue(config.getQueueName())); 
  
        // Open the connection 
        connection.start(); 
  
        // Send two text messages 
        sendMessage(producer, session, "Message 1"); 
        sendMessage(producer, session, "Message 2"); 
  
        // Receive a message and don't acknowledge it 
        receiveMessage(consumer, false); 
  
        // Receive another message and acknowledge it 
        receiveMessage(consumer, true); 
  
        // Wait for the visibility time out, so that unacknowledged messages reappear 
 in the queue 
        System.out.println("Waiting for visibility timeout..."); 
        Thread.sleep(TimeUnit.SECONDS.toMillis(TIME_OUT_SECONDS)); 
  

SyncMessageReceiverClientAcknowledge.java 210



Amazon Simple Queue Service Developer Guide

        // Attempt to receive another message and acknowledge it. This results in 
 receiving no messages since 
        // we have acknowledged the second message. Although we didn't explicitly 
 acknowledge the first message, 
        // in the CLIENT_ACKNOWLEDGE mode, all the messages received prior to the 
 explicitly acknowledged message 
        // are also acknowledged. Therefore, we have implicitly acknowledged the first 
 message. 
        receiveMessage(consumer, true); 
  
        // Close the connection. This closes the session automatically 
        connection.close(); 
        System.out.println("Connection closed."); 
    } 
  
    /** 
     * Sends a message through the producer. 
     * 
     * @param producer Message producer 
     * @param session Session 
     * @param messageText Text for the message to be sent 
     * @throws JMSException 
     */ 
    private static void sendMessage(MessageProducer producer, Session session, String 
 messageText) throws JMSException { 
        // Create a text message and send it 
        producer.send(session.createTextMessage(messageText)); 
    } 
  
    /** 
     * Receives a message through the consumer synchronously with the default timeout 
 (TIME_OUT_SECONDS). 
     * If a message is received, the message is printed. If no message is received, 
 "Queue is empty!" is 
     * printed. 
     * 
     * @param consumer Message consumer 
     * @param acknowledge If true and a message is received, the received message is 
 acknowledged. 
     * @throws JMSException 
     */ 
    private static void receiveMessage(MessageConsumer consumer, boolean acknowledge) 
 throws JMSException { 
        // Receive a message 

SyncMessageReceiverClientAcknowledge.java 211



Amazon Simple Queue Service Developer Guide

        Message message = 
 consumer.receive(TimeUnit.SECONDS.toMillis(TIME_OUT_SECONDS)); 
  
        if (message == null) { 
            System.out.println("Queue is empty!"); 
        } else { 
            // Since this queue has only text messages, cast the message object and 
 print the text 
            System.out.println("Received: " + ((TextMessage) message).getText()); 
  
            // Acknowledge the message if asked 
            if (acknowledge) message.acknowledge(); 
        } 
    }
}

SyncMessageReceiverUnorderedAcknowledge.java

The following Java code example creates a synchronous consumer with unordered acknowledge 
mode.

/* 
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://www.amazonaws.cn/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed 
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 * 
 */

/** 
 * An example class to demonstrate the behavior of UNORDERED_ACKNOWLEDGE mode for 
 received messages. This example 
 * complements the example given in {@link SyncMessageReceiverClientAcknowledge} for 
 CLIENT_ACKNOWLEDGE mode. 
 * 

SyncMessageReceiverUnorderedAcknowledge.java 212



Amazon Simple Queue Service Developer Guide

 * First, a session, a message producer, and a message consumer are created. Then, two 
 messages are sent. Next, two messages 
 * are received but only the second one is acknowledged. After waiting for the 
 visibility time out period, an attempt to 
 * receive another message is made. It's shown that the first message received in the 
 prior attempt is returned again 
 * for the second attempt. In UNORDERED_ACKNOWLEDGE mode, all the messages must be 
 explicitly acknowledged no matter what 
 * the order they're received. 
 * 
 * This ISN'T the behavior for CLIENT_ACKNOWLEDGE mode. Please see {@link 
 SyncMessageReceiverClientAcknowledge} 
 * for an example. 
 */
public class SyncMessageReceiverUnorderedAcknowledge { 
  
    // Visibility time-out for the queue. It must match to the one set for the queue 
 for this example to work. 
    private static final long TIME_OUT_SECONDS = 1; 
  
    public static void main(String args[]) throws JMSException, InterruptedException { 
        // Create the configuration for the example 
        ExampleConfiguration config = 
 ExampleConfiguration.parseConfig("SyncMessageReceiverUnorderedAcknowledge", args); 
  
        // Setup logging for the example 
        ExampleCommon.setupLogging(); 
  
        // Create the connection factory based on the config 
        SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
                new ProviderConfiguration(), 
                AmazonSQSClientBuilder.standard() 
                        .withRegion(config.getRegion().getName()) 
                        .withCredentials(config.getCredentialsProvider()) 
                ); 
  
        // Create the connection 
        SQSConnection connection = connectionFactory.createConnection(); 
  
        // Create the queue if needed 
        ExampleCommon.ensureQueueExists(connection, config.getQueueName()); 
  
        // Create the session  with unordered acknowledge mode 

SyncMessageReceiverUnorderedAcknowledge.java 213



Amazon Simple Queue Service Developer Guide

        Session session = connection.createSession(false, 
 SQSSession.UNORDERED_ACKNOWLEDGE); 
  
        // Create the producer and consume 
        MessageProducer producer = 
 session.createProducer(session.createQueue(config.getQueueName())); 
        MessageConsumer consumer = 
 session.createConsumer(session.createQueue(config.getQueueName())); 
  
        // Open the connection 
        connection.start(); 
  
        // Send two text messages 
        sendMessage(producer, session, "Message 1"); 
        sendMessage(producer, session, "Message 2"); 
  
        // Receive a message and don't acknowledge it 
        receiveMessage(consumer, false); 
  
        // Receive another message and acknowledge it 
        receiveMessage(consumer, true); 
  
        // Wait for the visibility time out, so that unacknowledged messages reappear 
 in the queue 
        System.out.println("Waiting for visibility timeout..."); 
        Thread.sleep(TimeUnit.SECONDS.toMillis(TIME_OUT_SECONDS)); 
  
        // Attempt to receive another message and acknowledge it. This results in 
 receiving the first message since 
        // we have acknowledged only the second message. In the UNORDERED_ACKNOWLEDGE 
 mode, all the messages must 
        // be explicitly acknowledged. 
        receiveMessage(consumer, true); 
  
        // Close the connection. This closes the session automatically 
        connection.close(); 
        System.out.println("Connection closed."); 
    } 
  
    /** 
     * Sends a message through the producer. 
     * 
     * @param producer Message producer 
     * @param session Session 

SyncMessageReceiverUnorderedAcknowledge.java 214



Amazon Simple Queue Service Developer Guide

     * @param messageText Text for the message to be sent 
     * @throws JMSException 
     */ 
    private static void sendMessage(MessageProducer producer, Session session, String 
 messageText) throws JMSException { 
        // Create a text message and send it 
        producer.send(session.createTextMessage(messageText)); 
    } 
  
    /** 
     * Receives a message through the consumer synchronously with the default timeout 
 (TIME_OUT_SECONDS). 
     * If a message is received, the message is printed. If no message is received, 
 "Queue is empty!" is 
     * printed. 
     * 
     * @param consumer Message consumer 
     * @param acknowledge If true and a message is received, the received message is 
 acknowledged. 
     * @throws JMSException 
     */ 
    private static void receiveMessage(MessageConsumer consumer, boolean acknowledge) 
 throws JMSException { 
        // Receive a message 
        Message message = 
 consumer.receive(TimeUnit.SECONDS.toMillis(TIME_OUT_SECONDS)); 
  
        if (message == null) { 
            System.out.println("Queue is empty!"); 
        } else { 
            // Since this queue has only text messages, cast the message object and 
 print the text 
            System.out.println("Received: " + ((TextMessage) message).getText()); 
  
            // Acknowledge the message if asked 
            if (acknowledge) message.acknowledge(); 
        } 
    }
}

SpringExampleConfiguration.xml

The following XML code example is a bean configuration file for SpringExample.java.

SpringExampleConfiguration.xml 215



Amazon Simple Queue Service Developer Guide

<!-- 
    Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. 

    Licensed under the Apache License, Version 2.0 (the "License"). 
    You may not use this file except in compliance with the License. 
    A copy of the License is located at 

    http://www.amazonaws.cn/apache2.0 

    or in the "license" file accompanying this file. This file is distributed 
    on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
    express or implied. See the License for the specific language governing 
    permissions and limitations under the License.
-->

<?xml version="1.0" encoding="UTF-8"?>
<beans 
    xmlns="http://www.springframework.org/schema/beans" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xmlns:util="http://www.springframework.org/schema/util" 
    xmlns:p="http://www.springframework.org/schema/p" 
    xsi:schemaLocation=" 
        http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-3.0.xsd 
        http://www.springframework.org/schema/util http://www.springframework.org/
schema/util/spring-util-3.0.xsd 
    "> 
     
    <bean id="CredentialsProviderBean" 
 class="com.amazonaws.auth.DefaultAWSCredentialsProviderChain"/> 
     
    <bean id="ClientBuilder" class="com.amazonaws.services.sqs.AmazonSQSClientBuilder" 
 factory-method="standard"> 
        <property name="region" value="us-east-2"/> 
        <property name="credentials" ref="CredentialsProviderBean"/>                
    </bean> 
     
    <bean id="ProviderConfiguration" 
 class="com.amazon.sqs.javamessaging.ProviderConfiguration"> 
        <property name="numberOfMessagesToPrefetch" value="5"/> 
    </bean> 
     

SpringExampleConfiguration.xml 216



Amazon Simple Queue Service Developer Guide

    <bean id="ConnectionFactory" 
 class="com.amazon.sqs.javamessaging.SQSConnectionFactory"> 
        <constructor-arg ref="ProviderConfiguration" /> 
        <constructor-arg ref="ClientBuilder" /> 
    </bean> 
     
    <bean id="Connection" class="javax.jms.Connection" 
        factory-bean="ConnectionFactory" 
        factory-method="createConnection" 
        init-method="start" 
        destroy-method="close" /> 
     
    <bean id="QueueName" class="java.lang.String"> 
        <constructor-arg value="SQSJMSClientExampleQueue"/> 
    </bean>
</beans>

SpringExample.java

The following Java code example uses the bean configuration file to initialize your objects.

/* 
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://www.amazonaws.cn/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed 
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 * 
 */ 
                 
public class SpringExample { 
    public static void main(String args[]) throws JMSException { 
        if( args.length != 1 || !args[0].endsWith(".xml")) { 
            System.err.println( "Usage: " + SpringExample.class.getName() + " <spring 
 config.xml>" ); 
            System.exit(1); 

SpringExample.java 217



Amazon Simple Queue Service Developer Guide

        } 
         
        File springFile = new File( args[0] ); 
        if( !springFile.exists() || !springFile.canRead() ) { 
            System.err.println( "File " + args[0] + " doesn't exist or isn't 
 readable."); 
            System.exit(2); 
        } 
         
        ExampleCommon.setupLogging(); 
         
        FileSystemXmlApplicationContext context =  
            new FileSystemXmlApplicationContext( "file://" + 
 springFile.getAbsolutePath() ); 
         
        Connection connection; 
        try { 
            connection = context.getBean(Connection.class); 
        } catch( NoSuchBeanDefinitionException e ) { 
            System.err.println( "Can't find the JMS connection to use: " + 
 e.getMessage() ); 
            System.exit(3); 
            return; 
        } 
         
        String queueName; 
        try { 
            queueName = context.getBean("QueueName", String.class); 
        } catch( NoSuchBeanDefinitionException e ) { 
            System.err.println( "Can't find the name of the queue to use: " + 
 e.getMessage() ); 
            System.exit(3); 
            return; 
        } 
         
        if( connection instanceof SQSConnection ) { 
            ExampleCommon.ensureQueueExists( (SQSConnection) connection, queueName ); 
        } 
         
        // Create the session 
        Session session = connection.createSession(false, Session.CLIENT_ACKNOWLEDGE); 
        MessageConsumer consumer = 
 session.createConsumer( session.createQueue( queueName) ); 
         

SpringExample.java 218



Amazon Simple Queue Service Developer Guide

        receiveMessages(session, consumer); 
  
        // The context can be setup to close the connection for us 
        context.close(); 
        System.out.println( "Context closed" ); 
    } 
  
    private static void receiveMessages( Session session, MessageConsumer consumer ) { 
        try { 
            while( true ) { 
                System.out.println( "Waiting for messages"); 
                // Wait 1 minute for a message 
                Message message = consumer.receive(TimeUnit.MINUTES.toMillis(1)); 
                if( message == null ) { 
                    System.out.println( "Shutting down after 1 minute of silence" ); 
                    break; 
                } 
                ExampleCommon.handleMessage(message); 
                message.acknowledge(); 
                System.out.println( "Acknowledged message" ); 
            } 
        } catch (JMSException e) { 
            System.err.println( "Error receiving from SQS: " + e.getMessage() ); 
            e.printStackTrace(); 
        } 
    }
}

ExampleCommon.java

The following Java code example checks if an Amazon SQS queue exists and then creates one if it 
doesn't. It also includes example logging code.

/* 
 * Copyright 2010-2024 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://www.amazonaws.cn/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed 

ExampleCommon.java 219



Amazon Simple Queue Service Developer Guide

 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 * 
 */

public class ExampleCommon { 
    /** 
     * A utility function to check the queue exists and create it if needed. For most   
     * use cases this is usually done by an administrator before the application is 
 run.  
     */ 
    public static void ensureQueueExists(SQSConnection connection, String queueName) 
 throws JMSException { 
        AmazonSQSMessagingClientWrapper client = 
 connection.getWrappedAmazonSQSClient(); 
         
        /** 
         * In most cases, you can do this with just a createQueue call, but 
 GetQueueUrl  
         * (called by queueExists) is a faster operation for the common case where the 
 queue  
         * already exists. Also many users and roles have permission to call 
 GetQueueUrl 
         * but don't have permission to call CreateQueue. 
         */ 
        if( !client.queueExists(queueName) ) { 
            client.createQueue( queueName ); 
        } 
    } 
  
    public static void setupLogging() { 
        // Setup logging 
        BasicConfigurator.configure(); 
        Logger.getRootLogger().setLevel(Level.WARN); 
    } 
  
    public static void handleMessage(Message message) throws JMSException { 
        System.out.println( "Got message " + message.getJMSMessageID() ); 
        System.out.println( "Content: "); 
        if( message instanceof TextMessage ) { 
            TextMessage txtMessage = ( TextMessage ) message; 
            System.out.println( "\t" + txtMessage.getText() ); 
        } else if( message instanceof BytesMessage ){ 

ExampleCommon.java 220



Amazon Simple Queue Service Developer Guide

            BytesMessage byteMessage = ( BytesMessage ) message; 
            // Assume the length fits in an int - SQS only supports sizes up to 256k so 
 that 
            // should be true 
            byte[] bytes = new byte[(int)byteMessage.getBodyLength()]; 
            byteMessage.readBytes(bytes); 
            System.out.println( "\t" +  Base64.encodeAsString( bytes ) ); 
        } else if( message instanceof ObjectMessage ) { 
            ObjectMessage objMessage = (ObjectMessage) message; 
            System.out.println( "\t" + objMessage.getObject() ); 
        } 
    }
}

Amazon SQS supported JMS 1.1 implementations

The Amazon SQS Java Messaging Library supports the following JMS 1.1 implementations. 
For more information about the supported features and capabilities of the Amazon SQS Java 
Messaging Library, see the Amazon SQS FAQ.

Supported common interfaces

• Connection

• ConnectionFactory

• Destination

• Session

• MessageConsumer

• MessageProducer

Supported message types

• ByteMessage

• ObjectMessage

• TextMessage

Supported JMS 1.1 implementations 221

http://docs.oracle.com/javaee/6/api/javax/jms/package-summary.html
http://www.amazonaws.cn/sqs/faqs/


Amazon Simple Queue Service Developer Guide

Supported message acknowledgment modes

• AUTO_ACKNOWLEDGE

• CLIENT_ACKNOWLEDGE

• DUPS_OK_ACKNOWLEDGE

• UNORDERED_ACKNOWLEDGE

Note

The UNORDERED_ACKNOWLEDGE mode isn't part of the JMS 1.1 specification. This mode 
helps Amazon SQS allow a JMS client to explicitly acknowledge a message.

JMS-defined headers and reserved properties

For sending messages

When you send messages, you can set the following headers and properties for each message:

• JMSXGroupID (required for FIFO queues, not allowed for standard queues)

• JMS_SQS_DeduplicationId (optional for FIFO queues, not allowed for standard queues)

After you send messages, Amazon SQS sets the following headers and properties for each 
message:

• JMSMessageID

• JMS_SQS_SequenceNumber (only for FIFO queues)

For receiving messages

When you receive messages, Amazon SQS sets the following headers and properties for each 
message:

• JMSDestination

• JMSMessageID

• JMSRedelivered

Supported message acknowledgment modes 222



Amazon Simple Queue Service Developer Guide

• JMSXDeliveryCount

• JMSXGroupID (only for FIFO queues)

• JMS_SQS_DeduplicationId (only for FIFO queues)

• JMS_SQS_SequenceNumber (only for FIFO queues)

JMS-defined headers and reserved properties 223



Amazon Simple Queue Service Developer Guide

Amazon SQS tutorials

This topic provides tutorials to help you explore Amazon SQS features and functionality.

Tutorials

• Creating an Amazon SQS queue using Amazon CloudFormation

• Tutorial: Sending a message to an Amazon SQS queue from Amazon Virtual Private Cloud

Creating an Amazon SQS queue using Amazon CloudFormation

Use the Amazon CloudFormation console along with a JSON or YAML template to create an 
Amazon SQS queue. For more details, see Working with Amazon CloudFormation Templates and 
the AWS::SQS::Queue Resource in the Amazon CloudFormation User Guide.

To use Amazon CloudFormation to create an Amazon SQS queue.

1. Copy the following JSON code to a file named MyQueue.json. To create a standard queue, 
omit the FifoQueue and ContentBasedDeduplication properties. For more information 
on content-based deduplication, see Exactly-once processing in Amazon SQS.

Note

The name of a FIFO queue must end with the .fifo suffix.

{ 
   "AWSTemplateFormatVersion": "2010-09-09", 
   "Resources": { 
      "MyQueue": { 
         "Properties": { 
            "QueueName": "MyQueue.fifo", 
            "FifoQueue": true, 
            "ContentBasedDeduplication": true 
             }, 
         "Type": "AWS::SQS::Queue" 
         } 
      }, 
   "Outputs": { 

Creating an Amazon SQS queue using Amazon CloudFormation 224

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-sqs-queue.html


Amazon Simple Queue Service Developer Guide

      "QueueName": { 
         "Description": "The name of the queue", 
         "Value": { 
            "Fn::GetAtt": [ 
               "MyQueue", 
               "QueueName" 
            ] 
         } 
      }, 
      "QueueURL": { 
         "Description": "The URL of the queue", 
         "Value": { 
            "Ref": "MyQueue" 
         } 
      }, 
      "QueueARN": { 
         "Description": "The ARN of the queue", 
         "Value": { 
            "Fn::GetAtt": [ 
               "MyQueue", 
               "Arn" 
            ] 
         } 
      } 
   }
}

2. Sign in to the Amazon CloudFormation console, and then choose Create Stack.

3. On the Specify Template panel, choose Upload a template file, choose your MyQueue.json
file, and then choose Next.

4. On the Specify Details page, type MyQueue for Stack Name, and then choose Next.

5. On the Options page, choose Next.

6. On the Review page, choose Create.

Amazon CloudFormation begins to create the MyQueue stack and displays the
CREATE_IN_PROGRESS status. When the process is complete, Amazon CloudFormation 
displays the CREATE_COMPLETE status.

Creating an Amazon SQS queue using Amazon CloudFormation 225

https://console.amazonaws.cn/cloudformation


Amazon Simple Queue Service Developer Guide

7. (Optional) To display the name, URL, and ARN of the queue, choose the name of the stack and 
then on the next page expand the Outputs section.

Tutorial: Sending a message to an Amazon SQS queue from 
Amazon Virtual Private Cloud

This tutorial shows you how to send messages to an Amazon SQS queue over a secure, private 
network. The network includes:

• A VPC containing an Amazon EC2 instance.

• An interface VPC endpoint, which allows the Amazon EC2 instance to connect to Amazon SQS 
without using the public internet.

Even in a fully private network, you can connect to the Amazon EC2 instance and send messages 
to the Amazon SQS queue. For more information, see Amazon Virtual Private Cloud endpoints for 
Amazon SQS.

Important

• You can use Amazon Virtual Private Cloud only with HTTPS Amazon SQS endpoints.

• When you configure Amazon SQS to send messages from Amazon VPC, you must enable 
private DNS and specify endpoints in the format sqs.us-east-2.amazonaws.com or
sqs.us-east-2.api.aws for the dual-stack endpoint.

• Amazon SQS also supports FIPS endpoints through PrivateLink using the
com.amazonaws.region.sqs-fips endpoint service. You can connect to FIPS 
endpoints in the format sqs-fips.region.amazonaws.com.

• When using the dual-stack endpoint in Amazon Virtual Private Cloud, requests will be 
sent using IPv4 and IPv6.

• Private DNS doesn't support legacy endpoints such as queue.amazonaws.com or us-
east-2.queue.amazonaws.com.

Sending a message from a VPC 226



Amazon Simple Queue Service Developer Guide

Step 1: Create an Amazon EC2 key pair

A key pair lets you connect to an Amazon EC2 instance. It consists of a public key that encrypts your 
login information and a private key that decrypts it.

1. Sign in to the Amazon EC2 console.

2. On the navigation menu, under Network & Security, choose Key Pairs.

3. Choose Create Key Pair.

4. In the Create Key Pair dialog box, for Key pair name, enter SQS-VPCE-Tutorial-Key-Pair, 
and then choose Create.

5. Your browser downloads the private key file SQS-VPCE-Tutorial-Key-Pair.pem
automatically.

Important

Save this file in a safe place. EC2 does not generate a .pem file for the same key pair a 
second time.

6. To allow an SSH client to connect to your EC2 instance, set the permissions for your private key 
file so that only your user can have read permissions for it, for example:

chmod 400 SQS-VPCE-Tutorial-Key-Pair.pem

Step 2: Create Amazon resources

To set up the necessary infrastructure, you must use an Amazon CloudFormation template, which is 
a blueprint for creating a stack comprised of Amazon resources, such as Amazon EC2 instances and 
Amazon SQS queues.

The stack for this tutorial includes the following resources:

• A VPC and the associated networking resources, including a subnet, a security group, an internet 
gateway, and a route table

• An Amazon EC2 instance launched into the VPC subnet

• An Amazon SQS queue

Step 1: Create an Amazon EC2 key pair 227

https://console.amazonaws.cn/ec2/


Amazon Simple Queue Service Developer Guide

1. Download the Amazon CloudFormation template named SQS-VPCE-Tutorial-
CloudFormation.yaml from GitHub.

2. Sign in to the Amazon CloudFormation console.

3. Choose Create Stack.

4. On the Select Template page, choose Upload a template to Amazon S3, select the SQS-
VPCE-SQS-Tutorial-CloudFormation.yaml file, and then choose Next.

5. On the Specify Details page, do the following:

a. For Stack name, enter SQS-VPCE-Tutorial-Stack.

b. For KeyName, choose SQS-VPCE-Tutorial-Key-Pair.

c. Choose Next.

6. On the Options page, choose Next.

7. On the Review page, in the Capabilities section, choose I acknowledge that Amazon 
CloudFormation might create IAM resources with custom names., and then choose Create.

Amazon CloudFormation begins to create the stack and displays the CREATE_IN_PROGRESS
status. When the process is complete, Amazon CloudFormation displays the CREATE_COMPLETE
status.

Step 3: Confirm that your EC2 instance isn't publicly accessible

Your Amazon CloudFormation template launches an EC2 instance named SQS-VPCE-Tutorial-
EC2-Instance into your VPC. This EC2 instance doesn't allow outbound traffic and isn't able to 
send messages to Amazon SQS. To verify this, you must connect to the instance, try to connect to a 
public endpoint, and then try to message Amazon SQS.

1. Sign in to the Amazon EC2 console.

2. On the navigation menu, under Instances, choose Instances.

3. Select SQS-VPCE-Tutorial-EC2Instance.

4. Copy the hostname under Public DNS, for example, ec2-203-0-113-0.us-
west-2.compute.amazonaws.com.

5. From the directory that contains the key pair that you created earlier, connect to the instance 
using the following command, for example:

Step 3: Confirm that your EC2 instance isn't publicly accessible 228

https://github.com/aws-samples/amazon-sqs-samples/blob/master/templates/SQS-VPCE-Tutorial-CloudFormation.yaml
https://github.com/aws-samples/amazon-sqs-samples/blob/master/templates/SQS-VPCE-Tutorial-CloudFormation.yaml
https://console.amazonaws.cn/cloudformation/
https://console.amazonaws.cn/ec2/


Amazon Simple Queue Service Developer Guide

ssh -i SQS-VPCE-Tutorial-Key-Pair.pem ec2-user@ec2-203-0-113-0.us-
east-2.compute.amazonaws.com

6. Try to connect to any public endpoint, for example:

ping amazon.com

The connection attempt fails, as expected.

7. Sign in to the Amazon SQS console.

8. From the list of queues, select the queue created by your Amazon CloudFormation template, 
for example, VPCE-SQS-Tutorial-Stack-CFQueue-1ABCDEFGH2IJK.

9. On the Details table, copy the URL, for example, https://sqs.us-
east-2.amazonaws.com/123456789012/.

10. From your EC2 instance, try to publish a message to the queue using the following command, 
for example:

aws sqs send-message --region us-east-2 --endpoint-url https://sqs.us-
east-2.amazonaws.com/ --queue-url https://sqs.us-east-2.amazonaws.com/123456789012/
 --message-body "Hello from Amazon SQS."

The sending attempt fails, as expected.

Important

Later, when you create a VPC endpoint for Amazon SQS, your sending attempt will 
succeed.

Step 4: Create an Amazon VPC endpoint for Amazon SQS

To connect your VPC to Amazon SQS, you must define an interface VPC endpoint. After you add 
the endpoint, you can use the Amazon SQS API from the EC2 instance in your VPC. This allows you 
to send messages to a queue within the Amazon network without crossing the public internet.

Step 4: Create an Amazon VPC endpoint for Amazon SQS 229

https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

Note

The EC2 instance still doesn't have access to other Amazon services and endpoints on the 
internet.

1. Sign in to the Amazon VPC console.

2. On the navigation menu, choose Endpoints.

3. Choose Create Endpoint.

4. On the Create Endpoint page, for Service Name, choose the service name for Amazon SQS.

Note

The service names vary based on the current Amazon Region. For example, if you are in 
US East (Ohio), the service name is com.amazonaws.us-east-2.sqs.

5. For VPC, choose SQS-VPCE-Tutorial-VPC.

6. For Subnets, choose the subnet whose Subnet ID contains SQS-VPCE-Tutorial-Subnet.

7. For Security group, choose Select security groups, and then choose the security group whose
Group Name contains SQS VPCE Tutorial Security Group.

8. Choose Create endpoint.

The interface VPC endpoint is created and its ID is displayed, for example,
vpce-0ab1cdef2ghi3j456k.

9. Choose Close.

The Amazon VPC console opens the Endpoints page.

Amazon VPC begins to create the endpoint and displays the pending status. When the process is 
complete, Amazon VPC displays the available status.

Step 5: Send a message to your Amazon SQS queue

Now that your VPC includes an endpoint for Amazon SQS, you can connect to your EC2 instance 
and send messages to your queue.

1. Reconnect to your EC2 instance, for example:

Step 5: Send a message to your Amazon SQS queue 230

https://console.amazonaws.cn/vpc/


Amazon Simple Queue Service Developer Guide

ssh -i SQS-VPCE-Tutorial-Key-Pair.pem ec2-user@ec2-203-0-113-0.us-
east-2.compute.amazonaws.com

2. Try to publish a message to the queue again using the following command, for example:

aws sqs send-message --region us-east-2 --endpoint-url https://sqs.us-
east-2.amazonaws.com/ --queue-url https://sqs.us-east-2.amazonaws.com/123456789012/
 --message-body "Hello from Amazon SQS."

The sending attempt succeeds and the MD5 digest of the message body and the message ID 
are displayed, for example:

{ 
 "MD5OfMessageBody": "a1bcd2ef3g45hi678j90klmn12p34qr5", 
 "MessageId": "12345a67-8901-2345-bc67-d890123e45fg"
}

For information about receiving and deleting the message from the queue created by your Amazon 
CloudFormation template (for example, VPCE-SQS-Tutorial-Stack-CFQueue-1ABCDEFGH2IJK), 
see Receiving and deleting a message in Amazon SQS .

For information about deleting your resources, see the following:

• Deleting a VPC Endpoint in the Amazon VPC User Guide

• Deleting an Amazon SQS queue

• Terminate Your Instance in the Amazon EC2 User Guide

• Deleting Your VPC in the Amazon VPC User Guide

• Deleting a Stack on the Amazon CloudFormation Console in the Amazon CloudFormation User 
Guide

• Deleting Your Key Pair in the Amazon EC2 User Guide

Step 5: Send a message to your Amazon SQS queue 231

https://docs.amazonaws.cn/vpc/latest/userguide/delete-vpc-endpoint.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/terminating-instances.html
https://docs.amazonaws.cn/vpc/latest/userguide/delete-vpc.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-key-pairs.html#delete-key-pair


Amazon Simple Queue Service Developer Guide

Code examples for Amazon SQS using Amazon SDKs

The following code examples show how to use Amazon SQS with an Amazon software 
development kit (SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you 
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple 
functions within a service or combined with other Amazon Web Services services.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Code examples

• Basic examples for Amazon SQS using Amazon SDKs

• Hello Amazon SQS

• Actions for Amazon SQS using Amazon SDKs

• Use AddPermission with a CLI

• Use ChangeMessageVisibility with an Amazon SDK or CLI

• Use ChangeMessageVisibilityBatch with a CLI

• Use CreateQueue with an Amazon SDK or CLI

• Use DeleteMessage with an Amazon SDK or CLI

• Use DeleteMessageBatch with an Amazon SDK or CLI

• Use DeleteQueue with an Amazon SDK or CLI

• Use GetQueueAttributes with an Amazon SDK or CLI

• Use GetQueueUrl with an Amazon SDK or CLI

• Use ListDeadLetterSourceQueues with a CLI

• Use ListQueues with an Amazon SDK or CLI

• Use PurgeQueue with a CLI

• Use ReceiveMessage with an Amazon SDK or CLI

• Use RemovePermission with a CLI

• Use SendMessage with an Amazon SDK or CLI

232



Amazon Simple Queue Service Developer Guide

• Use SendMessageBatch with an Amazon SDK or CLI

• Use SetQueueAttributes with an Amazon SDK or CLI

• Scenarios for Amazon SQS using Amazon SDKs

• Create a web application that sends and retrieves messages by using Amazon SQS

• Create a messenger application with Step Functions

• Create an Amazon Textract explorer application

• Create and publish to a FIFO Amazon SNS topic using an Amazon SDK

• Detect people and objects in a video with Amazon Rekognition using an Amazon SDK

• Manage large Amazon SQS messages using Amazon S3 with an Amazon SDK

• Receive and process Amazon S3 event notifications by using an Amazon SDK

• Publish Amazon SNS messages to Amazon SQS queues using an Amazon SDK

• Send and receive batches of messages with Amazon SQS using an Amazon SDK

• Use the Amazon Message Processing Framework for .NET to publish and receive Amazon SQS 
messages

• Use the Amazon SQS Java Messaging Library to work with the Java Message Service (JMS) 
interface for Amazon SQS

• Work with queue tags and Amazon SQS using an Amazon SDK

• Serverless examples for Amazon SQS

• Invoke a Lambda function from an Amazon SQS trigger

• Reporting batch item failures for Lambda functions with an Amazon SQS trigger

Basic examples for Amazon SQS using Amazon SDKs

The following code examples show how to use the basics of Amazon Simple Queue Service with 
Amazon SDKs.

Examples

• Hello Amazon SQS

• Actions for Amazon SQS using Amazon SDKs

• Use AddPermission with a CLI

• Use ChangeMessageVisibility with an Amazon SDK or CLI

• Use ChangeMessageVisibilityBatch with a CLI

Basics 233



Amazon Simple Queue Service Developer Guide

• Use CreateQueue with an Amazon SDK or CLI

• Use DeleteMessage with an Amazon SDK or CLI

• Use DeleteMessageBatch with an Amazon SDK or CLI

• Use DeleteQueue with an Amazon SDK or CLI

• Use GetQueueAttributes with an Amazon SDK or CLI

• Use GetQueueUrl with an Amazon SDK or CLI

• Use ListDeadLetterSourceQueues with a CLI

• Use ListQueues with an Amazon SDK or CLI

• Use PurgeQueue with a CLI

• Use ReceiveMessage with an Amazon SDK or CLI

• Use RemovePermission with a CLI

• Use SendMessage with an Amazon SDK or CLI

• Use SendMessageBatch with an Amazon SDK or CLI

• Use SetQueueAttributes with an Amazon SDK or CLI

Hello Amazon SQS

The following code examples show how to get started using Amazon SQS.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

using Amazon.SQS;
using Amazon.SQS.Model;

namespace SQSActions;

Hello Amazon SQS 234

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples


Amazon Simple Queue Service Developer Guide

public static class HelloSQS
{ 
    static async Task Main(string[] args) 
    { 
        var sqsClient = new AmazonSQSClient(); 

        Console.WriteLine($"Hello Amazon SQS! Following are some of your 
 queues:"); 
        Console.WriteLine(); 

        // You can use await and any of the async methods to get a response. 
        // Let's get the first five queues. 
        var response = await sqsClient.ListQueuesAsync( 
            new ListQueuesRequest() 
            { 
                MaxResults = 5 
            }); 

        foreach (var queue in response.QueueUrls) 
        { 
            Console.WriteLine($"\tQueue Url: {queue}"); 
            Console.WriteLine(); 
        } 
    }
}

• For API details, see ListQueues in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Code for the CMakeLists.txt CMake file.

# Set the minimum required version of CMake for this project.

Hello Amazon SQS 235

https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs/hello_sqs#code-examples


Amazon Simple Queue Service Developer Guide

cmake_minimum_required(VERSION 3.13)

# Set the AWS service components used by this project.
set(SERVICE_COMPONENTS sqs)

# Set this project's name.
project("hello_sqs")

# Set the C++ standard to use to build this target.
# At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

# Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed 
 libraries for the AWS SDK. 
    string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH 
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all") 
    list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

# Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if(WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS) 
    # Copy relevant AWS SDK for C++ libraries into the current binary directory 
 for running and debugging. 

    # set(BIN_SUB_DIR "/Debug") # If you are building from the command line you 
 may need to uncomment this 
    # and set the proper subdirectory to the executables' location. 

    AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS "" 
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif()

add_executable(${PROJECT_NAME} 
        hello_sqs.cpp)

target_link_libraries(${PROJECT_NAME} 
        ${AWSSDK_LINK_LIBRARIES})

Hello Amazon SQS 236



Amazon Simple Queue Service Developer Guide

Code for the hello_sqs.cpp source file.

#include <aws/core/Aws.h>
#include <aws/sqs/SQSClient.h>
#include <aws/sqs/model/ListQueuesRequest.h>
#include <iostream>

/* 
 *  A "Hello SQS" starter application that initializes an Amazon Simple Queue 
 Service 
 *  (Amazon SQS) client and lists the SQS queues in the current account. 
 * 
 *  main function 
 * 
 *  Usage: 'hello_sqs' 
 * 
 */

int main(int argc, char **argv) { 
    Aws::SDKOptions options; 
    // Optionally change the log level for debugging.
//   options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug; 
    Aws::InitAPI(options); // Should only be called once. 
    { 
        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1"; 

        Aws::SQS::SQSClient sqsClient(clientConfig); 

        Aws::Vector<Aws::String> allQueueUrls; 
        Aws::String nextToken; // Next token is used to handle a paginated 
 response. 
        do { 
            Aws::SQS::Model::ListQueuesRequest request; 

            Aws::SQS::Model::ListQueuesOutcome outcome = 
 sqsClient.ListQueues(request); 

            if (outcome.IsSuccess()) { 
                const Aws::Vector<Aws::String> &pageOfQueueUrls = 
 outcome.GetResult().GetQueueUrls(); 
                if (!pageOfQueueUrls.empty()) { 

Hello Amazon SQS 237



Amazon Simple Queue Service Developer Guide

                    allQueueUrls.insert(allQueueUrls.cend(), 
 pageOfQueueUrls.cbegin(), 
                                        pageOfQueueUrls.cend()); 
                } 
            } 
            else { 
                std::cerr << "Error with SQS::ListQueues. " 
                          << outcome.GetError().GetMessage() 
                          << std::endl; 
                break; 
            } 
            nextToken = outcome.GetResult().GetNextToken(); 
        } while (!nextToken.empty()); 

        std::cout << "Hello Amazon SQS! You have " << allQueueUrls.size() << " 
 queue" 
                  << (allQueueUrls.size() == 1 ? "" : "s") << " in your account." 
                  << std::endl; 

        if (!allQueueUrls.empty()) { 
            std::cout << "Here are your queue URLs." << std::endl; 
            for (const Aws::String &queueUrl: allQueueUrls) { 
                std::cout << "  * " << queueUrl << std::endl; 
            } 
        } 
    } 

    Aws::ShutdownAPI(options); // Should only be called once. 
    return 0;
}

• For API details, see ListQueues in Amazon SDK for C++ API Reference.

Hello Amazon SQS 238

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/ListQueues


Amazon Simple Queue Service Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

package main

import ( 
 "context" 
 "fmt" 
 "log" 

 "github.com/aws/aws-sdk-go-v2/config" 
 "github.com/aws/aws-sdk-go-v2/service/sqs"
)

// main uses the AWS SDK for Go V2 to create an Amazon Simple Queue Service
// (Amazon SQS) client and list the queues in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() { 
 ctx := context.Background() 
 sdkConfig, err := config.LoadDefaultConfig(ctx) 
 if err != nil { 
  fmt.Println("Couldn't load default configuration. Have you set up your AWS 
 account?") 
  fmt.Println(err) 
  return 
 } 
 sqsClient := sqs.NewFromConfig(sdkConfig) 
 fmt.Println("Let's list the queues for your account.") 
 var queueUrls []string 
 paginator := sqs.NewListQueuesPaginator(sqsClient, &sqs.ListQueuesInput{}) 
 for paginator.HasMorePages() { 
  output, err := paginator.NextPage(ctx) 
  if err != nil { 

Hello Amazon SQS 239

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/sqs#code-examples


Amazon Simple Queue Service Developer Guide

   log.Printf("Couldn't get queues. Here's why: %v\n", err) 
   break 
  } else { 
   queueUrls = append(queueUrls, output.QueueUrls...) 
  } 
 } 
 if len(queueUrls) == 0 { 
  fmt.Println("You don't have any queues!") 
 } else { 
  for _, queueUrl := range queueUrls { 
   fmt.Printf("\t%v\n", queueUrl) 
  } 
 }
}

• For API details, see ListQueues in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.SqsException;
import software.amazon.awssdk.services.sqs.paginators.ListQueuesIterable;

/** 
 * Before running this Java V2 code example, set up your development 
 * environment, including your credentials. 
 * 
 * For more information, see the following documentation topic: 
 * 
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html 

Hello Amazon SQS 240

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

 */
public class HelloSQS { 
    public static void main(String[] args) { 
        SqsClient sqsClient = SqsClient.builder() 
                .region(Region.US_WEST_2) 
                .build(); 

        listQueues(sqsClient); 
        sqsClient.close(); 
    } 

    public static void listQueues(SqsClient sqsClient) { 
        try { 
            ListQueuesIterable listQueues = sqsClient.listQueuesPaginator(); 
            listQueues.stream() 
                    .flatMap(r -> r.queueUrls().stream()) 
                    .forEach(content -> System.out.println(" Queue URL: " + 
 content.toLowerCase())); 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    }
}

• For API details, see ListQueues in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Initialize an Amazon SQS client and list queues.

import { SQSClient, paginateListQueues } from "@aws-sdk/client-sqs";

Hello Amazon SQS 241

https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

export const helloSqs = async () => { 
  // The configuration object (`{}`) is required. If the region and credentials 
  // are omitted, the SDK uses your local configuration if it exists. 
  const client = new SQSClient({}); 

  // You can also use `ListQueuesCommand`, but to use that command you must 
  // handle the pagination yourself. You can do that by sending the 
 `ListQueuesCommand` 
  // with the `NextToken` parameter from the previous request. 
  const paginatedQueues = paginateListQueues({ client }, {}); 
  const queues = []; 

  for await (const page of paginatedQueues) { 
    if (page.QueueUrls?.length) { 
      queues.push(...page.QueueUrls); 
    } 
  } 

  const suffix = queues.length === 1 ? "" : "s"; 

  console.log( 
    `Hello, Amazon SQS! You have ${queues.length} queue${suffix} in your 
 account.`, 
  ); 
  console.log(queues.map((t) => `  * ${t}`).join("\n"));
};

• For API details, see ListQueues in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

package com.kotlin.sqs

Hello Amazon SQS 242

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/ListQueuesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples


Amazon Simple Queue Service Developer Guide

import aws.sdk.kotlin.services.sqs.SqsClient
import aws.sdk.kotlin.services.sqs.paginators.listQueuesPaginated
import kotlinx.coroutines.flow.transform

suspend fun main() { 
    listTopicsPag()
}

suspend fun listTopicsPag() { 
    SqsClient.fromEnvironment { region = "us-east-1" }.use { sqsClient -> 
        sqsClient 
            .listQueuesPaginated { } 
            .transform { it.queueUrls?.forEach { queue -> emit(queue) } } 
            .collect { queue -> 
                println("The Queue URL is $queue") 
            } 
    }
}

• For API details, see ListQueues in Amazon SDK for Kotlin API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

The Package.swift file.

import PackageDescription

let package = Package( 
    name: "sqs-basics", 
    // Let Xcode know the minimum Apple platforms supported. 
    platforms: [ 
        .macOS(.v13), 

Hello Amazon SQS 243

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

        .iOS(.v15) 
    ], 
    dependencies: [ 
        // Dependencies declare other packages that this package depends on. 
        .package( 
            url: "https://github.com/awslabs/aws-sdk-swift", 
            from: "1.0.0"), 
        .package( 
            url: "https://github.com/apple/swift-argument-parser.git", 
            branch: "main" 
        ) 
    ], 
    targets: [ 
        // Targets are the basic building blocks of a package, defining a module 
 or a test suite. 
        // Targets can depend on other targets in this package and products 
        // from dependencies. 
        .executableTarget( 
            name: "sqs-basics", 
            dependencies: [ 
                .product(name: "AWSSQS", package: "aws-sdk-swift"), 
                .product(name: "ArgumentParser", package: "swift-argument-
parser") 
            ], 
            path: "Sources") 

    ]
)

The Swift source code, entry.swift.

import ArgumentParser
import AWSClientRuntime
import AWSSQS
import Foundation

struct ExampleCommand: ParsableCommand { 
    @Option(help: "Name of the Amazon Region to use (default: us-east-1)") 
    var region = "us-east-1" 

    static var configuration = CommandConfiguration( 
        commandName: "sqs-basics", 

Hello Amazon SQS 244



Amazon Simple Queue Service Developer Guide

        abstract: """ 
        This example shows how to list all of your available Amazon SQS queues. 
        """, 
        discussion: """ 
        """ 
    ) 
     
    /// Called by ``main()`` to run the bulk of the example. 
    func runAsync() async throws { 
        let config = try await SQSClient.SQSClientConfiguration(region: region) 
        let sqsClient = SQSClient(config: config) 

        var queues: [String] = [] 
        let outputPages = sqsClient.listQueuesPaginated( 
            input: ListQueuesInput() 
        ) 

        // Each time a page of results arrives, process its contents. 

        for try await output in outputPages { 
            guard let urls = output.queueUrls else { 
                print("No queues found.") 
                return 
            } 

            // Iterate over the queue URLs listed on this page, adding them 
            // to the `queues` array. 

            for queueUrl in urls { 
                queues.append(queueUrl) 
            } 
        } 

        print("You have \(queues.count) queues:") 
        for queue in queues { 
            print("   \(queue)") 
        } 
    }
}

/// The program's asynchronous entry point.
@main
struct Main { 
    static func main() async { 

Hello Amazon SQS 245



Amazon Simple Queue Service Developer Guide

        let args = Array(CommandLine.arguments.dropFirst()) 

        do { 
            let command = try ExampleCommand.parse(args) 
            try await command.runAsync() 
        } catch { 
            ExampleCommand.exit(withError: error) 
        } 
    }     
}

• For API details, see ListQueues in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Actions for Amazon SQS using Amazon SDKs

The following code examples demonstrate how to perform individual Amazon SQS actions with 
Amazon SDKs. Each example includes a link to GitHub, where you can find instructions for setting 
up and running the code.

These excerpts call the Amazon SQS API and are code excerpts from larger programs that must be 
run in context. You can see actions in context in Scenarios for Amazon SQS using Amazon SDKs .

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Simple Queue Service API Reference.

Examples

• Use AddPermission with a CLI

• Use ChangeMessageVisibility with an Amazon SDK or CLI

• Use ChangeMessageVisibilityBatch with a CLI

• Use CreateQueue with an Amazon SDK or CLI

• Use DeleteMessage with an Amazon SDK or CLI

• Use DeleteMessageBatch with an Amazon SDK or CLI

• Use DeleteQueue with an Amazon SDK or CLI

Actions 246

https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/listqueues(input:)
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/Welcome.html


Amazon Simple Queue Service Developer Guide

• Use GetQueueAttributes with an Amazon SDK or CLI

• Use GetQueueUrl with an Amazon SDK or CLI

• Use ListDeadLetterSourceQueues with a CLI

• Use ListQueues with an Amazon SDK or CLI

• Use PurgeQueue with a CLI

• Use ReceiveMessage with an Amazon SDK or CLI

• Use RemovePermission with a CLI

• Use SendMessage with an Amazon SDK or CLI

• Use SendMessageBatch with an Amazon SDK or CLI

• Use SetQueueAttributes with an Amazon SDK or CLI

Use AddPermission with a CLI

The following code examples show how to use AddPermission.

CLI

Amazon CLI

To add a permission to a queue

This example enables the specified Amazon account to send messages to the specified 
queue.

Command:

aws sqs add-permission --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --label SendMessagesFromMyQueue --aws-
account-ids 12345EXAMPLE --actions SendMessage

Output:

None.

• For API details, see AddPermission in Amazon CLI Command Reference.

Actions 247

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/add-permission.html


Amazon Simple Queue Service Developer Guide

PowerShell

Tools for PowerShell V4

Example 1: This example allows the specified Amazon Web Services account to send 
messages from the specified queue.

Add-SQSPermission -Action SendMessage -AWSAccountId 80398EXAMPLE 
 -Label SendMessagesFromMyQueue -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see AddPermission in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example allows the specified Amazon Web Services account to send 
messages from the specified queue.

Add-SQSPermission -Action SendMessage -AWSAccountId 80398EXAMPLE 
 -Label SendMessagesFromMyQueue -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see AddPermission in Amazon Tools for PowerShell Cmdlet Reference (V5).

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use ChangeMessageVisibility with an Amazon SDK or CLI

The following code examples show how to use ChangeMessageVisibility.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 248

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

//! Changes the visibility timeout of a message in an Amazon Simple Queue Service
//! (Amazon SQS) queue.
/*! 
  \param queueUrl: An Amazon SQS queue URL. 
  \param messageReceiptHandle: A message receipt handle. 
  \param visibilityTimeoutSeconds: Visibility timeout in seconds. 
  \param clientConfiguration: AWS client configuration. 
  \return bool: Function succeeded. 
 */
bool AwsDoc::SQS::changeMessageVisibility( 
        const Aws::String &queue_url, 
        const Aws::String &messageReceiptHandle, 
        int visibilityTimeoutSeconds, 
        const Aws::Client::ClientConfiguration &clientConfiguration) { 
    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

    Aws::SQS::Model::ChangeMessageVisibilityRequest request; 
    request.SetQueueUrl(queue_url); 
    request.SetReceiptHandle(messageReceiptHandle); 
    request.SetVisibilityTimeout(visibilityTimeoutSeconds); 

    auto outcome = sqsClient.ChangeMessageVisibility(request); 
    if (outcome.IsSuccess()) { 
        std::cout << "Successfully changed visibility of message " << 
                  messageReceiptHandle << " from queue " << queue_url << 
 std::endl; 
    } 
    else { 
        std::cout << "Error changing visibility of message from queue " 
                  << queue_url << ": " << 
                  outcome.GetError().GetMessage() << std::endl; 
    } 

    return outcome.IsSuccess();
}

• For API details, see ChangeMessageVisibility in Amazon SDK for C++ API Reference.

Actions 249

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/ChangeMessageVisibility


Amazon Simple Queue Service Developer Guide

CLI

Amazon CLI

To change a message's timeout visibility

This example changes the specified message's timeout visibility to 10 hours (10 hours * 60 
minutes * 60 seconds).

Command:

aws sqs change-message-visibility --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --receipt-handle AQEBTpyI...t6HyQg== --
visibility-timeout 36000

Output:

None.

• For API details, see ChangeMessageVisibility in Amazon CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Receive an Amazon SQS message and change its timeout visibility.

import { 
  ReceiveMessageCommand, 
  ChangeMessageVisibilityCommand, 
  SQSClient,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

Actions 250

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/change-message-visibility.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

const receiveMessage = (queueUrl) => 
  client.send( 
    new ReceiveMessageCommand({ 
      AttributeNames: ["SentTimestamp"], 
      MaxNumberOfMessages: 1, 
      MessageAttributeNames: ["All"], 
      QueueUrl: queueUrl, 
      WaitTimeSeconds: 1, 
    }), 
  );

export const main = async (queueUrl = SQS_QUEUE_URL) => { 
  const { Messages } = await receiveMessage(queueUrl); 

  const response = await client.send( 
    new ChangeMessageVisibilityCommand({ 
      QueueUrl: queueUrl, 
      ReceiptHandle: Messages[0].ReceiptHandle, 
      VisibilityTimeout: 20, 
    }), 
  ); 
  console.log(response); 
  return response;
};

• For API details, see ChangeMessageVisibility in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Receive an Amazon SQS message and change its timeout visibility.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region to us-west-2
AWS.config.update({ region: "us-west-2" });

Actions 251

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/ChangeMessageVisibilityCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "https://sqs.REGION.amazonaws.com/ACCOUNT-ID/QUEUE-NAME";

var params = { 
  AttributeNames: ["SentTimestamp"], 
  MaxNumberOfMessages: 1, 
  MessageAttributeNames: ["All"], 
  QueueUrl: queueURL,
};

sqs.receiveMessage(params, function (err, data) { 
  if (err) { 
    console.log("Receive Error", err); 
  } else { 
    // Make sure we have a message 
    if (data.Messages != null) { 
      var visibilityParams = { 
        QueueUrl: queueURL, 
        ReceiptHandle: data.Messages[0].ReceiptHandle, 
        VisibilityTimeout: 20, // 20 second timeout 
      }; 
      sqs.changeMessageVisibility(visibilityParams, function (err, data) { 
        if (err) { 
          console.log("Delete Error", err); 
        } else { 
          console.log("Timeout Changed", data); 
        } 
      }); 
    } else { 
      console.log("No messages to change"); 
    } 
  }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see ChangeMessageVisibility in Amazon SDK for JavaScript API Reference.

Actions 252

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/sqs-examples-managing-visibility-timeout.html#sqs-examples-managing-visibility-timeout-setting
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/sqs-2012-11-05/ChangeMessageVisibility


Amazon Simple Queue Service Developer Guide

PowerShell

Tools for PowerShell V4

Example 1: This example changes the visibility timeout for the message with the 
specified receipt handle in the specified queue to 10 hours (10 hours * 60 minutes * 60 
seconds = 36000 seconds).

Edit-SQSMessageVisibility -QueueUrl https://sqs.us-
east-1.amazonaws.com/8039EXAMPLE/MyQueue -ReceiptHandle AQEBgGDh...J/Iqww== -
VisibilityTimeout 36000

• For API details, see ChangeMessageVisibility in Amazon Tools for PowerShell Cmdlet 
Reference (V4).

Tools for PowerShell V5

Example 1: This example changes the visibility timeout for the message with the 
specified receipt handle in the specified queue to 10 hours (10 hours * 60 minutes * 60 
seconds = 36000 seconds).

Edit-SQSMessageVisibility -QueueUrl https://sqs.us-
east-1.amazonaws.com/8039EXAMPLE/MyQueue -ReceiptHandle AQEBgGDh...J/Iqww== -
VisibilityTimeout 36000

• For API details, see ChangeMessageVisibility in Amazon Tools for PowerShell Cmdlet 
Reference (V5).

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 253

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

require 'aws-sdk-sqs' # v2: require 'aws-sdk'
# Replace us-west-2 with the AWS Region you're using for Amazon SQS.
sqs = Aws::SQS::Client.new(region: 'us-west-2')

begin 
  queue_name = 'my-queue' 
  queue_url = sqs.get_queue_url(queue_name: queue_name).queue_url 

  # Receive up to 10 messages 
  receive_message_result_before = sqs.receive_message({ 
                                                        queue_url: queue_url, 
                                                        max_number_of_messages: 
 10 
                                                      }) 

  puts "Before attempting to change message visibility timeout: received 
 #{receive_message_result_before.messages.count} message(s)." 

  receive_message_result_before.messages.each do |message| 
    sqs.change_message_visibility({ 
                                    queue_url: queue_url, 
                                    receipt_handle: message.receipt_handle, 
                                    visibility_timeout: 30 # This message will 
 not be visible for 30 seconds after first receipt. 
                                  }) 
  end 

  # Try to retrieve the original messages after setting their visibility timeout. 
  receive_message_result_after = sqs.receive_message({ 
                                                       queue_url: queue_url, 
                                                       max_number_of_messages: 10 
                                                     }) 

  puts "\nAfter attempting to change message visibility timeout: received 
 #{receive_message_result_after.messages.count} message(s)."
rescue Aws::SQS::Errors::NonExistentQueue 
  puts "Cannot receive messages for a queue named '#{queue_name}', as it does not 
 exist."
end

• For API details, see ChangeMessageVisibility in Amazon SDK for Ruby API Reference.

Actions 254

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/ChangeMessageVisibility


Amazon Simple Queue Service Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use ChangeMessageVisibilityBatch with a CLI

The following code examples show how to use ChangeMessageVisibilityBatch.

CLI

Amazon CLI

To change multiple messages' timeout visibilities as a batch

This example changes the 2 specified messages' timeout visibilities to 10 hours (10 hours * 
60 minutes * 60 seconds).

Command:

aws sqs change-message-visibility-batch --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --entries file://change-message-
visibility-batch.json

Input file (change-message-visibility-batch.json):

[ 
  { 
    "Id": "FirstMessage", 
        "ReceiptHandle": "AQEBhz2q...Jf3kaw==", 
        "VisibilityTimeout": 36000 
  }, 
  { 
    "Id": "SecondMessage", 
        "ReceiptHandle": "AQEBkTUH...HifSnw==", 
        "VisibilityTimeout": 36000 
  }
]

Output:

{ 
  "Successful": [ 

Actions 255



Amazon Simple Queue Service Developer Guide

    { 
      "Id": "SecondMessage" 
    }, 
    { 
      "Id": "FirstMessage" 
    } 
  ]
}

• For API details, see ChangeMessageVisibilityBatch in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example changes the visibility timeout for 2 messages with the specified 
receipt handles in the specified queue. The first message's visibility timeout is changed 
to 10 hours (10 hours * 60 minutes * 60 seconds = 36000 seconds). The second message's 
visibility timeout is changed to 5 hours (5 hours * 60 minutes * 60 seconds = 18000 
seconds).

$changeVisibilityRequest1 = New-Object 
 Amazon.SQS.Model.ChangeMessageVisibilityBatchRequestEntry
$changeVisibilityRequest1.Id = "Request1"
$changeVisibilityRequest1.ReceiptHandle = "AQEBd329...v6gl8Q=="
$changeVisibilityRequest1.VisibilityTimeout = 36000

$changeVisibilityRequest2 = New-Object 
 Amazon.SQS.Model.ChangeMessageVisibilityBatchRequestEntry
$changeVisibilityRequest2.Id = "Request2"
$changeVisibilityRequest2.ReceiptHandle = "AQEBgGDh...J/Iqww=="
$changeVisibilityRequest2.VisibilityTimeout = 18000

Edit-SQSMessageVisibilityBatch -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue -Entry $changeVisibilityRequest1, 
 $changeVisibilityRequest2

Output:

Failed    Successful                                                              
        

Actions 256

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/change-message-visibility-batch.html


Amazon Simple Queue Service Developer Guide

------    ----------                                                              
        
{}        {Request2, Request1}

• For API details, see ChangeMessageVisibilityBatch in Amazon Tools for PowerShell Cmdlet 
Reference (V4).

Tools for PowerShell V5

Example 1: This example changes the visibility timeout for 2 messages with the specified 
receipt handles in the specified queue. The first message's visibility timeout is changed 
to 10 hours (10 hours * 60 minutes * 60 seconds = 36000 seconds). The second message's 
visibility timeout is changed to 5 hours (5 hours * 60 minutes * 60 seconds = 18000 
seconds).

$changeVisibilityRequest1 = New-Object 
 Amazon.SQS.Model.ChangeMessageVisibilityBatchRequestEntry
$changeVisibilityRequest1.Id = "Request1"
$changeVisibilityRequest1.ReceiptHandle = "AQEBd329...v6gl8Q=="
$changeVisibilityRequest1.VisibilityTimeout = 36000

$changeVisibilityRequest2 = New-Object 
 Amazon.SQS.Model.ChangeMessageVisibilityBatchRequestEntry
$changeVisibilityRequest2.Id = "Request2"
$changeVisibilityRequest2.ReceiptHandle = "AQEBgGDh...J/Iqww=="
$changeVisibilityRequest2.VisibilityTimeout = 18000

Edit-SQSMessageVisibilityBatch -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue -Entry $changeVisibilityRequest1, 
 $changeVisibilityRequest2

Output:

Failed    Successful                                                              
        
------    ----------                                                              
        
{}        {Request2, Request1}

• For API details, see ChangeMessageVisibilityBatch in Amazon Tools for PowerShell Cmdlet 
Reference (V5).

Actions 257

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference


Amazon Simple Queue Service Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use CreateQueue with an Amazon SDK or CLI

The following code examples show how to use CreateQueue.

Action examples are code excerpts from larger programs and must be run in context. You can see 
this action in context in the following code examples:

• Publish messages to queues

• Send and receive batches of messages

• Use the Amazon SQS Java Messaging Library to work with the JMS interface

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Create a queue with a specific name.

    /// <summary> 
    /// Create a queue with a specific name. 
    /// </summary> 
    /// <param name="queueName">The name for the queue.</param> 
    /// <param name="useFifoQueue">True to use a FIFO queue.</param> 
    /// <returns>The url for the queue.</returns> 
    public async Task<string> CreateQueueWithName(string queueName, bool 
 useFifoQueue) 
    { 
        int maxMessage = 256 * 1024; 
        var queueAttributes = new Dictionary<string, string> 
        { 
            { 

Actions 258

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples


Amazon Simple Queue Service Developer Guide

                QueueAttributeName.MaximumMessageSize, 
                maxMessage.ToString() 
            } 
        }; 

        var createQueueRequest = new CreateQueueRequest() 
        { 
            QueueName = queueName, 
            Attributes = queueAttributes 
        }; 

        if (useFifoQueue) 
        { 
            // Update the name if it is not correct for a FIFO queue. 
            if (!queueName.EndsWith(".fifo")) 
            { 
                createQueueRequest.QueueName = queueName + ".fifo"; 
            } 

            // Add an attribute for a FIFO queue. 
            createQueueRequest.Attributes.Add( 
                QueueAttributeName.FifoQueue, "true"); 
        } 

        var createResponse = await _amazonSQSClient.CreateQueueAsync( 
            new CreateQueueRequest() 
            { 
                QueueName = queueName 
            }); 
        return createResponse.QueueUrl; 
    }

Create an Amazon SQS queue and send a message to it.

    using System; 
    using System.Collections.Generic; 
    using System.Threading.Tasks; 
    using Amazon; 
    using Amazon.SQS; 
    using Amazon.SQS.Model; 

    public class CreateSendExample 

Actions 259



Amazon Simple Queue Service Developer Guide

    { 
        // Specify your AWS Region (an example Region is shown). 
        private static readonly string QueueName = "Example_Queue"; 
        private static readonly RegionEndpoint ServiceRegion = 
 RegionEndpoint.USWest2; 
        private static IAmazonSQS client; 

        public static async Task Main() 
        { 
            client = new AmazonSQSClient(ServiceRegion); 
            var createQueueResponse = await CreateQueue(client, QueueName); 

            string queueUrl = createQueueResponse.QueueUrl; 

            Dictionary<string, MessageAttributeValue> messageAttributes = new 
 Dictionary<string, MessageAttributeValue> 
            { 
                { "Title",   new MessageAttributeValue { DataType = "String", 
 StringValue = "The Whistler" } }, 
                { "Author",  new MessageAttributeValue { DataType = "String", 
 StringValue = "John Grisham" } }, 
                { "WeeksOn", new MessageAttributeValue { DataType = "Number", 
 StringValue = "6" } }, 
            }; 

            string messageBody = "Information about current NY Times fiction 
 bestseller for week of 12/11/2016."; 

            var sendMsgResponse = await SendMessage(client, queueUrl, 
 messageBody, messageAttributes); 
        } 

        /// <summary> 
        /// Creates a new Amazon SQS queue using the queue name passed to it 
        /// in queueName. 
        /// </summary> 
        /// <param name="client">An SQS client object used to send the message.</
param> 
        /// <param name="queueName">A string representing the name of the queue 
        /// to create.</param> 
        /// <returns>A CreateQueueResponse that contains information about the 
        /// newly created queue.</returns> 
        public static async Task<CreateQueueResponse> CreateQueue(IAmazonSQS 
 client, string queueName) 

Actions 260



Amazon Simple Queue Service Developer Guide

        { 
            var request = new CreateQueueRequest 
            { 
                QueueName = queueName, 
                Attributes = new Dictionary<string, string> 
                { 
                    { "DelaySeconds", "60" }, 
                    { "MessageRetentionPeriod", "86400" }, 
                }, 
            }; 

            var response = await client.CreateQueueAsync(request); 
            Console.WriteLine($"Created a queue with URL : {response.QueueUrl}"); 

            return response; 
        } 

        /// <summary> 
        /// Sends a message to an SQS queue. 
        /// </summary> 
        /// <param name="client">An SQS client object used to send the message.</
param> 
        /// <param name="queueUrl">The URL of the queue to which to send the 
        /// message.</param> 
        /// <param name="messageBody">A string representing the body of the 
        /// message to be sent to the queue.</param> 
        /// <param name="messageAttributes">Attributes for the message to be 
        /// sent to the queue.</param> 
        /// <returns>A SendMessageResponse object that contains information 
        /// about the message that was sent.</returns> 
        public static async Task<SendMessageResponse> SendMessage( 
            IAmazonSQS client, 
            string queueUrl, 
            string messageBody, 
            Dictionary<string, MessageAttributeValue> messageAttributes) 
        { 
            var sendMessageRequest = new SendMessageRequest 
            { 
                DelaySeconds = 10, 
                MessageAttributes = messageAttributes, 
                MessageBody = messageBody, 
                QueueUrl = queueUrl, 
            }; 

Actions 261



Amazon Simple Queue Service Developer Guide

            var response = await client.SendMessageAsync(sendMessageRequest); 
            Console.WriteLine($"Sent a message with id : {response.MessageId}"); 

            return response; 
        } 
    }

• For API details, see CreateQueue in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

//! Create an Amazon Simple Queue Service (Amazon SQS) queue.
/*! 
  \param queueName: An Amazon SQS queue name. 
  \param clientConfiguration: AWS client configuration. 
  \return bool: Function succeeded. 
 */
bool AwsDoc::SQS::createQueue(const Aws::String &queueName, 
                              const Aws::Client::ClientConfiguration 
 &clientConfiguration) { 
    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

    Aws::SQS::Model::CreateQueueRequest request; 
    request.SetQueueName(queueName); 

    const Aws::SQS::Model::CreateQueueOutcome outcome = 
 sqsClient.CreateQueue(request); 
    if (outcome.IsSuccess()) { 

Actions 262

https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/CreateQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

        std::cout << "Successfully created queue " << queueName << " with a queue 
 URL " 
                  << outcome.GetResult().GetQueueUrl() << "." << std::endl; 
    } 
    else { 
        std::cerr << "Error creating queue " << queueName << ": " << 
                  outcome.GetError().GetMessage() << std::endl; 
    } 

    return outcome.IsSuccess();
}

• For API details, see CreateQueue in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To create a queue

This example creates a queue with the specified name, sets the message retention period to 
3 days (3 days * 24 hours * 60 minutes * 60 seconds), and sets the queue's dead letter queue 
to the specified queue with a maximum receive count of 1,000 messages.

Command:

aws sqs create-queue --queue-name MyQueue --attributes file://create-queue.json

Input file (create-queue.json):

{ 
  "RedrivePolicy": "{\"deadLetterTargetArn\":\"arn:aws:sqs:us-
east-1:80398EXAMPLE:MyDeadLetterQueue\",\"maxReceiveCount\":\"1000\"}", 
  "MessageRetentionPeriod": "259200"
}

Output:

{ 
  "QueueUrl": "https://queue.amazonaws.com/80398EXAMPLE/MyQueue"

Actions 263

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/CreateQueue


Amazon Simple Queue Service Developer Guide

}

• For API details, see CreateQueue in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import ( 
 "context" 
 "encoding/json" 
 "fmt" 
 "log" 

 "github.com/aws/aws-sdk-go-v2/aws" 
 "github.com/aws/aws-sdk-go-v2/service/sqs" 
 "github.com/aws/aws-sdk-go-v2/service/sqs/types"
)

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct { 
 SqsClient *sqs.Client
}

// CreateQueue creates an Amazon SQS queue with the specified name. You can 
 specify
// whether the queue is created as a FIFO queue.
func (actor SqsActions) CreateQueue(ctx context.Context, queueName string, 
 isFifoQueue bool) (string, error) { 
 var queueUrl string 
 queueAttributes := map[string]string{} 
 if isFifoQueue { 

Actions 264

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/create-queue.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

  queueAttributes["FifoQueue"] = "true" 
 } 
 queue, err := actor.SqsClient.CreateQueue(ctx, &sqs.CreateQueueInput{ 
  QueueName:  aws.String(queueName), 
  Attributes: queueAttributes, 
 }) 
 if err != nil { 
  log.Printf("Couldn't create queue %v. Here's why: %v\n", queueName, err) 
 } else { 
  queueUrl = *queue.QueueUrl 
 } 

 return queueUrl, err
}

• For API details, see CreateQueue in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.ChangeMessageVisibilityRequest;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;
import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlResponse;
import software.amazon.awssdk.services.sqs.model.ListQueuesRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesResponse;
import software.amazon.awssdk.services.sqs.model.Message;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest;
import software.amazon.awssdk.services.sqs.model.SendMessageBatchRequest;
import software.amazon.awssdk.services.sqs.model.SendMessageBatchRequestEntry;

Actions 265

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.CreateQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

import software.amazon.awssdk.services.sqs.model.SendMessageRequest;
import software.amazon.awssdk.services.sqs.model.SqsException;
import java.util.List;

/** 
 * Before running this Java V2 code example, set up your development 
 * environment, including your credentials. 
 * 
 * For more information, see the following documentation topic: 
 * 
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html 
 */
public class SQSExample { 
    public static void main(String[] args) { 
        String queueName = "queue" + System.currentTimeMillis(); 
        SqsClient sqsClient = SqsClient.builder() 
                .region(Region.US_WEST_2) 
                .build(); 

        // Perform various tasks on the Amazon SQS queue. 
        String queueUrl = createQueue(sqsClient, queueName); 
        listQueues(sqsClient); 
        listQueuesFilter(sqsClient, queueUrl); 
        List<Message> messages = receiveMessages(sqsClient, queueUrl); 
        sendBatchMessages(sqsClient, queueUrl); 
        changeMessages(sqsClient, queueUrl, messages); 
        deleteMessages(sqsClient, queueUrl, messages); 
        sqsClient.close(); 
    } 

    public static String createQueue(SqsClient sqsClient, String queueName) { 
        try { 
            System.out.println("\nCreate Queue"); 

            CreateQueueRequest createQueueRequest = CreateQueueRequest.builder() 
                    .queueName(queueName) 
                    .build(); 

            sqsClient.createQueue(createQueueRequest); 

            System.out.println("\nGet queue url"); 

            GetQueueUrlResponse getQueueUrlResponse = sqsClient 

Actions 266



Amazon Simple Queue Service Developer Guide

                   
 .getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build()); 
            return getQueueUrlResponse.queueUrl(); 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
        return ""; 
    } 

    public static void listQueues(SqsClient sqsClient) { 

        System.out.println("\nList Queues"); 
        String prefix = "que"; 

        try { 
            ListQueuesRequest listQueuesRequest = 
 ListQueuesRequest.builder().queueNamePrefix(prefix).build(); 
            ListQueuesResponse listQueuesResponse = 
 sqsClient.listQueues(listQueuesRequest); 
            for (String url : listQueuesResponse.queueUrls()) { 
                System.out.println(url); 
            } 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    } 

    public static void listQueuesFilter(SqsClient sqsClient, String queueUrl) { 
        // List queues with filters 
        String namePrefix = "queue"; 
        ListQueuesRequest filterListRequest = ListQueuesRequest.builder() 
                .queueNamePrefix(namePrefix) 
                .build(); 

        ListQueuesResponse listQueuesFilteredResponse = 
 sqsClient.listQueues(filterListRequest); 
        System.out.println("Queue URLs with prefix: " + namePrefix); 
        for (String url : listQueuesFilteredResponse.queueUrls()) { 
            System.out.println(url); 
        } 

Actions 267



Amazon Simple Queue Service Developer Guide

        System.out.println("\nSend message"); 
        try { 
            sqsClient.sendMessage(SendMessageRequest.builder() 
                    .queueUrl(queueUrl) 
                    .messageBody("Hello world!") 
                    .delaySeconds(10) 
                    .build()); 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    } 

    public static void sendBatchMessages(SqsClient sqsClient, String queueUrl) { 

        System.out.println("\nSend multiple messages"); 
        try { 
            SendMessageBatchRequest sendMessageBatchRequest = 
 SendMessageBatchRequest.builder() 
                    .queueUrl(queueUrl) 
                    
 .entries(SendMessageBatchRequestEntry.builder().id("id1").messageBody("Hello 
 from msg 1").build(), 
                            
 SendMessageBatchRequestEntry.builder().id("id2").messageBody("msg 
 2").delaySeconds(10) 
                                    .build()) 
                    .build(); 
            sqsClient.sendMessageBatch(sendMessageBatchRequest); 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    } 

    public static List<Message> receiveMessages(SqsClient sqsClient, String 
 queueUrl) { 

        System.out.println("\nReceive messages"); 
        try { 

Actions 268



Amazon Simple Queue Service Developer Guide

            ReceiveMessageRequest receiveMessageRequest = 
 ReceiveMessageRequest.builder() 
                    .queueUrl(queueUrl) 
                    .maxNumberOfMessages(5) 
                    .build(); 
            return sqsClient.receiveMessage(receiveMessageRequest).messages(); 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
        return null; 
    } 

    public static void changeMessages(SqsClient sqsClient, String queueUrl, 
 List<Message> messages) { 

        System.out.println("\nChange Message Visibility"); 
        try { 

            for (Message message : messages) { 
                ChangeMessageVisibilityRequest req = 
 ChangeMessageVisibilityRequest.builder() 
                        .queueUrl(queueUrl) 
                        .receiptHandle(message.receiptHandle()) 
                        .visibilityTimeout(100) 
                        .build(); 
                sqsClient.changeMessageVisibility(req); 
            } 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    } 

    public static void deleteMessages(SqsClient sqsClient, String queueUrl, 
 List<Message> messages) { 
        System.out.println("\nDelete Messages"); 

        try { 
            for (Message message : messages) { 
                DeleteMessageRequest deleteMessageRequest = 
 DeleteMessageRequest.builder() 

Actions 269



Amazon Simple Queue Service Developer Guide

                        .queueUrl(queueUrl) 
                        .receiptHandle(message.receiptHandle()) 
                        .build(); 
                sqsClient.deleteMessage(deleteMessageRequest); 
            } 
        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    }
}

• For API details, see CreateQueue in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Create an Amazon SQS standard queue.

import { CreateQueueCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_NAME = "test-queue";

export const main = async (sqsQueueName = SQS_QUEUE_NAME) => { 
  const command = new CreateQueueCommand({ 
    QueueName: sqsQueueName, 
    Attributes: { 
      DelaySeconds: "60", 
      MessageRetentionPeriod: "86400", 
    }, 
  }); 

  const response = await client.send(command); 

Actions 270

https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/CreateQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

  console.log(response); 
  return response;
};

Create an Amazon SQS queue with long polling.

import { CreateQueueCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_NAME = "queue_name";

export const main = async (queueName = SQS_QUEUE_NAME) => { 
  const response = await client.send( 
    new CreateQueueCommand({ 
      QueueName: queueName, 
      Attributes: { 
        // When the wait time for the ReceiveMessage API action is greater than 
 0, 
        // long polling is in effect. The maximum long polling wait time is 20 
        // seconds. Long polling helps reduce the cost of using Amazon SQS by, 
        // eliminating the number of empty responses and false empty responses. 
        // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html 
        ReceiveMessageWaitTimeSeconds: "20", 
      }, 
    }), 
  ); 
  console.log(response); 
  return response;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see CreateQueue in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 271

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-create-queue
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/CreateQueueCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

Create an Amazon SQS standard queue.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  QueueName: "SQS_QUEUE_NAME", 
  Attributes: { 
    DelaySeconds: "60", 
    MessageRetentionPeriod: "86400", 
  },
};

sqs.createQueue(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.QueueUrl); 
  }
});

Create an Amazon SQS queue that waits for a message to arrive.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  QueueName: "SQS_QUEUE_NAME", 
  Attributes: { 
    ReceiveMessageWaitTimeSeconds: "20", 
  },
};

Actions 272



Amazon Simple Queue Service Developer Guide

sqs.createQueue(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.QueueUrl); 
  }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see CreateQueue in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

suspend fun createQueue(queueNameVal: String): String { 
    println("Create Queue") 
    val createQueueRequest = 
        CreateQueueRequest { 
            queueName = queueNameVal 
        } 

    SqsClient.fromEnvironment { region = "us-east-1" }.use { sqsClient -> 
        sqsClient.createQueue(createQueueRequest) 
        println("Get queue url") 

        val getQueueUrlRequest = 
            GetQueueUrlRequest { 
                queueName = queueNameVal 
            } 

        val getQueueUrlResponse = sqsClient.getQueueUrl(getQueueUrlRequest) 
        return getQueueUrlResponse.queueUrl.toString() 

Actions 273

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-create-queue
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/sqs-2012-11-05/CreateQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    }
}

• For API details, see CreateQueue in Amazon SDK for Kotlin API reference.

PowerShell

Tools for PowerShell V4

Example 1: This example creates a queue with the specified name.

New-SQSQueue -QueueName MyQueue

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see CreateQueue in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example creates a queue with the specified name.

New-SQSQueue -QueueName MyQueue

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see CreateQueue in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 274

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

def create_queue(name, attributes=None): 
    """ 
    Creates an Amazon SQS queue. 

    :param name: The name of the queue. This is part of the URL assigned to the 
 queue. 
    :param attributes: The attributes of the queue, such as maximum message size 
 or 
                       whether it's a FIFO queue. 
    :return: A Queue object that contains metadata about the queue and that can 
 be used 
             to perform queue operations like sending and receiving messages. 
    """ 
    if not attributes: 
        attributes = {} 

    try: 
        queue = sqs.create_queue(QueueName=name, Attributes=attributes) 
        logger.info("Created queue '%s' with URL=%s", name, queue.url) 
    except ClientError as error: 
        logger.exception("Couldn't create queue named '%s'.", name) 
        raise error 
    else: 
        return queue

class SqsWrapper: 
    """Wrapper class for managing Amazon SQS operations.""" 

    def __init__(self, sqs_client: Any) -> None: 
        """ 
        Initialize the SqsWrapper. 

        :param sqs_client: A Boto3 Amazon SQS client. 
        """ 
        self.sqs_client = sqs_client 

    @classmethod 
    def from_client(cls) -> 'SqsWrapper': 
        """ 
        Create an SqsWrapper instance using a default boto3 client. 

Actions 275



Amazon Simple Queue Service Developer Guide

        :return: An instance of this class. 
        """ 
        sqs_client = boto3.client('sqs') 
        return cls(sqs_client) 

    def create_queue(self, queue_name: str, is_fifo: bool = False) -> str: 
        """ 
        Create an SQS queue. 

        :param queue_name: The name of the queue to create. 
        :param is_fifo: Whether to create a FIFO queue. 
        :return: The URL of the created queue. 
        :raises ClientError: If the queue creation fails. 
        """ 
        try: 
            # Add .fifo suffix for FIFO queues 
            if is_fifo and not queue_name.endswith('.fifo'): 
                queue_name += '.fifo' 

            attributes = {} 
            if is_fifo: 
                attributes['FifoQueue'] = 'true' 

            response = self.sqs_client.create_queue( 
                QueueName=queue_name, 
                Attributes=attributes 
            ) 

            queue_url = response['QueueUrl'] 
            logger.info(f"Created queue: {queue_name} with URL: {queue_url}") 
            return queue_url 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error creating queue {queue_name}: {error_code} - 
 {e}") 
            raise

• For API details, see CreateQueue in Amazon SDK for Python (Boto3) API Reference.

Actions 276

https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/CreateQueue


Amazon Simple Queue Service Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

# This code example demonstrates how to create a queue in Amazon Simple Queue 
 Service (Amazon SQS).

require 'aws-sdk-sqs'

# @param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
# @param queue_name [String] The name of the queue.
# @return [Boolean] true if the queue was created; otherwise, false.
# @example
#   exit 1 unless queue_created?(
#     Aws::SQS::Client.new(region: 'us-west-2'),
#     'my-queue'
#   )
def queue_created?(sqs_client, queue_name) 
  sqs_client.create_queue(queue_name: queue_name) 
  true
rescue StandardError => e 
  puts "Error creating queue: #{e.message}" 
  false
end

# Full example call:
# Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me 
  region = 'us-west-2' 
  queue_name = 'my-queue' 
  sqs_client = Aws::SQS::Client.new(region: region) 

  puts "Creating the queue named '#{queue_name}'..." 

  if queue_created?(sqs_client, queue_name) 
    puts 'Queue created.' 

Actions 277

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

  else 
    puts 'Queue not created.' 
  end
end

# Example usage:
run_me if $PROGRAM_NAME == __FILE__

• For API details, see CreateQueue in Amazon SDK for Ruby API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Create an Amazon SQS standard queue.

    TRY. 
        oo_result = lo_sqs->createqueue( iv_queuename = iv_queue_name ).        " 
 oo_result is returned for testing purposes. " 
        MESSAGE 'SQS queue created.' TYPE 'I'. 
      CATCH /aws1/cx_sqsqueuedeldrecently. 
        MESSAGE 'After deleting a queue, wait 60 seconds before creating another 
 queue with the same name.' TYPE 'E'. 
      CATCH /aws1/cx_sqsqueuenameexists. 
        MESSAGE 'A queue with this name already exists.' TYPE 'E'. 
    ENDTRY.

Create an Amazon SQS queue that waits for a message to arrive.

    TRY. 
        DATA lt_attributes TYPE /aws1/cl_sqsqueueattrmap_w=>tt_queueattributemap. 
        DATA ls_attribute TYPE /aws1/
cl_sqsqueueattrmap_w=>ts_queueattributemap_maprow. 

Actions 278

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/CreateQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples


Amazon Simple Queue Service Developer Guide

        ls_attribute-key = 'ReceiveMessageWaitTimeSeconds'.               " Time 
 in seconds for long polling, such as how long the call waits for a message to 
 arrive in the queue before returning. " 
        ls_attribute-value = NEW /aws1/cl_sqsqueueattrmap_w( iv_value = 
 iv_wait_time ). 
        INSERT ls_attribute INTO TABLE lt_attributes. 
        oo_result = lo_sqs->createqueue(                  " oo_result is returned 
 for testing purposes. " 
                iv_queuename = iv_queue_name 
                it_attributes = lt_attributes ). 
        MESSAGE 'SQS queue created.' TYPE 'I'. 
      CATCH /aws1/cx_sqsqueuedeldrecently. 
        MESSAGE 'After deleting a queue, wait 60 seconds before creating another 
 queue with the same name.' TYPE 'E'. 
      CATCH /aws1/cx_sqsqueuenameexists. 
        MESSAGE 'A queue with this name already exists.' TYPE 'E'. 
    ENDTRY.

• For API details, see CreateQueue in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import AWSSQS 

        let config = try await SQSClient.SQSClientConfiguration(region: region) 
        let sqsClient = SQSClient(config: config) 

        let output = try await sqsClient.createQueue( 
            input: CreateQueueInput( 
                queueName: queueName 
            ) 
        ) 

Actions 279

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

        guard let queueUrl = output.queueUrl else { 
            print("No queue URL returned.") 
            return 
        }

• For API details, see CreateQueue in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use DeleteMessage with an Amazon SDK or CLI

The following code examples show how to use DeleteMessage.

Action examples are code excerpts from larger programs and must be run in context. You can see 
this action in context in the following code example:

• Send and receive batches of messages

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Receive a message from an Amazon SQS queue and then delete the message.

        public static async Task Main() 
        { 
            // If the AWS Region you want to use is different from 
            // the AWS Region defined for the default user, supply 
            // the specify your AWS Region to the client constructor. 
            var client = new AmazonSQSClient(); 
            string queueName = "Example_Queue"; 

Actions 280

https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/createqueue(input:)
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SQS#code-examples


Amazon Simple Queue Service Developer Guide

            var queueUrl = await GetQueueUrl(client, queueName); 
            Console.WriteLine($"The SQS queue's URL is {queueUrl}"); 

            var response = await ReceiveAndDeleteMessage(client, queueUrl); 

            Console.WriteLine($"Message: {response.Messages[0]}"); 
        } 

        /// <summary> 
        /// Retrieve the queue URL for the queue named in the queueName 
        /// property using the client object. 
        /// </summary> 
        /// <param name="client">The Amazon SQS client used to retrieve the 
        /// queue URL.</param> 
        /// <param name="queueName">A string representing  name of the queue 
        /// for which to retrieve the URL.</param> 
        /// <returns>The URL of the queue.</returns> 
        public static async Task<string> GetQueueUrl(IAmazonSQS client, string 
 queueName) 
        { 
            var request = new GetQueueUrlRequest 
            { 
                QueueName = queueName, 
            }; 

            GetQueueUrlResponse response = await 
 client.GetQueueUrlAsync(request); 
            return response.QueueUrl; 
        } 

        /// <summary> 
        /// Retrieves the message from the quque at the URL passed in the 
        /// queueURL parameters using the client. 
        /// </summary> 
        /// <param name="client">The SQS client used to retrieve a message.</
param> 
        /// <param name="queueUrl">The URL of the queue from which to retrieve 
        /// a message.</param> 
        /// <returns>The response from the call to ReceiveMessageAsync.</returns> 
        public static async Task<ReceiveMessageResponse> 
 ReceiveAndDeleteMessage(IAmazonSQS client, string queueUrl) 
        { 
            // Receive a single message from the queue. 
            var receiveMessageRequest = new ReceiveMessageRequest 

Actions 281



Amazon Simple Queue Service Developer Guide

            { 
                AttributeNames = { "SentTimestamp" }, 
                MaxNumberOfMessages = 1, 
                MessageAttributeNames = { "All" }, 
                QueueUrl = queueUrl, 
                VisibilityTimeout = 0, 
                WaitTimeSeconds = 0, 
            }; 

            var receiveMessageResponse = await 
 client.ReceiveMessageAsync(receiveMessageRequest); 

            // Delete the received message from the queue. 
            var deleteMessageRequest = new DeleteMessageRequest 
            { 
                QueueUrl = queueUrl, 
                ReceiptHandle = receiveMessageResponse.Messages[0].ReceiptHandle, 
            }; 

            await client.DeleteMessageAsync(deleteMessageRequest); 

            return receiveMessageResponse; 
        } 
    }

• For API details, see DeleteMessage in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

Actions 282

https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/DeleteMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

//! Delete a message from an Amazon Simple Queue Service (Amazon SQS) queue.
/*! 
  \param queueUrl: An Amazon SQS queue URL. 
  \param messageReceiptHandle: A message receipt handle. 
  \param clientConfiguration: AWS client configuration. 
  \return bool: Function succeeded. 
 */
bool AwsDoc::SQS::deleteMessage(const Aws::String &queueUrl, 
                                const Aws::String &messageReceiptHandle, 
                                const Aws::Client::ClientConfiguration 
 &clientConfiguration) { 
    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

    Aws::SQS::Model::DeleteMessageRequest request; 
    request.SetQueueUrl(queueUrl); 
    request.SetReceiptHandle(messageReceiptHandle); 

    const Aws::SQS::Model::DeleteMessageOutcome outcome = 
 sqsClient.DeleteMessage( 
            request); 
    if (outcome.IsSuccess()) { 
        std::cout << "Successfully deleted message from queue " << queueUrl 
                  << std::endl; 
    } 
    else { 
        std::cerr << "Error deleting message from queue " << queueUrl << ": " << 
                  outcome.GetError().GetMessage() << std::endl; 
    } 

    return outcome.IsSuccess();
}

• For API details, see DeleteMessage in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To delete a message

This example deletes the specified message.

Actions 283

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/DeleteMessage


Amazon Simple Queue Service Developer Guide

Command:

aws sqs delete-message --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --receipt-handle AQEBRXTo...q2doVA==

Output:

None.

• For API details, see DeleteMessage in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        try { 
            for (Message message : messages) { 
                DeleteMessageRequest deleteMessageRequest = 
 DeleteMessageRequest.builder() 
                        .queueUrl(queueUrl) 
                        .receiptHandle(message.receiptHandle()) 
                        .build(); 
                sqsClient.deleteMessage(deleteMessageRequest); 
            } 
        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        }

• For API details, see DeleteMessage in Amazon SDK for Java 2.x API Reference.

Actions 284

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/delete-message.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/DeleteMessage


Amazon Simple Queue Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Receive and delete Amazon SQS messages.

import { 
  ReceiveMessageCommand, 
  DeleteMessageCommand, 
  SQSClient, 
  DeleteMessageBatchCommand,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

const receiveMessage = (queueUrl) => 
  client.send( 
    new ReceiveMessageCommand({ 
      AttributeNames: ["SentTimestamp"], 
      MaxNumberOfMessages: 10, 
      MessageAttributeNames: ["All"], 
      QueueUrl: queueUrl, 
      WaitTimeSeconds: 20, 
      VisibilityTimeout: 20, 
    }), 
  );

export const main = async (queueUrl = SQS_QUEUE_URL) => { 
  const { Messages } = await receiveMessage(queueUrl); 

  if (!Messages) { 
    return; 
  } 

  if (Messages.length === 1) { 
    console.log(Messages[0].Body); 

Actions 285

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    await client.send( 
      new DeleteMessageCommand({ 
        QueueUrl: queueUrl, 
        ReceiptHandle: Messages[0].ReceiptHandle, 
      }), 
    ); 
  } else { 
    await client.send( 
      new DeleteMessageBatchCommand({ 
        QueueUrl: queueUrl, 
        Entries: Messages.map((message) => ({ 
          Id: message.MessageId, 
          ReceiptHandle: message.ReceiptHandle, 
        })), 
      }), 
    ); 
  }
};

• For API details, see DeleteMessage in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Receive and delete Amazon SQS messages.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "SQS_QUEUE_URL";

var params = { 

Actions 286

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteMessageCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

  AttributeNames: ["SentTimestamp"], 
  MaxNumberOfMessages: 10, 
  MessageAttributeNames: ["All"], 
  QueueUrl: queueURL, 
  VisibilityTimeout: 20, 
  WaitTimeSeconds: 0,
};

sqs.receiveMessage(params, function (err, data) { 
  if (err) { 
    console.log("Receive Error", err); 
  } else if (data.Messages) { 
    var deleteParams = { 
      QueueUrl: queueURL, 
      ReceiptHandle: data.Messages[0].ReceiptHandle, 
    }; 
    sqs.deleteMessage(deleteParams, function (err, data) { 
      if (err) { 
        console.log("Delete Error", err); 
      } else { 
        console.log("Message Deleted", data); 
      } 
    }); 
  }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see DeleteMessage in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

suspend fun deleteMessages(queueUrlVal: String) { 

Actions 287

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/sqs-examples-send-receive-messages.html#sqs-examples-send-receive-messages-receiving
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/sqs-2012-11-05/DeleteMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    println("Delete Messages from $queueUrlVal") 

    val purgeRequest = 
        PurgeQueueRequest { 
            queueUrl = queueUrlVal 
        } 

    SqsClient.fromEnvironment { region = "us-east-1" }.use { sqsClient -> 
        sqsClient.purgeQueue(purgeRequest) 
        println("Messages are successfully deleted from $queueUrlVal") 
    }
}

suspend fun deleteQueue(queueUrlVal: String) { 
    val request = 
        DeleteQueueRequest { 
            queueUrl = queueUrlVal 
        } 

    SqsClient.fromEnvironment { region = "us-east-1" }.use { sqsClient -> 
        sqsClient.deleteQueue(request) 
        println("$queueUrlVal was deleted!") 
    }
}

• For API details, see DeleteMessage in Amazon SDK for Kotlin API reference.

PowerShell

Tools for PowerShell V4

Example 1: This example deletes the message with the specified receipt handle from the 
specified queue.

Remove-SQSMessage -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/
MyQueue -ReceiptHandle AQEBd329...v6gl8Q==

• For API details, see DeleteMessage in Amazon Tools for PowerShell Cmdlet Reference (V4).

Actions 288

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://docs.aws.amazon.com/powershell/v4/reference


Amazon Simple Queue Service Developer Guide

Tools for PowerShell V5

Example 1: This example deletes the message with the specified receipt handle from the 
specified queue.

Remove-SQSMessage -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/
MyQueue -ReceiptHandle AQEBd329...v6gl8Q==

• For API details, see DeleteMessage in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

def delete_message(message): 
    """ 
    Delete a message from a queue. Clients must delete messages after they 
    are received and processed to remove them from the queue. 

    :param message: The message to delete. The message's queue URL is contained 
 in 
                    the message's metadata. 
    :return: None 
    """ 
    try: 
        message.delete() 
        logger.info("Deleted message: %s", message.message_id) 
    except ClientError as error: 
        logger.exception("Couldn't delete message: %s", message.message_id) 
        raise error

• For API details, see DeleteMessage in Amazon SDK for Python (Boto3) API Reference.

Actions 289

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/DeleteMessage


Amazon Simple Queue Service Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

    TRY. 
        lo_sqs->deletemessage( 
           iv_queueurl = iv_queue_url 
           iv_receipthandle = iv_receipt_handle ). 
        MESSAGE 'Message deleted from SQS queue.' TYPE 'I'. 
      CATCH /aws1/cx_sqsinvalididformat. 
        MESSAGE 'The specified receipt handle is not valid.' TYPE 'E'. 
      CATCH /aws1/cx_sqsreceipthandleisinv. 
        MESSAGE 'The specified receipt handle is not valid for the current 
 version.' TYPE 'E'. 
    ENDTRY.

• For API details, see DeleteMessage in Amazon SDK for SAP ABAP API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use DeleteMessageBatch with an Amazon SDK or CLI

The following code examples show how to use DeleteMessageBatch.

Action examples are code excerpts from larger programs and must be run in context. You can see 
this action in context in the following code examples:

• Process S3 event notifications

• Publish messages to queues

• Send and receive batches of messages

Actions 290

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html


Amazon Simple Queue Service Developer Guide

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

    /// <summary> 
    /// Delete a batch of messages from a queue by its url. 
    /// </summary> 
    /// <param name="queueUrl">The url of the queue.</param> 
    /// <returns>True if successful.</returns> 
    public async Task<bool> DeleteMessageBatchByUrl(string queueUrl, 
 List<Message> messages) 
    { 
        var deleteRequest = new DeleteMessageBatchRequest() 
        { 
            QueueUrl = queueUrl, 
            Entries = new List<DeleteMessageBatchRequestEntry>() 
        }; 
        foreach (var message in messages) 
        { 
            deleteRequest.Entries.Add(new DeleteMessageBatchRequestEntry() 
            { 
                ReceiptHandle = message.ReceiptHandle, 
                Id = message.MessageId 
            }); 
        } 

        var deleteResponse = await 
 _amazonSQSClient.DeleteMessageBatchAsync(deleteRequest); 

        return deleteResponse.Failed.Any(); 
    }

• For API details, see DeleteMessageBatch in Amazon SDK for .NET API Reference.

Actions 291

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples
https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/DeleteMessageBatch


Amazon Simple Queue Service Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1"; 

    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

            Aws::SQS::Model::DeleteMessageBatchRequest request; 
            request.SetQueueUrl(queueURLS[i]); 
            int id = 1; // Ids must be unique within a batch delete request. 
            for (const Aws::String &receiptHandle: receiptHandles) { 
                Aws::SQS::Model::DeleteMessageBatchRequestEntry entry; 
                entry.SetId(std::to_string(id)); 
                ++id; 
                entry.SetReceiptHandle(receiptHandle); 
                request.AddEntries(entry); 
            } 

            Aws::SQS::Model::DeleteMessageBatchOutcome outcome = 
                    sqsClient.DeleteMessageBatch(request); 

            if (outcome.IsSuccess()) { 
                std::cout << "The batch deletion of messages was successful." 
                          << std::endl; 
            } 
            else { 
                std::cerr << "Error with SQS::DeleteMessageBatch. " 
                          << outcome.GetError().GetMessage() 
                          << std::endl; 
                cleanUp(topicARN, 
                        queueURLS, 
                        subscriptionARNS, 
                        snsClient, 

Actions 292

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

                        sqsClient); 

                return false; 
            }

• For API details, see DeleteMessageBatch in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To delete multiple messages as a batch

This example deletes the specified messages.

Command:

aws sqs delete-message-batch --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --entries file://delete-message-
batch.json

Input file (delete-message-batch.json):

[ 
  { 
        "Id": "FirstMessage", 
        "ReceiptHandle": "AQEB1mgl...Z4GuLw==" 
  }, 
  { 
    "Id": "SecondMessage", 
        "ReceiptHandle": "AQEBLsYM...VQubAA==" 
  }
]

Output:

{ 
  "Successful": [ 
    { 
      "Id": "FirstMessage" 

Actions 293

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/DeleteMessageBatch


Amazon Simple Queue Service Developer Guide

    }, 
    { 
      "Id": "SecondMessage" 
    } 
  ]
}

• For API details, see DeleteMessageBatch in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import ( 
 "context" 
 "encoding/json" 
 "fmt" 
 "log" 

 "github.com/aws/aws-sdk-go-v2/aws" 
 "github.com/aws/aws-sdk-go-v2/service/sqs" 
 "github.com/aws/aws-sdk-go-v2/service/sqs/types"
)

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct { 
 SqsClient *sqs.Client
}

// DeleteMessages uses the DeleteMessageBatch action to delete a batch of 
 messages from
// an Amazon SQS queue.

Actions 294

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/delete-message-batch.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

func (actor SqsActions) DeleteMessages(ctx context.Context, queueUrl string, 
 messages []types.Message) error { 
 entries := make([]types.DeleteMessageBatchRequestEntry, len(messages)) 
 for msgIndex := range messages { 
  entries[msgIndex].Id = aws.String(fmt.Sprintf("%v", msgIndex)) 
  entries[msgIndex].ReceiptHandle = messages[msgIndex].ReceiptHandle 
 } 
 _, err := actor.SqsClient.DeleteMessageBatch(ctx, &sqs.DeleteMessageBatchInput{ 
  Entries:  entries, 
  QueueUrl: aws.String(queueUrl), 
 }) 
 if err != nil { 
  log.Printf("Couldn't delete messages from queue %v. Here's why: %v\n", 
 queueUrl, err) 
 } 
 return err
}

• For API details, see DeleteMessageBatch in Amazon SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import { 
  ReceiveMessageCommand, 
  DeleteMessageCommand, 
  SQSClient, 
  DeleteMessageBatchCommand,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

Actions 295

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.DeleteMessageBatch
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

const receiveMessage = (queueUrl) => 
  client.send( 
    new ReceiveMessageCommand({ 
      AttributeNames: ["SentTimestamp"], 
      MaxNumberOfMessages: 10, 
      MessageAttributeNames: ["All"], 
      QueueUrl: queueUrl, 
      WaitTimeSeconds: 20, 
      VisibilityTimeout: 20, 
    }), 
  );

export const main = async (queueUrl = SQS_QUEUE_URL) => { 
  const { Messages } = await receiveMessage(queueUrl); 

  if (!Messages) { 
    return; 
  } 

  if (Messages.length === 1) { 
    console.log(Messages[0].Body); 
    await client.send( 
      new DeleteMessageCommand({ 
        QueueUrl: queueUrl, 
        ReceiptHandle: Messages[0].ReceiptHandle, 
      }), 
    ); 
  } else { 
    await client.send( 
      new DeleteMessageBatchCommand({ 
        QueueUrl: queueUrl, 
        Entries: Messages.map((message) => ({ 
          Id: message.MessageId, 
          ReceiptHandle: message.ReceiptHandle, 
        })), 
      }), 
    ); 
  }
};

• For API details, see DeleteMessageBatch in Amazon SDK for JavaScript API Reference.

Actions 296

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteMessageBatchCommand


Amazon Simple Queue Service Developer Guide

PowerShell

Tools for PowerShell V4

Example 1: This example deletes 2 messages with the specified receipt handles from the 
specified queue.

$deleteMessageRequest1 = New-Object 
 Amazon.SQS.Model.DeleteMessageBatchRequestEntry
$deleteMessageRequest1.Id = "Request1"
$deleteMessageRequest1.ReceiptHandle = "AQEBX2g4...wtJSQg=="

$deleteMessageRequest2 = New-Object 
 Amazon.SQS.Model.DeleteMessageBatchRequestEntry
$deleteMessageRequest2.Id = "Request2"
$deleteMessageRequest2.ReceiptHandle = "AQEBqOVY...KTsLYg=="

Remove-SQSMessageBatch -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue -Entry $deleteMessageRequest1, 
 $deleteMessageRequest2

Output:

Failed    Successful                                                              
        
------    ----------                                                              
        
{}        {Request1, Request2}

• For API details, see DeleteMessageBatch in Amazon Tools for PowerShell Cmdlet Reference 
(V4).

Tools for PowerShell V5

Example 1: This example deletes 2 messages with the specified receipt handles from the 
specified queue.

$deleteMessageRequest1 = New-Object 
 Amazon.SQS.Model.DeleteMessageBatchRequestEntry
$deleteMessageRequest1.Id = "Request1"
$deleteMessageRequest1.ReceiptHandle = "AQEBX2g4...wtJSQg=="

Actions 297

https://docs.aws.amazon.com/powershell/v4/reference


Amazon Simple Queue Service Developer Guide

$deleteMessageRequest2 = New-Object 
 Amazon.SQS.Model.DeleteMessageBatchRequestEntry
$deleteMessageRequest2.Id = "Request2"
$deleteMessageRequest2.ReceiptHandle = "AQEBqOVY...KTsLYg=="

Remove-SQSMessageBatch -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue -Entry $deleteMessageRequest1, 
 $deleteMessageRequest2

Output:

Failed    Successful                                                              
        
------    ----------                                                              
        
{}        {Request1, Request2}

• For API details, see DeleteMessageBatch in Amazon Tools for PowerShell Cmdlet Reference 
(V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

def delete_messages(queue, messages): 
    """ 
    Delete a batch of messages from a queue in a single request. 

    :param queue: The queue from which to delete the messages. 
    :param messages: The list of messages to delete. 
    :return: The response from SQS that contains the list of successful and 
 failed 
             message deletions. 
    """ 
    try: 

Actions 298

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

        entries = [ 
            {"Id": str(ind), "ReceiptHandle": msg.receipt_handle} 
            for ind, msg in enumerate(messages) 
        ] 
        response = queue.delete_messages(Entries=entries) 
        if "Successful" in response: 
            for msg_meta in response["Successful"]: 
                logger.info("Deleted %s", 
 messages[int(msg_meta["Id"])].receipt_handle) 
        if "Failed" in response: 
            for msg_meta in response["Failed"]: 
                logger.warning( 
                    "Could not delete %s", 
 messages[int(msg_meta["Id"])].receipt_handle 
                ) 
    except ClientError: 
        logger.exception("Couldn't delete messages from queue %s", queue) 
    else: 
        return response

class SqsWrapper: 
    """Wrapper class for managing Amazon SQS operations.""" 

    def __init__(self, sqs_client: Any) -> None: 
        """ 
        Initialize the SqsWrapper. 

        :param sqs_client: A Boto3 Amazon SQS client. 
        """ 
        self.sqs_client = sqs_client 

    @classmethod 
    def from_client(cls) -> 'SqsWrapper': 
        """ 
        Create an SqsWrapper instance using a default boto3 client. 

        :return: An instance of this class. 
        """ 
        sqs_client = boto3.client('sqs') 
        return cls(sqs_client) 

Actions 299



Amazon Simple Queue Service Developer Guide

    def delete_messages(self, queue_url: str, messages: List[Dict[str, Any]]) -> 
 bool: 
        """ 
        Delete messages from an SQS queue in batches. 

        :param queue_url: The URL of the queue. 
        :param messages: List of messages to delete. 
        :return: True if successful. 
        :raises ClientError: If deleting messages fails. 
        """ 
        try: 
            if not messages: 
                return True 

            # Build delete entries for batch delete 
            delete_entries = [] 
            for i, message in enumerate(messages): 
                delete_entries.append({ 
                    'Id': str(i), 
                    'ReceiptHandle': message['ReceiptHandle'] 
                }) 

            # Delete messages in batches of 10 (SQS limit) 
            batch_size = 10 
            for i in range(0, len(delete_entries), batch_size): 
                batch = delete_entries[i:i + batch_size] 
                 
                response = self.sqs_client.delete_message_batch( 
                    QueueUrl=queue_url, 
                    Entries=batch 
                ) 

                # Check for failures 
                if 'Failed' in response and response['Failed']: 
                    for failed in response['Failed']: 
                        logger.warning(f"Failed to delete message: {failed}") 

            logger.info(f"Deleted {len(messages)} messages from {queue_url}") 
            return True 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 

Actions 300



Amazon Simple Queue Service Developer Guide

            logger.error(f"Error deleting messages: {error_code} - {e}") 
            raise

• For API details, see DeleteMessageBatch in Amazon SDK for Python (Boto3) API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

    TRY. 
        oo_result = lo_sqs->deletemessagebatch(       " oo_result is returned for 
 testing purposes. " 
           iv_queueurl = iv_queue_url 
           it_entries = it_entries ). 
        MESSAGE 'Messages deleted from SQS queue.' TYPE 'I'. 
      CATCH /aws1/cx_sqsbtcentidsnotdist00. 
        MESSAGE 'Two or more batch entries in the request have the same ID.' TYPE 
 'E'. 
      CATCH /aws1/cx_sqsemptybatchrequest. 
        MESSAGE 'The batch request does not contain any entries.' TYPE 'E'. 
      CATCH /aws1/cx_sqsinvbatchentryid. 
        MESSAGE 'The ID of a batch entry in a batch request is not valid.' TYPE 
 'E'. 
      CATCH /aws1/cx_sqstoomanyentriesin00. 
        MESSAGE 'The batch request contains more entries than allowed.' TYPE 'E'. 
    ENDTRY.

• For API details, see DeleteMessageBatch in Amazon SDK for SAP ABAP API reference.

Actions 301

https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/DeleteMessageBatch
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html


Amazon Simple Queue Service Developer Guide

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import AWSSQS 

        let config = try await SQSClient.SQSClientConfiguration(region: region) 
        let sqsClient = SQSClient(config: config) 

        // Create the list of message entries. 

        var entries: [SQSClientTypes.DeleteMessageBatchRequestEntry] = [] 
        var messageNumber = 1 

        for handle in handles { 
            let entry = SQSClientTypes.DeleteMessageBatchRequestEntry( 
                id: "\(messageNumber)", 
                receiptHandle: handle 
            ) 
            entries.append(entry) 
            messageNumber += 1 
        } 

        // Delete the messages. 

        let output = try await sqsClient.deleteMessageBatch( 
            input: DeleteMessageBatchInput( 
                entries: entries, 
                queueUrl: queue 
            ) 
        ) 

        // Get the lists of failed and successful deletions from the output. 

        guard let failedEntries = output.failed else { 
            print("Failed deletion list is missing!") 

Actions 302

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

            return 
        } 
        guard let successfulEntries = output.successful else { 
            print("Successful deletion list is missing!") 
            return 
        } 

        // Display a list of the failed deletions along with their 
        // corresponding explanation messages. 

        if failedEntries.count != 0 { 
            print("Failed deletions:") 

            for entry in failedEntries { 
                print("Message #\(entry.id ?? "<unknown>") failed: 
 \(entry.message ?? "<unknown>")") 
            } 
        } else { 
            print("No failed deletions.") 
        } 

        // Output a list of the message numbers that were successfully deleted. 

        if successfulEntries.count != 0 { 
            var successes = "" 

            for entry in successfulEntries { 
                if successes.count == 0 { 
                    successes = entry.id ?? "<unknown>" 
                } else { 
                    successes = "\(successes), \(entry.id ?? "<unknown>")" 
                } 
            } 
            print("Succeeded: ", successes) 
        } else { 
            print("No successful deletions.") 
        }

• For API details, see DeleteMessageBatch in Amazon SDK for Swift API reference.

Actions 303

https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/deletemessagebatch(input:)


Amazon Simple Queue Service Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use DeleteQueue with an Amazon SDK or CLI

The following code examples show how to use DeleteQueue.

Action examples are code excerpts from larger programs and must be run in context. You can see 
this action in context in the following code examples:

• Publish messages to queues

• Send and receive batches of messages

• Use the Amazon SQS Java Messaging Library to work with the JMS interface

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Delete a queue by using its URL.

    /// <summary> 
    /// Delete a queue by its URL. 
    /// </summary> 
    /// <param name="queueUrl">The url of the queue.</param> 
    /// <returns>True if successful.</returns> 
    public async Task<bool> DeleteQueueByUrl(string queueUrl) 
    { 
        var deleteResponse = await _amazonSQSClient.DeleteQueueAsync( 
            new DeleteQueueRequest() 
            { 
                QueueUrl = queueUrl 
            }); 
        return deleteResponse.HttpStatusCode == HttpStatusCode.OK; 
    }

Actions 304

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples


Amazon Simple Queue Service Developer Guide

• For API details, see DeleteQueue in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

//! Delete an Amazon Simple Queue Service (Amazon SQS) queue.
/*! 
  \param queueURL: An Amazon SQS queue URL. 
  \param clientConfiguration: AWS client configuration. 
  \return bool: Function succeeded. 
 */
bool AwsDoc::SQS::deleteQueue(const Aws::String &queueURL, 
                              const Aws::Client::ClientConfiguration 
 &clientConfiguration) { 
    Aws::SQS::SQSClient sqsClient(clientConfiguration); 
    Aws::SQS::Model::DeleteQueueRequest request; 
    request.SetQueueUrl(queueURL); 

    const Aws::SQS::Model::DeleteQueueOutcome outcome = 
 sqsClient.DeleteQueue(request); 
    if (outcome.IsSuccess()) { 
        std::cout << "Successfully deleted queue with url " << queueURL << 
                  std::endl; 
    } 
    else { 
        std::cerr << "Error deleting queue " << queueURL << ": " << 
                  outcome.GetError().GetMessage() << std::endl; 
    } 
    return outcome.IsSuccess();

Actions 305

https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

}

• For API details, see DeleteQueue in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To delete a queue

This example deletes the specified queue.

Command:

aws sqs delete-queue --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyNewerQueue

Output:

None.

• For API details, see DeleteQueue in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import ( 
 "context" 
 "encoding/json" 
 "fmt" 
 "log" 

Actions 306

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/DeleteQueue
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/delete-queue.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

 "github.com/aws/aws-sdk-go-v2/aws" 
 "github.com/aws/aws-sdk-go-v2/service/sqs" 
 "github.com/aws/aws-sdk-go-v2/service/sqs/types"
)

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct { 
 SqsClient *sqs.Client
}

// DeleteQueue deletes an Amazon SQS queue.
func (actor SqsActions) DeleteQueue(ctx context.Context, queueUrl string) error { 
 _, err := actor.SqsClient.DeleteQueue(ctx, &sqs.DeleteQueueInput{ 
  QueueUrl: aws.String(queueUrl)}) 
 if err != nil { 
  log.Printf("Couldn't delete queue %v. Here's why: %v\n", queueUrl, err) 
 } 
 return err
}

• For API details, see DeleteQueue in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.DeleteQueueRequest;

Actions 307

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

import software.amazon.awssdk.services.sqs.model.SqsException;

/** 
 * Before running this Java V2 code example, set up your development 
 * environment, including your credentials. 
 * 
 * For more information, see the following documentation topic: 
 * 
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html 
 */
public class DeleteQueue { 
    public static void main(String[] args) { 
        final String usage = """ 

                Usage:    <queueName> 

                Where: 
                   queueName - The name of the Amazon SQS queue to delete. 

                """; 

        if (args.length != 1) { 
            System.out.println(usage); 
            System.exit(1); 
        } 

        String queueName = args[0]; 
        SqsClient sqs = SqsClient.builder() 
                .region(Region.US_WEST_2) 
                .build(); 

        deleteSQSQueue(sqs, queueName); 
        sqs.close(); 
    } 

    public static void deleteSQSQueue(SqsClient sqsClient, String queueName) { 
        try { 
            GetQueueUrlRequest getQueueRequest = GetQueueUrlRequest.builder() 
                    .queueName(queueName) 
                    .build(); 

            String queueUrl = sqsClient.getQueueUrl(getQueueRequest).queueUrl(); 
            DeleteQueueRequest deleteQueueRequest = DeleteQueueRequest.builder() 

Actions 308



Amazon Simple Queue Service Developer Guide

                    .queueUrl(queueUrl) 
                    .build(); 

            sqsClient.deleteQueue(deleteQueueRequest); 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    }
}

• For API details, see DeleteQueue in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Delete an Amazon SQS queue.

import { DeleteQueueCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "test-queue-url";

export const main = async (queueUrl = SQS_QUEUE_URL) => { 
  const command = new DeleteQueueCommand({ QueueUrl: queueUrl }); 

  const response = await client.send(command); 
  console.log(response); 
  return response;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

Actions 309

https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-delete-queue


Amazon Simple Queue Service Developer Guide

• For API details, see DeleteQueue in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Delete an Amazon SQS queue.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  QueueUrl: "SQS_QUEUE_URL",
};

sqs.deleteQueue(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see DeleteQueue in Amazon SDK for JavaScript API Reference.

Actions 310

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteQueueCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-delete-queue
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/sqs-2012-11-05/DeleteQueue


Amazon Simple Queue Service Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

suspend fun deleteMessages(queueUrlVal: String) { 
    println("Delete Messages from $queueUrlVal") 

    val purgeRequest = 
        PurgeQueueRequest { 
            queueUrl = queueUrlVal 
        } 

    SqsClient.fromEnvironment { region = "us-east-1" }.use { sqsClient -> 
        sqsClient.purgeQueue(purgeRequest) 
        println("Messages are successfully deleted from $queueUrlVal") 
    }
}

suspend fun deleteQueue(queueUrlVal: String) { 
    val request = 
        DeleteQueueRequest { 
            queueUrl = queueUrlVal 
        } 

    SqsClient.fromEnvironment { region = "us-east-1" }.use { sqsClient -> 
        sqsClient.deleteQueue(request) 
        println("$queueUrlVal was deleted!") 
    }
}

• For API details, see DeleteQueue in Amazon SDK for Kotlin API reference.

Actions 311

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html


Amazon Simple Queue Service Developer Guide

PowerShell

Tools for PowerShell V4

Example 1: This example deletes the specified queue.

Remove-SQSQueue -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/
MyQueue

• For API details, see DeleteQueue in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example deletes the specified queue.

Remove-SQSQueue -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/
MyQueue

• For API details, see DeleteQueue in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

def remove_queue(queue): 
    """ 
    Removes an SQS queue. When run against an AWS account, it can take up to 
    60 seconds before the queue is actually deleted. 

    :param queue: The queue to delete. 
    :return: None 
    """ 
    try: 
        queue.delete() 
        logger.info("Deleted queue with URL=%s.", queue.url) 

Actions 312

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    except ClientError as error: 
        logger.exception("Couldn't delete queue with URL=%s!", queue.url) 
        raise error

class SqsWrapper: 
    """Wrapper class for managing Amazon SQS operations.""" 

    def __init__(self, sqs_client: Any) -> None: 
        """ 
        Initialize the SqsWrapper. 

        :param sqs_client: A Boto3 Amazon SQS client. 
        """ 
        self.sqs_client = sqs_client 

    @classmethod 
    def from_client(cls) -> 'SqsWrapper': 
        """ 
        Create an SqsWrapper instance using a default boto3 client. 

        :return: An instance of this class. 
        """ 
        sqs_client = boto3.client('sqs') 
        return cls(sqs_client) 

    def delete_queue(self, queue_url: str) -> bool: 
        """ 
        Delete an SQS queue. 

        :param queue_url: The URL of the queue to delete. 
        :return: True if successful. 
        :raises ClientError: If the queue deletion fails. 
        """ 
        try: 
            self.sqs_client.delete_queue(QueueUrl=queue_url) 
             
            logger.info(f"Deleted queue: {queue_url}") 
            return True 

Actions 313



Amazon Simple Queue Service Developer Guide

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
             
            if error_code == 'AWS.SimpleQueueService.NonExistentQueue': 
                logger.warning(f"Queue not found: {queue_url}") 
                return True  # Already deleted 
            else: 
                logger.error(f"Error deleting queue: {error_code} - {e}") 
                raise

• For API details, see DeleteQueue in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

require 'aws-sdk-sqs' # v2: require 'aws-sdk'
# Replace us-west-2 with the AWS Region you're using for Amazon SQS.
sqs = Aws::SQS::Client.new(region: 'us-west-2')

sqs.delete_queue(queue_url: URL)

• For API details, see DeleteQueue in Amazon SDK for Ruby API Reference.

Actions 314

https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/DeleteQueue


Amazon Simple Queue Service Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

    TRY. 
        lo_sqs->deletequeue( iv_queueurl = iv_queue_url ). 
        MESSAGE 'SQS queue deleted' TYPE 'I'. 
    ENDTRY.

• For API details, see DeleteQueue in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import AWSSQS 

        let config = try await SQSClient.SQSClientConfiguration(region: region) 
        let sqsClient = SQSClient(config: config) 

        do { 
            _ = try await sqsClient.deleteQueue( 
                input: DeleteQueueInput( 
                    queueUrl: queueUrl 
                ) 
            ) 
        } catch _ as AWSSQS.QueueDoesNotExist { 

Actions 315

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

            print("Error: The specified queue doesn't exist.") 
            return 
        }

• For API details, see DeleteQueue in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use GetQueueAttributes with an Amazon SDK or CLI

The following code examples show how to use GetQueueAttributes.

Action examples are code excerpts from larger programs and must be run in context. You can see 
this action in context in the following code examples:

• Process S3 event notifications

• Publish messages to queues

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

    /// <summary> 
    /// Get the ARN for a queue from its URL. 
    /// </summary> 
    /// <param name="queueUrl">The URL of the queue.</param> 
    /// <returns>The ARN of the queue.</returns> 
    public async Task<string> GetQueueArnByUrl(string queueUrl) 
    { 
        var getAttributesRequest = new GetQueueAttributesRequest() 
        { 

Actions 316

https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/deletequeue(input:)
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples


Amazon Simple Queue Service Developer Guide

            QueueUrl = queueUrl, 
            AttributeNames = new List<string>() { QueueAttributeName.QueueArn } 
        }; 

        var getAttributesResponse = await 
 _amazonSQSClient.GetQueueAttributesAsync( 
            getAttributesRequest); 

        return getAttributesResponse.QueueARN; 
    }

• For API details, see GetQueueAttributes in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1"; 

    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

            Aws::SQS::Model::GetQueueAttributesRequest request; 
            request.SetQueueUrl(queueURL); 
            
 request.AddAttributeNames(Aws::SQS::Model::QueueAttributeName::QueueArn); 

            Aws::SQS::Model::GetQueueAttributesOutcome outcome = 
                    sqsClient.GetQueueAttributes(request); 

            if (outcome.IsSuccess()) { 
                const Aws::Map<Aws::SQS::Model::QueueAttributeName, Aws::String> 
 &attributes = 
                        outcome.GetResult().GetAttributes(); 

Actions 317

https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/GetQueueAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

                const auto &iter = attributes.find( 
                        Aws::SQS::Model::QueueAttributeName::QueueArn); 
                if (iter != attributes.end()) { 
                    queueARN = iter->second; 
                    std::cout << "The queue ARN '" << queueARN 
                              << "' has been retrieved." 
                              << std::endl; 
                } 

            } 
            else { 
                std::cerr << "Error with SQS::GetQueueAttributes. " 
                          << outcome.GetError().GetMessage() 
                          << std::endl; 

            }

• For API details, see GetQueueAttributes in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To get a queue's attributes

This example gets all of the specified queue's attributes.

Command:

aws sqs get-queue-attributes --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --attribute-names All

Output:

{ 
  "Attributes": { 
    "ApproximateNumberOfMessagesNotVisible": "0", 
    "RedrivePolicy": "{\"deadLetterTargetArn\":\"arn:aws:sqs:us-
east-1:80398EXAMPLE:MyDeadLetterQueue\",\"maxReceiveCount\":1000}", 
    "MessageRetentionPeriod": "345600", 

Actions 318

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/GetQueueAttributes


Amazon Simple Queue Service Developer Guide

    "ApproximateNumberOfMessagesDelayed": "0", 
    "MaximumMessageSize": "262144", 
    "CreatedTimestamp": "1442426968", 
    "ApproximateNumberOfMessages": "0", 
    "ReceiveMessageWaitTimeSeconds": "0", 
    "DelaySeconds": "0", 
    "VisibilityTimeout": "30", 
    "LastModifiedTimestamp": "1442426968", 
    "QueueArn": "arn:aws:sqs:us-east-1:80398EXAMPLE:MyNewQueue" 
  }
}

This example gets only the specified queue's maximum message size and visibility timeout 
attributes.

Command:

aws sqs get-queue-attributes --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyNewQueue --attribute-
names MaximumMessageSize VisibilityTimeout

Output:

{ 
  "Attributes": { 
    "VisibilityTimeout": "30", 
    "MaximumMessageSize": "262144" 
  }
}

• For API details, see GetQueueAttributes in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 319

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/get-queue-attributes.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

import ( 
 "context" 
 "encoding/json" 
 "fmt" 
 "log" 

 "github.com/aws/aws-sdk-go-v2/aws" 
 "github.com/aws/aws-sdk-go-v2/service/sqs" 
 "github.com/aws/aws-sdk-go-v2/service/sqs/types"
)

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct { 
 SqsClient *sqs.Client
}

// GetQueueArn uses the GetQueueAttributes action to get the Amazon Resource Name 
 (ARN)
// of an Amazon SQS queue.
func (actor SqsActions) GetQueueArn(ctx context.Context, queueUrl string) 
 (string, error) { 
 var queueArn string 
 arnAttributeName := types.QueueAttributeNameQueueArn 
 attribute, err := actor.SqsClient.GetQueueAttributes(ctx, 
 &sqs.GetQueueAttributesInput{ 
  QueueUrl:       aws.String(queueUrl), 
  AttributeNames: []types.QueueAttributeName{arnAttributeName}, 
 }) 
 if err != nil { 
  log.Printf("Couldn't get ARN for queue %v. Here's why: %v\n", queueUrl, err) 
 } else { 
  queueArn = attribute.Attributes[string(arnAttributeName)] 
 } 
 return queueArn, err
}

• For API details, see GetQueueAttributes in Amazon SDK for Go API Reference.

Actions 320

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.GetQueueAttributes


Amazon Simple Queue Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import { GetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue-url";

export const getQueueAttributes = async (queueUrl = SQS_QUEUE_URL) => { 
  const command = new GetQueueAttributesCommand({ 
    QueueUrl: queueUrl, 
    AttributeNames: ["DelaySeconds"], 
  }); 

  const response = await client.send(command); 
  console.log(response); 
  // { 
  //   '$metadata': { 
  //     httpStatusCode: 200, 
  //     requestId: '747a1192-c334-5682-a508-4cd5e8dc4e79', 
  //     extendedRequestId: undefined, 
  //     cfId: undefined, 
  //     attempts: 1, 
  //     totalRetryDelay: 0 
  //   }, 
  //   Attributes: { DelaySeconds: '1' } 
  // } 
  return response;
};

• For API details, see GetQueueAttributes in Amazon SDK for JavaScript API Reference.

Actions 321

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/GetQueueAttributesCommand


Amazon Simple Queue Service Developer Guide

PowerShell

Tools for PowerShell V4

Example 1: This example lists all attributes for the specified queue.

Get-SQSQueueAttribute -AttributeName All -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

Output:

VisibilityTimeout                     : 30
DelaySeconds                          : 0
MaximumMessageSize                    : 262144
MessageRetentionPeriod                : 345600
ApproximateNumberOfMessages           : 0
ApproximateNumberOfMessagesNotVisible : 0
ApproximateNumberOfMessagesDelayed    : 0
CreatedTimestamp                      : 2/11/2015 5:53:35 PM
LastModifiedTimestamp                 : 12/29/2015 2:23:17 PM
QueueARN                              : arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue
Policy                                : {"Version":"2012-10-17",       
 "Id":"arn:aws:sqs:us-east-1:80398EXAMPLE:MyQueue/SQSDefaultPolicy","Statement":
[{"Sid":"Sid14 
                                        
 495134224EX","Effect":"Allow","Principal":
{"AWS":"*"},"Action":"SQS:SendMessage","Resource":"arn:aws:sqs:us-east-1:80 
                                        398EXAMPLE:MyQueue","Condition":
{"ArnEquals":{"aws:SourceArn":"arn:aws:sns:us-east-1:80398EXAMPLE:MyTopic"}}},
{"Sid": 
                                        
 "SendMessagesFromMyQueue","Effect":"Allow","Principal":
{"AWS":"80398EXAMPLE"},"Action":"SQS:SendMessage","Resource":" 
                                        arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue"}]}
Attributes                            : {[QueueArn, arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue], [ApproximateNumberOfMessages, 0],  
                                        [ApproximateNumberOfMessagesNotVisible, 
 0], [ApproximateNumberOfMessagesDelayed, 0]...}

Example 2: This example lists separately only the specified attributes for the specified 
queue.

Actions 322



Amazon Simple Queue Service Developer Guide

Get-SQSQueueAttribute -AttributeName MaximumMessageSize, VisibilityTimeout -
QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

Output:

VisibilityTimeout                     : 30
DelaySeconds                          : 0
MaximumMessageSize                    : 262144
MessageRetentionPeriod                : 345600
ApproximateNumberOfMessages           : 0
ApproximateNumberOfMessagesNotVisible : 0
ApproximateNumberOfMessagesDelayed    : 0
CreatedTimestamp                      : 2/11/2015 5:53:35 PM
LastModifiedTimestamp                 : 12/29/2015 2:23:17 PM
QueueARN                              : arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue
Policy                                : {"Version":"2012-10-17",       
 "Id":"arn:aws:sqs:us-east-1:80398EXAMPLE:MyQueue/SQSDefaultPolicy","Statement":
[{"Sid":"Sid14 
                                        
 495134224EX","Effect":"Allow","Principal":
{"AWS":"*"},"Action":"SQS:SendMessage","Resource":"arn:aws:sqs:us-east-1:80 
                                        398EXAMPLE:MyQueue","Condition":
{"ArnEquals":{"aws:SourceArn":"arn:aws:sns:us-east-1:80398EXAMPLE:MyTopic"}}},
{"Sid": 
                                        
 "SendMessagesFromMyQueue","Effect":"Allow","Principal":
{"AWS":"80398EXAMPLE"},"Action":"SQS:SendMessage","Resource":" 
                                        arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue"}]}
Attributes                            : {[MaximumMessageSize, 262144], 
 [VisibilityTimeout, 30]}

• For API details, see GetQueueAttributes in Amazon Tools for PowerShell Cmdlet Reference 
(V4).

Tools for PowerShell V5

Example 1: This example lists all attributes for the specified queue.

Get-SQSQueueAttribute -AttributeName All -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

Actions 323

https://docs.aws.amazon.com/powershell/v4/reference


Amazon Simple Queue Service Developer Guide

Output:

VisibilityTimeout                     : 30
DelaySeconds                          : 0
MaximumMessageSize                    : 262144
MessageRetentionPeriod                : 345600
ApproximateNumberOfMessages           : 0
ApproximateNumberOfMessagesNotVisible : 0
ApproximateNumberOfMessagesDelayed    : 0
CreatedTimestamp                      : 2/11/2015 5:53:35 PM
LastModifiedTimestamp                 : 12/29/2015 2:23:17 PM
QueueARN                              : arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue
Policy                                : {"Version":"2012-10-17",       
 "Id":"arn:aws:sqs:us-east-1:80398EXAMPLE:MyQueue/SQSDefaultPolicy","Statement":
[{"Sid":"Sid14 
                                        
 495134224EX","Effect":"Allow","Principal":
{"AWS":"*"},"Action":"SQS:SendMessage","Resource":"arn:aws:sqs:us-east-1:80 
                                        398EXAMPLE:MyQueue","Condition":
{"ArnEquals":{"aws:SourceArn":"arn:aws:sns:us-east-1:80398EXAMPLE:MyTopic"}}},
{"Sid": 
                                        
 "SendMessagesFromMyQueue","Effect":"Allow","Principal":
{"AWS":"80398EXAMPLE"},"Action":"SQS:SendMessage","Resource":" 
                                        arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue"}]}
Attributes                            : {[QueueArn, arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue], [ApproximateNumberOfMessages, 0],  
                                        [ApproximateNumberOfMessagesNotVisible, 
 0], [ApproximateNumberOfMessagesDelayed, 0]...}

Example 2: This example lists separately only the specified attributes for the specified 
queue.

Get-SQSQueueAttribute -AttributeName MaximumMessageSize, VisibilityTimeout -
QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

Output:

VisibilityTimeout                     : 30
DelaySeconds                          : 0

Actions 324



Amazon Simple Queue Service Developer Guide

MaximumMessageSize                    : 262144
MessageRetentionPeriod                : 345600
ApproximateNumberOfMessages           : 0
ApproximateNumberOfMessagesNotVisible : 0
ApproximateNumberOfMessagesDelayed    : 0
CreatedTimestamp                      : 2/11/2015 5:53:35 PM
LastModifiedTimestamp                 : 12/29/2015 2:23:17 PM
QueueARN                              : arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue
Policy                                : {"Version":"2012-10-17",       
 "Id":"arn:aws:sqs:us-east-1:80398EXAMPLE:MyQueue/SQSDefaultPolicy","Statement":
[{"Sid":"Sid14 
                                        
 495134224EX","Effect":"Allow","Principal":
{"AWS":"*"},"Action":"SQS:SendMessage","Resource":"arn:aws:sqs:us-east-1:80 
                                        398EXAMPLE:MyQueue","Condition":
{"ArnEquals":{"aws:SourceArn":"arn:aws:sns:us-east-1:80398EXAMPLE:MyTopic"}}},
{"Sid": 
                                        
 "SendMessagesFromMyQueue","Effect":"Allow","Principal":
{"AWS":"80398EXAMPLE"},"Action":"SQS:SendMessage","Resource":" 
                                        arn:aws:sqs:us-
east-1:80398EXAMPLE:MyQueue"}]}
Attributes                            : {[MaximumMessageSize, 262144], 
 [VisibilityTimeout, 30]}

• For API details, see GetQueueAttributes in Amazon Tools for PowerShell Cmdlet Reference 
(V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

class SqsWrapper: 
    """Wrapper class for managing Amazon SQS operations.""" 

Actions 325

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

    def __init__(self, sqs_client: Any) -> None: 
        """ 
        Initialize the SqsWrapper. 

        :param sqs_client: A Boto3 Amazon SQS client. 
        """ 
        self.sqs_client = sqs_client 

    @classmethod 
    def from_client(cls) -> 'SqsWrapper': 
        """ 
        Create an SqsWrapper instance using a default boto3 client. 

        :return: An instance of this class. 
        """ 
        sqs_client = boto3.client('sqs') 
        return cls(sqs_client) 

    def get_queue_arn(self, queue_url: str) -> str: 
        """ 
        Get the ARN of an SQS queue. 

        :param queue_url: The URL of the queue. 
        :return: The ARN of the queue. 
        :raises ClientError: If getting queue attributes fails. 
        """ 
        try: 
            response = self.sqs_client.get_queue_attributes( 
                QueueUrl=queue_url, 
                AttributeNames=['QueueArn'] 
            ) 

            queue_arn = response['Attributes']['QueueArn'] 
            logger.info(f"Queue ARN for {queue_url}: {queue_arn}") 
            return queue_arn 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error getting queue ARN: {error_code} - {e}") 
            raise

Actions 326



Amazon Simple Queue Service Developer Guide

• For API details, see GetQueueAttributes in Amazon SDK for Python (Boto3) API Reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import AWSSQS 

        let config = try await SQSClient.SQSClientConfiguration(region: region) 
        let sqsClient = SQSClient(config: config) 

        let output = try await sqsClient.getQueueAttributes( 
            input: GetQueueAttributesInput( 
                attributeNames: [ 
                    .approximatenumberofmessages, 
                    .maximummessagesize 
                ], 
                queueUrl: url 
            ) 
        ) 

        guard let attributes = output.attributes else { 
            print("No queue attributes returned.") 
            return 
        } 
         
        for (attr, value) in attributes { 
            switch(attr) { 
            case "ApproximateNumberOfMessages": 
                print("Approximate message count: \(value)")     
            case "MaximumMessageSize": 
                print("Maximum message size: \(value)kB") 
            default: 
                continue 

Actions 327

https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/GetQueueAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

            } 
        }

• For API details, see GetQueueAttributes in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use GetQueueUrl with an Amazon SDK or CLI

The following code examples show how to use GetQueueUrl.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

    using System; 
    using System.Threading.Tasks; 
    using Amazon.SQS; 
    using Amazon.SQS.Model; 

    public class GetQueueUrl 
    { 
        /// <summary> 
        /// Initializes the Amazon SQS client object and then calls the 
        /// GetQueueUrlAsync method to retrieve the URL of an Amazon SQS 
        /// queue. 
        /// </summary> 
        public static async Task Main() 
        { 
            // If the Amazon SQS message queue is not in the same AWS Region as 
 your 

Actions 328

https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/getqueueattributes(input:)
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SQS#code-examples


Amazon Simple Queue Service Developer Guide

            // default user, you need to provide the AWS Region as a parameter to 
 the 
            // client constructor. 
            var client = new AmazonSQSClient(); 

            string queueName = "New-Example-Queue"; 

            try 
            { 
                var response = await client.GetQueueUrlAsync(queueName); 

                if (response.HttpStatusCode == System.Net.HttpStatusCode.OK) 
                { 
                    Console.WriteLine($"The URL for {queueName} is: 
 {response.QueueUrl}"); 
                } 
            } 
            catch (QueueDoesNotExistException ex) 
            { 
                Console.WriteLine(ex.Message); 
                Console.WriteLine($"The queue {queueName} was not found."); 
            } 
        } 
    }

• For API details, see GetQueueUrl in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

Actions 329

https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/GetQueueUrl
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

//! Get the URL for an Amazon Simple Queue Service (Amazon SQS) queue.
/*! 
  \param queueName: An Amazon SQS queue name. 
  \param clientConfiguration: AWS client configuration. 
  \return bool: Function succeeded. 
 */
bool AwsDoc::SQS::getQueueUrl(const Aws::String &queueName, 
                              const Aws::Client::ClientConfiguration 
 &clientConfiguration) { 
    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

    Aws::SQS::Model::GetQueueUrlRequest request; 
    request.SetQueueName(queueName); 

    const Aws::SQS::Model::GetQueueUrlOutcome outcome = 
 sqsClient.GetQueueUrl(request); 
    if (outcome.IsSuccess()) { 
        std::cout << "Queue " << queueName << " has url " << 
                  outcome.GetResult().GetQueueUrl() << std::endl; 
    } 
    else { 
        std::cerr << "Error getting url for queue " << queueName << ": " << 
                  outcome.GetError().GetMessage() << std::endl; 
    } 

    return outcome.IsSuccess();
}

• For API details, see GetQueueUrl in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To get a queue URL

This example gets the specified queue's URL.

Command:

aws sqs get-queue-url --queue-name MyQueue

Actions 330

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/GetQueueUrl


Amazon Simple Queue Service Developer Guide

Output:

{ 
  "QueueUrl": "https://queue.amazonaws.com/80398EXAMPLE/MyQueue"
}

• For API details, see GetQueueUrl in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

            GetQueueUrlResponse getQueueUrlResponse = sqsClient 
                    
 .getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build()); 
            return getQueueUrlResponse.queueUrl();

• For API details, see GetQueueUrl in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Get the URL for an Amazon SQS queue.

import { GetQueueUrlCommand, SQSClient } from "@aws-sdk/client-sqs";

Actions 331

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/get-queue-url.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/GetQueueUrl
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

const client = new SQSClient({});
const SQS_QUEUE_NAME = "test-queue";

export const main = async (queueName = SQS_QUEUE_NAME) => { 
  const command = new GetQueueUrlCommand({ QueueName: queueName }); 

  const response = await client.send(command); 
  console.log(response); 
  return response;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see GetQueueUrl in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Get the URL for an Amazon SQS queue.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  QueueName: "SQS_QUEUE_NAME",
};

sqs.getQueueUrl(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 

Actions 332

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-get-queue-url
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/GetQueueUrlCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    console.log("Success", data.QueueUrl); 
  }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see GetQueueUrl in Amazon SDK for JavaScript API Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example lists the URL of the queue with the specified name.

Get-SQSQueueUrl -QueueName MyQueue

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see GetQueueUrl in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example lists the URL of the queue with the specified name.

Get-SQSQueueUrl -QueueName MyQueue

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see GetQueueUrl in Amazon Tools for PowerShell Cmdlet Reference (V5).

Actions 333

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-get-queue-url
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/sqs-2012-11-05/GetQueueUrl
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference


Amazon Simple Queue Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

def get_queue(name): 
    """ 
    Gets an SQS queue by name. 

    :param name: The name that was used to create the queue. 
    :return: A Queue object. 
    """ 
    try: 
        queue = sqs.get_queue_by_name(QueueName=name) 
        logger.info("Got queue '%s' with URL=%s", name, queue.url) 
    except ClientError as error: 
        logger.exception("Couldn't get queue named %s.", name) 
        raise error 
    else: 
        return queue

• For API details, see GetQueueUrl in Amazon SDK for Python (Boto3) API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 334

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/GetQueueUrl
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    TRY. 
        oo_result = lo_sqs->getqueueurl( iv_queuename = iv_queue_name ).        " 
 oo_result is returned for testing purposes. " 
        MESSAGE 'Queue URL retrieved.' TYPE 'I'. 
      CATCH /aws1/cx_sqsqueuedoesnotexist. 
        MESSAGE 'The requested queue does not exist.' TYPE 'E'. 
    ENDTRY.

• For API details, see GetQueueUrl in Amazon SDK for SAP ABAP API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use ListDeadLetterSourceQueues with a CLI

The following code examples show how to use ListDeadLetterSourceQueues.

CLI

Amazon CLI

To list dead letter source queues

This example lists the queues that are associated with the specified dead letter source 
queue.

Command:

aws sqs list-dead-letter-source-queues --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue

Output:

{ 
  "queueUrls": [ 
    "https://queue.amazonaws.com/80398EXAMPLE/MyQueue", 
    "https://queue.amazonaws.com/80398EXAMPLE/MyOtherQueue" 
  ]
}

Actions 335

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html


Amazon Simple Queue Service Developer Guide

• For API details, see ListDeadLetterSourceQueues in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example lists the URLs of any queues that rely on the specified queue as 
their dead letter queue.

Get-SQSDeadLetterSourceQueue -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyOtherQueue

• For API details, see ListDeadLetterSourceQueues in Amazon Tools for PowerShell Cmdlet 
Reference (V4).

Tools for PowerShell V5

Example 1: This example lists the URLs of any queues that rely on the specified queue as 
their dead letter queue.

Get-SQSDeadLetterSourceQueue -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyOtherQueue

• For API details, see ListDeadLetterSourceQueues in Amazon Tools for PowerShell Cmdlet 
Reference (V5).

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Actions 336

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/list-dead-letter-source-queues.html
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference


Amazon Simple Queue Service Developer Guide

Use ListQueues with an Amazon SDK or CLI

The following code examples show how to use ListQueues.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

//! List the Amazon Simple Queue Service (Amazon SQS) queues within an AWS 
 account.
/*! 
  \param clientConfiguration: AWS client configuration. 
  \return bool: Function succeeded. 
 */
bool
AwsDoc::SQS::listQueues(const Aws::Client::ClientConfiguration 
 &clientConfiguration) { 
    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

    Aws::SQS::Model::ListQueuesRequest listQueuesRequest; 

    Aws::String nextToken; // Used for pagination. 
    Aws::Vector<Aws::String> allQueueUrls; 

    do { 
        if (!nextToken.empty()) { 
            listQueuesRequest.SetNextToken(nextToken); 
        } 
        const Aws::SQS::Model::ListQueuesOutcome outcome = sqsClient.ListQueues( 
                listQueuesRequest); 
        if (outcome.IsSuccess()) { 

Actions 337

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

            const Aws::Vector<Aws::String> &queueUrls = 
 outcome.GetResult().GetQueueUrls(); 
            allQueueUrls.insert(allQueueUrls.end(), 
                                queueUrls.begin(), 
                                queueUrls.end()); 

            nextToken = outcome.GetResult().GetNextToken(); 
        } 
        else { 
            std::cerr << "Error listing queues: " << 
                      outcome.GetError().GetMessage() << std::endl; 
            return false; 
        } 

    } while (!nextToken.empty()); 

    std::cout << allQueueUrls.size() << " Amazon SQS queue(s) found." << 
 std::endl; 
    for (const auto &iter: allQueueUrls) { 
        std::cout << " " << iter << std::endl; 
    } 

    return true;
}

• For API details, see ListQueues in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To list queues

This example lists all queues.

Command:

aws sqs list-queues

Output:

{ 

Actions 338

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/ListQueues


Amazon Simple Queue Service Developer Guide

  "QueueUrls": [ 
    "https://queue.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue", 
    "https://queue.amazonaws.com/80398EXAMPLE/MyQueue", 
    "https://queue.amazonaws.com/80398EXAMPLE/MyOtherQueue", 
    "https://queue.amazonaws.com/80398EXAMPLE/TestQueue1", 
        "https://queue.amazonaws.com/80398EXAMPLE/TestQueue2" 
  ]
}

This example lists only queues that start with "My".

Command:

aws sqs list-queues --queue-name-prefix My

Output:

{ 
  "QueueUrls": [ 
    "https://queue.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue", 
    "https://queue.amazonaws.com/80398EXAMPLE/MyQueue", 
    "https://queue.amazonaws.com/80398EXAMPLE/MyOtherQueue" 
  ]
}

• For API details, see ListQueues in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

package main

import ( 

Actions 339

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/list-queues.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/sqs#code-examples


Amazon Simple Queue Service Developer Guide

 "context" 
 "fmt" 
 "log" 

 "github.com/aws/aws-sdk-go-v2/config" 
 "github.com/aws/aws-sdk-go-v2/service/sqs"
)

// main uses the AWS SDK for Go V2 to create an Amazon Simple Queue Service
// (Amazon SQS) client and list the queues in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() { 
 ctx := context.Background() 
 sdkConfig, err := config.LoadDefaultConfig(ctx) 
 if err != nil { 
  fmt.Println("Couldn't load default configuration. Have you set up your AWS 
 account?") 
  fmt.Println(err) 
  return 
 } 
 sqsClient := sqs.NewFromConfig(sdkConfig) 
 fmt.Println("Let's list the queues for your account.") 
 var queueUrls []string 
 paginator := sqs.NewListQueuesPaginator(sqsClient, &sqs.ListQueuesInput{}) 
 for paginator.HasMorePages() { 
  output, err := paginator.NextPage(ctx) 
  if err != nil { 
   log.Printf("Couldn't get queues. Here's why: %v\n", err) 
   break 
  } else { 
   queueUrls = append(queueUrls, output.QueueUrls...) 
  } 
 } 
 if len(queueUrls) == 0 { 
  fmt.Println("You don't have any queues!") 
 } else { 
  for _, queueUrl := range queueUrls { 
   fmt.Printf("\t%v\n", queueUrl) 
  } 
 }
}

Actions 340



Amazon Simple Queue Service Developer Guide

• For API details, see ListQueues in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        String prefix = "que"; 

        try { 
            ListQueuesRequest listQueuesRequest = 
 ListQueuesRequest.builder().queueNamePrefix(prefix).build(); 
            ListQueuesResponse listQueuesResponse = 
 sqsClient.listQueues(listQueuesRequest); 
            for (String url : listQueuesResponse.queueUrls()) { 
                System.out.println(url); 
            } 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        }

• For API details, see ListQueues in Amazon SDK for Java 2.x API Reference.

Actions 341

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/ListQueues


Amazon Simple Queue Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

List your Amazon SQS queues.

import { paginateListQueues, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});

export const main = async () => { 
  const paginatedListQueues = paginateListQueues({ client }, {}); 

  /** @type {string[]} */ 
  const urls = []; 
  for await (const page of paginatedListQueues) { 
    const nextUrls = page.QueueUrls?.filter((qurl) => !!qurl) || []; 
    urls.push(...nextUrls); 
    for (const url of urls) { 
      console.log(url); 
    } 
  } 

  return urls;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see ListQueues in Amazon SDK for JavaScript API Reference.

Actions 342

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-listing-queues
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/ListQueuesCommand


Amazon Simple Queue Service Developer Guide

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

List your Amazon SQS queues.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {};

sqs.listQueues(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.QueueUrls); 
  }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see ListQueues in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 343

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/sqs-examples-using-queues.html#sqs-examples-using-queues-listing-queues
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/sqs-2012-11-05/ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples


Amazon Simple Queue Service Developer Guide

suspend fun listQueues() { 
    println("\nList Queues") 

    val prefix = "que" 
    val listQueuesRequest = 
        ListQueuesRequest { 
            queueNamePrefix = prefix 
        } 

    SqsClient.fromEnvironment { region = "us-east-1" }.use { sqsClient -> 
        val response = sqsClient.listQueues(listQueuesRequest) 
        response.queueUrls?.forEach { url -> 
            println(url) 
        } 
    }
}

• For API details, see ListQueues in Amazon SDK for Kotlin API reference.

PowerShell

Tools for PowerShell V4

Example 1: This example lists all queues.

Get-SQSQueue

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/AnotherQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/DeadLetterQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyOtherQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue

Example 2: This example lists any queues that start with the specified name.

Get-SQSQueue -QueueNamePrefix My

Output:

Actions 344

https://sdk.amazonaws.com/kotlin/api/latest/index.html


Amazon Simple Queue Service Developer Guide

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyOtherQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue

• For API details, see ListQueues in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example lists all queues.

Get-SQSQueue

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/AnotherQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/DeadLetterQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyOtherQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue

Example 2: This example lists any queues that start with the specified name.

Get-SQSQueue -QueueNamePrefix My

Output:

https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyOtherQueue
https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyDeadLetterQueue

• For API details, see ListQueues in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 345

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

def get_queues(prefix=None): 
    """ 
    Gets a list of SQS queues. When a prefix is specified, only queues with names 
    that start with the prefix are returned. 

    :param prefix: The prefix used to restrict the list of returned queues. 
    :return: A list of Queue objects. 
    """ 
    if prefix: 
        queue_iter = sqs.queues.filter(QueueNamePrefix=prefix) 
    else: 
        queue_iter = sqs.queues.all() 
    queues = list(queue_iter) 
    if queues: 
        logger.info("Got queues: %s", ", ".join([q.url for q in queues])) 
    else: 
        logger.warning("No queues found.") 
    return queues

• For API details, see ListQueues in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

require 'aws-sdk-sqs'
require 'aws-sdk-sts'

# @param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
# @example
#   list_queue_urls(Aws::SQS::Client.new(region: 'us-west-2'))

Actions 346

https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

def list_queue_urls(sqs_client) 
  queues = sqs_client.list_queues 

  queues.queue_urls.each do |url| 
    puts url 
  end
rescue StandardError => e 
  puts "Error listing queue URLs: #{e.message}"
end

# Lists the attributes of a queue in Amazon Simple Queue Service (Amazon SQS).
#
# @param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
# @param queue_url [String] The URL of the queue.
# @example
#   list_queue_attributes(
#     Aws::SQS::Client.new(region: 'us-west-2'),
#     'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue'
#   )
def list_queue_attributes(sqs_client, queue_url) 
  attributes = sqs_client.get_queue_attributes( 
    queue_url: queue_url, 
    attribute_names: ['All'] 
  ) 

  attributes.attributes.each do |key, value| 
    puts "#{key}: #{value}" 
  end
rescue StandardError => e 
  puts "Error getting queue attributes: #{e.message}"
end

# Full example call:
# Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me 
  region = 'us-west-2' 
  queue_name = 'my-queue' 

  sqs_client = Aws::SQS::Client.new(region: region) 

  puts 'Listing available queue URLs...' 
  list_queue_urls(sqs_client) 

  sts_client = Aws::STS::Client.new(region: region) 

Actions 347



Amazon Simple Queue Service Developer Guide

  # For example: 
  # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue' 
  queue_url = "https://sqs.#{region}.amazonaws.com/
#{sts_client.get_caller_identity.account}/#{queue_name}" 

  puts "\nGetting information about queue '#{queue_name}'..." 
  list_queue_attributes(sqs_client, queue_url)
end

• For API details, see ListQueues in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Retrieve the first Amazon SQS queue listed in the Region.

async fn find_first_queue(client: &Client) -> Result<String, Error> { 
    let queues = client.list_queues().send().await?; 
    let queue_urls = queues.queue_urls(); 
    Ok(queue_urls 
        .first() 
        .expect("No queues in this account and Region. Create a queue to 
 proceed.") 
        .to_string())
}

• For API details, see ListQueues in Amazon SDK for Rust API reference.

Actions 348

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/ListQueues
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sqs#code-examples
https://docs.rs/aws-sdk-sqs/latest/aws_sdk_sqs/client/struct.Client.html#method.list_queues


Amazon Simple Queue Service Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

    TRY. 
        oo_result = lo_sqs->listqueues( ).        " oo_result is returned for 
 testing purposes. " 
        MESSAGE 'Retrieved list of queues.' TYPE 'I'. 
    ENDTRY.

• For API details, see ListQueues in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import AWSSQS 

        let config = try await SQSClient.SQSClientConfiguration(region: region) 
        let sqsClient = SQSClient(config: config) 

        var queues: [String] = [] 
        let outputPages = sqsClient.listQueuesPaginated( 
            input: ListQueuesInput() 
        ) 

        // Each time a page of results arrives, process its contents. 

Actions 349

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

        for try await output in outputPages { 
            guard let urls = output.queueUrls else { 
                print("No queues found.") 
                return 
            } 

            // Iterate over the queue URLs listed on this page, adding them 
            // to the `queues` array. 

            for queueUrl in urls { 
                queues.append(queueUrl) 
            } 
        }

• For API details, see ListQueues in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use PurgeQueue with a CLI

The following code examples show how to use PurgeQueue.

CLI

Amazon CLI

To purge a queue

This example deletes all messages in the specified queue.

Command:

aws sqs purge-queue --queue-url https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/
MyNewQueue

Output:

None.

Actions 350

https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/listqueues(input:)


Amazon Simple Queue Service Developer Guide

• For API details, see PurgeQueue in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example deletes all messages from the specified queue.

Clear-SQSQueue -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see PurgeQueue in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example deletes all messages from the specified queue.

Clear-SQSQueue -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see PurgeQueue in Amazon Tools for PowerShell Cmdlet Reference (V5).

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use ReceiveMessage with an Amazon SDK or CLI

The following code examples show how to use ReceiveMessage.

Action examples are code excerpts from larger programs and must be run in context. You can see 
this action in context in the following code examples:

• Manage large messages using S3

• Process S3 event notifications

• Publish messages to queues

• Send and receive batches of messages

Actions 351

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/purge-queue.html
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference


Amazon Simple Queue Service Developer Guide

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Receive messages from a queue by using its URL.

    /// <summary> 
    /// Receive messages from a queue by its URL. 
    /// </summary> 
    /// <param name="queueUrl">The url of the queue.</param> 
    /// <returns>The list of messages.</returns> 
    public async Task<List<Message>> ReceiveMessagesByUrl(string queueUrl, int 
 maxMessages) 
    { 
        // Setting WaitTimeSeconds to non-zero enables long polling. 
        // For information about long polling, see 
        // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html 
        var messageResponse = await _amazonSQSClient.ReceiveMessageAsync( 
            new ReceiveMessageRequest() 
            { 
                QueueUrl = queueUrl, 
                MaxNumberOfMessages = maxMessages, 
                WaitTimeSeconds = 1 
            }); 
        return messageResponse.Messages; 
    }

Receive a message from an Amazon SQS queue, and then delete the message.

        public static async Task Main() 
        { 
            // If the AWS Region you want to use is different from 
            // the AWS Region defined for the default user, supply 
            // the specify your AWS Region to the client constructor. 

Actions 352

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples


Amazon Simple Queue Service Developer Guide

            var client = new AmazonSQSClient(); 
            string queueName = "Example_Queue"; 

            var queueUrl = await GetQueueUrl(client, queueName); 
            Console.WriteLine($"The SQS queue's URL is {queueUrl}"); 

            var response = await ReceiveAndDeleteMessage(client, queueUrl); 

            Console.WriteLine($"Message: {response.Messages[0]}"); 
        } 

        /// <summary> 
        /// Retrieve the queue URL for the queue named in the queueName 
        /// property using the client object. 
        /// </summary> 
        /// <param name="client">The Amazon SQS client used to retrieve the 
        /// queue URL.</param> 
        /// <param name="queueName">A string representing  name of the queue 
        /// for which to retrieve the URL.</param> 
        /// <returns>The URL of the queue.</returns> 
        public static async Task<string> GetQueueUrl(IAmazonSQS client, string 
 queueName) 
        { 
            var request = new GetQueueUrlRequest 
            { 
                QueueName = queueName, 
            }; 

            GetQueueUrlResponse response = await 
 client.GetQueueUrlAsync(request); 
            return response.QueueUrl; 
        } 

        /// <summary> 
        /// Retrieves the message from the quque at the URL passed in the 
        /// queueURL parameters using the client. 
        /// </summary> 
        /// <param name="client">The SQS client used to retrieve a message.</
param> 
        /// <param name="queueUrl">The URL of the queue from which to retrieve 
        /// a message.</param> 
        /// <returns>The response from the call to ReceiveMessageAsync.</returns> 
        public static async Task<ReceiveMessageResponse> 
 ReceiveAndDeleteMessage(IAmazonSQS client, string queueUrl) 

Actions 353



Amazon Simple Queue Service Developer Guide

        { 
            // Receive a single message from the queue. 
            var receiveMessageRequest = new ReceiveMessageRequest 
            { 
                AttributeNames = { "SentTimestamp" }, 
                MaxNumberOfMessages = 1, 
                MessageAttributeNames = { "All" }, 
                QueueUrl = queueUrl, 
                VisibilityTimeout = 0, 
                WaitTimeSeconds = 0, 
            }; 

            var receiveMessageResponse = await 
 client.ReceiveMessageAsync(receiveMessageRequest); 

            // Delete the received message from the queue. 
            var deleteMessageRequest = new DeleteMessageRequest 
            { 
                QueueUrl = queueUrl, 
                ReceiptHandle = receiveMessageResponse.Messages[0].ReceiptHandle, 
            }; 

            await client.DeleteMessageAsync(deleteMessageRequest); 

            return receiveMessageResponse; 
        } 
    }

• For API details, see ReceiveMessage in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 354

https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

//! Receive a message from an Amazon Simple Queue Service (Amazon SQS) queue.
/*! 
  \param queueUrl: An Amazon SQS queue URL. 
  \param clientConfiguration: AWS client configuration. 
  \return bool: Function succeeded. 
 */
bool AwsDoc::SQS::receiveMessage(const Aws::String &queueUrl, 
                                 const Aws::Client::ClientConfiguration 
 &clientConfiguration) { 
    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

    Aws::SQS::Model::ReceiveMessageRequest request; 
    request.SetQueueUrl(queueUrl); 
    request.SetMaxNumberOfMessages(1); 

    const Aws::SQS::Model::ReceiveMessageOutcome outcome = 
 sqsClient.ReceiveMessage( 
            request); 
    if (outcome.IsSuccess()) { 

        const Aws::Vector<Aws::SQS::Model::Message> &messages = 
                outcome.GetResult().GetMessages(); 
        if (!messages.empty()) { 
            const Aws::SQS::Model::Message &message = messages[0]; 
            std::cout << "Received message:" << std::endl; 
            std::cout << "  MessageId: " << message.GetMessageId() << std::endl; 
            std::cout << "  ReceiptHandle: " << message.GetReceiptHandle() << 
 std::endl; 
            std::cout << "  Body: " << message.GetBody() << std::endl << 
 std::endl; 
        } 
        else { 
            std::cout << "No messages received from queue " << queueUrl << 
                      std::endl; 

        } 
    } 
    else { 
        std::cerr << "Error receiving message from queue " << queueUrl << ": " 

Actions 355



Amazon Simple Queue Service Developer Guide

                  << outcome.GetError().GetMessage() << std::endl; 
    } 
    return outcome.IsSuccess();
}

• For API details, see ReceiveMessage in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To receive a message

This example receives up to 10 available messages, returning all available attributes.

Command:

aws sqs receive-message --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --attribute-names All --message-
attribute-names All --max-number-of-messages 10

Output:

{ 
  "Messages": [ 
    { 
      "Body": "My first message.", 
      "ReceiptHandle": "AQEBzbVv...fqNzFw==", 
      "MD5OfBody": "1000f835...a35411fa", 
      "MD5OfMessageAttributes": "9424c491...26bc3ae7", 
      "MessageId": "d6790f8d-d575-4f01-bc51-40122EXAMPLE", 
      "Attributes": { 
        "ApproximateFirstReceiveTimestamp": "1442428276921", 
        "SenderId": "AIDAIAZKMSNQ7TEXAMPLE", 
        "ApproximateReceiveCount": "5", 
        "SentTimestamp": "1442428276921" 
      }, 
      "MessageAttributes": { 
        "PostalCode": { 
          "DataType": "String", 
          "StringValue": "ABC123" 

Actions 356

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/ReceiveMessage


Amazon Simple Queue Service Developer Guide

        }, 
        "City": { 
          "DataType": "String", 
          "StringValue": "Any City" 
        } 
      } 
    } 
  ]
}

This example receives the next available message, returning only the SenderId and 
SentTimestamp attributes as well as the PostalCode message attribute.

Command:

aws sqs receive-message --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --attribute-
names SenderId SentTimestamp --message-attribute-names PostalCode

Output:

{ 
  "Messages": [ 
    { 
      "Body": "My first message.", 
      "ReceiptHandle": "AQEB6nR4...HzlvZQ==", 
      "MD5OfBody": "1000f835...a35411fa", 
      "MD5OfMessageAttributes": "b8e89563...e088e74f", 
      "MessageId": "d6790f8d-d575-4f01-bc51-40122EXAMPLE", 
      "Attributes": { 
        "SenderId": "AIDAIAZKMSNQ7TEXAMPLE", 
        "SentTimestamp": "1442428276921" 
      }, 
      "MessageAttributes": { 
        "PostalCode": { 
          "DataType": "String", 
          "StringValue": "ABC123" 
        } 
      } 
    } 
  ]
}

Actions 357



Amazon Simple Queue Service Developer Guide

• For API details, see ReceiveMessage in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import ( 
 "context" 
 "encoding/json" 
 "fmt" 
 "log" 

 "github.com/aws/aws-sdk-go-v2/aws" 
 "github.com/aws/aws-sdk-go-v2/service/sqs" 
 "github.com/aws/aws-sdk-go-v2/service/sqs/types"
)

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct { 
 SqsClient *sqs.Client
}

// GetMessages uses the ReceiveMessage action to get messages from an Amazon SQS 
 queue.
func (actor SqsActions) GetMessages(ctx context.Context, queueUrl string, 
 maxMessages int32, waitTime int32) ([]types.Message, error) { 
 var messages []types.Message 
 result, err := actor.SqsClient.ReceiveMessage(ctx, &sqs.ReceiveMessageInput{ 
  QueueUrl:            aws.String(queueUrl), 
  MaxNumberOfMessages: maxMessages, 
  WaitTimeSeconds:     waitTime, 
 }) 

Actions 358

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/receive-message.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

 if err != nil { 
  log.Printf("Couldn't get messages from queue %v. Here's why: %v\n", queueUrl, 
 err) 
 } else { 
  messages = result.Messages 
 } 
 return messages, err
}

• For API details, see ReceiveMessage in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        try { 
            ReceiveMessageRequest receiveMessageRequest = 
 ReceiveMessageRequest.builder() 
                    .queueUrl(queueUrl) 
                    .maxNumberOfMessages(5) 
                    .build(); 
            return sqsClient.receiveMessage(receiveMessageRequest).messages(); 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
        return null;

• For API details, see ReceiveMessage in Amazon SDK for Java 2.x API Reference.

Actions 359

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/ReceiveMessage


Amazon Simple Queue Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Receive a message from an Amazon SQS queue.

import { 
  ReceiveMessageCommand, 
  DeleteMessageCommand, 
  SQSClient, 
  DeleteMessageBatchCommand,
} from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

const receiveMessage = (queueUrl) => 
  client.send( 
    new ReceiveMessageCommand({ 
      AttributeNames: ["SentTimestamp"], 
      MaxNumberOfMessages: 10, 
      MessageAttributeNames: ["All"], 
      QueueUrl: queueUrl, 
      WaitTimeSeconds: 20, 
      VisibilityTimeout: 20, 
    }), 
  );

export const main = async (queueUrl = SQS_QUEUE_URL) => { 
  const { Messages } = await receiveMessage(queueUrl); 

  if (!Messages) { 
    return; 
  } 

  if (Messages.length === 1) { 
    console.log(Messages[0].Body); 

Actions 360

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    await client.send( 
      new DeleteMessageCommand({ 
        QueueUrl: queueUrl, 
        ReceiptHandle: Messages[0].ReceiptHandle, 
      }), 
    ); 
  } else { 
    await client.send( 
      new DeleteMessageBatchCommand({ 
        QueueUrl: queueUrl, 
        Entries: Messages.map((message) => ({ 
          Id: message.MessageId, 
          ReceiptHandle: message.ReceiptHandle, 
        })), 
      }), 
    ); 
  }
};

Receive a message from an Amazon SQS queue using long-poll support.

import { ReceiveMessageCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue-url";

export const main = async (queueUrl = SQS_QUEUE_URL) => { 
  const command = new ReceiveMessageCommand({ 
    AttributeNames: ["SentTimestamp"], 
    MaxNumberOfMessages: 1, 
    MessageAttributeNames: ["All"], 
    QueueUrl: queueUrl, 
    // The duration (in seconds) for which the call waits for a message 
    // to arrive in the queue before returning. If a message is available, 
    // the call returns sooner than WaitTimeSeconds. If no messages are 
    // available and the wait time expires, the call returns successfully 
    // with an empty list of messages. 
    // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/
API_ReceiveMessage.html#API_ReceiveMessage_RequestSyntax 
    WaitTimeSeconds: 20, 
  }); 

Actions 361



Amazon Simple Queue Service Developer Guide

  const response = await client.send(command); 
  console.log(response); 
  return response;
};

• For API details, see ReceiveMessage in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Receive a message from an Amazon SQS queue using long-poll support.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "SQS_QUEUE_URL";

var params = { 
  AttributeNames: ["SentTimestamp"], 
  MaxNumberOfMessages: 1, 
  MessageAttributeNames: ["All"], 
  QueueUrl: queueURL, 
  WaitTimeSeconds: 20,
};

sqs.receiveMessage(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

Actions 362

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/ReceiveMessageCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see ReceiveMessage in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

suspend fun receiveMessages(queueUrlVal: String?) { 
    println("Retrieving messages from $queueUrlVal") 

    val receiveMessageRequest = 
        ReceiveMessageRequest { 
            queueUrl = queueUrlVal 
            maxNumberOfMessages = 5 
        } 

    SqsClient.fromEnvironment { region = "us-east-1" }.use { sqsClient -> 
        val response = sqsClient.receiveMessage(receiveMessageRequest) 
        response.messages?.forEach { message -> 
            println(message.body) 
        } 
    }
}

• For API details, see ReceiveMessage in Amazon SDK for Kotlin API reference.

Actions 363

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/sqs-examples-enable-long-polling.html#sqs-examples-enable-long-polling-on-receive-message
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/sqs-2012-11-05/ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html


Amazon Simple Queue Service Developer Guide

PowerShell

Tools for PowerShell V4

Example 1: This example lists information for up to the next 10 messages to be received 
for the specified queue. The information will contain values for the specified message 
attributes, if they exist.

Receive-SQSMessage -AttributeName SenderId, SentTimestamp -MessageAttributeName 
 StudentName, StudentGrade -MessageCount 10 -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

Output:

Attributes             : {[SenderId, AIDAIAZKMSNQ7TEXAMPLE], [SentTimestamp, 
 1451495923744]}
Body                   : Information about John Doe's grade.
MD5OfBody              : ea572796e3c231f974fe75d89EXAMPLE
MD5OfMessageAttributes : 48c1ee811f0fe7c4e88fbe0f5EXAMPLE
MessageAttributes      : {[StudentGrade, Amazon.SQS.Model.MessageAttributeValue], 
 [StudentName, Amazon.SQS.Model.MessageAttributeValue]}
MessageId              : 53828c4b-631b-469b-8833-c093cEXAMPLE
ReceiptHandle          : AQEBpfGp...20Q5cg==

• For API details, see ReceiveMessage in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example lists information for up to the next 10 messages to be received 
for the specified queue. The information will contain values for the specified message 
attributes, if they exist.

Receive-SQSMessage -AttributeName SenderId, SentTimestamp -MessageAttributeName 
 StudentName, StudentGrade -MessageCount 10 -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

Output:

Attributes             : {[SenderId, AIDAIAZKMSNQ7TEXAMPLE], [SentTimestamp, 
 1451495923744]}
Body                   : Information about John Doe's grade.
MD5OfBody              : ea572796e3c231f974fe75d89EXAMPLE

Actions 364

https://docs.aws.amazon.com/powershell/v4/reference


Amazon Simple Queue Service Developer Guide

MD5OfMessageAttributes : 48c1ee811f0fe7c4e88fbe0f5EXAMPLE
MessageAttributes      : {[StudentGrade, Amazon.SQS.Model.MessageAttributeValue], 
 [StudentName, Amazon.SQS.Model.MessageAttributeValue]}
MessageId              : 53828c4b-631b-469b-8833-c093cEXAMPLE
ReceiptHandle          : AQEBpfGp...20Q5cg==

• For API details, see ReceiveMessage in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

def receive_messages(queue, max_number, wait_time): 
    """ 
    Receive a batch of messages in a single request from an SQS queue. 

    :param queue: The queue from which to receive messages. 
    :param max_number: The maximum number of messages to receive. The actual 
 number 
                       of messages received might be less. 
    :param wait_time: The maximum time to wait (in seconds) before returning. 
 When 
                      this number is greater than zero, long polling is used. 
 This 
                      can result in reduced costs and fewer false empty 
 responses. 
    :return: The list of Message objects received. These each contain the body 
             of the message and metadata and custom attributes. 
    """ 
    try: 
        messages = queue.receive_messages( 
            MessageAttributeNames=["All"], 
            MaxNumberOfMessages=max_number, 
            WaitTimeSeconds=wait_time, 
        ) 
        for msg in messages: 

Actions 365

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

            logger.info("Received message: %s: %s", msg.message_id, msg.body) 
    except ClientError as error: 
        logger.exception("Couldn't receive messages from queue: %s", queue) 
        raise error 
    else: 
        return messages

class SqsWrapper: 
    """Wrapper class for managing Amazon SQS operations.""" 

    def __init__(self, sqs_client: Any) -> None: 
        """ 
        Initialize the SqsWrapper. 

        :param sqs_client: A Boto3 Amazon SQS client. 
        """ 
        self.sqs_client = sqs_client 

    @classmethod 
    def from_client(cls) -> 'SqsWrapper': 
        """ 
        Create an SqsWrapper instance using a default boto3 client. 

        :return: An instance of this class. 
        """ 
        sqs_client = boto3.client('sqs') 
        return cls(sqs_client) 

    def receive_messages(self, queue_url: str, max_messages: int = 10) -> 
 List[Dict[str, Any]]: 
        """ 
        Receive messages from an SQS queue. 

        :param queue_url: The URL of the queue to receive messages from. 
        :param max_messages: Maximum number of messages to receive (1-10). 
        :return: List of received messages. 
        :raises ClientError: If receiving messages fails. 
        """ 
        try: 

Actions 366



Amazon Simple Queue Service Developer Guide

            # Ensure max_messages is within valid range 
            max_messages = max(1, min(10, max_messages)) 

            response = self.sqs_client.receive_message( 
                QueueUrl=queue_url, 
                MaxNumberOfMessages=max_messages, 
                WaitTimeSeconds=2,  # Short polling 
                MessageAttributeNames=['All'] 
            ) 

            messages = response.get('Messages', []) 
            logger.info(f"Received {len(messages)} messages from {queue_url}") 
            return messages 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error receiving messages: {error_code} - {e}") 
            raise

• For API details, see ReceiveMessage in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

require 'aws-sdk-sqs'
require 'aws-sdk-sts'

# Receives messages in a queue in Amazon Simple Queue Service (Amazon SQS).
#
# @param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
# @param queue_url [String] The URL of the queue.
# @param max_number_of_messages [Integer] The maximum number of messages

Actions 367

https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

#   to receive. This number must be 10 or less. The default is 10.
# @example
#   receive_messages(
#     Aws::SQS::Client.new(region: 'us-west-2'),
#     'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue',
#     10
#   )
def receive_messages(sqs_client, queue_url, max_number_of_messages = 10) 
  if max_number_of_messages > 10 
    puts 'Maximum number of messages to receive must be 10 or less. ' \ 
      'Stopping program.' 
    return 
  end 

  response = sqs_client.receive_message( 
    queue_url: queue_url, 
    max_number_of_messages: max_number_of_messages 
  ) 

  if response.messages.count.zero? 
    puts 'No messages to receive, or all messages have already ' \ 
      'been previously received.' 
    return 
  end 

  response.messages.each do |message| 
    puts '-' * 20 
    puts "Message body: #{message.body}" 
    puts "Message ID:   #{message.message_id}" 
  end
rescue StandardError => e 
  puts "Error receiving messages: #{e.message}"
end

# Full example call:
# Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me 
  region = 'us-west-2' 
  queue_name = 'my-queue' 
  max_number_of_messages = 10 

  sts_client = Aws::STS::Client.new(region: region) 

  # For example: 

Actions 368



Amazon Simple Queue Service Developer Guide

  # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue' 
  queue_url = "https://sqs.#{region}.amazonaws.com/
#{sts_client.get_caller_identity.account}/#{queue_name}" 

  sqs_client = Aws::SQS::Client.new(region: region) 

  puts "Receiving messages from queue '#{queue_name}'..." 

  receive_messages(sqs_client, queue_url, max_number_of_messages)
end

# Example usage:
run_me if $PROGRAM_NAME == __FILE__

• For API details, see ReceiveMessage in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

async fn receive(client: &Client, queue_url: &String) -> Result<(), Error> { 
    let rcv_message_output = 
 client.receive_message().queue_url(queue_url).send().await?; 

    println!("Messages from queue with url: {}", queue_url); 

    for message in rcv_message_output.messages.unwrap_or_default() { 
        println!("Got the message: {:#?}", message); 
    } 

    Ok(())
}

Actions 369

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/ReceiveMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sqs#code-examples


Amazon Simple Queue Service Developer Guide

• For API details, see ReceiveMessage in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Receive a message from an Amazon SQS queue.

    TRY. 
        oo_result = lo_sqs->receivemessage( iv_queueurl = iv_queue_url ).    " 
 oo_result is returned for testing purposes. " 
        DATA(lt_messages) = oo_result->get_messages( ). 
        MESSAGE 'Message received from SQS queue.' TYPE 'I'. 
      CATCH /aws1/cx_sqsoverlimit. 
        MESSAGE 'Maximum number of in-flight messages reached.' TYPE 'E'. 
    ENDTRY.

Receive a message from an Amazon SQS queue using long-poll support.

    TRY. 
        oo_result = lo_sqs->receivemessage(           " oo_result is returned for 
 testing purposes. " 
                iv_queueurl = iv_queue_url 
                iv_waittimeseconds = iv_wait_time ).    " Time in seconds for 
 long polling, such as how long the call waits for a message to arrive in the 
 queue before returning. " ). 
        DATA(lt_messages) = oo_result->get_messages( ). 
        MESSAGE 'Message received from SQS queue.' TYPE 'I'. 
      CATCH /aws1/cx_sqsoverlimit. 
        MESSAGE 'Maximum number of in-flight messages reached.' TYPE 'E'. 
    ENDTRY.

• For API details, see ReceiveMessage in Amazon SDK for SAP ABAP API reference.

Actions 370

https://docs.rs/aws-sdk-sqs/latest/aws_sdk_sqs/client/struct.Client.html#method.receive_message
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html


Amazon Simple Queue Service Developer Guide

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import AWSSQS 

        let config = try await SQSClient.SQSClientConfiguration(region: region) 
        let sqsClient = SQSClient(config: config) 

        let output = try await sqsClient.receiveMessage( 
            input: ReceiveMessageInput( 
                maxNumberOfMessages: maxMessages, 
                queueUrl: url 
            ) 
        ) 

        guard let messages = output.messages else { 
            print("No messages received.") 
            return 
        } 
     
        for message in messages { 
            print("Message ID:     \(message.messageId ?? "<unknown>")") 
            print("Receipt handle: \(message.receiptHandle ?? "<unknown>")") 
            print(message.body ?? "<body missing>") 
            print("---") 
        }

• For API details, see ReceiveMessage in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Actions 371

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/sqs#code-examples
https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/receivemessage(input:)


Amazon Simple Queue Service Developer Guide

Use RemovePermission with a CLI

The following code examples show how to use RemovePermission.

CLI

Amazon CLI

To remove a permission

This example removes the permission with the specified label from the specified queue.

Command:

aws sqs remove-permission --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --label SendMessagesFromMyQueue

Output:

None.

• For API details, see RemovePermission in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example removes the permission settings with the specified label from 
the specified queue.

Remove-SQSPermission -Label SendMessagesFromMyQueue -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see RemovePermission in Amazon Tools for PowerShell Cmdlet Reference 
(V4).

Tools for PowerShell V5

Example 1: This example removes the permission settings with the specified label from 
the specified queue.

Actions 372

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/remove-permission.html
https://docs.aws.amazon.com/powershell/v4/reference


Amazon Simple Queue Service Developer Guide

Remove-SQSPermission -Label SendMessagesFromMyQueue -QueueUrl https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see RemovePermission in Amazon Tools for PowerShell Cmdlet Reference 
(V5).

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use SendMessage with an Amazon SDK or CLI

The following code examples show how to use SendMessage.

Action examples are code excerpts from larger programs and must be run in context. You can see 
this action in context in the following code examples:

• Manage large messages using S3

• Send and receive batches of messages

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Create an Amazon SQS queue and send a message to it.

    using System; 
    using System.Collections.Generic; 
    using System.Threading.Tasks; 
    using Amazon; 
    using Amazon.SQS; 
    using Amazon.SQS.Model; 

Actions 373

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/SQS#code-examples


Amazon Simple Queue Service Developer Guide

    public class CreateSendExample 
    { 
        // Specify your AWS Region (an example Region is shown). 
        private static readonly string QueueName = "Example_Queue"; 
        private static readonly RegionEndpoint ServiceRegion = 
 RegionEndpoint.USWest2; 
        private static IAmazonSQS client; 

        public static async Task Main() 
        { 
            client = new AmazonSQSClient(ServiceRegion); 
            var createQueueResponse = await CreateQueue(client, QueueName); 

            string queueUrl = createQueueResponse.QueueUrl; 

            Dictionary<string, MessageAttributeValue> messageAttributes = new 
 Dictionary<string, MessageAttributeValue> 
            { 
                { "Title",   new MessageAttributeValue { DataType = "String", 
 StringValue = "The Whistler" } }, 
                { "Author",  new MessageAttributeValue { DataType = "String", 
 StringValue = "John Grisham" } }, 
                { "WeeksOn", new MessageAttributeValue { DataType = "Number", 
 StringValue = "6" } }, 
            }; 

            string messageBody = "Information about current NY Times fiction 
 bestseller for week of 12/11/2016."; 

            var sendMsgResponse = await SendMessage(client, queueUrl, 
 messageBody, messageAttributes); 
        } 

        /// <summary> 
        /// Creates a new Amazon SQS queue using the queue name passed to it 
        /// in queueName. 
        /// </summary> 
        /// <param name="client">An SQS client object used to send the message.</
param> 
        /// <param name="queueName">A string representing the name of the queue 
        /// to create.</param> 
        /// <returns>A CreateQueueResponse that contains information about the 
        /// newly created queue.</returns> 

Actions 374



Amazon Simple Queue Service Developer Guide

        public static async Task<CreateQueueResponse> CreateQueue(IAmazonSQS 
 client, string queueName) 
        { 
            var request = new CreateQueueRequest 
            { 
                QueueName = queueName, 
                Attributes = new Dictionary<string, string> 
                { 
                    { "DelaySeconds", "60" }, 
                    { "MessageRetentionPeriod", "86400" }, 
                }, 
            }; 

            var response = await client.CreateQueueAsync(request); 
            Console.WriteLine($"Created a queue with URL : {response.QueueUrl}"); 

            return response; 
        } 

        /// <summary> 
        /// Sends a message to an SQS queue. 
        /// </summary> 
        /// <param name="client">An SQS client object used to send the message.</
param> 
        /// <param name="queueUrl">The URL of the queue to which to send the 
        /// message.</param> 
        /// <param name="messageBody">A string representing the body of the 
        /// message to be sent to the queue.</param> 
        /// <param name="messageAttributes">Attributes for the message to be 
        /// sent to the queue.</param> 
        /// <returns>A SendMessageResponse object that contains information 
        /// about the message that was sent.</returns> 
        public static async Task<SendMessageResponse> SendMessage( 
            IAmazonSQS client, 
            string queueUrl, 
            string messageBody, 
            Dictionary<string, MessageAttributeValue> messageAttributes) 
        { 
            var sendMessageRequest = new SendMessageRequest 
            { 
                DelaySeconds = 10, 
                MessageAttributes = messageAttributes, 
                MessageBody = messageBody, 
                QueueUrl = queueUrl, 

Actions 375



Amazon Simple Queue Service Developer Guide

            }; 

            var response = await client.SendMessageAsync(sendMessageRequest); 
            Console.WriteLine($"Sent a message with id : {response.MessageId}"); 

            return response; 
        } 
    }

• For API details, see SendMessage in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

//! Send a message to an Amazon Simple Queue Service (Amazon SQS) queue.
/*! 
  \param queueUrl: An Amazon SQS queue URL. 
  \param messageBody: A message body. 
  \param clientConfiguration: AWS client configuration. 
  \return bool: Function succeeded. 
 */
bool AwsDoc::SQS::sendMessage(const Aws::String &queueUrl, 
                              const Aws::String &messageBody, 
                              const Aws::Client::ClientConfiguration 
 &clientConfiguration) { 
    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

    Aws::SQS::Model::SendMessageRequest request; 
    request.SetQueueUrl(queueUrl); 

Actions 376

https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/SendMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    request.SetMessageBody(messageBody); 

    const Aws::SQS::Model::SendMessageOutcome outcome = 
 sqsClient.SendMessage(request); 
    if (outcome.IsSuccess()) { 
        std::cout << "Successfully sent message to " << queueUrl << 
                  std::endl; 
    } 
    else { 
        std::cerr << "Error sending message to " << queueUrl << ": " << 
                  outcome.GetError().GetMessage() << std::endl; 
    } 

    return outcome.IsSuccess();
}

• For API details, see SendMessage in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To send a message

This example sends a message with the specified message body, delay period, and message 
attributes, to the specified queue.

Command:

aws sqs send-message --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --message-body "Information about the 
 largest city in Any Region." --delay-seconds 10 --message-attributes file://
send-message.json

Input file (send-message.json):

{ 
  "City": { 
    "DataType": "String", 
    "StringValue": "Any City" 
  }, 
  "Greeting": { 

Actions 377

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/SendMessage


Amazon Simple Queue Service Developer Guide

    "DataType": "Binary", 
    "BinaryValue": "Hello, World!" 
  }, 
  "Population": { 
    "DataType": "Number", 
    "StringValue": "1250800" 
  }
}

Output:

{ 
  "MD5OfMessageBody": "51b0a325...39163aa0", 
  "MD5OfMessageAttributes": "00484c68...59e48f06", 
  "MessageId": "da68f62c-0c07-4bee-bf5f-7e856EXAMPLE"
}

• For API details, see SendMessage in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Two examples of the SendMessage operation follow:

• Send a message with a body and a delay

• Send a message with a body and message attributes

Send a message with a body and a delay.

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.SendMessageRequest;

Actions 378

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/send-message.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

import software.amazon.awssdk.services.sqs.model.SqsException;

/** 
 * Before running this Java V2 code example, set up your development 
 * environment, including your credentials. 
 * 
 * For more information, see the following documentation topic: 
 * 
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html 
 */
public class SendMessages { 
    public static void main(String[] args) { 
        final String usage = """ 

                Usage:    <queueName> <message> 

                Where: 
                   queueName - The name of the queue. 
                   message - The message to send. 
                """; 

        if (args.length != 2) { 
            System.out.println(usage); 
            System.exit(1); 
        } 

        String queueName = args[0]; 
        String message = args[1]; 
        SqsClient sqsClient = SqsClient.builder() 
                .region(Region.US_WEST_2) 
                .build(); 
        sendMessage(sqsClient, queueName, message); 
        sqsClient.close(); 
    } 

    public static void sendMessage(SqsClient sqsClient, String queueName, String 
 message) { 
        try { 
            CreateQueueRequest request = CreateQueueRequest.builder() 
                    .queueName(queueName) 
                    .build(); 
            sqsClient.createQueue(request); 

Actions 379



Amazon Simple Queue Service Developer Guide

            GetQueueUrlRequest getQueueRequest = GetQueueUrlRequest.builder() 
                    .queueName(queueName) 
                    .build(); 

            String queueUrl = sqsClient.getQueueUrl(getQueueRequest).queueUrl(); 
            SendMessageRequest sendMsgRequest = SendMessageRequest.builder() 
                    .queueUrl(queueUrl) 
                    .messageBody(message) 
                    .delaySeconds(5) 
                    .build(); 

            sqsClient.sendMessage(sendMsgRequest); 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    }
}

Send a message with a body and message attributes.

    /** 
     * <p>This method demonstrates how to add message attributes to a message. 
     * Each attribute must specify a name, value, and data type. You use a Java 
 Map to supply the attributes. The map's 
     * key is the attribute name, and you specify the map's entry value using a 
 builder that includes the attribute 
     * value and data type.</p> 
     * 
     * <p>The data type must start with one of "String", "Number" or "Binary". 
 You can optionally 
     * define a custom extension by using a "." and your extension.</p> 
     * 
     * <p>The SQS Developer Guide provides more information on @see <a 
     * href="https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-message-metadata.html#sqs-message-attributes">message 
     * attributes</a>.</p> 
     * 
     * @param thumbailPath Filesystem path of the image. 
     * @param queueUrl     URL of the SQS queue. 
     */ 

Actions 380



Amazon Simple Queue Service Developer Guide

    static void sendMessageWithAttributes(Path thumbailPath, String queueUrl) { 
        Map<String, MessageAttributeValue> messageAttributeMap; 
        try { 
            messageAttributeMap = Map.of( 
                    "Name", MessageAttributeValue.builder() 
                            .stringValue("Jane Doe") 
                            .dataType("String").build(), 
                    "Age", MessageAttributeValue.builder() 
                            .stringValue("42") 
                            .dataType("Number.int").build(), 
                    "Image", MessageAttributeValue.builder() 
                            
 .binaryValue(SdkBytes.fromByteArray(Files.readAllBytes(thumbailPath))) 
                            .dataType("Binary.jpg").build() 
            ); 
        } catch (IOException e) { 
            LOGGER.error("An I/O exception occurred reading thumbnail image: {}", 
 e.getMessage(), e); 
            throw new RuntimeException(e); 
        } 

        SendMessageRequest request = SendMessageRequest.builder() 
                .queueUrl(queueUrl) 
                .messageBody("Hello SQS") 
                .messageAttributes(messageAttributeMap) 
                .build(); 
        try { 
            SendMessageResponse sendMessageResponse = 
 SQS_CLIENT.sendMessage(request); 
            LOGGER.info("Message ID: {}", sendMessageResponse.messageId()); 
        } catch (SqsException e) { 
            LOGGER.error("Exception occurred sending message: {}", 
 e.getMessage(), e); 
            throw new RuntimeException(e); 
        } 
    }

• For API details, see SendMessage in Amazon SDK for Java 2.x API Reference.

Actions 381

https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/SendMessage


Amazon Simple Queue Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Send a message to an Amazon SQS queue.

import { SendMessageCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

export const main = async (sqsQueueUrl = SQS_QUEUE_URL) => { 
  const command = new SendMessageCommand({ 
    QueueUrl: sqsQueueUrl, 
    DelaySeconds: 10, 
    MessageAttributes: { 
      Title: { 
        DataType: "String", 
        StringValue: "The Whistler", 
      }, 
      Author: { 
        DataType: "String", 
        StringValue: "John Grisham", 
      }, 
      WeeksOn: { 
        DataType: "Number", 
        StringValue: "6", 
      }, 
    }, 
    MessageBody: 
      "Information about current NY Times fiction bestseller for week of 
 12/11/2016.", 
  }); 

  const response = await client.send(command); 
  console.log(response); 
  return response;

Actions 382

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see SendMessage in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Send a message to an Amazon SQS queue.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  // Remove DelaySeconds parameter and value for FIFO queues 
  DelaySeconds: 10, 
  MessageAttributes: { 
    Title: { 
      DataType: "String", 
      StringValue: "The Whistler", 
    }, 
    Author: { 
      DataType: "String", 
      StringValue: "John Grisham", 
    }, 
    WeeksOn: { 
      DataType: "Number", 
      StringValue: "6", 
    }, 
  }, 
  MessageBody: 

Actions 383

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/sqs-examples-send-receive-messages.html#sqs-examples-send-receive-messages-sending
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/SendMessageCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    "Information about current NY Times fiction bestseller for week of 
 12/11/2016.", 
  // MessageDeduplicationId: "TheWhistler",  // Required for FIFO queues 
  // MessageGroupId: "Group1",  // Required for FIFO queues 
  QueueUrl: "SQS_QUEUE_URL",
};

sqs.sendMessage(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.MessageId); 
  }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see SendMessage in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

suspend fun sendMessages( 
    queueUrlVal: String, 
    message: String,
) { 
    println("Sending multiple messages") 
    println("\nSend message") 
    val sendRequest = 
        SendMessageRequest { 
            queueUrl = queueUrlVal 
            messageBody = message 
            delaySeconds = 10 
        } 

Actions 384

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/sqs-examples-send-receive-messages.html#sqs-examples-send-receive-messages-sending
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/sqs-2012-11-05/SendMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    SqsClient.fromEnvironment { region = "us-east-1" }.use { sqsClient -> 
        sqsClient.sendMessage(sendRequest) 
        println("A single message was successfully sent.") 
    }
}

suspend fun sendBatchMessages(queueUrlVal: String?) { 
    println("Sending multiple messages") 

    val msg1 = 
        SendMessageBatchRequestEntry { 
            id = "id1" 
            messageBody = "Hello from msg 1" 
        } 

    val msg2 = 
        SendMessageBatchRequestEntry { 
            id = "id2" 
            messageBody = "Hello from msg 2" 
        } 

    val sendMessageBatchRequest = 
        SendMessageBatchRequest { 
            queueUrl = queueUrlVal 
            entries = listOf(msg1, msg2) 
        } 

    SqsClient.fromEnvironment { region = "us-east-1" }.use { sqsClient -> 
        sqsClient.sendMessageBatch(sendMessageBatchRequest) 
        println("Batch message were successfully sent.") 
    }
}

• For API details, see SendMessage in Amazon SDK for Kotlin API reference.

PowerShell

Tools for PowerShell V4

Example 1: This example sends a message with the specified attributes and message 
body to the specified queue with message delivery delayed for 10 seconds.

Actions 385

https://sdk.amazonaws.com/kotlin/api/latest/index.html


Amazon Simple Queue Service Developer Guide

$cityAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$cityAttributeValue.DataType = "String"
$cityAttributeValue.StringValue = "AnyCity"

$populationAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$populationAttributeValue.DataType = "Number"
$populationAttributeValue.StringValue = "1250800"

$messageAttributes = New-Object System.Collections.Hashtable
$messageAttributes.Add("City", $cityAttributeValue)
$messageAttributes.Add("Population", $populationAttributeValue)

Send-SQSMessage -DelayInSeconds 10 -MessageAttributes $messageAttributes -
MessageBody "Information about the largest city in Any Region." -QueueUrl 
 https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

Output:

MD5OfMessageAttributes              MD5OfMessageBody                    MessageId 
                                           
----------------------              ----------------                    --------- 
                                           
1d3e51347bc042efbdf6dda31EXAMPLE    51b0a3256d59467f973009b73EXAMPLE    c35fed8f-
c739-4d0c-818b-1820eEXAMPLE

• For API details, see SendMessage in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example sends a message with the specified attributes and message 
body to the specified queue with message delivery delayed for 10 seconds.

$cityAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$cityAttributeValue.DataType = "String"
$cityAttributeValue.StringValue = "AnyCity"

$populationAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$populationAttributeValue.DataType = "Number"
$populationAttributeValue.StringValue = "1250800"

$messageAttributes = New-Object System.Collections.Hashtable
$messageAttributes.Add("City", $cityAttributeValue)

Actions 386

https://docs.aws.amazon.com/powershell/v4/reference


Amazon Simple Queue Service Developer Guide

$messageAttributes.Add("Population", $populationAttributeValue)

Send-SQSMessage -DelayInSeconds 10 -MessageAttributes $messageAttributes -
MessageBody "Information about the largest city in Any Region." -QueueUrl 
 https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

Output:

MD5OfMessageAttributes              MD5OfMessageBody                    MessageId 
                                           
----------------------              ----------------                    --------- 
                                           
1d3e51347bc042efbdf6dda31EXAMPLE    51b0a3256d59467f973009b73EXAMPLE    c35fed8f-
c739-4d0c-818b-1820eEXAMPLE

• For API details, see SendMessage in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

def send_message(queue, message_body, message_attributes=None): 
    """ 
    Send a message to an Amazon SQS queue. 

    :param queue: The queue that receives the message. 
    :param message_body: The body text of the message. 
    :param message_attributes: Custom attributes of the message. These are key-
value 
                               pairs that can be whatever you want. 
    :return: The response from SQS that contains the assigned message ID. 
    """ 
    if not message_attributes: 
        message_attributes = {} 

Actions 387

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    try: 
        response = queue.send_message( 
            MessageBody=message_body, MessageAttributes=message_attributes 
        ) 
    except ClientError as error: 
        logger.exception("Send message failed: %s", message_body) 
        raise error 
    else: 
        return response

• For API details, see SendMessage in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

require 'aws-sdk-sqs'
require 'aws-sdk-sts'

# @param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
# @param queue_url [String] The URL of the queue.
# @param message_body [String] The contents of the message to be sent.
# @return [Boolean] true if the message was sent; otherwise, false.
# @example
#   exit 1 unless message_sent?(
#     Aws::SQS::Client.new(region: 'us-west-2'),
#     'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue',
#     'This is my message.'
#   )
def message_sent?(sqs_client, queue_url, message_body) 
  sqs_client.send_message( 
    queue_url: queue_url, 

Actions 388

https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/SendMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    message_body: message_body 
  ) 
  true
rescue StandardError => e 
  puts "Error sending message: #{e.message}" 
  false
end

# Full example call:
# Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me 
  region = 'us-west-2' 
  queue_name = 'my-queue' 
  message_body = 'This is my message.' 

  sts_client = Aws::STS::Client.new(region: region) 

  # For example: 
  # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue' 
  queue_url = "https://sqs.#{region}.amazonaws.com/
#{sts_client.get_caller_identity.account}/#{queue_name}" 

  sqs_client = Aws::SQS::Client.new(region: region) 

  puts "Sending a message to the queue named '#{queue_name}'..." 

  if message_sent?(sqs_client, queue_url, message_body) 
    puts 'Message sent.' 
  else 
    puts 'Message not sent.' 
  end
end

# Example usage:
run_me if $PROGRAM_NAME == __FILE__

• For API details, see SendMessage in Amazon SDK for Ruby API Reference.

Actions 389

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/SendMessage


Amazon Simple Queue Service Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

async fn send(client: &Client, queue_url: &String, message: &SQSMessage) -> 
 Result<(), Error> { 
    println!("Sending message to queue with URL: {}", queue_url); 

    let rsp = client 
        .send_message() 
        .queue_url(queue_url) 
        .message_body(&message.body) 
        // If the queue is FIFO, you need to set .message_deduplication_id 
        // and message_group_id or configure the queue for 
 ContentBasedDeduplication. 
        .send() 
        .await?; 

    println!("Send message to the queue: {:#?}", rsp); 

    Ok(())
}

• For API details, see SendMessage in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 390

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/sqs#code-examples
https://docs.rs/aws-sdk-sqs/latest/aws_sdk_sqs/client/struct.Client.html#method.send_message
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    TRY. 
        oo_result = lo_sqs->sendmessage(              " oo_result is returned for 
 testing purposes. " 
           iv_queueurl = iv_queue_url 
           iv_messagebody = iv_message ). 
        MESSAGE 'Message sent to SQS queue.' TYPE 'I'. 
      CATCH /aws1/cx_sqsinvalidmsgconts. 
        MESSAGE 'Message contains non-valid characters.' TYPE 'E'. 
      CATCH /aws1/cx_sqsunsupportedop. 
        MESSAGE 'Operation not supported.' TYPE 'E'. 
    ENDTRY.

• For API details, see SendMessage in Amazon SDK for SAP ABAP API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use SendMessageBatch with an Amazon SDK or CLI

The following code examples show how to use SendMessageBatch.

Action examples are code excerpts from larger programs and must be run in context. You can see 
this action in context in the following code example:

• Send and receive batches of messages

CLI

Amazon CLI

To send multiple messages as a batch

This example sends 2 messages with the specified message bodies, delay periods, and 
message attributes, to the specified queue.

Command:

Actions 391

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html


Amazon Simple Queue Service Developer Guide

aws sqs send-message-batch --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyQueue --entries file://send-message-
batch.json

Input file (send-message-batch.json):

[ 
  { 
    "Id": "FuelReport-0001-2015-09-16T140731Z", 
        "MessageBody": "Fuel report for account 0001 on 2015-09-16 at 02:07:31 
 PM.", 
        "DelaySeconds": 10, 
        "MessageAttributes": { 
          "SellerName": { 
            "DataType": "String", 
                "StringValue": "Example Store" 
      }, 
          "City": { 
        "DataType": "String", 
        "StringValue": "Any City" 
      }, 
          "Region": { 
            "DataType": "String", 
                "StringValue": "WA" 
      }, 
          "PostalCode": { 
            "DataType": "String", 
                "StringValue": "99065" 
          }, 
          "PricePerGallon": { 
            "DataType": "Number", 
                "StringValue": "1.99" 
      } 
        } 
  }, 
  { 
    "Id": "FuelReport-0002-2015-09-16T140930Z", 
        "MessageBody": "Fuel report for account 0002 on 2015-09-16 at 02:09:30 
 PM.", 
        "DelaySeconds": 10, 
        "MessageAttributes": { 
          "SellerName": { 
            "DataType": "String", 

Actions 392



Amazon Simple Queue Service Developer Guide

                "StringValue": "Example Fuels" 
      }, 
          "City": { 
        "DataType": "String", 
        "StringValue": "North Town" 
      }, 
          "Region": { 
            "DataType": "String", 
                "StringValue": "WA" 
      }, 
          "PostalCode": { 
            "DataType": "String", 
                "StringValue": "99123" 
          }, 
          "PricePerGallon": { 
            "DataType": "Number", 
                "StringValue": "1.87" 
      } 
        } 
  }
]

Output:

{ 
  "Successful": [ 
    { 
      "MD5OfMessageBody": "203c4a38...7943237e", 
      "MD5OfMessageAttributes": "10809b55...baf283ef", 
      "Id": "FuelReport-0001-2015-09-16T140731Z", 
      "MessageId": "d175070c-d6b8-4101-861d-adeb3EXAMPLE" 
    }, 
    { 
      "MD5OfMessageBody": "2cf0159a...c1980595", 
      "MD5OfMessageAttributes": "55623928...ae354a25", 
      "Id": "FuelReport-0002-2015-09-16T140930Z", 
      "MessageId": "f9b7d55d-0570-413e-b9c5-a9264EXAMPLE" 
    } 
  ]
}

• For API details, see SendMessageBatch in Amazon CLI Command Reference.

Actions 393

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/send-message-batch.html


Amazon Simple Queue Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

            SendMessageBatchRequest sendMessageBatchRequest = 
 SendMessageBatchRequest.builder() 
                    .queueUrl(queueUrl) 
                    
 .entries(SendMessageBatchRequestEntry.builder().id("id1").messageBody("Hello 
 from msg 1").build(), 
                            
 SendMessageBatchRequestEntry.builder().id("id2").messageBody("msg 
 2").delaySeconds(10) 
                                    .build()) 
                    .build(); 
            sqsClient.sendMessageBatch(sendMessageBatchRequest);

• For API details, see SendMessageBatch in Amazon SDK for Java 2.x API Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example sends 2 messages with the specified attributes and message 
bodies to the specified queue. Delivery is delayed for 15 seconds for the first message 
and 10 seconds for the second message.

$student1NameAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student1NameAttributeValue.DataType = "String"
$student1NameAttributeValue.StringValue = "John Doe"

$student1GradeAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student1GradeAttributeValue.DataType = "Number"
$student1GradeAttributeValue.StringValue = "89"

Actions 394

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/SendMessageBatch


Amazon Simple Queue Service Developer Guide

$student2NameAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student2NameAttributeValue.DataType = "String"
$student2NameAttributeValue.StringValue = "Jane Doe"

$student2GradeAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student2GradeAttributeValue.DataType = "Number"
$student2GradeAttributeValue.StringValue = "93"

$message1 = New-Object Amazon.SQS.Model.SendMessageBatchRequestEntry  
$message1.DelaySeconds = 15
$message1.Id = "FirstMessage"
$message1.MessageAttributes.Add("StudentName", $student1NameAttributeValue)
$message1.MessageAttributes.Add("StudentGrade", $student1GradeAttributeValue)
$message1.MessageBody = "Information about John Doe's grade."

$message2 = New-Object Amazon.SQS.Model.SendMessageBatchRequestEntry  
$message2.DelaySeconds = 10
$message2.Id = "SecondMessage"
$message2.MessageAttributes.Add("StudentName", $student2NameAttributeValue)
$message2.MessageAttributes.Add("StudentGrade", $student2GradeAttributeValue)
$message2.MessageBody = "Information about Jane Doe's grade."

Send-SQSMessageBatch -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/
MyQueue -Entry $message1, $message2

Output:

Failed    Successful                                                              
        
------    ----------                                                              
        
{}        {FirstMessage, SecondMessage}

• For API details, see SendMessageBatch in Amazon Tools for PowerShell Cmdlet Reference 
(V4).

Tools for PowerShell V5

Example 1: This example sends 2 messages with the specified attributes and message 
bodies to the specified queue. Delivery is delayed for 15 seconds for the first message 
and 10 seconds for the second message.

Actions 395

https://docs.aws.amazon.com/powershell/v4/reference


Amazon Simple Queue Service Developer Guide

$student1NameAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student1NameAttributeValue.DataType = "String"
$student1NameAttributeValue.StringValue = "John Doe"

$student1GradeAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student1GradeAttributeValue.DataType = "Number"
$student1GradeAttributeValue.StringValue = "89"

$student2NameAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student2NameAttributeValue.DataType = "String"
$student2NameAttributeValue.StringValue = "Jane Doe"

$student2GradeAttributeValue = New-Object Amazon.SQS.Model.MessageAttributeValue
$student2GradeAttributeValue.DataType = "Number"
$student2GradeAttributeValue.StringValue = "93"

$message1 = New-Object Amazon.SQS.Model.SendMessageBatchRequestEntry  
$message1.DelaySeconds = 15
$message1.Id = "FirstMessage"
$message1.MessageAttributes.Add("StudentName", $student1NameAttributeValue)
$message1.MessageAttributes.Add("StudentGrade", $student1GradeAttributeValue)
$message1.MessageBody = "Information about John Doe's grade."

$message2 = New-Object Amazon.SQS.Model.SendMessageBatchRequestEntry  
$message2.DelaySeconds = 10
$message2.Id = "SecondMessage"
$message2.MessageAttributes.Add("StudentName", $student2NameAttributeValue)
$message2.MessageAttributes.Add("StudentGrade", $student2GradeAttributeValue)
$message2.MessageBody = "Information about Jane Doe's grade."

Send-SQSMessageBatch -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/
MyQueue -Entry $message1, $message2

Output:

Failed    Successful                                                              
        
------    ----------                                                              
        
{}        {FirstMessage, SecondMessage}

Actions 396



Amazon Simple Queue Service Developer Guide

• For API details, see SendMessageBatch in Amazon Tools for PowerShell Cmdlet Reference 
(V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

def send_messages(queue, messages): 
    """ 
    Send a batch of messages in a single request to an SQS queue. 
    This request may return overall success even when some messages were not 
 sent. 
    The caller must inspect the Successful and Failed lists in the response and 
    resend any failed messages. 

    :param queue: The queue to receive the messages. 
    :param messages: The messages to send to the queue. These are simplified to 
                     contain only the message body and attributes. 
    :return: The response from SQS that contains the list of successful and 
 failed 
             messages. 
    """ 
    try: 
        entries = [ 
            { 
                "Id": str(ind), 
                "MessageBody": msg["body"], 
                "MessageAttributes": msg["attributes"], 
            } 
            for ind, msg in enumerate(messages) 
        ] 
        response = queue.send_messages(Entries=entries) 
        if "Successful" in response: 
            for msg_meta in response["Successful"]: 
                logger.info( 

Actions 397

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

                    "Message sent: %s: %s", 
                    msg_meta["MessageId"], 
                    messages[int(msg_meta["Id"])]["body"], 
                ) 
        if "Failed" in response: 
            for msg_meta in response["Failed"]: 
                logger.warning( 
                    "Failed to send: %s: %s", 
                    msg_meta["MessageId"], 
                    messages[int(msg_meta["Id"])]["body"], 
                ) 
    except ClientError as error: 
        logger.exception("Send messages failed to queue: %s", queue) 
        raise error 
    else: 
        return response

• For API details, see SendMessageBatch in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

require 'aws-sdk-sqs'
require 'aws-sdk-sts'

#
# @param sqs_client [Aws::SQS::Client] An initialized Amazon SQS client.
# @param queue_url [String] The URL of the queue.
# @param entries [Hash] The contents of the messages to be sent,
#   in the correct format.
# @return [Boolean] true if the messages were sent; otherwise, false.

Actions 398

https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/SendMessageBatch
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

# @example
#   exit 1 unless messages_sent?(
#     Aws::SQS::Client.new(region: 'us-west-2'),
#     'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue',
#     [
#       {
#         id: 'Message1',
#         message_body: 'This is the first message.'
#       },
#       {
#         id: 'Message2',
#         message_body: 'This is the second message.'
#       }
#     ]
#   )
def messages_sent?(sqs_client, queue_url, entries) 
  sqs_client.send_message_batch( 
    queue_url: queue_url, 
    entries: entries 
  ) 
  true
rescue StandardError => e 
  puts "Error sending messages: #{e.message}" 
  false
end

# Full example call:
# Replace us-west-2 with the AWS Region you're using for Amazon SQS.
def run_me 
  region = 'us-west-2' 
  queue_name = 'my-queue' 
  entries = [ 
    { 
      id: 'Message1', 
      message_body: 'This is the first message.' 
    }, 
    { 
      id: 'Message2', 
      message_body: 'This is the second message.' 
    } 
  ] 

  sts_client = Aws::STS::Client.new(region: region) 

Actions 399



Amazon Simple Queue Service Developer Guide

  # For example: 
  # 'https://sqs.us-west-2.amazonaws.com/111111111111/my-queue' 
  queue_url = "https://sqs.#{region}.amazonaws.com/
#{sts_client.get_caller_identity.account}/#{queue_name}" 

  sqs_client = Aws::SQS::Client.new(region: region) 

  puts "Sending messages to the queue named '#{queue_name}'..." 

  if messages_sent?(sqs_client, queue_url, entries) 
    puts 'Messages sent.' 
  else 
    puts 'Messages not sent.' 
  end
end

• For API details, see SendMessageBatch in Amazon SDK for Ruby API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

    TRY. 
        oo_result = lo_sqs->sendmessagebatch(         " oo_result is returned for 
 testing purposes. " 
           iv_queueurl = iv_queue_url 
           it_entries = it_messages ). 
        MESSAGE 'Messages sent to SQS queue.' TYPE 'I'. 
      CATCH /aws1/cx_sqsbtcentidsnotdist00. 
        MESSAGE 'Two or more batch entries in the request have the same ID.' TYPE 
 'E'. 
      CATCH /aws1/cx_sqsbatchreqtoolong. 
        MESSAGE 'The length of all the messages put together is more than the 
 limit.' TYPE 'E'. 

Actions 400

https://docs.amazonaws.cn/goto/SdkForRubyV3/sqs-2012-11-05/SendMessageBatch
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sqs#code-examples


Amazon Simple Queue Service Developer Guide

      CATCH /aws1/cx_sqsemptybatchrequest. 
        MESSAGE 'The batch request does not contain any entries.' TYPE 'E'. 
      CATCH /aws1/cx_sqsinvbatchentryid. 
        MESSAGE 'The ID of a batch entry in a batch request is not valid.' TYPE 
 'E'. 
      CATCH /aws1/cx_sqstoomanyentriesin00. 
        MESSAGE 'The batch request contains more entries than allowed.' TYPE 'E'. 
      CATCH /aws1/cx_sqsunsupportedop. 
        MESSAGE 'Operation not supported.' TYPE 'E'. 
    ENDTRY.

• For API details, see SendMessageBatch in Amazon SDK for SAP ABAP API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use SetQueueAttributes with an Amazon SDK or CLI

The following code examples show how to use SetQueueAttributes.

Action examples are code excerpts from larger programs and must be run in context. You can see 
this action in context in the following code example:

• Publish messages to queues

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Set the policy attribute of a queue for a topic.

    /// <summary> 

Actions 401

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples


Amazon Simple Queue Service Developer Guide

    /// Set the policy attribute of a queue for a topic. 
    /// </summary> 
    /// <param name="queueArn">The ARN of the queue.</param> 
    /// <param name="topicArn">The ARN of the topic.</param> 
    /// <param name="queueUrl">The url for the queue.</param> 
    /// <returns>True if successful.</returns> 
    public async Task<bool> SetQueuePolicyForTopic(string queueArn, string 
 topicArn, string queueUrl) 
    { 
        var queuePolicy = "{" + 
                                "\"Version\": \"2012-10-17\"," + 
                                "\"Statement\": [{" + 
                                     "\"Effect\": \"Allow\"," + 
                                     "\"Principal\": {" + 
                                         $"\"Service\": " + 
                                             "\"sns.amazonaws.com\"" + 
                                            "}," + 
                                     "\"Action\": \"sqs:SendMessage\"," + 
                                     $"\"Resource\": \"{queueArn}\"," + 
                                      "\"Condition\": {" + 
                                           "\"ArnEquals\": {" + 
                                                $"\"aws:SourceArn\": 
 \"{topicArn}\"" + 
                                            "}" + 
                                        "}" + 
                                "}]" + 
                             "}"; 
        var attributesResponse = await _amazonSQSClient.SetQueueAttributesAsync( 
            new SetQueueAttributesRequest() 
            { 
                QueueUrl = queueUrl, 
                Attributes = new Dictionary<string, string>() { { "Policy", 
 queuePolicy } } 
            }); 
        return attributesResponse.HttpStatusCode == HttpStatusCode.OK; 
    }

• For API details, see SetQueueAttributes in Amazon SDK for .NET API Reference.

Actions 402

https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/SetQueueAttributes


Amazon Simple Queue Service Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

//! Set the value for an attribute in an Amazon Simple Queue Service (Amazon SQS) 
 queue.
/*! 
  \param queueUrl: An Amazon SQS queue URL. 
  \param attributeName: An attribute name enum. 
  \param attribute: The attribute value as a string. 
  \param clientConfiguration: AWS client configuration. 
  \return bool: Function succeeded. 
 */
bool AwsDoc::SQS::setQueueAttributes(const Aws::String &queueURL, 
                                     Aws::SQS::Model::QueueAttributeName 
 attributeName, 
                                     const Aws::String &attribute, 
                                     const Aws::Client::ClientConfiguration 
 &clientConfiguration) { 
    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

    Aws::SQS::Model::SetQueueAttributesRequest request; 
    request.SetQueueUrl(queueURL); 
    request.AddAttributes( 
            attributeName, 
            attribute); 

    const Aws::SQS::Model::SetQueueAttributesOutcome outcome = 
 sqsClient.SetQueueAttributes( 
            request); 
    if (outcome.IsSuccess()) { 
        std::cout << "Successfully set the attribute  " << 

Actions 403

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

                 
 Aws::SQS::Model::QueueAttributeNameMapper::GetNameForQueueAttributeName( 
                          attributeName) 
                  << " with value " << attribute << " in queue " << 
                  queueURL << "." << std::endl; 
    } 
    else { 
        std::cout << "Error setting attribute for  queue " << 
                  queueURL << ": " << outcome.GetError().GetMessage() << 
                  std::endl; 
    } 

    return outcome.IsSuccess();
}

Configure a dead-letter queue.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

//! Connect an Amazon Simple Queue Service (Amazon SQS) queue to an associated
//! dead-letter queue.
/*! 
  \param srcQueueUrl: An Amazon SQS queue URL. 
  \param deadLetterQueueARN: The Amazon Resource Name (ARN) of an Amazon SQS 
 dead-letter queue. 
  \param maxReceiveCount: The max receive count of a message before it is sent to 
 the dead-letter queue. 
  \param clientConfiguration: AWS client configuration. 
  \return bool: Function succeeded. 
 */
bool AwsDoc::SQS::setDeadLetterQueue(const Aws::String &srcQueueUrl, 
                                     const Aws::String &deadLetterQueueARN, 
                                     int maxReceiveCount, 
                                     const Aws::Client::ClientConfiguration 
 &clientConfiguration) { 
    Aws::String redrivePolicy = MakeRedrivePolicy(deadLetterQueueARN, 
 maxReceiveCount); 

    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

Actions 404



Amazon Simple Queue Service Developer Guide

    Aws::SQS::Model::SetQueueAttributesRequest request; 
    request.SetQueueUrl(srcQueueUrl); 
    request.AddAttributes( 
            Aws::SQS::Model::QueueAttributeName::RedrivePolicy, 
            redrivePolicy); 

    const Aws::SQS::Model::SetQueueAttributesOutcome outcome = 
            sqsClient.SetQueueAttributes(request); 
    if (outcome.IsSuccess()) { 
        std::cout << "Successfully set dead letter queue for queue  " << 
                  srcQueueUrl << " to " << deadLetterQueueARN << std::endl; 
    } 
    else { 
        std::cerr << "Error setting dead letter queue for queue " << 
                  srcQueueUrl << ": " << outcome.GetError().GetMessage() << 
                  std::endl; 
    } 

    return outcome.IsSuccess();
}

//! Make a redrive policy for a dead-letter queue.
/*! 
  \param queueArn: An Amazon SQS ARN for the dead-letter queue. 
  \param maxReceiveCount: The max receive count of a message before it is sent to 
 the dead-letter queue. 
  \return Aws::String: Policy as JSON string. 
 */
Aws::String MakeRedrivePolicy(const Aws::String &queueArn, int maxReceiveCount) { 
    Aws::Utils::Json::JsonValue redrive_arn_entry; 
    redrive_arn_entry.AsString(queueArn); 

    Aws::Utils::Json::JsonValue max_msg_entry; 
    max_msg_entry.AsInteger(maxReceiveCount); 

    Aws::Utils::Json::JsonValue policy_map; 
    policy_map.WithObject("deadLetterTargetArn", redrive_arn_entry); 
    policy_map.WithObject("maxReceiveCount", max_msg_entry); 

    return policy_map.View().WriteReadable();
}

Actions 405



Amazon Simple Queue Service Developer Guide

Configure an Amazon SQS queue to use long polling.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

//! Set the wait time for an Amazon Simple Queue Service (Amazon SQS) queue poll.
/*! 
  \param queueUrl: An Amazon SQS queue URL. 
  \param pollTimeSeconds: The receive message wait time in seconds. 
  \param clientConfiguration: AWS client configuration. 
  \return bool: Function succeeded. 
 */
bool AwsDoc::SQS::setQueueLongPollingAttribute(const Aws::String &queueURL, 
                                               const Aws::String 
 &pollTimeSeconds, 
                                               const 
 Aws::Client::ClientConfiguration &clientConfiguration) { 
    Aws::SQS::SQSClient sqsClient(clientConfiguration); 

    Aws::SQS::Model::SetQueueAttributesRequest request; 
    request.SetQueueUrl(queueURL); 
    request.AddAttributes( 
            Aws::SQS::Model::QueueAttributeName::ReceiveMessageWaitTimeSeconds, 
            pollTimeSeconds); 

    const Aws::SQS::Model::SetQueueAttributesOutcome outcome = 
 sqsClient.SetQueueAttributes( 
            request); 
    if (outcome.IsSuccess()) { 
        std::cout << "Successfully updated long polling time for queue " << 
                  queueURL << " to " << pollTimeSeconds << std::endl; 
    } 
    else { 
        std::cout << "Error updating long polling time for queue " << 
                  queueURL << ": " << outcome.GetError().GetMessage() << 
                  std::endl; 
    } 

    return outcome.IsSuccess();
}

Actions 406



Amazon Simple Queue Service Developer Guide

• For API details, see SetQueueAttributes in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To set queue attributes

This example sets the specified queue to a delivery delay of 10 seconds, a maximum 
message size of 128 KB (128 KB * 1,024 bytes), a message retention period of 3 days (3 
days * 24 hours * 60 minutes * 60 seconds), a receive message wait time of 20 seconds, and 
a default visibility timeout of 60 seconds. This example also associates the specified dead 
letter queue with a maximum receive count of 1,000 messages.

Command:

aws sqs set-queue-attributes --queue-url https://sqs.us-
east-1.amazonaws.com/80398EXAMPLE/MyNewQueue --attributes file://set-queue-
attributes.json

Input file (set-queue-attributes.json):

{ 
  "DelaySeconds": "10", 
  "MaximumMessageSize": "131072", 
  "MessageRetentionPeriod": "259200", 
  "ReceiveMessageWaitTimeSeconds": "20", 
  "RedrivePolicy": "{\"deadLetterTargetArn\":\"arn:aws:sqs:us-
east-1:80398EXAMPLE:MyDeadLetterQueue\",\"maxReceiveCount\":\"1000\"}", 
  "VisibilityTimeout": "60"
}

Output:

None.

• For API details, see SetQueueAttributes in Amazon CLI Command Reference.

Actions 407

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/SetQueueAttributes
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sqs/set-queue-attributes.html


Amazon Simple Queue Service Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import ( 
 "context" 
 "encoding/json" 
 "fmt" 
 "log" 

 "github.com/aws/aws-sdk-go-v2/aws" 
 "github.com/aws/aws-sdk-go-v2/service/sqs" 
 "github.com/aws/aws-sdk-go-v2/service/sqs/types"
)

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct { 
 SqsClient *sqs.Client
}

// AttachSendMessagePolicy uses the SetQueueAttributes action to attach a policy 
 to an
// Amazon SQS queue that allows the specified Amazon SNS topic to send messages 
 to the
// queue.
func (actor SqsActions) AttachSendMessagePolicy(ctx context.Context, queueUrl 
 string, queueArn string, topicArn string) error { 
 policyDoc := PolicyDocument{ 
  Version: "2012-10-17", 
  Statement: []PolicyStatement{{ 
   Effect:    "Allow", 
   Action:    "sqs:SendMessage", 

Actions 408

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

   Principal: map[string]string{"Service": "sns.amazonaws.com"}, 
   Resource:  aws.String(queueArn), 
   Condition: PolicyCondition{"ArnEquals": map[string]string{"aws:SourceArn": 
 topicArn}}, 
  }}, 
 } 
 policyBytes, err := json.Marshal(policyDoc) 
 if err != nil { 
  log.Printf("Couldn't create policy document. Here's why: %v\n", err) 
  return err 
 } 
 _, err = actor.SqsClient.SetQueueAttributes(ctx, &sqs.SetQueueAttributesInput{ 
  Attributes: map[string]string{ 
   string(types.QueueAttributeNamePolicy): string(policyBytes), 
  }, 
  QueueUrl: aws.String(queueUrl), 
 }) 
 if err != nil { 
  log.Printf("Couldn't set send message policy on queue %v. Here's why: %v\n", 
 queueUrl, err) 
 } 
 return err
}

// PolicyDocument defines a policy document as a Go struct that can be serialized
// to JSON.
type PolicyDocument struct { 
 Version   string 
 Statement []PolicyStatement
}

// PolicyStatement defines a statement in a policy document.
type PolicyStatement struct { 
 Effect    string 
 Action    string 
 Principal map[string]string `json:",omitempty"` 
 Resource  *string           `json:",omitempty"` 
 Condition PolicyCondition   `json:",omitempty"`
}

// PolicyCondition defines a condition in a policy.
type PolicyCondition map[string]map[string]string

Actions 409



Amazon Simple Queue Service Developer Guide

• For API details, see SetQueueAttributes in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Configure an Amazon SQS to use server-side encryption (SSE) using a custom KMS key.

    public static void addEncryption(String queueName, String kmsMasterKeyAlias) 
 { 
        SqsClient sqsClient = SqsClient.create(); 

        GetQueueUrlRequest urlRequest = GetQueueUrlRequest.builder() 
                .queueName(queueName) 
                .build(); 

        GetQueueUrlResponse getQueueUrlResponse; 
        try { 
            getQueueUrlResponse = sqsClient.getQueueUrl(urlRequest); 
        } catch (QueueDoesNotExistException e) { 
            LOGGER.error(e.getMessage(), e); 
            throw new RuntimeException(e); 
        } 
        String queueUrl = getQueueUrlResponse.queueUrl(); 

        Map<QueueAttributeName, String> attributes = Map.of( 
                QueueAttributeName.KMS_MASTER_KEY_ID, kmsMasterKeyAlias, 
                QueueAttributeName.KMS_DATA_KEY_REUSE_PERIOD_SECONDS, "140" // 
 Set the data key reuse period to 140 seconds. 
        );                                                                  // 
 This is how long SQS can reuse the data key before requesting a new one from 
 KMS. 

Actions 410

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.SetQueueAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

        SetQueueAttributesRequest attRequest = 
 SetQueueAttributesRequest.builder() 
                .queueUrl(queueUrl) 
                .attributes(attributes) 
                .build(); 
        try { 
            sqsClient.setQueueAttributes(attRequest); 
            LOGGER.info("The attributes have been applied to {}", queueName); 
        } catch (InvalidAttributeNameException | InvalidAttributeValueException 
 e) { 
            LOGGER.error(e.getMessage(), e); 
            throw new RuntimeException(e); 
        } finally { 
            sqsClient.close(); 
        } 
    }

• For API details, see SetQueueAttributes in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import { SetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue-url";

export const main = async (queueUrl = SQS_QUEUE_URL) => { 
  const command = new SetQueueAttributesCommand({ 
    QueueUrl: queueUrl, 
    Attributes: { 
      DelaySeconds: "1", 
    }, 
  }); 

Actions 411

https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/SetQueueAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

  const response = await client.send(command); 
  console.log(response); 
  return response;
};

Configure an Amazon SQS queue to use long polling.

import { SetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";

export const main = async (queueUrl = SQS_QUEUE_URL) => { 
  const command = new SetQueueAttributesCommand({ 
    Attributes: { 
      ReceiveMessageWaitTimeSeconds: "20", 
    }, 
    QueueUrl: queueUrl, 
  }); 

  const response = await client.send(command); 
  console.log(response); 
  return response;
};

Configure a dead-letter queue.

import { SetQueueAttributesCommand, SQSClient } from "@aws-sdk/client-sqs";

const client = new SQSClient({});
const SQS_QUEUE_URL = "queue_url";
const DEAD_LETTER_QUEUE_ARN = "dead_letter_queue_arn";

export const main = async ( 
  queueUrl = SQS_QUEUE_URL, 
  deadLetterQueueArn = DEAD_LETTER_QUEUE_ARN,
) => { 
  const command = new SetQueueAttributesCommand({ 
    Attributes: { 
      RedrivePolicy: JSON.stringify({ 

Actions 412



Amazon Simple Queue Service Developer Guide

        // Amazon SQS supports dead-letter queues (DLQ), which other 
        // queues (source queues) can target for messages that can't 
        // be processed (consumed) successfully. 
        // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-dead-letter-queues.html 
        deadLetterTargetArn: deadLetterQueueArn, 
        maxReceiveCount: "10", 
      }), 
    }, 
    QueueUrl: queueUrl, 
  }); 

  const response = await client.send(command); 
  console.log(response); 
  return response;
};

• For API details, see SetQueueAttributes in Amazon SDK for JavaScript API Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example shows how to set a policy subscribing a queue to an SNS topic. 
When a message is published to the topic, a message is sent to the subscribed queue.

# create the queue and topic to be associated
$qurl = New-SQSQueue -QueueName "myQueue"
$topicarn = New-SNSTopic -Name "myTopic"

# get the queue ARN to inject into the policy; it will be returned
# in the output's QueueARN member but we need to put it into a variable
# so text expansion in the policy string takes effect
$qarn = (Get-SQSQueueAttribute -QueueUrl $qurl -AttributeName 
 "QueueArn").QueueARN

# construct the policy and inject arns
$policy = @"
{ 
  "Version":"2012-10-17",        
  "Id": "$qarn/SQSPOLICY", 
  "Statement": [ 

Actions 413

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/SetQueueAttributesCommand


Amazon Simple Queue Service Developer Guide

      { 
      "Sid": "1", 
      "Effect": "Allow", 
      "Principal": "*", 
      "Action": "SQS:SendMessage", 
      "Resource": "$qarn", 
      "Condition": { 
        "ArnEquals": { 
          "aws:SourceArn": "$topicarn" 
          } 
      } 
    } 
  ]
}
"@

# set the policy
Set-SQSQueueAttribute -QueueUrl $qurl -Attribute @{ Policy=$policy }

Example 2: This example sets the specified attributes for the specified queue.

Set-SQSQueueAttribute -Attribute @{"DelaySeconds" = "10"; "MaximumMessageSize" = 
 "131072"} -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see SetQueueAttributes in Amazon Tools for PowerShell Cmdlet Reference 
(V4).

Tools for PowerShell V5

Example 1: This example shows how to set a policy subscribing a queue to an SNS topic. 
When a message is published to the topic, a message is sent to the subscribed queue.

# create the queue and topic to be associated
$qurl = New-SQSQueue -QueueName "myQueue"
$topicarn = New-SNSTopic -Name "myTopic"

# get the queue ARN to inject into the policy; it will be returned
# in the output's QueueARN member but we need to put it into a variable
# so text expansion in the policy string takes effect
$qarn = (Get-SQSQueueAttribute -QueueUrl $qurl -AttributeName 
 "QueueArn").QueueARN

# construct the policy and inject arns

Actions 414

https://docs.aws.amazon.com/powershell/v4/reference


Amazon Simple Queue Service Developer Guide

$policy = @"
{ 
  "Version":"2012-10-17",        
  "Id": "$qarn/SQSPOLICY", 
  "Statement": [ 
      { 
      "Sid": "1", 
      "Effect": "Allow", 
      "Principal": "*", 
      "Action": "SQS:SendMessage", 
      "Resource": "$qarn", 
      "Condition": { 
        "ArnEquals": { 
          "aws:SourceArn": "$topicarn" 
          } 
      } 
    } 
  ]
}
"@

# set the policy
Set-SQSQueueAttribute -QueueUrl $qurl -Attribute @{ Policy=$policy }

Example 2: This example sets the specified attributes for the specified queue.

Set-SQSQueueAttribute -Attribute @{"DelaySeconds" = "10"; "MaximumMessageSize" = 
 "131072"} -QueueUrl https://sqs.us-east-1.amazonaws.com/80398EXAMPLE/MyQueue

• For API details, see SetQueueAttributes in Amazon Tools for PowerShell Cmdlet Reference 
(V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 415

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

Set the policy attribute of a queue for a topic.

class SqsWrapper: 
    """Wrapper class for managing Amazon SQS operations.""" 

    def __init__(self, sqs_client: Any) -> None: 
        """ 
        Initialize the SqsWrapper. 

        :param sqs_client: A Boto3 Amazon SQS client. 
        """ 
        self.sqs_client = sqs_client 

    @classmethod 
    def from_client(cls) -> 'SqsWrapper': 
        """ 
        Create an SqsWrapper instance using a default boto3 client. 

        :return: An instance of this class. 
        """ 
        sqs_client = boto3.client('sqs') 
        return cls(sqs_client) 

    def set_queue_policy_for_topic(self, queue_arn: str, topic_arn: str, 
 queue_url: str) -> bool: 
        """ 
        Set the queue policy to allow SNS to send messages to the queue. 

        :param queue_arn: The ARN of the SQS queue. 
        :param topic_arn: The ARN of the SNS topic. 
        :param queue_url: The URL of the SQS queue. 
        :return: True if successful. 
        :raises ClientError: If setting the queue policy fails. 
        """ 
        try: 
            # Create policy that allows SNS to send messages to the queue 
            policy = { 
                "Version":"2012-10-17",        
                "Statement": [ 
                    { 
                        "Effect": "Allow", 
                        "Principal": { 
                            "Service": "sns.amazonaws.com" 

Actions 416



Amazon Simple Queue Service Developer Guide

                        }, 
                        "Action": "sqs:SendMessage", 
                        "Resource": queue_arn, 
                        "Condition": { 
                            "ArnEquals": { 
                                "aws:SourceArn": topic_arn 
                            } 
                        } 
                    } 
                ] 
            } 

            self.sqs_client.set_queue_attributes( 
                QueueUrl=queue_url, 
                Attributes={ 
                    'Policy': json.dumps(policy) 
                } 
            ) 

            logger.info(f"Set queue policy for {queue_url} to allow messages from 
 {topic_arn}") 
            return True 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error setting queue policy: {error_code} - {e}") 
            raise

• For API details, see SetQueueAttributes in Amazon SDK for Python (Boto3) API Reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Actions 417

https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/SetQueueAttributes
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

import AWSSQS 

        let config = try await SQSClient.SQSClientConfiguration(region: region) 
        let sqsClient = SQSClient(config: config) 

        do { 
            _ = try await sqsClient.setQueueAttributes( 
                input: SetQueueAttributesInput( 
                    attributes: [ 
                        "MaximumMessageSize": "\(maxSize)" 
                    ], 
                    queueUrl: url 
                ) 
            ) 
        } catch _ as AWSSQS.InvalidAttributeValue { 
            print("Invalid maximum message size: \(maxSize) kB.") 
        }

• For API details, see SetQueueAttributes in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Scenarios for Amazon SQS using Amazon SDKs

The following code examples show you how to implement common scenarios in Amazon SQS 
with Amazon SDKs. These scenarios show you how to accomplish specific tasks by calling multiple 
functions within Amazon SQS or combined with other Amazon Web Services services. Each 
scenario includes a link to the complete source code, where you can find instructions on how to set 
up and run the code.

Scenarios target an intermediate level of experience to help you understand service actions in 
context.

Examples

• Create a web application that sends and retrieves messages by using Amazon SQS

• Create a messenger application with Step Functions

Scenarios 418

https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/setqueueattributes(input:)


Amazon Simple Queue Service Developer Guide

• Create an Amazon Textract explorer application

• Create and publish to a FIFO Amazon SNS topic using an Amazon SDK

• Detect people and objects in a video with Amazon Rekognition using an Amazon SDK

• Manage large Amazon SQS messages using Amazon S3 with an Amazon SDK

• Receive and process Amazon S3 event notifications by using an Amazon SDK

• Publish Amazon SNS messages to Amazon SQS queues using an Amazon SDK

• Send and receive batches of messages with Amazon SQS using an Amazon SDK

• Use the Amazon Message Processing Framework for .NET to publish and receive Amazon SQS 
messages

• Use the Amazon SQS Java Messaging Library to work with the Java Message Service (JMS) 
interface for Amazon SQS

• Work with queue tags and Amazon SQS using an Amazon SDK

Create a web application that sends and retrieves messages by using 
Amazon SQS

The following code examples show how to create a messaging application by using Amazon SQS.

Java

SDK for Java 2.x

Shows how to use the Amazon SQS API to develop a Spring REST API that sends and 
retrieves messages.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Comprehend

• Amazon SQS

Create a messaging application 419

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_message_application


Amazon Simple Queue Service Developer Guide

Kotlin

SDK for Kotlin

Shows how to use the Amazon SQS API to develop a Spring REST API that sends and 
retrieves messages.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Comprehend

• Amazon SQS

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Create a messenger application with Step Functions

The following code example shows how to create an Amazon Step Functions messenger 
application that retrieves message records from a database table.

Python

SDK for Python (Boto3)

Shows how to use the Amazon SDK for Python (Boto3) with Amazon Step Functions to 
create a messenger application that retrieves message records from an Amazon DynamoDB 
table and sends them with Amazon Simple Queue Service (Amazon SQS). The state machine 
integrates with an Amazon Lambda function to scan the database for unsent messages.

• Create a state machine that retrieves and updates message records from an Amazon 
DynamoDB table.

• Update the state machine definition to also send messages to Amazon Simple Queue 
Service (Amazon SQS).

• Start and stop state machine runs.

• Connect to Lambda, DynamoDB, and Amazon SQS from a state machine by using service 
integrations.

Create a messenger application 420

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/creating_message_application


Amazon Simple Queue Service Developer Guide

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

• Amazon SQS

• Step Functions

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Create an Amazon Textract explorer application

The following code examples show how to explore Amazon Textract output through an interactive 
application.

JavaScript

SDK for JavaScript (v3)

Shows how to use the Amazon SDK for JavaScript to build a React application that uses 
Amazon Textract to extract data from a document image and display it in an interactive web 
page. This example runs in a web browser and requires an authenticated Amazon Cognito 
identity for credentials. It uses Amazon Simple Storage Service (Amazon S3) for storage, 
and for notifications it polls an Amazon Simple Queue Service (Amazon SQS) queue that is 
subscribed to an Amazon Simple Notification Service (Amazon SNS) topic.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Cognito Identity

• Amazon S3

• Amazon SNS

• Amazon SQS

Create an Amazon Textract explorer application 421

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/stepfunctions_messenger
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/textract-react


Amazon Simple Queue Service Developer Guide

• Amazon Textract

Python

SDK for Python (Boto3)

Shows how to use the Amazon SDK for Python (Boto3) with Amazon Textract to detect 
text, form, and table elements in a document image. The input image and Amazon Textract 
output are shown in a Tkinter application that lets you explore the detected elements.

• Submit a document image to Amazon Textract and explore the output of detected 
elements.

• Submit images directly to Amazon Textract or through an Amazon Simple Storage Service 
(Amazon S3) bucket.

• Use asynchronous APIs to start a job that publishes a notification to an Amazon Simple 
Notification Service (Amazon SNS) topic when the job completes.

• Poll an Amazon Simple Queue Service (Amazon SQS) queue for a job completion message 
and display the results.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Cognito Identity

• Amazon S3

• Amazon SNS

• Amazon SQS

• Amazon Textract

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Create and publish to a FIFO Amazon SNS topic using an Amazon SDK

The following code examples show how to create and publish to a FIFO Amazon SNS topic.

Create and publish to a FIFO topic 422

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/textract_explorer


Amazon Simple Queue Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

This example

• creates an Amazon SNS FIFO topic, two Amazon SQS FIFO queues, and one Standard 
queue.

• subscribes the queues to the topic and publishes a message to the topic.

The test verifies the receipt of the message to each queue. The complete example also 
shows the addition of access policies and deletes the resources at the end.

public class PriceUpdateExample { 
    public final static SnsClient snsClient = SnsClient.create(); 
    public final static SqsClient sqsClient = SqsClient.create(); 

    public static void main(String[] args) { 

        final String usage = "\n" + 
            "Usage: " + 
            "    <topicName> <wholesaleQueueFifoName> <retailQueueFifoName> 
 <analyticsQueueName>\n\n" + 
            "Where:\n" + 
            "   fifoTopicName - The name of the FIFO topic that you want to 
 create. \n\n" + 
            "   wholesaleQueueARN - The name of a SQS FIFO queue that will be 
 created for the wholesale consumer. \n\n" 
            + 
            "   retailQueueARN - The name of a SQS FIFO queue that will created 
 for the retail consumer. \n\n" + 
            "   analyticsQueueARN - The name of a SQS standard queue that will be 
 created for the analytics consumer. \n\n"; 
        if (args.length != 4) { 
            System.out.println(usage); 
            System.exit(1); 
        } 

Create and publish to a FIFO topic 423

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns#code-examples
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns/src/test/java/com/example/sns/PriceUpdateExampleTest.java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sns/src/main/java/com/example/sns/PriceUpdateExample.java


Amazon Simple Queue Service Developer Guide

        final String fifoTopicName = args[0]; 
        final String wholeSaleQueueName = args[1]; 
        final String retailQueueName = args[2]; 
        final String analyticsQueueName = args[3]; 

        // For convenience, the QueueData class holds metadata about a queue: 
 ARN, URL, 
        // name and type. 
        List<QueueData> queues = List.of( 
            new QueueData(wholeSaleQueueName, QueueType.FIFO), 
            new QueueData(retailQueueName, QueueType.FIFO), 
            new QueueData(analyticsQueueName, QueueType.Standard)); 

        // Create queues. 
        createQueues(queues); 

        // Create a topic. 
        String topicARN = createFIFOTopic(fifoTopicName); 

        // Subscribe each queue to the topic. 
        subscribeQueues(queues, topicARN); 

        // Allow the newly created topic to send messages to the queues. 
        addAccessPolicyToQueuesFINAL(queues, topicARN); 

        // Publish a sample price update message with payload. 
        publishPriceUpdate(topicARN, "{\"product\": 214, \"price\": 79.99}", 
 "Consumables"); 

        // Clean up resources. 
        deleteSubscriptions(queues); 
        deleteQueues(queues); 
        deleteTopic(topicARN); 
    } 

    public static String createFIFOTopic(String topicName) { 
        try { 
            // Create a FIFO topic by using the SNS service client. 
            Map<String, String> topicAttributes = Map.of( 
                "FifoTopic", "true", 
                "ContentBasedDeduplication", "false", 
                "FifoThroughputScope", "MessageGroup"); 

Create and publish to a FIFO topic 424



Amazon Simple Queue Service Developer Guide

            CreateTopicRequest topicRequest = CreateTopicRequest.builder() 
                .name(topicName) 
                .attributes(topicAttributes) 
                .build(); 

            CreateTopicResponse response = snsClient.createTopic(topicRequest); 
            String topicArn = response.topicArn(); 
            System.out.println("The topic ARN is" + topicArn); 

            return topicArn; 

        } catch (SnsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
        return ""; 
    } 

    public static void subscribeQueues(List<QueueData> queues, String topicARN) { 
        queues.forEach(queue -> { 
            SubscribeRequest subscribeRequest = SubscribeRequest.builder() 
                .topicArn(topicARN) 
                .endpoint(queue.queueARN) 
                .protocol("sqs") 
                .build(); 

            // Subscribe to the endpoint by using the SNS service client. 
            // Only Amazon SQS queues can receive notifications from an Amazon 
 SNS FIFO 
            // topic. 
            SubscribeResponse subscribeResponse = 
 snsClient.subscribe(subscribeRequest); 
            System.out.println("The queue [" + queue.queueARN + "] subscribed to 
 the topic [" + topicARN + "]"); 
            queue.subscriptionARN = subscribeResponse.subscriptionArn(); 
        }); 
    } 

    public static void publishPriceUpdate(String topicArn, String payload, String 
 groupId) { 

        try { 
            // Create and publish a message that updates the wholesale price. 
            String subject = "Price Update"; 

Create and publish to a FIFO topic 425



Amazon Simple Queue Service Developer Guide

            String dedupId = UUID.randomUUID().toString(); 
            String attributeName = "business"; 
            String attributeValue = "wholesale"; 

            MessageAttributeValue msgAttValue = MessageAttributeValue.builder() 
                .dataType("String") 
                .stringValue(attributeValue) 
                .build(); 

            Map<String, MessageAttributeValue> attributes = new HashMap<>(); 
            attributes.put(attributeName, msgAttValue); 
            PublishRequest pubRequest = PublishRequest.builder() 
                .topicArn(topicArn) 
                .subject(subject) 
                .message(payload) 
                .messageGroupId(groupId) 
                .messageDeduplicationId(dedupId) 
                .messageAttributes(attributes) 
                .build(); 

            final PublishResponse response = snsClient.publish(pubRequest); 
            System.out.println(response.messageId()); 
            System.out.println(response.sequenceNumber()); 
            System.out.println("Message was published to " + topicArn); 

        } catch (SnsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    }

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• CreateTopic

• Publish

• Subscribe

Create and publish to a FIFO topic 426

https://docs.amazonaws.cn/goto/SdkForJavaV2/sns-2010-03-31/CreateTopic
https://docs.amazonaws.cn/goto/SdkForJavaV2/sns-2010-03-31/Publish
https://docs.amazonaws.cn/goto/SdkForJavaV2/sns-2010-03-31/Subscribe


Amazon Simple Queue Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Create an Amazon SNS FIFO topic, subscribe Amazon SQS FIFO and standard queues to the 
topic, and publish a message to the topic.

def usage_demo(): 
    """Shows how to subscribe queues to a FIFO topic.""" 
    print("-" * 88) 
    print("Welcome to the `Subscribe queues to a FIFO topic` demo!") 
    print("-" * 88) 

    sns = boto3.resource("sns") 
    sqs = boto3.resource("sqs") 
    fifo_topic_wrapper = FifoTopicWrapper(sns) 
    sns_wrapper = SnsWrapper(sns) 

    prefix = "sqs-subscribe-demo-" 
    queues = set() 
    subscriptions = set() 

    wholesale_queue = sqs.create_queue( 
        QueueName=prefix + "wholesale.fifo", 
        Attributes={ 
            "MaximumMessageSize": str(4096), 
            "ReceiveMessageWaitTimeSeconds": str(10), 
            "VisibilityTimeout": str(300), 
            "FifoQueue": str(True), 
            "ContentBasedDeduplication": str(True), 
        }, 
    ) 
    queues.add(wholesale_queue) 
    print(f"Created FIFO queue with URL: {wholesale_queue.url}.") 

    retail_queue = sqs.create_queue( 

Create and publish to a FIFO topic 427

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sns#code-examples


Amazon Simple Queue Service Developer Guide

        QueueName=prefix + "retail.fifo", 
        Attributes={ 
            "MaximumMessageSize": str(4096), 
            "ReceiveMessageWaitTimeSeconds": str(10), 
            "VisibilityTimeout": str(300), 
            "FifoQueue": str(True), 
            "ContentBasedDeduplication": str(True), 
        }, 
    ) 
    queues.add(retail_queue) 
    print(f"Created FIFO queue with URL: {retail_queue.url}.") 

    analytics_queue = sqs.create_queue(QueueName=prefix + "analytics", 
 Attributes={}) 
    queues.add(analytics_queue) 
    print(f"Created standard queue with URL: {analytics_queue.url}.") 

    topic = fifo_topic_wrapper.create_fifo_topic("price-updates-topic.fifo") 
    print(f"Created FIFO topic: {topic.attributes['TopicArn']}.") 

    for q in queues: 
        fifo_topic_wrapper.add_access_policy(q, topic.attributes["TopicArn"]) 

    print(f"Added access policies for topic: {topic.attributes['TopicArn']}.") 

    for q in queues: 
        sub = fifo_topic_wrapper.subscribe_queue_to_topic( 
            topic, q.attributes["QueueArn"] 
        ) 
        subscriptions.add(sub) 

    print(f"Subscribed queues to topic: {topic.attributes['TopicArn']}.") 

    input("Press Enter to publish a message to the topic.") 

    message_id = fifo_topic_wrapper.publish_price_update( 
        topic, '{"product": 214, "price": 79.99}', "Consumables" 
    ) 

    print(f"Published price update with message ID: {message_id}.") 

    # Clean up the subscriptions, queues, and topic. 
    input("Press Enter to clean up resources.") 
    for s in subscriptions: 

Create and publish to a FIFO topic 428



Amazon Simple Queue Service Developer Guide

        sns_wrapper.delete_subscription(s) 

    sns_wrapper.delete_topic(topic) 

    for q in queues: 
        fifo_topic_wrapper.delete_queue(q) 

    print(f"Deleted subscriptions, queues, and topic.") 

    print("Thanks for watching!") 
    print("-" * 88)

class FifoTopicWrapper: 
    """Encapsulates Amazon SNS FIFO topic and subscription functions.""" 

    def __init__(self, sns_resource): 
        """ 
        :param sns_resource: A Boto3 Amazon SNS resource. 
        """ 
        self.sns_resource = sns_resource 

    def create_fifo_topic(self, topic_name): 
        """ 
        Create a FIFO topic. 
        Topic names must be made up of only uppercase and lowercase ASCII 
 letters, 
        numbers, underscores, and hyphens, and must be between 1 and 256 
 characters long. 
        For a FIFO topic, the name must end with the .fifo suffix. 

        :param topic_name: The name for the topic. 
        :return: The new topic. 
        """ 
        try: 
            topic = self.sns_resource.create_topic( 
                Name=topic_name, 
                Attributes={ 
                    "FifoTopic": str(True), 
                    "ContentBasedDeduplication": str(False), 
                    "FifoThroughputScope": "MessageGroup", 
                }, 
            ) 

Create and publish to a FIFO topic 429



Amazon Simple Queue Service Developer Guide

            logger.info("Created FIFO topic with name=%s.", topic_name) 
            return topic 
        except ClientError as error: 
            logger.exception("Couldn't create topic with name=%s!", topic_name) 
            raise error 

    @staticmethod 
    def add_access_policy(queue, topic_arn): 
        """ 
        Add the necessary access policy to a queue, so 
        it can receive messages from a topic. 

        :param queue: The queue resource. 
        :param topic_arn: The ARN of the topic. 
        :return: None. 
        """ 
        try: 
            queue.set_attributes( 
                Attributes={ 
                    "Policy": json.dumps( 
                        { 
                            "Version":"2012-10-17",        
                            "Statement": [ 
                                { 
                                    "Sid": "test-sid", 
                                    "Effect": "Allow", 
                                    "Principal": {"AWS": "*"}, 
                                    "Action": "SQS:SendMessage", 
                                    "Resource": queue.attributes["QueueArn"], 
                                    "Condition": { 
                                        "ArnLike": {"aws:SourceArn": topic_arn} 
                                    }, 
                                } 
                            ], 
                        } 
                    ) 
                } 
            ) 
            logger.info("Added trust policy to the queue.") 
        except ClientError as error: 
            logger.exception("Couldn't add trust policy to the queue!") 
            raise error 

Create and publish to a FIFO topic 430



Amazon Simple Queue Service Developer Guide

    @staticmethod 
    def subscribe_queue_to_topic(topic, queue_arn): 
        """ 
        Subscribe a queue to a topic. 

        :param topic: The topic resource. 
        :param queue_arn: The ARN of the queue. 
        :return: The subscription resource. 
        """ 
        try: 
            subscription = topic.subscribe( 
                Protocol="sqs", 
                Endpoint=queue_arn, 
            ) 
            logger.info("The queue is subscribed to the topic.") 
            return subscription 
        except ClientError as error: 
            logger.exception("Couldn't subscribe queue to topic!") 
            raise error 

    @staticmethod 
    def publish_price_update(topic, payload, group_id): 
        """ 
        Compose and publish a message that updates the wholesale price. 

        :param topic: The topic to publish to. 
        :param payload: The message to publish. 
        :param group_id: The group ID for the message. 
        :return: The ID of the message. 
        """ 
        try: 
            att_dict = {"business": {"DataType": "String", "StringValue": 
 "wholesale"}} 
            dedup_id = uuid.uuid4() 
            response = topic.publish( 
                Subject="Price Update", 
                Message=payload, 
                MessageAttributes=att_dict, 
                MessageGroupId=group_id, 
                MessageDeduplicationId=str(dedup_id), 
            ) 
            message_id = response["MessageId"] 

Create and publish to a FIFO topic 431



Amazon Simple Queue Service Developer Guide

            logger.info("Published message to topic %s.", topic.arn) 
        except ClientError as error: 
            logger.exception("Couldn't publish message to topic %s.", topic.arn) 
            raise error 
        return message_id 

    @staticmethod 
    def delete_queue(queue): 
        """ 
        Removes an SQS queue. When run against an AWS account, it can take up to 
        60 seconds before the queue is actually deleted. 

        :param queue: The queue to delete. 
        :return: None 
        """ 
        try: 
            queue.delete() 
            logger.info("Deleted queue with URL=%s.", queue.url) 
        except ClientError as error: 
            logger.exception("Couldn't delete queue with URL=%s!", queue.url) 
            raise error

• For API details, see the following topics in Amazon SDK for Python (Boto3) API Reference.

• CreateTopic

• Publish

• Subscribe

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Create and publish to a FIFO topic 432

https://docs.amazonaws.cn/goto/boto3/sns-2010-03-31/CreateTopic
https://docs.amazonaws.cn/goto/boto3/sns-2010-03-31/Publish
https://docs.amazonaws.cn/goto/boto3/sns-2010-03-31/Subscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/sns#code-examples


Amazon Simple Queue Service Developer Guide

Create a FIFO topic, subscribe an Amazon SQS FIFO queue to the topic, and publish a 
message to an Amazon SNS topic.

    " Creates a FIFO topic. " 
    DATA lt_tpc_attributes TYPE /aws1/
cl_snstopicattrsmap_w=>tt_topicattributesmap. 
    DATA ls_tpc_attributes TYPE /aws1/
cl_snstopicattrsmap_w=>ts_topicattributesmap_maprow. 
    ls_tpc_attributes-key = 'FifoTopic'. 
    ls_tpc_attributes-value = NEW /aws1/cl_snstopicattrsmap_w( iv_value = 
 'true' ). 
    INSERT ls_tpc_attributes INTO TABLE lt_tpc_attributes. 

    TRY. 
        DATA(lo_create_result) = lo_sns->createtopic( 
               iv_name = iv_topic_name 
               it_attributes = lt_tpc_attributes ). 
        DATA(lv_topic_arn) = lo_create_result->get_topicarn( ). 
        ov_topic_arn = lv_topic_arn.                                    " 
 ov_topic_arn is returned for testing purposes. " 
        MESSAGE 'FIFO topic created' TYPE 'I'. 
      CATCH /aws1/cx_snstopiclimitexcdex. 
        MESSAGE 'Unable to create more topics. You have reached the maximum 
 number of topics allowed.' TYPE 'E'. 
    ENDTRY. 

    " Subscribes an endpoint to an Amazon Simple Notification Service (Amazon 
 SNS) topic. " 
    " Only Amazon Simple Queue Service (Amazon SQS) FIFO queues can be subscribed 
 to an SNS FIFO topic. " 
    TRY. 
        DATA(lo_subscribe_result) = lo_sns->subscribe( 
               iv_topicarn = lv_topic_arn 
               iv_protocol = 'sqs' 
               iv_endpoint = iv_queue_arn ). 
        DATA(lv_subscription_arn) = lo_subscribe_result->get_subscriptionarn( ). 
        ov_subscription_arn = lv_subscription_arn.                      " 
 ov_subscription_arn is returned for testing purposes. " 
        MESSAGE 'SQS queue was subscribed to SNS topic.' TYPE 'I'. 
      CATCH /aws1/cx_snsnotfoundexception. 
        MESSAGE 'Topic does not exist.' TYPE 'E'. 
      CATCH /aws1/cx_snssubscriptionlmte00. 

Create and publish to a FIFO topic 433



Amazon Simple Queue Service Developer Guide

        MESSAGE 'Unable to create subscriptions. You have reached the maximum 
 number of subscriptions allowed.' TYPE 'E'. 
    ENDTRY. 

    " Publish message to SNS topic. " 
    TRY. 
        DATA lt_msg_attributes TYPE /aws1/
cl_snsmessageattrvalue=>tt_messageattributemap. 
        DATA ls_msg_attributes TYPE /aws1/
cl_snsmessageattrvalue=>ts_messageattributemap_maprow. 
        ls_msg_attributes-key = 'Importance'. 
        ls_msg_attributes-value = NEW /aws1/cl_snsmessageattrvalue( iv_datatype = 
 'String' 
                                                                    
 iv_stringvalue = 'High' ). 
        INSERT ls_msg_attributes INTO TABLE lt_msg_attributes. 

        DATA(lo_result) = lo_sns->publish( 
             iv_topicarn = lv_topic_arn 
             iv_message = 'The price of your mobile plan has been increased from 
 $19 to $23' 
             iv_subject = 'Changes to mobile plan' 
             iv_messagegroupid = 'Update-2' 
             iv_messagededuplicationid = 'Update-2.1' 
             it_messageattributes = lt_msg_attributes ). 
        ov_message_id = lo_result->get_messageid( ).                    " 
 ov_message_id is returned for testing purposes. " 
        MESSAGE 'Message was published to SNS topic.' TYPE 'I'. 
      CATCH /aws1/cx_snsnotfoundexception. 
        MESSAGE 'Topic does not exist.' TYPE 'E'. 
    ENDTRY.

• For API details, see the following topics in Amazon SDK for SAP ABAP API reference.

• CreateTopic

• Publish

• Subscribe

Create and publish to a FIFO topic 434

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html


Amazon Simple Queue Service Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Detect people and objects in a video with Amazon Rekognition using an 
Amazon SDK

The following code examples show how to detect people and objects in a video with Amazon 
Rekognition.

Java

SDK for Java 2.x

Shows how to use Amazon Rekognition Java API to create an app to detect faces and 
objects in videos located in an Amazon Simple Storage Service (Amazon S3) bucket. The app 
sends the admin an email notification with the results using Amazon Simple Email Service 
(Amazon SES).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

• Amazon SNS

• Amazon SQS

Python

SDK for Python (Boto3)

Use Amazon Rekognition to detect faces, objects, and people in videos by starting 
asynchronous detection jobs. This example also configures Amazon Rekognition to notify an 
Amazon Simple Notification Service (Amazon SNS) topic when jobs complete and subscribes 
an Amazon Simple Queue Service (Amazon SQS) queue to the topic. When the queue 
receives a message about a job, the job is retrieved and the results are output.

Detect people and objects in a video 435

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/video_analyzer_application


Amazon Simple Queue Service Developer Guide

This example is best viewed on GitHub. For complete source code and instructions on how to 
set up and run, see the full example on GitHub.

Services used in this example

• Amazon Rekognition

• Amazon S3

• Amazon SES

• Amazon SNS

• Amazon SQS

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Manage large Amazon SQS messages using Amazon S3 with an Amazon 
SDK

The following code example shows how to use the Amazon SQS Extended Client Library to work 
with large Amazon SQS messages.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import com.amazon.sqs.javamessaging.AmazonSQSExtendedClient;
import com.amazon.sqs.javamessaging.ExtendedClientConfiguration;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.BucketLifecycleConfiguration;

Manage large messages using S3 436

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/rekognition
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

import software.amazon.awssdk.services.s3.model.CreateBucketRequest;
import software.amazon.awssdk.services.s3.model.DeleteBucketRequest;
import software.amazon.awssdk.services.s3.model.DeleteObjectRequest;
import software.amazon.awssdk.services.s3.model.ExpirationStatus;
import software.amazon.awssdk.services.s3.model.LifecycleExpiration;
import software.amazon.awssdk.services.s3.model.LifecycleRule;
import software.amazon.awssdk.services.s3.model.LifecycleRuleFilter;
import software.amazon.awssdk.services.s3.model.ListObjectVersionsRequest;
import software.amazon.awssdk.services.s3.model.ListObjectVersionsResponse;
import software.amazon.awssdk.services.s3.model.ListObjectsV2Request;
import software.amazon.awssdk.services.s3.model.ListObjectsV2Response;
import 
 software.amazon.awssdk.services.s3.model.PutBucketLifecycleConfigurationRequest;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;
import software.amazon.awssdk.services.sqs.model.CreateQueueResponse;
import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest;
import software.amazon.awssdk.services.sqs.model.DeleteQueueRequest;
import software.amazon.awssdk.services.sqs.model.Message;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageResponse;
import software.amazon.awssdk.services.sqs.model.SendMessageRequest;

import java.util.Arrays;
import java.util.List;
import java.util.UUID;

/** 
 * Example of using Amazon SQS Extended Client Library for Java 2.x. 
 */
public class SqsExtendedClientExample { 
    private static final Logger logger = 
 LoggerFactory.getLogger(SqsExtendedClientExample.class); 
     
    private String s3BucketName; 
    private String queueUrl; 
    private final String queueName; 
    private final S3Client s3Client; 
    private final SqsClient sqsExtendedClient; 
    private final int messageSize; 

    /** 
     * Constructor with default clients and message size. 
     */ 

Manage large messages using S3 437



Amazon Simple Queue Service Developer Guide

    public SqsExtendedClientExample() { 
        this(S3Client.create(), 300000); 
    } 

    /** 
     * Constructor with custom S3 client and message size. 
     * 
     * @param s3Client The S3 client to use 
     * @param messageSize The size of the test message to create 
     */ 
    public SqsExtendedClientExample(S3Client s3Client, int messageSize) { 
        this.s3Client = s3Client; 
        this.messageSize = messageSize; 

        // Generate a unique bucket name. 
        this.s3BucketName = UUID.randomUUID() + "-" + 
                DateTimeFormat.forPattern("yyMMdd-hhmmss").print(new DateTime()); 

        // Generate a unique queue name. 
        this.queueName = "MyQueue-" + UUID.randomUUID(); 

        // Configure the SQS extended client. 
        final ExtendedClientConfiguration extendedClientConfig = new 
 ExtendedClientConfiguration() 
                .withPayloadSupportEnabled(s3Client, s3BucketName); 

        this.sqsExtendedClient = new 
 AmazonSQSExtendedClient(SqsClient.builder().build(), extendedClientConfig); 
    } 

    public static void main(String[] args) { 
        SqsExtendedClientExample example = new SqsExtendedClientExample(); 
        try { 
            example.setup(); 
            example.sendAndReceiveMessage(); 
        } finally { 
            example.cleanup(); 
        } 
    } 

    /** 
     * Send a large message and receive it back. 
     * 
     * @return The received message 

Manage large messages using S3 438



Amazon Simple Queue Service Developer Guide

     */ 
    public Message sendAndReceiveMessage() { 
        try { 
            // Create a large message. 
            char[] chars = new char[messageSize]; 
            Arrays.fill(chars, 'x'); 
            String largeMessage = new String(chars); 

            // Send the message. 
            final SendMessageRequest sendMessageRequest = 
 SendMessageRequest.builder() 
                    .queueUrl(queueUrl) 
                    .messageBody(largeMessage) 
                    .build(); 

            sqsExtendedClient.sendMessage(sendMessageRequest); 
            logger.info("Sent message of size: {}", largeMessage.length()); 

            // Receive and return the message. 
            final ReceiveMessageResponse receiveMessageResponse = 
 sqsExtendedClient.receiveMessage( 
                    ReceiveMessageRequest.builder().queueUrl(queueUrl).build()); 

            List<Message> messages = receiveMessageResponse.messages(); 
            if (messages.isEmpty()) { 
                throw new RuntimeException("No messages received"); 
            } 

            Message message = messages.getFirst(); 
            logger.info("\nMessage received."); 
            logger.info("  ID: {}", message.messageId()); 
            logger.info("  Receipt handle: {}", message.receiptHandle()); 
            logger.info("  Message body size: {}", message.body().length()); 
            logger.info("  Message body (first 5 characters): {}", 
 message.body().substring(0, 5)); 

            return message; 
        } catch (RuntimeException e) { 
            logger.error("Error during message processing: {}", e.getMessage(), 
 e); 
            throw e; 
        } 
    }

Manage large messages using S3 439



Amazon Simple Queue Service Developer Guide

• For more information, see Amazon SDK for Java 2.x Developer Guide.

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• CreateBucket

• PutBucketLifecycleConfiguration

• ReceiveMessage

• SendMessage

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Receive and process Amazon S3 event notifications by using an Amazon 
SDK

The following code example shows how to work with S3 event notifications in an object-oriented 
way.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

This example show how to process S3 notification event by using Amazon SQS.

    /** 
     * This method receives S3 event notifications by using an SqsAsyncClient. 
     * After the client receives the messages it deserializes the JSON payload 
 and logs them. It uses 
     * the S3EventNotification class (part of the S3 event notification API for 
 Java) to deserialize 
     * the JSON payload and access the messages in an object-oriented way. 

Process S3 event notifications 440

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-s3-messages.html
https://docs.amazonaws.cn/goto/SdkForJavaV2/s3-2006-03-01/CreateBucket
https://docs.amazonaws.cn/goto/SdkForJavaV2/s3-2006-03-01/PutBucketLifecycleConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/ReceiveMessage
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/SendMessage
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/s3#code-examples


Amazon Simple Queue Service Developer Guide

     * 
     * @param queueUrl The URL of the AWS SQS queue that receives the S3 event 
 notifications. 
     * @see <a href="https://sdk.amazonaws.com/java/api/latest/software/amazon/
awssdk/eventnotifications/s3/model/package-summary.html">S3EventNotification 
 API</a>. 
     * <p> 
     * To use S3 event notification serialization/deserialization to objects, add 
 the following 
     * dependency to your Maven pom.xml file. 
     * <dependency> 
     * <groupId>software.amazon.awssdk</groupId> 
     * <artifactId>s3-event-notifications</artifactId> 
     * <version><LATEST></version> 
     * </dependency> 
     * <p> 
     * The S3 event notification API became available with version 2.25.11 of the 
 Java SDK. 
     * <p> 
     * This example shows the use of the API with AWS SQS, but it can be used to 
 process S3 event notifications 
     * in AWS SNS or AWS Lambda as well. 
     * <p> 
     * Note: The S3EventNotification class does not work with messages routed 
 through AWS EventBridge. 
     */ 
    static void processS3Events(String bucketName, String queueUrl, String 
 queueArn) { 
        try { 
            // Configure the bucket to send Object Created and Object Tagging 
 notifications to an existing SQS queue. 
            s3Client.putBucketNotificationConfiguration(b -> b 
                    .notificationConfiguration(ncb -> ncb 
                            .queueConfigurations(qcb -> qcb 
                                    .events(Event.S3_OBJECT_CREATED, 
 Event.S3_OBJECT_TAGGING) 
                                    .queueArn(queueArn))) 
                            .bucket(bucketName) 
            ).join(); 

            triggerS3EventNotifications(bucketName); 
            // Wait for event notifications to propagate. 
            Thread.sleep(Duration.ofSeconds(5).toMillis()); 

Process S3 event notifications 441



Amazon Simple Queue Service Developer Guide

            boolean didReceiveMessages = true; 
            while (didReceiveMessages) { 
                // Display the number of messages that are available in the 
 queue. 
                sqsClient.getQueueAttributes(b -> b 
                                .queueUrl(queueUrl) 
                                
 .attributeNames(QueueAttributeName.APPROXIMATE_NUMBER_OF_MESSAGES) 
                        ).thenAccept(attributeResponse -> 
                                logger.info("Approximate number of messages in 
 the queue: {}", 
                                        
 attributeResponse.attributes().get(QueueAttributeName.APPROXIMATE_NUMBER_OF_MESSAGES))) 
                        .join(); 

                // Receive the messages. 
                ReceiveMessageResponse response = sqsClient.receiveMessage(b -> b 
                        .queueUrl(queueUrl) 
                ).get(); 
                logger.info("Count of received messages: {}", 
 response.messages().size()); 
                didReceiveMessages = !response.messages().isEmpty(); 

                // Create a collection to hold the received message for deletion 
                // after we log the messages. 
                HashSet<DeleteMessageBatchRequestEntry> messagesToDelete = new 
 HashSet<>(); 
                // Process each message. 
                response.messages().forEach(message -> { 
                    logger.info("Message id: {}", message.messageId()); 
                    // Deserialize JSON message body to a S3EventNotification 
 object 
                    // to access messages in an object-oriented way. 
                    S3EventNotification event = 
 S3EventNotification.fromJson(message.body()); 

                    // Log the S3 event notification record details. 
                    if (event.getRecords() != null) { 
                        event.getRecords().forEach(record -> { 
                            String eventName = record.getEventName(); 
                            String key = record.getS3().getObject().getKey(); 
                            logger.info(record.toString()); 
                            logger.info("Event name is {} and key is {}", 
 eventName, key); 

Process S3 event notifications 442



Amazon Simple Queue Service Developer Guide

                        }); 
                    } 
                    // Add logged messages to collection for batch deletion. 
                    messagesToDelete.add(DeleteMessageBatchRequestEntry.builder() 
                            .id(message.messageId()) 
                            .receiptHandle(message.receiptHandle()) 
                            .build()); 
                }); 
                // Delete messages. 
                if (!messagesToDelete.isEmpty()) { 
                    
 sqsClient.deleteMessageBatch(DeleteMessageBatchRequest.builder() 
                            .queueUrl(queueUrl) 
                            .entries(messagesToDelete) 
                            .build() 
                    ).join(); 
                } 
            } // End of while block. 
        } catch (InterruptedException | ExecutionException e) { 
            throw new RuntimeException(e); 
        } 
    }

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• DeleteMessageBatch

• GetQueueAttributes

• PutBucketNotificationConfiguration

• ReceiveMessage

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Publish Amazon SNS messages to Amazon SQS queues using an 
Amazon SDK

The following code examples show how to:

Publish messages to queues 443

https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/DeleteMessageBatch
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/GetQueueAttributes
https://docs.amazonaws.cn/goto/SdkForJavaV2/s3-2006-03-01/PutBucketNotificationConfiguration
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/ReceiveMessage


Amazon Simple Queue Service Developer Guide

• Create topic (FIFO or non-FIFO).

• Subscribe several queues to the topic with an option to apply a filter.

• Publish messages to the topic.

• Poll the queues for messages received.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Run an interactive scenario at a command prompt.

/// <summary>
/// Console application to run a feature scenario for topics and queues.
/// </summary>
public static class TopicsAndQueues
{ 
    private static bool _useFifoTopic = false; 
    private static bool _useContentBasedDeduplication = false; 
    private static string _topicName = null!; 
    private static string _topicArn = null!; 

    private static readonly int _queueCount = 2; 
    private static readonly string[] _queueUrls = new string[_queueCount]; 
    private static readonly string[] _subscriptionArns = new string[_queueCount]; 
    private static readonly string[] _tones = { "cheerful", "funny", "serious", 
 "sincere" }; 
    public static SNSWrapper SnsWrapper { get; set; } = null!; 
    public static SQSWrapper SqsWrapper { get; set; } = null!; 
    public static bool UseConsole { get; set; } = true; 
    static async Task Main(string[] args) 
    { 
        // Set up dependency injection for Amazon EventBridge. 
        using var host = Host.CreateDefaultBuilder(args) 
            .ConfigureLogging(logging => 
                logging.AddFilter("System", LogLevel.Debug) 

Publish messages to queues 444

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/TopicsAndQueues#code-examples


Amazon Simple Queue Service Developer Guide

                    .AddFilter<DebugLoggerProvider>("Microsoft", 
 LogLevel.Information) 
                    .AddFilter<ConsoleLoggerProvider>("Microsoft", 
 LogLevel.Trace)) 
            .ConfigureServices((_, services) => 
                services.AddAWSService<IAmazonSQS>() 
                    .AddAWSService<IAmazonSimpleNotificationService>() 
                    .AddTransient<SNSWrapper>() 
                    .AddTransient<SQSWrapper>() 
            ) 
            .Build(); 

        ServicesSetup(host); 
        PrintDescription(); 

        await RunScenario(); 

    } 

    /// <summary> 
    /// Populate the services for use within the console application. 
    /// </summary> 
    /// <param name="host">The services host.</param> 
    private static void ServicesSetup(IHost host) 
    { 
        SnsWrapper = host.Services.GetRequiredService<SNSWrapper>(); 
        SqsWrapper = host.Services.GetRequiredService<SQSWrapper>(); 
    } 

    /// <summary> 
    /// Run the scenario for working with topics and queues. 
    /// </summary> 
    /// <returns>True if successful.</returns> 
    public static async Task<bool> RunScenario() 
    { 
        try 
        { 
            await SetupTopic(); 

            await SetupQueues(); 

            await PublishMessages(); 

            foreach (var queueUrl in _queueUrls) 

Publish messages to queues 445



Amazon Simple Queue Service Developer Guide

            { 
                var messages = await PollForMessages(queueUrl); 
                if (messages.Any()) 
                { 
                    await DeleteMessages(queueUrl, messages); 
                } 
            } 
            await CleanupResources(); 

            Console.WriteLine("Messaging with topics and queues scenario is 
 complete."); 
            return true; 
        } 
        catch (Exception ex) 
        { 
            Console.WriteLine(new string('-', 80)); 
            Console.WriteLine($"There was a problem running the scenario: 
 {ex.Message}"); 
            await CleanupResources(); 
            Console.WriteLine(new string('-', 80)); 
            return false; 
        } 
    } 

    /// <summary> 
    /// Print a description for the tasks in the scenario. 
    /// </summary> 
    /// <returns>Async task.</returns> 
    private static void PrintDescription() 
    { 
        Console.WriteLine(new string('-', 80)); 
        Console.WriteLine($"Welcome to messaging with topics and queues."); 

        Console.WriteLine(new string('-', 80)); 
        Console.WriteLine($"In this scenario, you will create an SNS topic and 
 subscribe {_queueCount} SQS queues to the topic." + 
                          $"\r\nYou can select from several options for 
 configuring the topic and the subscriptions for the 2 queues." + 
                          $"\r\nYou can then post to the topic and see the 
 results in the queues.\r\n"); 

        Console.WriteLine(new string('-', 80)); 
    } 

Publish messages to queues 446



Amazon Simple Queue Service Developer Guide

    /// <summary> 
    /// Set up the SNS topic to be used with the queues. 
    /// </summary> 
    /// <returns>Async task.</returns> 
    private static async Task<string> SetupTopic() 
    { 
        Console.WriteLine(new string('-', 80)); 
        Console.WriteLine($"SNS topics can be configured as FIFO (First-In-First-
Out)." + 
                          $"\r\nFIFO topics deliver messages in order and support 
 deduplication and message filtering." + 
                          $"\r\nYou can then post to the topic and see the 
 results in the queues.\r\n"); 

        _useFifoTopic = GetYesNoResponse("Would you like to work with FIFO 
 topics?"); 

        if (_useFifoTopic) 
        { 
            Console.WriteLine(new string('-', 80)); 
            _topicName = GetUserResponse("Enter a name for your SNS topic: ", 
 "example-topic"); 
            Console.WriteLine( 
                "Because you have selected a FIFO topic, '.fifo' must be appended 
 to the topic name.\r\n"); 

            Console.WriteLine(new string('-', 80)); 
            Console.WriteLine($"Because you have chosen a FIFO topic, 
 deduplication is supported." + 
                              $"\r\nDeduplication IDs are either set in the 
 message or automatically generated " + 
                              $"\r\nfrom content using a hash function.\r\n" + 
                              $"\r\nIf a message is successfully published to an 
 SNS FIFO topic, any message " + 
                              $"\r\npublished and determined to have the same 
 deduplication ID, " + 
                              $"\r\nwithin the five-minute deduplication 
 interval, is accepted but not delivered.\r\n" + 
                              $"\r\nFor more information about deduplication, " + 
                              $"\r\nsee https://docs.aws.amazon.com/sns/latest/
dg/fifo-message-dedup.html."); 

            _useContentBasedDeduplication = GetYesNoResponse("Use content-based 
 deduplication instead of entering a deduplication ID?"); 

Publish messages to queues 447



Amazon Simple Queue Service Developer Guide

            Console.WriteLine(new string('-', 80)); 
        } 

        _topicArn = await SnsWrapper.CreateTopicWithName(_topicName, 
 _useFifoTopic, _useContentBasedDeduplication); 

        Console.WriteLine($"Your new topic with the name {_topicName}" + 
                          $"\r\nand Amazon Resource Name (ARN) {_topicArn}" + 
                          $"\r\nhas been created.\r\n"); 

        Console.WriteLine(new string('-', 80)); 
        return _topicArn; 
    } 

    /// <summary> 
    /// Set up the queues. 
    /// </summary> 
    /// <returns>Async task.</returns> 
    private static async Task SetupQueues() 
    { 
        Console.WriteLine(new string('-', 80)); 
        Console.WriteLine($"Now you will create {_queueCount} Amazon Simple Queue 
 Service (Amazon SQS) queues to subscribe to the topic."); 

        // Repeat this section for each queue. 
        for (int i = 0; i < _queueCount; i++) 
        { 
            var queueName = GetUserResponse("Enter a name for an Amazon SQS 
 queue: ", $"example-queue-{i}"); 
            if (_useFifoTopic) 
            { 
                // Only explain this once. 
                if (i == 0) 
                { 
                    Console.WriteLine( 
                        "Because you have selected a FIFO topic, '.fifo' must be 
 appended to the queue name."); 
                } 

                var queueUrl = await SqsWrapper.CreateQueueWithName(queueName, 
 _useFifoTopic); 

                _queueUrls[i] = queueUrl; 

Publish messages to queues 448



Amazon Simple Queue Service Developer Guide

                Console.WriteLine($"Your new queue with the name {queueName}" + 
                                  $"\r\nand queue URL {queueUrl}" + 
                                  $"\r\nhas been created.\r\n"); 

                if (i == 0) 
                { 
                    Console.WriteLine( 
                        $"The queue URL is used to retrieve the queue ARN,\r\n" + 
                        $"which is used to create a subscription."); 
                    Console.WriteLine(new string('-', 80)); 
                } 

                var queueArn = await SqsWrapper.GetQueueArnByUrl(queueUrl); 

                if (i == 0) 
                { 
                    Console.WriteLine( 
                        $"An AWS Identity and Access Management (IAM) policy must 
 be attached to an SQS queue, enabling it to receive\r\n" + 
                        $"messages from an SNS topic"); 
                } 

                await SqsWrapper.SetQueuePolicyForTopic(queueArn, _topicArn, 
 queueUrl); 

                await SetupFilters(i, queueArn, queueName); 
            } 
        } 

        Console.WriteLine(new string('-', 80)); 
    } 

    /// <summary> 
    /// Set up filters with user options for a queue. 
    /// </summary> 
    /// <param name="queueCount">The number of this queue.</param> 
    /// <param name="queueArn">The ARN of the queue.</param> 
    /// <param name="queueName">The name of the queue.</param> 
    /// <returns>Async Task.</returns> 
    public static async Task SetupFilters(int queueCount, string queueArn, string 
 queueName) 
    { 
        if (_useFifoTopic) 
        { 

Publish messages to queues 449



Amazon Simple Queue Service Developer Guide

            Console.WriteLine(new string('-', 80)); 
            // Only explain this once. 
            if (queueCount == 0) 
            { 
                Console.WriteLine( 
                    "Subscriptions to a FIFO topic can have filters." + 
                    "If you add a filter to this subscription, then only the 
 filtered messages " + 
                    "will be received in the queue."); 

                Console.WriteLine( 
                    "For information about message filtering, " + 
                    "see https://docs.aws.amazon.com/sns/latest/dg/sns-message-
filtering.html"); 

                Console.WriteLine( 
                    "For this example, you can filter messages by a" + 
                    "TONE attribute."); 
            } 

            var useFilter = GetYesNoResponse($"Filter messages for {queueName}'s 
 subscription to the topic?"); 

            string? filterPolicy = null; 
            if (useFilter) 
            { 
                filterPolicy = CreateFilterPolicy(); 
            } 
            var subscriptionArn = await 
 SnsWrapper.SubscribeTopicWithFilter(_topicArn, filterPolicy, 
                queueArn); 
            _subscriptionArns[queueCount] = subscriptionArn; 

            Console.WriteLine( 
                $"The queue {queueName} has been subscribed to the topic 
 {_topicName} " + 
                $"with the subscription ARN {subscriptionArn}"); 
            Console.WriteLine(new string('-', 80)); 
        } 
    } 

    /// <summary> 
    /// Use user input to create a filter policy for a subscription. 
    /// </summary> 

Publish messages to queues 450



Amazon Simple Queue Service Developer Guide

    /// <returns>The serialized filter policy.</returns> 
    public static string CreateFilterPolicy() 
    { 
        Console.WriteLine(new string('-', 80)); 
        Console.WriteLine( 
            $"You can filter messages by one or more of the following" + 
            $"TONE attributes."); 

        List<string> filterSelections = new List<string>(); 

        var selectionNumber = 0; 
        do 
        { 
            Console.WriteLine( 
                $"Enter a number to add a TONE filter, or enter 0 to stop adding 
 filters."); 
            for (int i = 0; i < _tones.Length; i++) 
            { 
                Console.WriteLine($"\t{i + 1}. {_tones[i]}"); 
            } 

            var selection = GetUserResponse("", filterSelections.Any() ? "0" : 
 "1"); 
            int.TryParse(selection, out selectionNumber); 
            if (selectionNumber > 0 && !
filterSelections.Contains(_tones[selectionNumber - 1])) 
            { 
                filterSelections.Add(_tones[selectionNumber - 1]); 
            } 
        } while (selectionNumber != 0); 

        var filters = new Dictionary<string, List<string>> 
        { 
            { "tone", filterSelections } 
        }; 
        string filterPolicy = JsonSerializer.Serialize(filters); 
        return filterPolicy; 
    } 

    /// <summary> 
    /// Publish messages using user settings. 
    /// </summary> 
    /// <returns>Async task.</returns> 
    public static async Task PublishMessages() 

Publish messages to queues 451



Amazon Simple Queue Service Developer Guide

    { 
        Console.WriteLine("Now we can publish messages."); 

        var keepSendingMessages = true; 
        string? deduplicationId = null; 
        string? toneAttribute = null; 
        while (keepSendingMessages) 
        { 
            Console.WriteLine(); 
            var message = GetUserResponse("Enter a message to publish.", "This is 
 a sample message"); 

            if (_useFifoTopic) 
            { 
                Console.WriteLine("Because you are using a FIFO topic, you must 
 set a message group ID." + 
                                  "\r\nAll messages within the same group will be 
 received in the order " + 
                                  "they were published."); 

                Console.WriteLine(); 
                var messageGroupId = GetUserResponse("Enter a message group ID 
 for this message:", "1"); 

                if (!_useContentBasedDeduplication) 
                { 
                    Console.WriteLine("Because you are not using content-based 
 deduplication, " + 
                                      "you must enter a deduplication ID."); 

                    Console.WriteLine("Enter a deduplication ID for this 
 message."); 
                    deduplicationId = GetUserResponse("Enter a deduplication ID 
 for this message.", "1"); 
                } 

                if (GetYesNoResponse("Add an attribute to this message?")) 
                { 
                    Console.WriteLine("Enter a number for an attribute."); 
                    for (int i = 0; i < _tones.Length; i++) 
                    { 
                        Console.WriteLine($"\t{i + 1}. {_tones[i]}"); 
                    } 

Publish messages to queues 452



Amazon Simple Queue Service Developer Guide

                    var selection = GetUserResponse("", "1"); 
                    int.TryParse(selection, out var selectionNumber); 

                    if (selectionNumber > 0 && selectionNumber < _tones.Length) 
                    { 
                        toneAttribute = _tones[selectionNumber - 1]; 
                    } 
                } 

                var messageID = await SnsWrapper.PublishToTopicWithAttribute( 
                    _topicArn, message, "tone", toneAttribute, deduplicationId, 
 messageGroupId); 

                Console.WriteLine($"Message published with id {messageID}."); 
            } 

            keepSendingMessages = GetYesNoResponse("Send another message?", 
 false); 
        } 
    } 

    /// <summary> 
    /// Poll for the published messages to see the results of the user's choices. 
    /// </summary> 
    /// <returns>Async task.</returns> 
    public static async Task<List<Message>> PollForMessages(string queueUrl) 
    { 
        Console.WriteLine(new string('-', 80)); 
        Console.WriteLine($"Now the SQS queue at {queueUrl} will be polled to 
 retrieve the messages." + 
                          "\r\nPress any key to continue."); 
        if (UseConsole) 
        { 
            Console.ReadLine(); 
        } 

        var moreMessages = true; 
        var messages = new List<Message>(); 
        while (moreMessages) 
        { 
            var newMessages = await SqsWrapper.ReceiveMessagesByUrl(queueUrl, 
 10); 

            moreMessages = newMessages.Any(); 

Publish messages to queues 453



Amazon Simple Queue Service Developer Guide

            if (moreMessages) 
            { 
                messages.AddRange(newMessages); 
            } 
        } 

        Console.WriteLine($"{messages.Count} message(s) were received by the 
 queue at {queueUrl}."); 

        foreach (var message in messages) 
        { 
            Console.WriteLine("\tMessage:" + 
                              $"\n\t{message.Body}"); 
        } 

        Console.WriteLine(new string('-', 80)); 
        return messages; 
    } 

    /// <summary> 
    /// Delete the message using handles in a batch. 
    /// </summary> 
    /// <returns>Async task.</returns> 
    public static async Task DeleteMessages(string queueUrl, List<Message> 
 messages) 
    { 
        Console.WriteLine(new string('-', 80)); 
        Console.WriteLine("Now we can delete the messages in this queue in a 
 batch."); 
        await SqsWrapper.DeleteMessageBatchByUrl(queueUrl, messages); 
        Console.WriteLine(new string('-', 80)); 
    } 

    /// <summary> 
    /// Clean up the resources from the scenario. 
    /// </summary> 
    /// <returns>Async task.</returns> 
    private static async Task CleanupResources() 
    { 
        Console.WriteLine(new string('-', 80)); 
        Console.WriteLine($"Clean up resources."); 

        try 
        { 

Publish messages to queues 454



Amazon Simple Queue Service Developer Guide

            foreach (var queueUrl in _queueUrls) 
            { 
                if (!string.IsNullOrEmpty(queueUrl)) 
                { 
                    var deleteQueue = 
                        GetYesNoResponse($"Delete queue with url {queueUrl}?"); 
                    if (deleteQueue) 
                    { 
                        await SqsWrapper.DeleteQueueByUrl(queueUrl); 
                    } 
                } 
            } 

            foreach (var subscriptionArn in _subscriptionArns) 
            { 
                if (!string.IsNullOrEmpty(subscriptionArn)) 
                { 
                    await SnsWrapper.UnsubscribeByArn(subscriptionArn); 
                } 
            } 

            var deleteTopic = GetYesNoResponse($"Delete topic {_topicName}?"); 
            if (deleteTopic) 
            { 
                await SnsWrapper.DeleteTopicByArn(_topicArn); 
            } 
        } 
        catch (Exception ex) 
        { 
            Console.WriteLine($"Unable to clean up resources. Here's why: 
 {ex.Message}."); 
        } 

        Console.WriteLine(new string('-', 80)); 
    } 

    /// <summary> 
    /// Helper method to get a yes or no response from the user. 
    /// </summary> 
    /// <param name="question">The question string to print on the console.</
param> 
    /// <param name="defaultAnswer">Optional default answer to use.</param> 
    /// <returns>True if the user responds with a yes.</returns> 

Publish messages to queues 455



Amazon Simple Queue Service Developer Guide

    private static bool GetYesNoResponse(string question, bool defaultAnswer = 
 true) 
    { 
        if (UseConsole) 
        { 
            Console.WriteLine(question); 
            var ynResponse = Console.ReadLine(); 
            var response = ynResponse != null && 
                           ynResponse.Equals("y", 
                               StringComparison.InvariantCultureIgnoreCase); 
            return response; 
        } 
        // If not using the console, use the default. 
        return defaultAnswer; 
    } 

    /// <summary> 
    /// Helper method to get a string response from the user through the console. 
    /// </summary> 
    /// <param name="question">The question string to print on the console.</
param> 
    /// <param name="defaultAnswer">Optional default answer to use.</param> 
    /// <returns>True if the user responds with a yes.</returns> 
    private static string GetUserResponse(string question, string defaultAnswer) 
    { 
        if (UseConsole) 
        { 
            var response = ""; 
            while (string.IsNullOrEmpty(response)) 
            { 
                Console.WriteLine(question); 
                response = Console.ReadLine(); 
            } 
            return response; 
        } 
        // If not using the console, use the default. 
        return defaultAnswer; 
    }
}

Create a class that wraps Amazon SQS operations.

Publish messages to queues 456



Amazon Simple Queue Service Developer Guide

/// <summary>
/// Wrapper for Amazon Simple Queue Service (SQS) operations.
/// </summary>
public class SQSWrapper
{ 
    private readonly IAmazonSQS _amazonSQSClient; 

    /// <summary> 
    /// Constructor for the Amazon SQS wrapper. 
    /// </summary> 
    /// <param name="amazonSQS">The injected Amazon SQS client.</param> 
    public SQSWrapper(IAmazonSQS amazonSQS) 
    { 
        _amazonSQSClient = amazonSQS; 
    } 

    /// <summary> 
    /// Create a queue with a specific name. 
    /// </summary> 
    /// <param name="queueName">The name for the queue.</param> 
    /// <param name="useFifoQueue">True to use a FIFO queue.</param> 
    /// <returns>The url for the queue.</returns> 
    public async Task<string> CreateQueueWithName(string queueName, bool 
 useFifoQueue) 
    { 
        int maxMessage = 256 * 1024; 
        var queueAttributes = new Dictionary<string, string> 
        { 
            { 
                QueueAttributeName.MaximumMessageSize, 
                maxMessage.ToString() 
            } 
        }; 

        var createQueueRequest = new CreateQueueRequest() 
        { 
            QueueName = queueName, 
            Attributes = queueAttributes 
        }; 

        if (useFifoQueue) 
        { 

Publish messages to queues 457



Amazon Simple Queue Service Developer Guide

            // Update the name if it is not correct for a FIFO queue. 
            if (!queueName.EndsWith(".fifo")) 
            { 
                createQueueRequest.QueueName = queueName + ".fifo"; 
            } 

            // Add an attribute for a FIFO queue. 
            createQueueRequest.Attributes.Add( 
                QueueAttributeName.FifoQueue, "true"); 
        } 

        var createResponse = await _amazonSQSClient.CreateQueueAsync( 
            new CreateQueueRequest() 
            { 
                QueueName = queueName 
            }); 
        return createResponse.QueueUrl; 
    } 

    /// <summary> 
    /// Get the ARN for a queue from its URL. 
    /// </summary> 
    /// <param name="queueUrl">The URL of the queue.</param> 
    /// <returns>The ARN of the queue.</returns> 
    public async Task<string> GetQueueArnByUrl(string queueUrl) 
    { 
        var getAttributesRequest = new GetQueueAttributesRequest() 
        { 
            QueueUrl = queueUrl, 
            AttributeNames = new List<string>() { QueueAttributeName.QueueArn } 
        }; 

        var getAttributesResponse = await 
 _amazonSQSClient.GetQueueAttributesAsync( 
            getAttributesRequest); 

        return getAttributesResponse.QueueARN; 
    } 

    /// <summary> 
    /// Set the policy attribute of a queue for a topic. 
    /// </summary> 
    /// <param name="queueArn">The ARN of the queue.</param> 
    /// <param name="topicArn">The ARN of the topic.</param> 

Publish messages to queues 458



Amazon Simple Queue Service Developer Guide

    /// <param name="queueUrl">The url for the queue.</param> 
    /// <returns>True if successful.</returns> 
    public async Task<bool> SetQueuePolicyForTopic(string queueArn, string 
 topicArn, string queueUrl) 
    { 
        var queuePolicy = "{" + 
                                "\"Version\": \"2012-10-17\"," + 
                                "\"Statement\": [{" + 
                                     "\"Effect\": \"Allow\"," + 
                                     "\"Principal\": {" + 
                                         $"\"Service\": " + 
                                             "\"sns.amazonaws.com\"" + 
                                            "}," + 
                                     "\"Action\": \"sqs:SendMessage\"," + 
                                     $"\"Resource\": \"{queueArn}\"," + 
                                      "\"Condition\": {" + 
                                           "\"ArnEquals\": {" + 
                                                $"\"aws:SourceArn\": 
 \"{topicArn}\"" + 
                                            "}" + 
                                        "}" + 
                                "}]" + 
                             "}"; 
        var attributesResponse = await _amazonSQSClient.SetQueueAttributesAsync( 
            new SetQueueAttributesRequest() 
            { 
                QueueUrl = queueUrl, 
                Attributes = new Dictionary<string, string>() { { "Policy", 
 queuePolicy } } 
            }); 
        return attributesResponse.HttpStatusCode == HttpStatusCode.OK; 
    } 

    /// <summary> 
    /// Receive messages from a queue by its URL. 
    /// </summary> 
    /// <param name="queueUrl">The url of the queue.</param> 
    /// <returns>The list of messages.</returns> 
    public async Task<List<Message>> ReceiveMessagesByUrl(string queueUrl, int 
 maxMessages) 
    { 
        // Setting WaitTimeSeconds to non-zero enables long polling. 
        // For information about long polling, see 

Publish messages to queues 459



Amazon Simple Queue Service Developer Guide

        // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html 
        var messageResponse = await _amazonSQSClient.ReceiveMessageAsync( 
            new ReceiveMessageRequest() 
            { 
                QueueUrl = queueUrl, 
                MaxNumberOfMessages = maxMessages, 
                WaitTimeSeconds = 1 
            }); 
        return messageResponse.Messages; 
    } 

    /// <summary> 
    /// Delete a batch of messages from a queue by its url. 
    /// </summary> 
    /// <param name="queueUrl">The url of the queue.</param> 
    /// <returns>True if successful.</returns> 
    public async Task<bool> DeleteMessageBatchByUrl(string queueUrl, 
 List<Message> messages) 
    { 
        var deleteRequest = new DeleteMessageBatchRequest() 
        { 
            QueueUrl = queueUrl, 
            Entries = new List<DeleteMessageBatchRequestEntry>() 
        }; 
        foreach (var message in messages) 
        { 
            deleteRequest.Entries.Add(new DeleteMessageBatchRequestEntry() 
            { 
                ReceiptHandle = message.ReceiptHandle, 
                Id = message.MessageId 
            }); 
        } 

        var deleteResponse = await 
 _amazonSQSClient.DeleteMessageBatchAsync(deleteRequest); 

        return deleteResponse.Failed.Any(); 
    } 

    /// <summary> 
    /// Delete a queue by its URL. 
    /// </summary> 
    /// <param name="queueUrl">The url of the queue.</param> 

Publish messages to queues 460



Amazon Simple Queue Service Developer Guide

    /// <returns>True if successful.</returns> 
    public async Task<bool> DeleteQueueByUrl(string queueUrl) 
    { 
        var deleteResponse = await _amazonSQSClient.DeleteQueueAsync( 
            new DeleteQueueRequest() 
            { 
                QueueUrl = queueUrl 
            }); 
        return deleteResponse.HttpStatusCode == HttpStatusCode.OK; 
    }
}

Create a class that wraps Amazon SNS operations.

/// <summary>
/// Wrapper for Amazon Simple Notification Service (SNS) operations.
/// </summary>
public class SNSWrapper
{ 
    private readonly IAmazonSimpleNotificationService _amazonSNSClient; 

    /// <summary> 
    /// Constructor for the Amazon SNS wrapper. 
    /// </summary> 
    /// <param name="amazonSQS">The injected Amazon SNS client.</param> 
    public SNSWrapper(IAmazonSimpleNotificationService amazonSNS) 
    { 
        _amazonSNSClient = amazonSNS; 
    } 

    /// <summary> 
    /// Create a new topic with a name and specific FIFO and de-duplication 
 attributes. 
    /// </summary> 
    /// <param name="topicName">The name for the topic.</param> 
    /// <param name="useFifoTopic">True to use a FIFO topic.</param> 
    /// <param name="useContentBasedDeduplication">True to use content-based de-
duplication.</param> 
    /// <returns>The ARN of the new topic.</returns> 
    public async Task<string> CreateTopicWithName(string topicName, bool 
 useFifoTopic, bool useContentBasedDeduplication) 

Publish messages to queues 461



Amazon Simple Queue Service Developer Guide

    { 
        var createTopicRequest = new CreateTopicRequest() 
        { 
            Name = topicName, 
        }; 

        if (useFifoTopic) 
        { 
            // Update the name if it is not correct for a FIFO topic. 
            if (!topicName.EndsWith(".fifo")) 
            { 
                createTopicRequest.Name = topicName + ".fifo"; 
            } 

            // Add the attributes from the method parameters. 
            createTopicRequest.Attributes = new Dictionary<string, string> 
            { 
                { "FifoTopic", "true" } 
            }; 
            if (useContentBasedDeduplication) 
            { 
                createTopicRequest.Attributes.Add("ContentBasedDeduplication", 
 "true"); 
            } 
        } 

        var createResponse = await 
 _amazonSNSClient.CreateTopicAsync(createTopicRequest); 
        return createResponse.TopicArn; 
    } 

    /// <summary> 
    /// Subscribe a queue to a topic with optional filters. 
    /// </summary> 
    /// <param name="topicArn">The ARN of the topic.</param> 
    /// <param name="useFifoTopic">The optional filtering policy for the 
 subscription.</param> 
    /// <param name="queueArn">The ARN of the queue.</param> 
    /// <returns>The ARN of the new subscription.</returns> 
    public async Task<string> SubscribeTopicWithFilter(string topicArn, string? 
 filterPolicy, string queueArn) 
    { 
        var subscribeRequest = new SubscribeRequest() 
        { 

Publish messages to queues 462



Amazon Simple Queue Service Developer Guide

            TopicArn = topicArn, 
            Protocol = "sqs", 
            Endpoint = queueArn 
        }; 

        if (!string.IsNullOrEmpty(filterPolicy)) 
        { 
            subscribeRequest.Attributes = new Dictionary<string, string> 
 { { "FilterPolicy", filterPolicy } }; 
        } 

        var subscribeResponse = await 
 _amazonSNSClient.SubscribeAsync(subscribeRequest); 
        return subscribeResponse.SubscriptionArn; 
    } 

    /// <summary> 
    /// Publish a message to a topic with an attribute and optional deduplication 
 and group IDs. 
    /// </summary> 
    /// <param name="topicArn">The ARN of the topic.</param> 
    /// <param name="message">The message to publish.</param> 
    /// <param name="attributeName">The optional attribute for the message.</
param> 
    /// <param name="attributeValue">The optional attribute value for the 
 message.</param> 
    /// <param name="deduplicationId">The optional deduplication ID for the 
 message.</param> 
    /// <param name="groupId">The optional group ID for the message.</param> 
    /// <returns>The ID of the message published.</returns> 
    public async Task<string> PublishToTopicWithAttribute( 
        string topicArn, 
        string message, 
        string? attributeName = null, 
        string? attributeValue = null, 
        string? deduplicationId = null, 
        string? groupId = null) 
    { 
        var publishRequest = new PublishRequest() 
        { 
            TopicArn = topicArn, 
            Message = message, 
            MessageDeduplicationId = deduplicationId, 
            MessageGroupId = groupId 

Publish messages to queues 463



Amazon Simple Queue Service Developer Guide

        }; 

        if (attributeValue != null) 
        { 
            // Add the string attribute if it exists. 
            publishRequest.MessageAttributes = 
                new Dictionary<string, MessageAttributeValue> 
                { 
                    { attributeName!, new MessageAttributeValue() { StringValue = 
 attributeValue, DataType = "String"} } 
                }; 
        } 

        var publishResponse = await 
 _amazonSNSClient.PublishAsync(publishRequest); 
        return publishResponse.MessageId; 
    } 

    /// <summary> 
    /// Unsubscribe from a topic by a subscription ARN. 
    /// </summary> 
    /// <param name="subscriptionArn">The ARN of the subscription.</param> 
    /// <returns>True if successful.</returns> 
    public async Task<bool> UnsubscribeByArn(string subscriptionArn) 
    { 
        var unsubscribeResponse = await _amazonSNSClient.UnsubscribeAsync( 
            new UnsubscribeRequest() 
            { 
                SubscriptionArn = subscriptionArn 
            }); 
        return unsubscribeResponse.HttpStatusCode == HttpStatusCode.OK; 
    } 

    /// <summary> 
    /// Delete a topic by its topic ARN. 
    /// </summary> 
    /// <param name="topicArn">The ARN of the topic.</param> 
    /// <returns>True if successful.</returns> 
    public async Task<bool> DeleteTopicByArn(string topicArn) 
    { 
        var deleteResponse = await _amazonSNSClient.DeleteTopicAsync( 
            new DeleteTopicRequest() 
            { 

Publish messages to queues 464



Amazon Simple Queue Service Developer Guide

                TopicArn = topicArn 
            }); 
        return deleteResponse.HttpStatusCode == HttpStatusCode.OK; 
    }
}

• For API details, see the following topics in Amazon SDK for .NET API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

        Aws::Client::ClientConfiguration clientConfig; 
        // Optional: Set to the AWS Region (overrides config file). 
        // clientConfig.region = "us-east-1";

//! Workflow for messaging with topics and queues using Amazon SNS and Amazon 
 SQS.
/*! 

Publish messages to queues 465

https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/CreateQueue
https://docs.amazonaws.cn/goto/DotNetSDKV3/sns-2010-03-31/CreateTopic
https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/DeleteMessageBatch
https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/DeleteQueue
https://docs.amazonaws.cn/goto/DotNetSDKV3/sns-2010-03-31/DeleteTopic
https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/GetQueueAttributes
https://docs.amazonaws.cn/goto/DotNetSDKV3/sns-2010-03-31/Publish
https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/ReceiveMessage
https://docs.amazonaws.cn/goto/DotNetSDKV3/sqs-2012-11-05/SetQueueAttributes
https://docs.amazonaws.cn/goto/DotNetSDKV3/sns-2010-03-31/Subscribe
https://docs.amazonaws.cn/goto/DotNetSDKV3/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

 \param clientConfig Aws client configuration. 
 \return bool: Successful completion. 
 */
bool AwsDoc::TopicsAndQueues::messagingWithTopicsAndQueues( 
        const Aws::Client::ClientConfiguration &clientConfiguration) { 
    std::cout << "Welcome to messaging with topics and queues." << std::endl; 
    printAsterisksLine(); 
    std::cout << "In this workflow, you will create an SNS topic and subscribe " 
              << NUMBER_OF_QUEUES << 
              " SQS queues to the topic." << std::endl; 
    std::cout 
            << "You can select from several options for configuring the topic and 
 the subscriptions for the " 
            << NUMBER_OF_QUEUES << " queues." << std::endl; 
    std::cout << "You can then post to the topic and see the results in the 
 queues." 
              << std::endl; 

    Aws::SNS::SNSClient snsClient(clientConfiguration); 

    printAsterisksLine(); 

    std::cout << "SNS topics can be configured as FIFO (First-In-First-Out)." 
              << std::endl; 
    std::cout 
            << "FIFO topics deliver messages in order and support deduplication 
 and message filtering." 
            << std::endl; 
    bool isFifoTopic = askYesNoQuestion( 
            "Would you like to work with FIFO topics? (y/n) "); 

    bool contentBasedDeduplication = false; 
    Aws::String topicName; 
    if (isFifoTopic) { 
        printAsterisksLine(); 
        std::cout << "Because you have chosen a FIFO topic, deduplication is 
 supported." 
                  << std::endl; 
        std::cout 
                << "Deduplication IDs are either set in the message or 
 automatically generated " 
                << "from content using a hash function." << std::endl; 
        std::cout 

Publish messages to queues 466



Amazon Simple Queue Service Developer Guide

                << "If a message is successfully published to an SNS FIFO topic, 
 any message " 
                << "published and determined to have the same deduplication ID, " 
                << std::endl; 
        std::cout 
                << "within the five-minute deduplication interval, is accepted 
 but not delivered." 
                << std::endl; 
        std::cout 
                << "For more information about deduplication, " 
                << "see https://docs.aws.amazon.com/sns/latest/dg/fifo-message-
dedup.html." 
                << std::endl; 
        contentBasedDeduplication = askYesNoQuestion( 
                "Use content-based deduplication instead of entering a 
 deduplication ID? (y/n) "); 
    } 

    printAsterisksLine(); 

    Aws::SQS::SQSClient sqsClient(clientConfiguration); 
    Aws::Vector<Aws::String> queueURLS; 
    Aws::Vector<Aws::String> subscriptionARNS; 

    Aws::String topicARN; 
    { 
        topicName = askQuestion("Enter a name for your SNS topic. "); 

        // 1.  Create an Amazon SNS topic, either FIFO or non-FIFO. 
        Aws::SNS::Model::CreateTopicRequest request; 

        if (isFifoTopic) { 
            request.AddAttributes("FifoTopic", "true"); 
            if (contentBasedDeduplication) { 
                request.AddAttributes("ContentBasedDeduplication", "true"); 
            } 
            topicName = topicName + FIFO_SUFFIX; 

            std::cout 
                    << "Because you have selected a FIFO topic, '.fifo' must be 
 appended to the topic name." 
                    << std::endl; 
        } 

Publish messages to queues 467



Amazon Simple Queue Service Developer Guide

        request.SetName(topicName); 

        Aws::SNS::Model::CreateTopicOutcome outcome = 
 snsClient.CreateTopic(request); 

        if (outcome.IsSuccess()) { 
            topicARN = outcome.GetResult().GetTopicArn(); 
            std::cout << "Your new topic with the name '" << topicName 
                      << "' and the topic Amazon Resource Name (ARN) " << 
 std::endl; 
            std::cout << "'" << topicARN << "' has been created." << std::endl; 

        } 
        else { 
            std::cerr << "Error with TopicsAndQueues::CreateTopic. " 
                      << outcome.GetError().GetMessage() 
                      << std::endl; 

            cleanUp(topicARN, 
                    queueURLS, 
                    subscriptionARNS, 
                    snsClient, 
                    sqsClient); 

            return false; 
        } 
    } 

    printAsterisksLine(); 

    std::cout << "Now you will create " << NUMBER_OF_QUEUES 
              << " SQS queues to subscribe to the topic." << std::endl; 
    Aws::Vector<Aws::String> queueNames; 
    bool filteringMessages = false; 
    bool first = true; 
    for (int i = 1; i <= NUMBER_OF_QUEUES; ++i) { 
        Aws::String queueURL; 
        Aws::String queueName; 
        { 
            printAsterisksLine(); 
            std::ostringstream ostringstream; 
            ostringstream << "Enter a name for " << (first ? "an" : "the next") 
                          << " SQS queue. "; 
            queueName = askQuestion(ostringstream.str()); 

Publish messages to queues 468



Amazon Simple Queue Service Developer Guide

            // 2.  Create an SQS queue. 
            Aws::SQS::Model::CreateQueueRequest request; 
            if (isFifoTopic) { 
                
 request.AddAttributes(Aws::SQS::Model::QueueAttributeName::FifoQueue, 
                                      "true"); 
                queueName = queueName + FIFO_SUFFIX; 

                if (first) // Only explain this once. 
                { 
                    std::cout 
                            << "Because you are creating a FIFO SQS queue, 
 '.fifo' must " 
                            << "be appended to the queue name." << std::endl; 
                } 
            } 

            request.SetQueueName(queueName); 
            queueNames.push_back(queueName); 

            Aws::SQS::Model::CreateQueueOutcome outcome = 
                    sqsClient.CreateQueue(request); 

            if (outcome.IsSuccess()) { 
                queueURL = outcome.GetResult().GetQueueUrl(); 
                std::cout << "Your new SQS queue with the name '" << queueName 
                          << "' and the queue URL " << std::endl; 
                std::cout << "'" << queueURL << "' has been created." << 
 std::endl; 
            } 
            else { 
                std::cerr << "Error with SQS::CreateQueue. " 
                          << outcome.GetError().GetMessage() 
                          << std::endl; 

                cleanUp(topicARN, 
                        queueURLS, 
                        subscriptionARNS, 
                        snsClient, 
                        sqsClient); 

                return false; 
            } 

Publish messages to queues 469



Amazon Simple Queue Service Developer Guide

        } 
        queueURLS.push_back(queueURL); 

        if (first) // Only explain this once. 
        { 
            std::cout 
                    << "The queue URL is used to retrieve the queue ARN, which is 
 " 
                    << "used to create a subscription." << std::endl; 
        } 

        Aws::String queueARN; 
        { 
            // 3.  Get the SQS queue ARN attribute. 
            Aws::SQS::Model::GetQueueAttributesRequest request; 
            request.SetQueueUrl(queueURL); 
            
 request.AddAttributeNames(Aws::SQS::Model::QueueAttributeName::QueueArn); 

            Aws::SQS::Model::GetQueueAttributesOutcome outcome = 
                    sqsClient.GetQueueAttributes(request); 

            if (outcome.IsSuccess()) { 
                const Aws::Map<Aws::SQS::Model::QueueAttributeName, Aws::String> 
 &attributes = 
                        outcome.GetResult().GetAttributes(); 
                const auto &iter = attributes.find( 
                        Aws::SQS::Model::QueueAttributeName::QueueArn); 
                if (iter != attributes.end()) { 
                    queueARN = iter->second; 
                    std::cout << "The queue ARN '" << queueARN 
                              << "' has been retrieved." 
                              << std::endl; 
                } 
                else { 
                    std::cerr 
                            << "Error ARN attribute not returned by 
 GetQueueAttribute." 
                            << std::endl; 

                    cleanUp(topicARN, 
                            queueURLS, 
                            subscriptionARNS, 
                            snsClient, 

Publish messages to queues 470



Amazon Simple Queue Service Developer Guide

                            sqsClient); 

                    return false; 
                } 
            } 
            else { 
                std::cerr << "Error with SQS::GetQueueAttributes. " 
                          << outcome.GetError().GetMessage() 
                          << std::endl; 

                cleanUp(topicARN, 
                        queueURLS, 
                        subscriptionARNS, 
                        snsClient, 
                        sqsClient); 

                return false; 
            } 
        } 

        if (first) { 
            std::cout 
                    << "An IAM policy must be attached to an SQS queue, enabling 
 it to receive " 
                       "messages from an SNS topic." << std::endl; 
        } 

        { 
            // 4.  Set the SQS queue policy attribute with a policy enabling the 
 receipt of SNS messages. 
            Aws::SQS::Model::SetQueueAttributesRequest request; 
            request.SetQueueUrl(queueURL); 
            Aws::String policy = createPolicyForQueue(queueARN, topicARN); 
            request.AddAttributes(Aws::SQS::Model::QueueAttributeName::Policy, 
                                  policy); 

            Aws::SQS::Model::SetQueueAttributesOutcome outcome = 
                    sqsClient.SetQueueAttributes(request); 

            if (outcome.IsSuccess()) { 
                std::cout << "The attributes for the queue '" << queueName 
                          << "' were successfully updated." << std::endl; 
            } 
            else { 

Publish messages to queues 471



Amazon Simple Queue Service Developer Guide

                std::cerr << "Error with SQS::SetQueueAttributes. " 
                          << outcome.GetError().GetMessage() 
                          << std::endl; 

                cleanUp(topicARN, 
                        queueURLS, 
                        subscriptionARNS, 
                        snsClient, 
                        sqsClient); 

                return false; 
            } 
        } 

        printAsterisksLine(); 

        { 
            // 5.  Subscribe the SQS queue to the SNS topic. 
            Aws::SNS::Model::SubscribeRequest request; 
            request.SetTopicArn(topicARN); 
            request.SetProtocol("sqs"); 
            request.SetEndpoint(queueARN); 
            if (isFifoTopic) { 
                if (first) { 
                    std::cout << "Subscriptions to a FIFO topic can have 
 filters." 
                              << std::endl; 
                    std::cout 
                            << "If you add a filter to this subscription, then 
 only the filtered messages " 
                            << "will be received in the queue." << std::endl; 
                    std::cout << "For information about message filtering, " 
                              << "see https://docs.aws.amazon.com/sns/latest/dg/
sns-message-filtering.html" 
                              << std::endl; 
                    std::cout << "For this example, you can filter messages by a 
 \"" 
                              << TONE_ATTRIBUTE << "\" attribute." << std::endl; 
                } 

                std::ostringstream ostringstream; 
                ostringstream << "Filter messages for \"" << queueName 
                              << "\"'s subscription to the topic \"" 
                              << topicName << "\"?  (y/n)"; 

Publish messages to queues 472



Amazon Simple Queue Service Developer Guide

                // Add filter if user answers yes. 
                if (askYesNoQuestion(ostringstream.str())) { 
                    Aws::String jsonPolicy = getFilterPolicyFromUser(); 
                    if (!jsonPolicy.empty()) { 
                        filteringMessages = true; 

                        std::cout << "This is the filter policy for this 
 subscription." 
                                  << std::endl; 
                        std::cout << jsonPolicy << std::endl; 

                        request.AddAttributes("FilterPolicy", jsonPolicy); 
                    } 
                    else { 
                        std::cout 
                                << "Because you did not select any attributes, no 
 filter " 
                                << "will be added to this subscription." << 
 std::endl; 
                    } 
                } 
            }  // if (isFifoTopic) 
            Aws::SNS::Model::SubscribeOutcome outcome = 
 snsClient.Subscribe(request); 

            if (outcome.IsSuccess()) { 
                Aws::String subscriptionARN = 
 outcome.GetResult().GetSubscriptionArn(); 
                std::cout << "The queue '" << queueName 
                          << "' has been subscribed to the topic '" 
                          << "'" << topicName << "'" << std::endl; 
                std::cout << "with the subscription ARN '" << subscriptionARN << 
 "." 
                          << std::endl; 
                subscriptionARNS.push_back(subscriptionARN); 
            } 
            else { 
                std::cerr << "Error with TopicsAndQueues::Subscribe. " 
                          << outcome.GetError().GetMessage() 
                          << std::endl; 

                cleanUp(topicARN, 
                        queueURLS, 

Publish messages to queues 473



Amazon Simple Queue Service Developer Guide

                        subscriptionARNS, 
                        snsClient, 
                        sqsClient); 

                return false; 
            } 
        } 

        first = false; 
    } 

    first = true; 
    do { 
        printAsterisksLine(); 

        // 6.  Publish a message to the SNS topic. 
        Aws::SNS::Model::PublishRequest request; 
        request.SetTopicArn(topicARN); 
        Aws::String message = askQuestion("Enter a message text to publish.  "); 
        request.SetMessage(message); 
        if (isFifoTopic) { 
            if (first) { 
                std::cout 
                        << "Because you are using a FIFO topic, you must set a 
 message group ID." 
                        << std::endl; 
                std::cout 
                        << "All messages within the same group will be received 
 in the " 
                        << "order they were published." << std::endl; 
            } 
            Aws::String messageGroupID = askQuestion( 
                    "Enter a message group ID for this message. "); 
            request.SetMessageGroupId(messageGroupID); 
            if (!contentBasedDeduplication) { 
                if (first) { 
                    std::cout 
                            << "Because you are not using content-based 
 deduplication, " 
                            << "you must enter a deduplication ID." << std::endl; 
                } 
                Aws::String deduplicationID = askQuestion( 
                        "Enter a deduplication ID for this message. "); 
                request.SetMessageDeduplicationId(deduplicationID); 

Publish messages to queues 474



Amazon Simple Queue Service Developer Guide

            } 
        } 

        if (filteringMessages && askYesNoQuestion( 
                "Add an attribute to this message? (y/n) ")) { 
            for (size_t i = 0; i < TONES.size(); ++i) { 
                std::cout << "  " << (i + 1) << ". " << TONES[i] << std::endl; 
            } 
            int selection = askQuestionForIntRange( 
                    "Enter a number for an attribute. ", 
                    1, static_cast<int>(TONES.size())); 
            Aws::SNS::Model::MessageAttributeValue messageAttributeValue; 
            messageAttributeValue.SetDataType("String"); 
            messageAttributeValue.SetStringValue(TONES[selection - 1]); 
            request.AddMessageAttributes(TONE_ATTRIBUTE, messageAttributeValue); 
        } 

        Aws::SNS::Model::PublishOutcome outcome = snsClient.Publish(request); 

        if (outcome.IsSuccess()) { 
            std::cout << "Your message was successfully published." << std::endl; 
        } 
        else { 
            std::cerr << "Error with TopicsAndQueues::Publish. " 
                      << outcome.GetError().GetMessage() 
                      << std::endl; 

            cleanUp(topicARN, 
                    queueURLS, 
                    subscriptionARNS, 
                    snsClient, 
                    sqsClient); 

            return false; 
        } 

        first = false; 
    } while (askYesNoQuestion("Post another message? (y/n) ")); 

    printAsterisksLine(); 

    std::cout << "Now the SQS queue will be polled to retrieve the messages." 
              << std::endl; 
    askQuestion("Press any key to continue...", alwaysTrueTest); 

Publish messages to queues 475



Amazon Simple Queue Service Developer Guide

    for (size_t i = 0; i < queueURLS.size(); ++i) { 
        // 7.  Poll an SQS queue for its messages. 
        std::vector<Aws::String> messages; 
        std::vector<Aws::String> receiptHandles; 
        while (true) { 
            Aws::SQS::Model::ReceiveMessageRequest request; 
            request.SetMaxNumberOfMessages(10); 
            request.SetQueueUrl(queueURLS[i]); 

            // Setting WaitTimeSeconds to non-zero enables long polling. 
            // For information about long polling, see 
            // https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sqs-short-and-long-polling.html 
            request.SetWaitTimeSeconds(1); 
            Aws::SQS::Model::ReceiveMessageOutcome outcome = 
                    sqsClient.ReceiveMessage(request); 

            if (outcome.IsSuccess()) { 
                const Aws::Vector<Aws::SQS::Model::Message> &newMessages = 
 outcome.GetResult().GetMessages(); 
                if (newMessages.empty()) { 
                    break; 
                } 
                else { 
                    for (const Aws::SQS::Model::Message &message: newMessages) { 
                        messages.push_back(message.GetBody()); 
                        receiptHandles.push_back(message.GetReceiptHandle()); 
                    } 
                } 
            } 
            else { 
                std::cerr << "Error with SQS::ReceiveMessage. " 
                          << outcome.GetError().GetMessage() 
                          << std::endl; 

                cleanUp(topicARN, 
                        queueURLS, 
                        subscriptionARNS, 
                        snsClient, 
                        sqsClient); 

                return false; 
            } 

Publish messages to queues 476



Amazon Simple Queue Service Developer Guide

        } 

        printAsterisksLine(); 

        if (messages.empty()) { 
            std::cout << "No messages were "; 
        } 
        else if (messages.size() == 1) { 
            std::cout << "One message was "; 
        } 
        else { 
            std::cout << messages.size() << " messages were "; 
        } 
        std::cout << "received by the queue '" << queueNames[i] 
                  << "'." << std::endl; 
        for (const Aws::String &message: messages) { 
            std::cout << "  Message : '" << message << "'." 
                      << std::endl; 
        } 

        // 8.  Delete a batch of messages from an SQS queue. 
        if (!receiptHandles.empty()) { 
            Aws::SQS::Model::DeleteMessageBatchRequest request; 
            request.SetQueueUrl(queueURLS[i]); 
            int id = 1; // Ids must be unique within a batch delete request. 
            for (const Aws::String &receiptHandle: receiptHandles) { 
                Aws::SQS::Model::DeleteMessageBatchRequestEntry entry; 
                entry.SetId(std::to_string(id)); 
                ++id; 
                entry.SetReceiptHandle(receiptHandle); 
                request.AddEntries(entry); 
            } 

            Aws::SQS::Model::DeleteMessageBatchOutcome outcome = 
                    sqsClient.DeleteMessageBatch(request); 

            if (outcome.IsSuccess()) { 
                std::cout << "The batch deletion of messages was successful." 
                          << std::endl; 
            } 
            else { 
                std::cerr << "Error with SQS::DeleteMessageBatch. " 
                          << outcome.GetError().GetMessage() 
                          << std::endl; 

Publish messages to queues 477



Amazon Simple Queue Service Developer Guide

                cleanUp(topicARN, 
                        queueURLS, 
                        subscriptionARNS, 
                        snsClient, 
                        sqsClient); 

                return false; 
            } 
        } 
    } 

    return cleanUp(topicARN, 
                   queueURLS, 
                   subscriptionARNS, 
                   snsClient, 
                   sqsClient, 
                   true); // askUser
}

bool AwsDoc::TopicsAndQueues::cleanUp(const Aws::String &topicARN, 
                                      const Aws::Vector<Aws::String> &queueURLS, 
                                      const Aws::Vector<Aws::String> 
 &subscriptionARNS, 
                                      const Aws::SNS::SNSClient &snsClient, 
                                      const Aws::SQS::SQSClient &sqsClient, 
                                      bool askUser) { 
    bool result = true; 
    printAsterisksLine(); 
    if (!queueURLS.empty() && askUser && 
        askYesNoQuestion("Delete the SQS queues? (y/n) ")) { 

        for (const auto &queueURL: queueURLS) { 
            // 9.  Delete an SQS queue. 
            Aws::SQS::Model::DeleteQueueRequest request; 
            request.SetQueueUrl(queueURL); 

            Aws::SQS::Model::DeleteQueueOutcome outcome = 
                    sqsClient.DeleteQueue(request); 

            if (outcome.IsSuccess()) { 
                std::cout << "The queue with URL '" << queueURL 
                          << "' was successfully deleted." << std::endl; 
            } 

Publish messages to queues 478



Amazon Simple Queue Service Developer Guide

            else { 
                std::cerr << "Error with SQS::DeleteQueue. " 
                          << outcome.GetError().GetMessage() 
                          << std::endl; 
                result = false; 
            } 
        } 

        for (const auto &subscriptionARN: subscriptionARNS) { 
            // 10. Unsubscribe an SNS subscription. 
            Aws::SNS::Model::UnsubscribeRequest request; 
            request.SetSubscriptionArn(subscriptionARN); 

            Aws::SNS::Model::UnsubscribeOutcome outcome = 
                    snsClient.Unsubscribe(request); 

            if (outcome.IsSuccess()) { 
                std::cout << "Unsubscribe of subscription ARN '" << 
 subscriptionARN 
                          << "' was successful." << std::endl; 
            } 
            else { 
                std::cerr << "Error with TopicsAndQueues::Unsubscribe. " 
                          << outcome.GetError().GetMessage() 
                          << std::endl; 
                result = false; 
            } 
        } 
    } 

    printAsterisksLine(); 
    if (!topicARN.empty() && askUser && 
        askYesNoQuestion("Delete the SNS topic? (y/n) ")) { 

        // 11. Delete an SNS topic. 
        Aws::SNS::Model::DeleteTopicRequest request; 
        request.SetTopicArn(topicARN); 

        Aws::SNS::Model::DeleteTopicOutcome outcome = 
 snsClient.DeleteTopic(request); 

        if (outcome.IsSuccess()) { 
            std::cout << "The topic with ARN '" << topicARN 
                      << "' was successfully deleted." << std::endl; 

Publish messages to queues 479



Amazon Simple Queue Service Developer Guide

        } 
        else { 
            std::cerr << "Error with TopicsAndQueues::DeleteTopicRequest. " 
                      << outcome.GetError().GetMessage() 
                      << std::endl; 
            result = false; 
        } 
    } 

    return result;
}

//! Create an IAM policy that gives an SQS queue permission to receive messages 
 from an SNS topic.
/*! 
 \sa createPolicyForQueue() 
 \param queueARN: The SQS queue Amazon Resource Name (ARN). 
 \param topicARN: The SNS topic ARN. 
 \return Aws::String: The policy as JSON. 
 */
Aws::String AwsDoc::TopicsAndQueues::createPolicyForQueue(const Aws::String 
 &queueARN, 
                                                          const Aws::String 
 &topicARN) { 
    std::ostringstream policyStream; 
    policyStream << R"({ 
        "Statement": [ 
        { 
            "Effect": "Allow", 
                    "Principal": { 
                "Service": "sns.amazonaws.com" 
            }, 
            "Action": "sqs:SendMessage", 
                    "Resource": ")" << queueARN << R"(", 
                    "Condition": { 
                "ArnEquals": { 
                    "aws:SourceArn": ")" << topicARN << R"(" 
                } 
            } 
        } 
        ] 
    })"; 

    return policyStream.str();

Publish messages to queues 480



Amazon Simple Queue Service Developer Guide

}

• For API details, see the following topics in Amazon SDK for C++ API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Run an interactive scenario at a command prompt.

import ( 
 "context" 
 "encoding/json" 
 "fmt" 
 "log" 
 "strings" 
 "topics_and_queues/actions" 

Publish messages to queues 481

https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/CreateQueue
https://docs.amazonaws.cn/goto/SdkForCpp/sns-2010-03-31/CreateTopic
https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/DeleteMessageBatch
https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/DeleteQueue
https://docs.amazonaws.cn/goto/SdkForCpp/sns-2010-03-31/DeleteTopic
https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/GetQueueAttributes
https://docs.amazonaws.cn/goto/SdkForCpp/sns-2010-03-31/Publish
https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/ReceiveMessage
https://docs.amazonaws.cn/goto/SdkForCpp/sqs-2012-11-05/SetQueueAttributes
https://docs.amazonaws.cn/goto/SdkForCpp/sns-2010-03-31/Subscribe
https://docs.amazonaws.cn/goto/SdkForCpp/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

 "github.com/aws/aws-sdk-go-v2/aws" 
 "github.com/aws/aws-sdk-go-v2/service/sns" 
 "github.com/aws/aws-sdk-go-v2/service/sqs" 
 "github.com/aws/aws-sdk-go-v2/service/sqs/types" 
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

const FIFO_SUFFIX = ".fifo"
const TONE_KEY = "tone"

var ToneChoices = []string{"cheerful", "funny", "serious", "sincere"}

// MessageBody is used to deserialize the body of a message from a JSON string.
type MessageBody struct { 
 Message string
}

// ScenarioRunner separates the steps of this scenario into individual functions 
 so that
// they are simpler to read and understand.
type ScenarioRunner struct { 
 questioner demotools.IQuestioner 
 snsActor   *actions.SnsActions 
 sqsActor   *actions.SqsActions
}

func (runner ScenarioRunner) CreateTopic(ctx context.Context) (string, string, 
 bool, bool) { 
 log.Println("SNS topics can be configured as FIFO (First-In-First-Out) or 
 standard.\n" + 
  "FIFO topics deliver messages in order and support deduplication and message 
 filtering.") 
 isFifoTopic := runner.questioner.AskBool("\nWould you like to work with FIFO 
 topics? (y/n) ", "y") 

 contentBasedDeduplication := false 
 if isFifoTopic { 
  log.Println(strings.Repeat("-", 88)) 
  log.Println("Because you have chosen a FIFO topic, deduplication is supported.
\n" + 
   "Deduplication IDs are either set in the message or are automatically 
 generated\n" + 
   "from content using a hash function. If a message is successfully published to
\n" + 

Publish messages to queues 482



Amazon Simple Queue Service Developer Guide

   "an SNS FIFO topic, any message published and determined to have the same\n" + 
   "deduplication ID, within the five-minute deduplication interval, is accepted
\n" + 
   "but not delivered. For more information about deduplication, see:\n" + 
   "\thttps://docs.aws.amazon.com/sns/latest/dg/fifo-message-dedup.html.") 
  contentBasedDeduplication = runner.questioner.AskBool( 
   "\nDo you want to use content-based deduplication instead of entering a 
 deduplication ID? (y/n) ", "y") 
 } 
 log.Println(strings.Repeat("-", 88)) 

 topicName := runner.questioner.Ask("Enter a name for your SNS topic. ") 
 if isFifoTopic { 
  topicName = fmt.Sprintf("%v%v", topicName, FIFO_SUFFIX) 
  log.Printf("Because you have selected a FIFO topic, '%v' must be appended to
\n"+ 
   "the topic name.", FIFO_SUFFIX) 
 } 

 topicArn, err := runner.snsActor.CreateTopic(ctx, topicName, isFifoTopic, 
 contentBasedDeduplication) 
 if err != nil { 
  panic(err) 
 } 
 log.Printf("Your new topic with the name '%v' and Amazon Resource Name (ARN) 
 \n"+ 
  "'%v' has been created.", topicName, topicArn) 

 return topicName, topicArn, isFifoTopic, contentBasedDeduplication
}

func (runner ScenarioRunner) CreateQueue(ctx context.Context, ordinal string, 
 isFifoTopic bool) (string, string) { 
 queueName := runner.questioner.Ask(fmt.Sprintf("Enter a name for the %v SQS 
 queue. ", ordinal)) 
 if isFifoTopic { 
  queueName = fmt.Sprintf("%v%v", queueName, FIFO_SUFFIX) 
  if ordinal == "first" { 
   log.Printf("Because you are creating a FIFO SQS queue, '%v' must "+ 
    "be appended to the queue name.\n", FIFO_SUFFIX) 
  } 
 } 
 queueUrl, err := runner.sqsActor.CreateQueue(ctx, queueName, isFifoTopic) 
 if err != nil { 

Publish messages to queues 483



Amazon Simple Queue Service Developer Guide

  panic(err) 
 } 
 log.Printf("Your new SQS queue with the name '%v' and the queue URL "+ 
  "'%v' has been created.", queueName, queueUrl) 

 return queueName, queueUrl
}

func (runner ScenarioRunner) SubscribeQueueToTopic( 
 ctx context.Context, queueName string, queueUrl string, topicName string, 
 topicArn string, ordinal string, 
 isFifoTopic bool) (string, bool) { 

 queueArn, err := runner.sqsActor.GetQueueArn(ctx, queueUrl) 
 if err != nil { 
  panic(err) 
 } 
 log.Printf("The ARN of your queue is: %v.\n", queueArn) 

 err = runner.sqsActor.AttachSendMessagePolicy(ctx, queueUrl, queueArn, topicArn) 
 if err != nil { 
  panic(err) 
 } 
 log.Println("Attached an IAM policy to the queue so the SNS topic can send " + 
  "messages to it.") 
 log.Println(strings.Repeat("-", 88)) 

 var filterPolicy map[string][]string 
 if isFifoTopic { 
  if ordinal == "first" { 
   log.Println("Subscriptions to a FIFO topic can have filters.\n" + 
    "If you add a filter to this subscription, then only the filtered messages\n" 
 + 
    "will be received in the queue.\n" + 
    "For information about message filtering, see\n" + 
    "\thttps://docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html\n" + 
    "For this example, you can filter messages by a \"tone\" attribute.") 
  } 

  wantFiltering := runner.questioner.AskBool( 
   fmt.Sprintf("Do you want to filter messages that are sent to \"%v\"\n"+ 
    "from the %v topic? (y/n) ", queueName, topicName), "y") 
  if wantFiltering { 

Publish messages to queues 484



Amazon Simple Queue Service Developer Guide

   log.Println("You can filter messages by one or more of the following \"tone\" 
 attributes.") 

   var toneSelections []string 
   askAboutTones := true 
   for askAboutTones { 
    toneIndex := runner.questioner.AskChoice( 
     "Enter the number of the tone you want to filter by:\n", ToneChoices) 
    toneSelections = append(toneSelections, ToneChoices[toneIndex]) 
    askAboutTones = runner.questioner.AskBool("Do you want to add another tone to 
 the filter? (y/n) ", "y") 
   } 
   log.Printf("Your subscription will be filtered to only pass the following 
 tones: %v\n", toneSelections) 
   filterPolicy = map[string][]string{TONE_KEY: toneSelections} 
  } 
 } 

 subscriptionArn, err := runner.snsActor.SubscribeQueue(ctx, topicArn, queueArn, 
 filterPolicy) 
 if err != nil { 
  panic(err) 
 } 
 log.Printf("The queue %v is now subscribed to the topic %v with the subscription 
 ARN %v.\n", 
  queueName, topicName, subscriptionArn) 

 return subscriptionArn, filterPolicy != nil
}

func (runner ScenarioRunner) PublishMessages(ctx context.Context, topicArn 
 string, isFifoTopic bool, contentBasedDeduplication bool, usingFilters bool) { 
 var message string 
 var groupId string 
 var dedupId string 
 var toneSelection string 
 publishMore := true 
 for publishMore { 
  groupId = "" 
  dedupId = "" 
  toneSelection = "" 
  message = runner.questioner.Ask("Enter a message to publish: ") 
  if isFifoTopic { 

Publish messages to queues 485



Amazon Simple Queue Service Developer Guide

   log.Println("Because you are using a FIFO topic, you must set a message group 
 ID.\n" + 
    "All messages within the same group will be received in the order they were 
 published.") 
   groupId = runner.questioner.Ask("Enter a message group ID: ") 
   if !contentBasedDeduplication { 
    log.Println("Because you are not using content-based deduplication,\n" + 
     "you must enter a deduplication ID.") 
    dedupId = runner.questioner.Ask("Enter a deduplication ID: ") 
   } 
  } 
  if usingFilters { 
   if runner.questioner.AskBool("Add a tone attribute so this message can be 
 filtered? (y/n) ", "y") { 
    toneIndex := runner.questioner.AskChoice( 
     "Enter the number of the tone you want to filter by:\n", ToneChoices) 
    toneSelection = ToneChoices[toneIndex] 
   } 
  } 

  err := runner.snsActor.Publish(ctx, topicArn, message, groupId, dedupId, 
 TONE_KEY, toneSelection) 
  if err != nil { 
   panic(err) 
  } 
  log.Println(("Your message was published.")) 

  publishMore = runner.questioner.AskBool("Do you want to publish another 
 messsage? (y/n) ", "y") 
 }
}

func (runner ScenarioRunner) PollForMessages(ctx context.Context, queueUrls 
 []string) { 
 log.Println("Polling queues for messages...") 
 for _, queueUrl := range queueUrls { 
  var messages []types.Message 
  for { 
   currentMsgs, err := runner.sqsActor.GetMessages(ctx, queueUrl, 10, 1) 
   if err != nil { 
    panic(err) 
   } 
   if len(currentMsgs) == 0 { 
    break 

Publish messages to queues 486



Amazon Simple Queue Service Developer Guide

   } 
   messages = append(messages, currentMsgs...) 
  } 
  if len(messages) == 0 { 
   log.Printf("No messages were received by queue %v.\n", queueUrl) 
  } else if len(messages) == 1 { 
   log.Printf("One message was received by queue %v:\n", queueUrl) 

  } else { 
   log.Printf("%v messages were received by queue %v:\n", len(messages), 
 queueUrl) 
  } 
  for msgIndex, message := range messages { 
   messageBody := MessageBody{} 
   err := json.Unmarshal([]byte(*message.Body), &messageBody) 
   if err != nil { 
    panic(err) 
   } 
   log.Printf("Message %v: %v\n", msgIndex+1, messageBody.Message) 
  } 

  if len(messages) > 0 { 
   log.Printf("Deleting %v messages from queue %v.\n", len(messages), queueUrl) 
   err := runner.sqsActor.DeleteMessages(ctx, queueUrl, messages) 
   if err != nil { 
    panic(err) 
   } 
  } 
 }
}

// RunTopicsAndQueuesScenario is an interactive example that shows you how to use 
 the
// AWS SDK for Go to create and use Amazon SNS topics and Amazon SQS queues.
//
// 1. Create a topic (FIFO or non-FIFO).
// 2. Subscribe several queues to the topic with an option to apply a filter.
// 3. Publish messages to the topic.
// 4. Poll the queues for messages received.
// 5. Delete the topic and the queues.
//
// This example creates service clients from the specified sdkConfig so that
// you can replace it with a mocked or stubbed config for unit testing.
//

Publish messages to queues 487



Amazon Simple Queue Service Developer Guide

// It uses a questioner from the `demotools` package to get input during the 
 example.
// This package can be found in the ..\..\demotools folder of this repo.
func RunTopicsAndQueuesScenario( 
 ctx context.Context, sdkConfig aws.Config, questioner demotools.IQuestioner) { 
 resources := Resources{} 
 defer func() { 
  if r := recover(); r != nil { 
   log.Println("Something went wrong with the demo.\n" + 
    "Cleaning up any resources that were created...") 
   resources.Cleanup(ctx) 
  } 
 }() 
 queueCount := 2 

 log.Println(strings.Repeat("-", 88)) 
 log.Printf("Welcome to messaging with topics and queues.\n\n"+ 
  "In this scenario, you will create an SNS topic and subscribe %v SQS queues to 
 the\n"+ 
  "topic. You can select from several options for configuring the topic and the
\n"+ 
  "subscriptions for the queues. You can then post to the topic and see the 
 results\n"+ 
  "in the queues.\n", queueCount) 

 log.Println(strings.Repeat("-", 88)) 

 runner := ScenarioRunner{ 
  questioner: questioner, 
  snsActor:   &actions.SnsActions{SnsClient: sns.NewFromConfig(sdkConfig)}, 
  sqsActor:   &actions.SqsActions{SqsClient: sqs.NewFromConfig(sdkConfig)}, 
 } 
 resources.snsActor = runner.snsActor 
 resources.sqsActor = runner.sqsActor 

 topicName, topicArn, isFifoTopic, contentBasedDeduplication := 
 runner.CreateTopic(ctx) 
 resources.topicArn = topicArn 
 log.Println(strings.Repeat("-", 88)) 

 log.Printf("Now you will create %v SQS queues and subscribe them to the topic.
\n", queueCount) 
 ordinals := []string{"first", "next"} 
 usingFilters := false 

Publish messages to queues 488



Amazon Simple Queue Service Developer Guide

 for _, ordinal := range ordinals { 
  queueName, queueUrl := runner.CreateQueue(ctx, ordinal, isFifoTopic) 
  resources.queueUrls = append(resources.queueUrls, queueUrl) 

  _, filtering := runner.SubscribeQueueToTopic(ctx, queueName, queueUrl, 
 topicName, topicArn, ordinal, isFifoTopic) 
  usingFilters = usingFilters || filtering 
 } 

 log.Println(strings.Repeat("-", 88)) 
 runner.PublishMessages(ctx, topicArn, isFifoTopic, contentBasedDeduplication, 
 usingFilters) 
 log.Println(strings.Repeat("-", 88)) 
 runner.PollForMessages(ctx, resources.queueUrls) 

 log.Println(strings.Repeat("-", 88)) 

 wantCleanup := questioner.AskBool("Do you want to remove all AWS resources 
 created for this scenario? (y/n) ", "y") 
 if wantCleanup { 
  log.Println("Cleaning up resources...") 
  resources.Cleanup(ctx) 
 } 

 log.Println(strings.Repeat("-", 88)) 
 log.Println("Thanks for watching!") 
 log.Println(strings.Repeat("-", 88))
}

Define a struct that wraps Amazon SNS actions used in this example.

import ( 
 "context" 
 "encoding/json" 
 "log" 

 "github.com/aws/aws-sdk-go-v2/aws" 
 "github.com/aws/aws-sdk-go-v2/service/sns" 
 "github.com/aws/aws-sdk-go-v2/service/sns/types"
)

Publish messages to queues 489



Amazon Simple Queue Service Developer Guide

// SnsActions encapsulates the Amazon Simple Notification Service (Amazon SNS) 
 actions
// used in the examples.
type SnsActions struct { 
 SnsClient *sns.Client
}

// CreateTopic creates an Amazon SNS topic with the specified name. You can 
 optionally
// specify that the topic is created as a FIFO topic and whether it uses content-
based
// deduplication instead of ID-based deduplication.
func (actor SnsActions) CreateTopic(ctx context.Context, topicName string, 
 isFifoTopic bool, contentBasedDeduplication bool) (string, error) { 
 var topicArn string 
 topicAttributes := map[string]string{} 
 if isFifoTopic { 
  topicAttributes["FifoTopic"] = "true" 
 } 
 if contentBasedDeduplication { 
  topicAttributes["ContentBasedDeduplication"] = "true" 
 } 
 topic, err := actor.SnsClient.CreateTopic(ctx, &sns.CreateTopicInput{ 
  Name:       aws.String(topicName), 
  Attributes: topicAttributes, 
 }) 
 if err != nil { 
  log.Printf("Couldn't create topic %v. Here's why: %v\n", topicName, err) 
 } else { 
  topicArn = *topic.TopicArn 
 } 

 return topicArn, err
}

// DeleteTopic delete an Amazon SNS topic.
func (actor SnsActions) DeleteTopic(ctx context.Context, topicArn string) error { 
 _, err := actor.SnsClient.DeleteTopic(ctx, &sns.DeleteTopicInput{ 
  TopicArn: aws.String(topicArn)}) 

Publish messages to queues 490



Amazon Simple Queue Service Developer Guide

 if err != nil { 
  log.Printf("Couldn't delete topic %v. Here's why: %v\n", topicArn, err) 
 } 
 return err
}

// SubscribeQueue subscribes an Amazon Simple Queue Service (Amazon SQS) queue to 
 an
// Amazon SNS topic. When filterMap is not nil, it is used to specify a filter 
 policy
// so that messages are only sent to the queue when the message has the specified 
 attributes.
func (actor SnsActions) SubscribeQueue(ctx context.Context, topicArn string, 
 queueArn string, filterMap map[string][]string) (string, error) { 
 var subscriptionArn string 
 var attributes map[string]string 
 if filterMap != nil { 
  filterBytes, err := json.Marshal(filterMap) 
  if err != nil { 
   log.Printf("Couldn't create filter policy, here's why: %v\n", err) 
   return "", err 
  } 
  attributes = map[string]string{"FilterPolicy": string(filterBytes)} 
 } 
 output, err := actor.SnsClient.Subscribe(ctx, &sns.SubscribeInput{ 
  Protocol:              aws.String("sqs"), 
  TopicArn:              aws.String(topicArn), 
  Attributes:            attributes, 
  Endpoint:              aws.String(queueArn), 
  ReturnSubscriptionArn: true, 
 }) 
 if err != nil { 
  log.Printf("Couldn't susbscribe queue %v to topic %v. Here's why: %v\n", 
   queueArn, topicArn, err) 
 } else { 
  subscriptionArn = *output.SubscriptionArn 
 } 

 return subscriptionArn, err
}

Publish messages to queues 491



Amazon Simple Queue Service Developer Guide

// Publish publishes a message to an Amazon SNS topic. The message is then sent 
 to all
// subscribers. When the topic is a FIFO topic, the message must also contain a 
 group ID
// and, when ID-based deduplication is used, a deduplication ID. An optional key-
value
// filter attribute can be specified so that the message can be filtered 
 according to
// a filter policy.
func (actor SnsActions) Publish(ctx context.Context, topicArn string, message 
 string, groupId string, dedupId string, filterKey string, filterValue string) 
 error { 
 publishInput := sns.PublishInput{TopicArn: aws.String(topicArn), Message: 
 aws.String(message)} 
 if groupId != "" { 
  publishInput.MessageGroupId = aws.String(groupId) 
 } 
 if dedupId != "" { 
  publishInput.MessageDeduplicationId = aws.String(dedupId) 
 } 
 if filterKey != "" && filterValue != "" { 
  publishInput.MessageAttributes = map[string]types.MessageAttributeValue{ 
   filterKey: {DataType: aws.String("String"), StringValue: 
 aws.String(filterValue)}, 
  } 
 } 
 _, err := actor.SnsClient.Publish(ctx, &publishInput) 
 if err != nil { 
  log.Printf("Couldn't publish message to topic %v. Here's why: %v", topicArn, 
 err) 
 } 
 return err
}

Define a struct that wraps Amazon SQS actions used in this example.

import ( 
 "context" 
 "encoding/json" 

Publish messages to queues 492



Amazon Simple Queue Service Developer Guide

 "fmt" 
 "log" 

 "github.com/aws/aws-sdk-go-v2/aws" 
 "github.com/aws/aws-sdk-go-v2/service/sqs" 
 "github.com/aws/aws-sdk-go-v2/service/sqs/types"
)

// SqsActions encapsulates the Amazon Simple Queue Service (Amazon SQS) actions
// used in the examples.
type SqsActions struct { 
 SqsClient *sqs.Client
}

// CreateQueue creates an Amazon SQS queue with the specified name. You can 
 specify
// whether the queue is created as a FIFO queue.
func (actor SqsActions) CreateQueue(ctx context.Context, queueName string, 
 isFifoQueue bool) (string, error) { 
 var queueUrl string 
 queueAttributes := map[string]string{} 
 if isFifoQueue { 
  queueAttributes["FifoQueue"] = "true" 
 } 
 queue, err := actor.SqsClient.CreateQueue(ctx, &sqs.CreateQueueInput{ 
  QueueName:  aws.String(queueName), 
  Attributes: queueAttributes, 
 }) 
 if err != nil { 
  log.Printf("Couldn't create queue %v. Here's why: %v\n", queueName, err) 
 } else { 
  queueUrl = *queue.QueueUrl 
 } 

 return queueUrl, err
}

// GetQueueArn uses the GetQueueAttributes action to get the Amazon Resource Name 
 (ARN)
// of an Amazon SQS queue.

Publish messages to queues 493



Amazon Simple Queue Service Developer Guide

func (actor SqsActions) GetQueueArn(ctx context.Context, queueUrl string) 
 (string, error) { 
 var queueArn string 
 arnAttributeName := types.QueueAttributeNameQueueArn 
 attribute, err := actor.SqsClient.GetQueueAttributes(ctx, 
 &sqs.GetQueueAttributesInput{ 
  QueueUrl:       aws.String(queueUrl), 
  AttributeNames: []types.QueueAttributeName{arnAttributeName}, 
 }) 
 if err != nil { 
  log.Printf("Couldn't get ARN for queue %v. Here's why: %v\n", queueUrl, err) 
 } else { 
  queueArn = attribute.Attributes[string(arnAttributeName)] 
 } 
 return queueArn, err
}

// AttachSendMessagePolicy uses the SetQueueAttributes action to attach a policy 
 to an
// Amazon SQS queue that allows the specified Amazon SNS topic to send messages 
 to the
// queue.
func (actor SqsActions) AttachSendMessagePolicy(ctx context.Context, queueUrl 
 string, queueArn string, topicArn string) error { 
 policyDoc := PolicyDocument{ 
  Version: "2012-10-17", 
  Statement: []PolicyStatement{{ 
   Effect:    "Allow", 
   Action:    "sqs:SendMessage", 
   Principal: map[string]string{"Service": "sns.amazonaws.com"}, 
   Resource:  aws.String(queueArn), 
   Condition: PolicyCondition{"ArnEquals": map[string]string{"aws:SourceArn": 
 topicArn}}, 
  }}, 
 } 
 policyBytes, err := json.Marshal(policyDoc) 
 if err != nil { 
  log.Printf("Couldn't create policy document. Here's why: %v\n", err) 
  return err 
 } 
 _, err = actor.SqsClient.SetQueueAttributes(ctx, &sqs.SetQueueAttributesInput{ 
  Attributes: map[string]string{ 

Publish messages to queues 494



Amazon Simple Queue Service Developer Guide

   string(types.QueueAttributeNamePolicy): string(policyBytes), 
  }, 
  QueueUrl: aws.String(queueUrl), 
 }) 
 if err != nil { 
  log.Printf("Couldn't set send message policy on queue %v. Here's why: %v\n", 
 queueUrl, err) 
 } 
 return err
}

// PolicyDocument defines a policy document as a Go struct that can be serialized
// to JSON.
type PolicyDocument struct { 
 Version   string 
 Statement []PolicyStatement
}

// PolicyStatement defines a statement in a policy document.
type PolicyStatement struct { 
 Effect    string 
 Action    string 
 Principal map[string]string `json:",omitempty"` 
 Resource  *string           `json:",omitempty"` 
 Condition PolicyCondition   `json:",omitempty"`
}

// PolicyCondition defines a condition in a policy.
type PolicyCondition map[string]map[string]string

// GetMessages uses the ReceiveMessage action to get messages from an Amazon SQS 
 queue.
func (actor SqsActions) GetMessages(ctx context.Context, queueUrl string, 
 maxMessages int32, waitTime int32) ([]types.Message, error) { 
 var messages []types.Message 
 result, err := actor.SqsClient.ReceiveMessage(ctx, &sqs.ReceiveMessageInput{ 
  QueueUrl:            aws.String(queueUrl), 
  MaxNumberOfMessages: maxMessages, 
  WaitTimeSeconds:     waitTime, 
 }) 
 if err != nil { 

Publish messages to queues 495



Amazon Simple Queue Service Developer Guide

  log.Printf("Couldn't get messages from queue %v. Here's why: %v\n", queueUrl, 
 err) 
 } else { 
  messages = result.Messages 
 } 
 return messages, err
}

// DeleteMessages uses the DeleteMessageBatch action to delete a batch of 
 messages from
// an Amazon SQS queue.
func (actor SqsActions) DeleteMessages(ctx context.Context, queueUrl string, 
 messages []types.Message) error { 
 entries := make([]types.DeleteMessageBatchRequestEntry, len(messages)) 
 for msgIndex := range messages { 
  entries[msgIndex].Id = aws.String(fmt.Sprintf("%v", msgIndex)) 
  entries[msgIndex].ReceiptHandle = messages[msgIndex].ReceiptHandle 
 } 
 _, err := actor.SqsClient.DeleteMessageBatch(ctx, &sqs.DeleteMessageBatchInput{ 
  Entries:  entries, 
  QueueUrl: aws.String(queueUrl), 
 }) 
 if err != nil { 
  log.Printf("Couldn't delete messages from queue %v. Here's why: %v\n", 
 queueUrl, err) 
 } 
 return err
}

// DeleteQueue deletes an Amazon SQS queue.
func (actor SqsActions) DeleteQueue(ctx context.Context, queueUrl string) error { 
 _, err := actor.SqsClient.DeleteQueue(ctx, &sqs.DeleteQueueInput{ 
  QueueUrl: aws.String(queueUrl)}) 
 if err != nil { 
  log.Printf("Couldn't delete queue %v. Here's why: %v\n", queueUrl, err) 
 } 
 return err
}

Publish messages to queues 496



Amazon Simple Queue Service Developer Guide

Clean up resources.

import ( 
 "context" 
 "fmt" 
 "log" 
 "topics_and_queues/actions"
)

// Resources keeps track of AWS resources created during an example and handles
// cleanup when the example finishes.
type Resources struct { 
 topicArn  string 
 queueUrls []string 
 snsActor  *actions.SnsActions 
 sqsActor  *actions.SqsActions
}

// Cleanup deletes all AWS resources created during an example.
func (resources Resources) Cleanup(ctx context.Context) { 
 defer func() { 
  if r := recover(); r != nil { 
   fmt.Println("Something went wrong during cleanup. Use the AWS Management 
 Console\n" + 
    "to remove any remaining resources that were created for this scenario.") 
  } 
 }() 

 var err error 
 if resources.topicArn != "" { 
  log.Printf("Deleting topic %v.\n", resources.topicArn) 
  err = resources.snsActor.DeleteTopic(ctx, resources.topicArn) 
  if err != nil { 
   panic(err) 
  } 
 } 

 for _, queueUrl := range resources.queueUrls { 
  log.Printf("Deleting queue %v.\n", queueUrl) 
  err = resources.sqsActor.DeleteQueue(ctx, queueUrl) 

Publish messages to queues 497



Amazon Simple Queue Service Developer Guide

  if err != nil { 
   panic(err) 
  } 
 }
}

• For API details, see the following topics in Amazon SDK for Go API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

package com.example.sns;

import 
 software.amazon.awssdk.auth.credentials.EnvironmentVariableCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.sns.SnsClient;

Publish messages to queues 498

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.CreateQueue
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.CreateTopic
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.DeleteMessageBatch
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.DeleteQueue
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.DeleteTopic
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.GetQueueAttributes
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Publish
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.ReceiveMessage
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sqs#Client.SetQueueAttributes
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Subscribe
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/sns#Client.Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

import software.amazon.awssdk.services.sns.model.CreateTopicRequest;
import software.amazon.awssdk.services.sns.model.CreateTopicResponse;
import software.amazon.awssdk.services.sns.model.DeleteTopicRequest;
import software.amazon.awssdk.services.sns.model.DeleteTopicResponse;
import software.amazon.awssdk.services.sns.model.MessageAttributeValue;
import software.amazon.awssdk.services.sns.model.PublishRequest;
import software.amazon.awssdk.services.sns.model.PublishResponse;
import 
 software.amazon.awssdk.services.sns.model.SetSubscriptionAttributesRequest;
import software.amazon.awssdk.services.sns.model.SnsException;
import software.amazon.awssdk.services.sns.model.SubscribeRequest;
import software.amazon.awssdk.services.sns.model.SubscribeResponse;
import software.amazon.awssdk.services.sns.model.UnsubscribeRequest;
import software.amazon.awssdk.services.sns.model.UnsubscribeResponse;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;
import software.amazon.awssdk.services.sqs.model.DeleteMessageBatchRequest;
import software.amazon.awssdk.services.sqs.model.DeleteMessageBatchRequestEntry;
import software.amazon.awssdk.services.sqs.model.DeleteQueueRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesResponse;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlResponse;
import software.amazon.awssdk.services.sqs.model.Message;
import software.amazon.awssdk.services.sqs.model.QueueAttributeName;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest;
import software.amazon.awssdk.services.sqs.model.SetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.SqsException;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;

import com.google.gson.Gson;
import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import com.google.gson.JsonPrimitive;

/** 
 * Before running this Java V2 code example, set up your development 
 * environment, including your credentials. 
 * <p> 

Publish messages to queues 499



Amazon Simple Queue Service Developer Guide

 * For more information, see the following documentation topic: 
 * <p> 
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html 
 * <p> 
 * This Java example performs these tasks: 
 * <p> 
 * 1. Gives the user three options to choose from. 
 * 2. Creates an Amazon Simple Notification Service (Amazon SNS) topic. 
 * 3. Creates an Amazon Simple Queue Service (Amazon SQS) queue. 
 * 4. Gets the SQS queue Amazon Resource Name (ARN) attribute. 
 * 5. Attaches an AWS Identity and Access Management (IAM) policy to the queue. 
 * 6. Subscribes to the SQS queue. 
 * 7. Publishes a message to the topic. 
 * 8. Displays the messages. 
 * 9. Deletes the received message. 
 * 10. Unsubscribes from the topic. 
 * 11. Deletes the SNS topic. 
 */
public class SNSWorkflow { 
    public static final String DASHES = new String(new char[80]).replace("\0", 
 "-"); 

    public static void main(String[] args) { 
        final String usage = "\n" + 
            "Usage:\n" + 
            "    <fifoQueueARN>\n\n" + 
            "Where:\n" + 
            "    accountId - Your AWS account Id value."; 

        if (args.length != 1) { 
            System.out.println(usage); 
            System.exit(1); 
        } 

        SnsClient snsClient = SnsClient.builder() 
            .region(Region.US_EAST_1) 
            .credentialsProvider(EnvironmentVariableCredentialsProvider.create()) 
            .build(); 

        SqsClient sqsClient = SqsClient.builder() 
            .region(Region.US_EAST_1) 
            .credentialsProvider(EnvironmentVariableCredentialsProvider.create()) 
            .build(); 

Publish messages to queues 500



Amazon Simple Queue Service Developer Guide

        Scanner in = new Scanner(System.in); 
        String accountId = args[0]; 
        String useFIFO; 
        String duplication = "n"; 
        String topicName; 
        String deduplicationID = null; 
        String groupId = null; 

        String topicArn; 
        String sqsQueueName; 
        String sqsQueueUrl; 
        String sqsQueueArn; 
        String subscriptionArn; 
        boolean selectFIFO = false; 

        String message; 
        List<Message> messageList; 
        List<String> filterList = new ArrayList<>(); 
        String msgAttValue = ""; 

        System.out.println(DASHES); 
        System.out.println("Welcome to messaging with topics and queues."); 
        System.out.println("In this scenario, you will create an SNS topic and 
 subscribe an SQS queue to the topic.\n" + 
            "You can select from several options for configuring the topic and 
 the subscriptions for the queue.\n" + 
            "You can then post to the topic and see the results in the queue."); 
        System.out.println(DASHES); 

        System.out.println(DASHES); 
        System.out.println("SNS topics can be configured as FIFO (First-In-First-
Out).\n" + 
            "FIFO topics deliver messages in order and support deduplication and 
 message filtering.\n" + 
            "Would you like to work with FIFO topics? (y/n)"); 
        useFIFO = in.nextLine(); 
        if (useFIFO.compareTo("y") == 0) { 
            selectFIFO = true; 
            System.out.println("You have selected FIFO"); 
            System.out.println(" Because you have chosen a FIFO topic, 
 deduplication is supported.\n" + 
                "        Deduplication IDs are either set in the message or 
 automatically generated from content using a hash function.\n" 

Publish messages to queues 501



Amazon Simple Queue Service Developer Guide

                + 
                "        If a message is successfully published to an SNS FIFO 
 topic, any message published and determined to have the same deduplication ID,
\n" 
                + 
                "        within the five-minute deduplication interval, is 
 accepted but not delivered.\n" + 
                "        For more information about deduplication, see https://
docs.aws.amazon.com/sns/latest/dg/fifo-message-dedup.html."); 

            System.out.println( 
                "Would you like to use content-based deduplication instead of 
 entering a deduplication ID? (y/n)"); 
            duplication = in.nextLine(); 
            if (duplication.compareTo("y") == 0) { 
                System.out.println("Please enter a group id value"); 
                groupId = in.nextLine(); 
            } else { 
                System.out.println("Please enter deduplication Id value"); 
                deduplicationID = in.nextLine(); 
                System.out.println("Please enter a group id value"); 
                groupId = in.nextLine(); 
            } 
        } 
        System.out.println(DASHES); 

        System.out.println(DASHES); 
        System.out.println("2. Create a topic."); 
        System.out.println("Enter a name for your SNS topic."); 
        topicName = in.nextLine(); 
        if (selectFIFO) { 
            System.out.println("Because you have selected a FIFO topic, '.fifo' 
 must be appended to the topic name."); 
            topicName = topicName + ".fifo"; 
            System.out.println("The name of the topic is " + topicName); 
            topicArn = createFIFO(snsClient, topicName, duplication); 
            System.out.println("The ARN of the FIFO topic is " + topicArn); 

        } else { 
            System.out.println("The name of the topic is " + topicName); 
            topicArn = createSNSTopic(snsClient, topicName); 
            System.out.println("The ARN of the non-FIFO topic is " + topicArn); 

        } 

Publish messages to queues 502



Amazon Simple Queue Service Developer Guide

        System.out.println(DASHES); 

        System.out.println(DASHES); 
        System.out.println("3. Create an SQS queue."); 
        System.out.println("Enter a name for your SQS queue."); 
        sqsQueueName = in.nextLine(); 
        if (selectFIFO) { 
            sqsQueueName = sqsQueueName + ".fifo"; 
        } 
        sqsQueueUrl = createQueue(sqsClient, sqsQueueName, selectFIFO); 
        System.out.println("The queue URL is " + sqsQueueUrl); 
        System.out.println(DASHES); 

        System.out.println(DASHES); 
        System.out.println("4. Get the SQS queue ARN attribute."); 
        sqsQueueArn = getSQSQueueAttrs(sqsClient, sqsQueueUrl); 
        System.out.println("The ARN of the new queue is " + sqsQueueArn); 
        System.out.println(DASHES); 

        System.out.println(DASHES); 
        System.out.println("5. Attach an IAM policy to the queue."); 

        // Define the policy to use. Make sure that you change the REGION if you 
 are 
        // running this code 
        // in a different region. 
        String policy = """ 
        { 
             "Statement": [ 
             { 
                 "Effect": "Allow", 
                         "Principal": { 
                     "Service": "sns.amazonaws.com" 
                 }, 
                 "Action": "sqs:SendMessage", 
                         "Resource": "arn:aws:sqs:us-east-1:%s:%s", 
                         "Condition": { 
                     "ArnEquals": { 
                         "aws:SourceArn": "arn:aws:sns:us-east-1:%s:%s" 
                     } 
                 } 
             } 
             ] 
         } 

Publish messages to queues 503



Amazon Simple Queue Service Developer Guide

        """.formatted(accountId, sqsQueueName, accountId, topicName); 

        setQueueAttr(sqsClient, sqsQueueUrl, policy); 
        System.out.println(DASHES); 

        System.out.println(DASHES); 
        System.out.println("6. Subscribe to the SQS queue."); 
        if (selectFIFO) { 
            System.out.println( 
                "If you add a filter to this subscription, then only the filtered 
 messages will be received in the queue.\n" 
                    + 
                    "For information about message filtering, see https://
docs.aws.amazon.com/sns/latest/dg/sns-message-filtering.html\n" 
                    + 
                    "For this example, you can filter messages by a \"tone\" 
 attribute."); 
            System.out.println("Would you like to filter messages for " + 
 sqsQueueName + "'s subscription to the topic " 
                + topicName + "?  (y/n)"); 
            String filterAns = in.nextLine(); 
            if (filterAns.compareTo("y") == 0) { 
                boolean moreAns = false; 
                System.out.println("You can filter messages by one or more of the 
 following \"tone\" attributes."); 
                System.out.println("1. cheerful"); 
                System.out.println("2. funny"); 
                System.out.println("3. serious"); 
                System.out.println("4. sincere"); 
                while (!moreAns) { 
                    System.out.println("Select a number or choose 0 to end."); 
                    String ans = in.nextLine(); 
                    switch (ans) { 
                        case "1": 
                            filterList.add("cheerful"); 
                            break; 
                        case "2": 
                            filterList.add("funny"); 
                            break; 
                        case "3": 
                            filterList.add("serious"); 
                            break; 
                        case "4": 
                            filterList.add("sincere"); 

Publish messages to queues 504



Amazon Simple Queue Service Developer Guide

                            break; 
                        default: 
                            moreAns = true; 
                            break; 
                    } 
                } 
            } 
        } 
        subscriptionArn = subQueue(snsClient, topicArn, sqsQueueArn, filterList); 
        System.out.println(DASHES); 

        System.out.println(DASHES); 
        System.out.println("7. Publish a message to the topic."); 
        if (selectFIFO) { 
            System.out.println("Would you like to add an attribute to this 
 message?  (y/n)"); 
            String msgAns = in.nextLine(); 
            if (msgAns.compareTo("y") == 0) { 
                System.out.println("You can filter messages by one or more of the 
 following \"tone\" attributes."); 
                System.out.println("1. cheerful"); 
                System.out.println("2. funny"); 
                System.out.println("3. serious"); 
                System.out.println("4. sincere"); 
                System.out.println("Select a number or choose 0 to end."); 
                String ans = in.nextLine(); 
                switch (ans) { 
                    case "1": 
                        msgAttValue = "cheerful"; 
                        break; 
                    case "2": 
                        msgAttValue = "funny"; 
                        break; 
                    case "3": 
                        msgAttValue = "serious"; 
                        break; 
                    default: 
                        msgAttValue = "sincere"; 
                        break; 
                } 

                System.out.println("Selected value is " + msgAttValue); 
            } 
            System.out.println("Enter a message."); 

Publish messages to queues 505



Amazon Simple Queue Service Developer Guide

            message = in.nextLine(); 
            pubMessageFIFO(snsClient, message, topicArn, msgAttValue, 
 duplication, groupId, deduplicationID); 

        } else { 
            System.out.println("Enter a message."); 
            message = in.nextLine(); 
            pubMessage(snsClient, message, topicArn); 
        } 
        System.out.println(DASHES); 

        System.out.println(DASHES); 
        System.out.println("8. Display the message. Press any key to continue."); 
        in.nextLine(); 
        messageList = receiveMessages(sqsClient, sqsQueueUrl, msgAttValue); 
        for (Message mes : messageList) { 
            System.out.println("Message Id: " + mes.messageId()); 
            System.out.println("Full Message: " + mes.body()); 
        } 
        System.out.println(DASHES); 

        System.out.println(DASHES); 
        System.out.println("9. Delete the received message. Press any key to 
 continue."); 
        in.nextLine(); 
        deleteMessages(sqsClient, sqsQueueUrl, messageList); 
        System.out.println(DASHES); 

        System.out.println(DASHES); 
        System.out.println("10. Unsubscribe from the topic and delete the queue. 
 Press any key to continue."); 
        in.nextLine(); 
        unSub(snsClient, subscriptionArn); 
        deleteSQSQueue(sqsClient, sqsQueueName); 
        System.out.println(DASHES); 

        System.out.println(DASHES); 
        System.out.println("11. Delete the topic. Press any key to continue."); 
        in.nextLine(); 
        deleteSNSTopic(snsClient, topicArn); 

        System.out.println(DASHES); 
        System.out.println("The SNS/SQS workflow has completed successfully."); 
        System.out.println(DASHES); 

Publish messages to queues 506



Amazon Simple Queue Service Developer Guide

    } 

    public static void deleteSNSTopic(SnsClient snsClient, String topicArn) { 
        try { 
            DeleteTopicRequest request = DeleteTopicRequest.builder() 
                .topicArn(topicArn) 
                .build(); 

            DeleteTopicResponse result = snsClient.deleteTopic(request); 
            System.out.println("Status was " + 
 result.sdkHttpResponse().statusCode()); 

        } catch (SnsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    } 

    public static void deleteSQSQueue(SqsClient sqsClient, String queueName) { 
        try { 
            GetQueueUrlRequest getQueueRequest = GetQueueUrlRequest.builder() 
                .queueName(queueName) 
                .build(); 

            String queueUrl = sqsClient.getQueueUrl(getQueueRequest).queueUrl(); 
            DeleteQueueRequest deleteQueueRequest = DeleteQueueRequest.builder() 
                .queueUrl(queueUrl) 
                .build(); 

            sqsClient.deleteQueue(deleteQueueRequest); 
            System.out.println(queueName + " was successfully deleted."); 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    } 

    public static void unSub(SnsClient snsClient, String subscriptionArn) { 
        try { 
            UnsubscribeRequest request = UnsubscribeRequest.builder() 
                .subscriptionArn(subscriptionArn) 
                .build(); 

Publish messages to queues 507



Amazon Simple Queue Service Developer Guide

            UnsubscribeResponse result = snsClient.unsubscribe(request); 
            System.out.println("Status was " + 
 result.sdkHttpResponse().statusCode() 
                + "\nSubscription was removed for " + request.subscriptionArn()); 

        } catch (SnsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    } 

    public static void deleteMessages(SqsClient sqsClient, String queueUrl, 
 List<Message> messages) { 
        try { 
            List<DeleteMessageBatchRequestEntry> entries = new ArrayList<>(); 
            for (Message msg : messages) { 
                DeleteMessageBatchRequestEntry entry = 
 DeleteMessageBatchRequestEntry.builder() 
                    .id(msg.messageId()) 
                    .build(); 

                entries.add(entry); 
            } 

            DeleteMessageBatchRequest deleteMessageBatchRequest = 
 DeleteMessageBatchRequest.builder() 
                .queueUrl(queueUrl) 
                .entries(entries) 
                .build(); 

            sqsClient.deleteMessageBatch(deleteMessageBatchRequest); 
            System.out.println("The batch delete of messages was successful"); 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    } 

    public static List<Message> receiveMessages(SqsClient sqsClient, String 
 queueUrl, String msgAttValue) { 
        try { 
            if (msgAttValue.isEmpty()) { 

Publish messages to queues 508



Amazon Simple Queue Service Developer Guide

                ReceiveMessageRequest receiveMessageRequest = 
 ReceiveMessageRequest.builder() 
                    .queueUrl(queueUrl) 
                    .maxNumberOfMessages(5) 
                    .build(); 
                return 
 sqsClient.receiveMessage(receiveMessageRequest).messages(); 
            } else { 
                // We know there are filters on the message. 
                ReceiveMessageRequest receiveRequest = 
 ReceiveMessageRequest.builder() 
                    .queueUrl(queueUrl) 
                    .messageAttributeNames(msgAttValue) // Include other message 
 attributes if needed. 
                    .maxNumberOfMessages(5) 
                    .build(); 

                return sqsClient.receiveMessage(receiveRequest).messages(); 
            } 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
        return null; 
    } 

    public static void pubMessage(SnsClient snsClient, String message, String 
 topicArn) { 
        try { 
            PublishRequest request = PublishRequest.builder() 
                .message(message) 
                .topicArn(topicArn) 
                .build(); 

            PublishResponse result = snsClient.publish(request); 
            System.out 
                .println(result.messageId() + " Message sent. Status is " + 
 result.sdkHttpResponse().statusCode()); 

        } catch (SnsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 

Publish messages to queues 509



Amazon Simple Queue Service Developer Guide

    } 

    public static void pubMessageFIFO(SnsClient snsClient, 
                                      String message, 
                                      String topicArn, 
                                      String msgAttValue, 
                                      String duplication, 
                                      String groupId, 
                                      String deduplicationID) { 

        try { 
            PublishRequest request; 
            // Means the user did not choose to use a message attribute. 
            if (msgAttValue.isEmpty()) { 
                if (duplication.compareTo("y") == 0) { 
                    request = PublishRequest.builder() 
                        .message(message) 
                        .messageGroupId(groupId) 
                        .topicArn(topicArn) 
                        .build(); 
                } else { 
                    request = PublishRequest.builder() 
                        .message(message) 
                        .messageDeduplicationId(deduplicationID) 
                        .messageGroupId(groupId) 
                        .topicArn(topicArn) 
                        .build(); 
                } 

            } else { 
                Map<String, MessageAttributeValue> messageAttributes = new 
 HashMap<>(); 
                messageAttributes.put(msgAttValue, 
 MessageAttributeValue.builder() 
                    .dataType("String") 
                    .stringValue("true") 
                    .build()); 

                if (duplication.compareTo("y") == 0) { 
                    request = PublishRequest.builder() 
                        .message(message) 
                        .messageGroupId(groupId) 
                        .topicArn(topicArn) 
                        .build(); 

Publish messages to queues 510



Amazon Simple Queue Service Developer Guide

                } else { 
                    // Create a publish request with the message and attributes. 
                    request = PublishRequest.builder() 
                        .topicArn(topicArn) 
                        .message(message) 
                        .messageDeduplicationId(deduplicationID) 
                        .messageGroupId(groupId) 
                        .messageAttributes(messageAttributes) 
                        .build(); 
                } 
            } 

            // Publish the message to the topic. 
            PublishResponse result = snsClient.publish(request); 
            System.out 
                .println(result.messageId() + " Message sent. Status was " + 
 result.sdkHttpResponse().statusCode()); 

        } catch (SnsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    } 

    // Subscribe to the SQS queue. 
    public static String subQueue(SnsClient snsClient, String topicArn, String 
 queueArn, List<String> filterList) { 
        try { 
            SubscribeRequest request; 
            if (filterList.isEmpty()) { 
                // No filter subscription is added. 
                request = SubscribeRequest.builder() 
                    .protocol("sqs") 
                    .endpoint(queueArn) 
                    .returnSubscriptionArn(true) 
                    .topicArn(topicArn) 
                    .build(); 

                SubscribeResponse result = snsClient.subscribe(request); 
                System.out.println("The queue " + queueArn + " has been 
 subscribed to the topic " + topicArn + "\n" + 
                    "with the subscription ARN " + result.subscriptionArn()); 
                return result.subscriptionArn(); 
            } else { 

Publish messages to queues 511



Amazon Simple Queue Service Developer Guide

                request = SubscribeRequest.builder() 
                    .protocol("sqs") 
                    .endpoint(queueArn) 
                    .returnSubscriptionArn(true) 
                    .topicArn(topicArn) 
                    .build(); 

                SubscribeResponse result = snsClient.subscribe(request); 
                System.out.println("The queue " + queueArn + " has been 
 subscribed to the topic " + topicArn + "\n" + 
                    "with the subscription ARN " + result.subscriptionArn()); 

                String attributeName = "FilterPolicy"; 
                Gson gson = new Gson(); 
                String jsonString = "{\"tone\": []}"; 
                JsonObject jsonObject = gson.fromJson(jsonString, 
 JsonObject.class); 
                JsonArray toneArray = jsonObject.getAsJsonArray("tone"); 
                for (String value : filterList) { 
                    toneArray.add(new JsonPrimitive(value)); 
                } 

                String updatedJsonString = gson.toJson(jsonObject); 
                System.out.println(updatedJsonString); 
                SetSubscriptionAttributesRequest attRequest = 
 SetSubscriptionAttributesRequest.builder() 
                    .subscriptionArn(result.subscriptionArn()) 
                    .attributeName(attributeName) 
                    .attributeValue(updatedJsonString) 
                    .build(); 

                snsClient.setSubscriptionAttributes(attRequest); 
                return result.subscriptionArn(); 
            } 

        } catch (SnsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
        return ""; 
    } 

    // Attach a policy to the queue. 

Publish messages to queues 512



Amazon Simple Queue Service Developer Guide

    public static void setQueueAttr(SqsClient sqsClient, String queueUrl, String 
 policy) { 
        try { 
            Map<software.amazon.awssdk.services.sqs.model.QueueAttributeName, 
 String> attrMap = new HashMap<>(); 
            attrMap.put(QueueAttributeName.POLICY, policy); 

            SetQueueAttributesRequest attributesRequest = 
 SetQueueAttributesRequest.builder() 
                .queueUrl(queueUrl) 
                .attributes(attrMap) 
                .build(); 

            sqsClient.setQueueAttributes(attributesRequest); 
            System.out.println("The policy has been successfully attached."); 

        } catch (SnsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
    } 

    public static String getSQSQueueAttrs(SqsClient sqsClient, String queueUrl) { 
        // Specify the attributes to retrieve. 
        List<QueueAttributeName> atts = new ArrayList<>(); 
        atts.add(QueueAttributeName.QUEUE_ARN); 

        GetQueueAttributesRequest attributesRequest = 
 GetQueueAttributesRequest.builder() 
            .queueUrl(queueUrl) 
            .attributeNames(atts) 
            .build(); 

        GetQueueAttributesResponse response = 
 sqsClient.getQueueAttributes(attributesRequest); 
        Map<String, String> queueAtts = response.attributesAsStrings(); 
        for (Map.Entry<String, String> queueAtt : queueAtts.entrySet()) 
            return queueAtt.getValue(); 

        return ""; 
    } 

    public static String createQueue(SqsClient sqsClient, String queueName, 
 Boolean selectFIFO) { 

Publish messages to queues 513



Amazon Simple Queue Service Developer Guide

        try { 
            System.out.println("\nCreate Queue"); 
            if (selectFIFO) { 
                Map<QueueAttributeName, String> attrs = new HashMap<>(); 
                attrs.put(QueueAttributeName.FIFO_QUEUE, "true"); 
                CreateQueueRequest createQueueRequest = 
 CreateQueueRequest.builder() 
                    .queueName(queueName) 
                    .attributes(attrs) 
                    .build(); 

                sqsClient.createQueue(createQueueRequest); 
                System.out.println("\nGet queue url"); 
                GetQueueUrlResponse getQueueUrlResponse = sqsClient 
                    
 .getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build()); 
                return getQueueUrlResponse.queueUrl(); 
            } else { 
                CreateQueueRequest createQueueRequest = 
 CreateQueueRequest.builder() 
                    .queueName(queueName) 
                    .build(); 

                sqsClient.createQueue(createQueueRequest); 
                System.out.println("\nGet queue url"); 
                GetQueueUrlResponse getQueueUrlResponse = sqsClient 
                    
 .getQueueUrl(GetQueueUrlRequest.builder().queueName(queueName).build()); 
                return getQueueUrlResponse.queueUrl(); 
            } 

        } catch (SqsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
        return ""; 
    } 

    public static String createSNSTopic(SnsClient snsClient, String topicName) { 
        CreateTopicResponse result; 
        try { 
            CreateTopicRequest request = CreateTopicRequest.builder() 
                .name(topicName) 
                .build(); 

Publish messages to queues 514



Amazon Simple Queue Service Developer Guide

            result = snsClient.createTopic(request); 
            return result.topicArn(); 

        } catch (SnsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
        return ""; 
    } 

    public static String createFIFO(SnsClient snsClient, String topicName, String 
 duplication) { 
        try { 
            // Create a FIFO topic by using the SNS service client. 
            Map<String, String> topicAttributes = new HashMap<>(); 
            if (duplication.compareTo("n") == 0) { 
                topicAttributes.put("FifoTopic", "true"); 
                topicAttributes.put("ContentBasedDeduplication", "false"); 
            } else { 
                topicAttributes.put("FifoTopic", "true"); 
                topicAttributes.put("ContentBasedDeduplication", "true"); 
            } 

            CreateTopicRequest topicRequest = CreateTopicRequest.builder() 
                .name(topicName) 
                .attributes(topicAttributes) 
                .build(); 

            CreateTopicResponse response = snsClient.createTopic(topicRequest); 
            return response.topicArn(); 

        } catch (SnsException e) { 
            System.err.println(e.awsErrorDetails().errorMessage()); 
            System.exit(1); 
        } 
        return ""; 
    }
}

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• CreateQueue

Publish messages to queues 515

https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/CreateQueue


Amazon Simple Queue Service Developer Guide

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

This is the entry point for this scenario.

import { SNSClient } from "@aws-sdk/client-sns";
import { SQSClient } from "@aws-sdk/client-sqs";

import { TopicsQueuesWkflw } from "./TopicsQueuesWkflw.js";
import { Prompter } from "@aws-doc-sdk-examples/lib/prompter.js";

export const startSnsWorkflow = () => { 
  const snsClient = new SNSClient({}); 
  const sqsClient = new SQSClient({}); 
  const prompter = new Prompter(); 
  const logger = console; 

  const wkflw = new TopicsQueuesWkflw(snsClient, sqsClient, prompter, logger); 

  wkflw.start();

Publish messages to queues 516

https://docs.amazonaws.cn/goto/SdkForJavaV2/sns-2010-03-31/CreateTopic
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/DeleteMessageBatch
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/DeleteQueue
https://docs.amazonaws.cn/goto/SdkForJavaV2/sns-2010-03-31/DeleteTopic
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/GetQueueAttributes
https://docs.amazonaws.cn/goto/SdkForJavaV2/sns-2010-03-31/Publish
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/ReceiveMessage
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/SetQueueAttributes
https://docs.amazonaws.cn/goto/SdkForJavaV2/sns-2010-03-31/Subscribe
https://docs.amazonaws.cn/goto/SdkForJavaV2/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-topics-queues#code-examples


Amazon Simple Queue Service Developer Guide

};

The preceding code provides the necessary dependencies and starts the scenario. The next 
section contains the bulk of the example.

const toneChoices = [ 
  { name: "cheerful", value: "cheerful" }, 
  { name: "funny", value: "funny" }, 
  { name: "serious", value: "serious" }, 
  { name: "sincere", value: "sincere" },
];

export class TopicsQueuesWkflw { 
  // SNS topic is configured as First-In-First-Out 
  isFifo = true; 

  // Automatic content-based deduplication is enabled. 
  autoDedup = false; 

  snsClient; 
  sqsClient; 
  topicName; 
  topicArn; 
  subscriptionArns = []; 
  /** 
   * @type {{ queueName: string, queueArn: string, queueUrl: string, policy?: 
 string }[]} 
   */ 
  queues = []; 
  prompter; 

  /** 
   * @param {import('@aws-sdk/client-sns').SNSClient} snsClient 
   * @param {import('@aws-sdk/client-sqs').SQSClient} sqsClient 
   * @param {import('../../libs/prompter.js').Prompter} prompter 
   * @param {import('../../libs/logger.js').Logger} logger 
   */ 
  constructor(snsClient, sqsClient, prompter, logger) { 
    this.snsClient = snsClient; 
    this.sqsClient = sqsClient; 

Publish messages to queues 517



Amazon Simple Queue Service Developer Guide

    this.prompter = prompter; 
    this.logger = logger; 
  } 

  async welcome() { 
    await this.logger.log(MESSAGES.description); 
  } 

  async confirmFifo() { 
    await this.logger.log(MESSAGES.snsFifoDescription); 
    this.isFifo = await this.prompter.confirm({ 
      message: MESSAGES.snsFifoPrompt, 
    }); 

    if (this.isFifo) { 
      this.logger.logSeparator(MESSAGES.headerDedup); 
      await this.logger.log(MESSAGES.deduplicationNotice); 
      await this.logger.log(MESSAGES.deduplicationDescription); 
      this.autoDedup = await this.prompter.confirm({ 
        message: MESSAGES.deduplicationPrompt, 
      }); 
    } 
  } 

  async createTopic() { 
    await this.logger.log(MESSAGES.creatingTopics); 
    this.topicName = await this.prompter.input({ 
      message: MESSAGES.topicNamePrompt, 
    }); 
    if (this.isFifo) { 
      this.topicName += ".fifo"; 
      this.logger.logSeparator(MESSAGES.headerFifoNaming); 
      await this.logger.log(MESSAGES.appendFifoNotice); 
    } 

    const response = await this.snsClient.send( 
      new CreateTopicCommand({ 
        Name: this.topicName, 
        Attributes: { 
          FifoTopic: this.isFifo ? "true" : "false", 
          ...(this.autoDedup ? { ContentBasedDeduplication: "true" } : {}), 
        }, 
      }), 
    ); 

Publish messages to queues 518



Amazon Simple Queue Service Developer Guide

    this.topicArn = response.TopicArn; 

    await this.logger.log( 
      MESSAGES.topicCreatedNotice 
        .replace("${TOPIC_NAME}", this.topicName) 
        .replace("${TOPIC_ARN}", this.topicArn), 
    ); 
  } 

  async createQueues() { 
    await this.logger.log(MESSAGES.createQueuesNotice); 
    // Increase this number to add more queues. 
    const maxQueues = 2; 

    for (let i = 0; i < maxQueues; i++) { 
      await this.logger.log(MESSAGES.queueCount.replace("${COUNT}", i + 1)); 
      let queueName = await this.prompter.input({ 
        message: MESSAGES.queueNamePrompt.replace( 
          "${EXAMPLE_NAME}", 
          i === 0 ? "good-news" : "bad-news", 
        ), 
      }); 

      if (this.isFifo) { 
        queueName += ".fifo"; 
        await this.logger.log(MESSAGES.appendFifoNotice); 
      } 

      const response = await this.sqsClient.send( 
        new CreateQueueCommand({ 
          QueueName: queueName, 
          Attributes: { ...(this.isFifo ? { FifoQueue: "true" } : {}) }, 
        }), 
      ); 

      const { Attributes } = await this.sqsClient.send( 
        new GetQueueAttributesCommand({ 
          QueueUrl: response.QueueUrl, 
          AttributeNames: ["QueueArn"], 
        }), 
      ); 

      this.queues.push({ 

Publish messages to queues 519



Amazon Simple Queue Service Developer Guide

        queueName, 
        queueArn: Attributes.QueueArn, 
        queueUrl: response.QueueUrl, 
      }); 

      await this.logger.log( 
        MESSAGES.queueCreatedNotice 
          .replace("${QUEUE_NAME}", queueName) 
          .replace("${QUEUE_URL}", response.QueueUrl) 
          .replace("${QUEUE_ARN}", Attributes.QueueArn), 
      ); 
    } 
  } 

  async attachQueueIamPolicies() { 
    for (const [index, queue] of this.queues.entries()) { 
      const policy = JSON.stringify( 
        { 
          Statement: [ 
            { 
              Effect: "Allow", 
              Principal: { 
                Service: "sns.amazonaws.com", 
              }, 
              Action: "sqs:SendMessage", 
              Resource: queue.queueArn, 
              Condition: { 
                ArnEquals: { 
                  "aws:SourceArn": this.topicArn, 
                }, 
              }, 
            }, 
          ], 
        }, 
        null, 
        2, 
      ); 

      if (index !== 0) { 
        this.logger.logSeparator(); 
      } 

      await this.logger.log(MESSAGES.attachPolicyNotice); 
      console.log(policy); 

Publish messages to queues 520



Amazon Simple Queue Service Developer Guide

      const addPolicy = await this.prompter.confirm({ 
        message: MESSAGES.addPolicyConfirmation.replace( 
          "${QUEUE_NAME}", 
          queue.queueName, 
        ), 
      }); 

      if (addPolicy) { 
        await this.sqsClient.send( 
          new SetQueueAttributesCommand({ 
            QueueUrl: queue.queueUrl, 
            Attributes: { 
              Policy: policy, 
            }, 
          }), 
        ); 
        queue.policy = policy; 
      } else { 
        await this.logger.log( 
          MESSAGES.policyNotAttachedNotice.replace( 
            "${QUEUE_NAME}", 
            queue.queueName, 
          ), 
        ); 
      } 
    } 
  } 

  async subscribeQueuesToTopic() { 
    for (const [index, queue] of this.queues.entries()) { 
      /** 
       * @type {import('@aws-sdk/client-sns').SubscribeCommandInput} 
       */ 
      const subscribeParams = { 
        TopicArn: this.topicArn, 
        Protocol: "sqs", 
        Endpoint: queue.queueArn, 
      }; 
      let tones = []; 

      if (this.isFifo) { 
        if (index === 0) { 
          await this.logger.log(MESSAGES.fifoFilterNotice); 
        } 

Publish messages to queues 521



Amazon Simple Queue Service Developer Guide

        tones = await this.prompter.checkbox({ 
          message: MESSAGES.fifoFilterSelect.replace( 
            "${QUEUE_NAME}", 
            queue.queueName, 
          ), 
          choices: toneChoices, 
        }); 

        if (tones.length) { 
          subscribeParams.Attributes = { 
            FilterPolicyScope: "MessageAttributes", 
            FilterPolicy: JSON.stringify({ 
              tone: tones, 
            }), 
          }; 
        } 
      } 

      const { SubscriptionArn } = await this.snsClient.send( 
        new SubscribeCommand(subscribeParams), 
      ); 

      this.subscriptionArns.push(SubscriptionArn); 

      await this.logger.log( 
        MESSAGES.queueSubscribedNotice 
          .replace("${QUEUE_NAME}", queue.queueName) 
          .replace("${TOPIC_NAME}", this.topicName) 
          .replace("${TONES}", tones.length ? tones.join(", ") : "none"), 
      ); 
    } 
  } 

  async publishMessages() { 
    const message = await this.prompter.input({ 
      message: MESSAGES.publishMessagePrompt, 
    }); 

    let groupId; 
    let deduplicationId; 
    let choices; 

    if (this.isFifo) { 
      await this.logger.log(MESSAGES.groupIdNotice); 

Publish messages to queues 522



Amazon Simple Queue Service Developer Guide

      groupId = await this.prompter.input({ 
        message: MESSAGES.groupIdPrompt, 
      }); 

      if (this.autoDedup === false) { 
        await this.logger.log(MESSAGES.deduplicationIdNotice); 
        deduplicationId = await this.prompter.input({ 
          message: MESSAGES.deduplicationIdPrompt, 
        }); 
      } 

      choices = await this.prompter.checkbox({ 
        message: MESSAGES.messageAttributesPrompt, 
        choices: toneChoices, 
      }); 
    } 

    await this.snsClient.send( 
      new PublishCommand({ 
        TopicArn: this.topicArn, 
        Message: message, 
        ...(groupId 
          ? { 
              MessageGroupId: groupId, 
            } 
          : {}), 
        ...(deduplicationId 
          ? { 
              MessageDeduplicationId: deduplicationId, 
            } 
          : {}), 
        ...(choices 
          ? { 
              MessageAttributes: { 
                tone: { 
                  DataType: "String.Array", 
                  StringValue: JSON.stringify(choices), 
                }, 
              }, 
            } 
          : {}), 
      }), 
    ); 

Publish messages to queues 523



Amazon Simple Queue Service Developer Guide

    const publishAnother = await this.prompter.confirm({ 
      message: MESSAGES.publishAnother, 
    }); 

    if (publishAnother) { 
      await this.publishMessages(); 
    } 
  } 

  async receiveAndDeleteMessages() { 
    for (const queue of this.queues) { 
      const { Messages } = await this.sqsClient.send( 
        new ReceiveMessageCommand({ 
          QueueUrl: queue.queueUrl, 
        }), 
      ); 

      if (Messages) { 
        await this.logger.log( 
          MESSAGES.messagesReceivedNotice.replace( 
            "${QUEUE_NAME}", 
            queue.queueName, 
          ), 
        ); 
        console.log(Messages); 

        await this.sqsClient.send( 
          new DeleteMessageBatchCommand({ 
            QueueUrl: queue.queueUrl, 
            Entries: Messages.map((message) => ({ 
              Id: message.MessageId, 
              ReceiptHandle: message.ReceiptHandle, 
            })), 
          }), 
        ); 
      } else { 
        await this.logger.log( 
          MESSAGES.noMessagesReceivedNotice.replace( 
            "${QUEUE_NAME}", 
            queue.queueName, 
          ), 
        ); 
      } 
    } 

Publish messages to queues 524



Amazon Simple Queue Service Developer Guide

    const deleteAndPoll = await this.prompter.confirm({ 
      message: MESSAGES.deleteAndPollConfirmation, 
    }); 

    if (deleteAndPoll) { 
      await this.receiveAndDeleteMessages(); 
    } 
  } 

  async destroyResources() { 
    for (const subscriptionArn of this.subscriptionArns) { 
      await this.snsClient.send( 
        new UnsubscribeCommand({ SubscriptionArn: subscriptionArn }), 
      ); 
    } 

    for (const queue of this.queues) { 
      await this.sqsClient.send( 
        new DeleteQueueCommand({ QueueUrl: queue.queueUrl }), 
      ); 
    } 

    if (this.topicArn) { 
      await this.snsClient.send( 
        new DeleteTopicCommand({ TopicArn: this.topicArn }), 
      ); 
    } 
  } 

  async start() { 
    console.clear(); 

    try { 
      this.logger.logSeparator(MESSAGES.headerWelcome); 
      await this.welcome(); 
      this.logger.logSeparator(MESSAGES.headerFifo); 
      await this.confirmFifo(); 
      this.logger.logSeparator(MESSAGES.headerCreateTopic); 
      await this.createTopic(); 
      this.logger.logSeparator(MESSAGES.headerCreateQueues); 
      await this.createQueues(); 
      this.logger.logSeparator(MESSAGES.headerAttachPolicy); 
      await this.attachQueueIamPolicies(); 

Publish messages to queues 525



Amazon Simple Queue Service Developer Guide

      this.logger.logSeparator(MESSAGES.headerSubscribeQueues); 
      await this.subscribeQueuesToTopic(); 
      this.logger.logSeparator(MESSAGES.headerPublishMessage); 
      await this.publishMessages(); 
      this.logger.logSeparator(MESSAGES.headerReceiveMessages); 
      await this.receiveAndDeleteMessages(); 
    } catch (err) { 
      console.error(err); 
    } finally { 
      await this.destroyResources(); 
    } 
  }
}

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Publish messages to queues 526

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/CreateQueueCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/CreateTopicCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteMessageBatchCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/DeleteQueueCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/DeleteTopicCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/GetQueueAttributesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/PublishCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/ReceiveMessageCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sqs/command/SetQueueAttributesCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/SubscribeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/sns/command/UnsubscribeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

package com.example.sns

import aws.sdk.kotlin.services.sns.SnsClient
import aws.sdk.kotlin.services.sns.model.CreateTopicRequest
import aws.sdk.kotlin.services.sns.model.DeleteTopicRequest
import aws.sdk.kotlin.services.sns.model.PublishRequest
import aws.sdk.kotlin.services.sns.model.SetSubscriptionAttributesRequest
import aws.sdk.kotlin.services.sns.model.SubscribeRequest
import aws.sdk.kotlin.services.sns.model.UnsubscribeRequest
import aws.sdk.kotlin.services.sqs.SqsClient
import aws.sdk.kotlin.services.sqs.model.CreateQueueRequest
import aws.sdk.kotlin.services.sqs.model.DeleteMessageBatchRequest
import aws.sdk.kotlin.services.sqs.model.DeleteMessageBatchRequestEntry
import aws.sdk.kotlin.services.sqs.model.DeleteQueueRequest
import aws.sdk.kotlin.services.sqs.model.GetQueueAttributesRequest
import aws.sdk.kotlin.services.sqs.model.GetQueueUrlRequest
import aws.sdk.kotlin.services.sqs.model.Message
import aws.sdk.kotlin.services.sqs.model.QueueAttributeName
import aws.sdk.kotlin.services.sqs.model.ReceiveMessageRequest
import aws.sdk.kotlin.services.sqs.model.SetQueueAttributesRequest
import com.google.gson.Gson
import com.google.gson.JsonObject
import com.google.gson.JsonPrimitive
import java.util.Scanner

/**
Before running this Kotlin code example, set up your development environment,
including your AWS credentials.

For more information, see the following documentation topic:
https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html

This Kotlin example performs the following tasks: 

 1. Gives the user three options to choose from. 
 2. Creates an Amazon Simple Notification Service (Amazon SNS) topic. 
 3. Creates an Amazon Simple Queue Service (Amazon SQS) queue. 
 4. Gets the SQS queue Amazon Resource Name (ARN) attribute. 
 5. Attaches an AWS Identity and Access Management (IAM) policy to the queue. 
 6. Subscribes to the SQS queue. 
 7. Publishes a message to the topic. 
 8. Displays the messages. 
 9. Deletes the received message. 

Publish messages to queues 527



Amazon Simple Queue Service Developer Guide

 10. Unsubscribes from the topic. 
 11. Deletes the SNS topic. 
 */

val DASHES: String = String(CharArray(80)).replace("\u0000", "-")
suspend fun main() { 
    val input = Scanner(System.`in`) 
    val useFIFO: String 
    var duplication = "n" 
    var topicName: String 
    var deduplicationID: String? = null 
    var groupId: String? = null 
    val topicArn: String? 
    var sqsQueueName: String 
    val sqsQueueUrl: String? 
    val sqsQueueArn: String 
    val subscriptionArn: String? 
    var selectFIFO = false 
    val message: String 
    val messageList: List<Message?>? 
    val filterList = ArrayList<String>() 
    var msgAttValue = "" 

    println(DASHES) 
    println("Welcome to the AWS SDK for Kotlin messaging with topics and 
 queues.") 
    println( 
        """ 
                In this scenario, you will create an SNS topic and subscribe an 
 SQS queue to the topic. 
                You can select from several options for configuring the topic and 
 the subscriptions for the queue. 
                You can then post to the topic and see the results in the queue. 
        """.trimIndent(), 
    ) 
    println(DASHES) 

    println(DASHES) 
    println( 
        """ 
                SNS topics can be configured as FIFO (First-In-First-Out). 
                FIFO topics deliver messages in order and support deduplication 
 and message filtering. 
                Would you like to work with FIFO topics? (y/n) 

Publish messages to queues 528



Amazon Simple Queue Service Developer Guide

        """.trimIndent(), 
    ) 
    useFIFO = input.nextLine() 
    if (useFIFO.compareTo("y") == 0) { 
        selectFIFO = true 
        println("You have selected FIFO") 
        println( 
            """ Because you have chosen a FIFO topic, deduplication is supported. 
        Deduplication IDs are either set in the message or automatically 
 generated from content using a hash function. 
        If a message is successfully published to an SNS FIFO topic, any message 
 published and determined to have the same deduplication ID, 
        within the five-minute deduplication interval, is accepted but not 
 delivered. 
        For more information about deduplication, see https://
docs.aws.amazon.com/sns/latest/dg/fifo-message-dedup.html.""", 
        ) 

        println("Would you like to use content-based deduplication instead of 
 entering a deduplication ID? (y/n)") 
        duplication = input.nextLine() 
        if (duplication.compareTo("y") == 0) { 
            println("Enter a group id value") 
            groupId = input.nextLine() 
        } else { 
            println("Enter deduplication Id value") 
            deduplicationID = input.nextLine() 
            println("Enter a group id value") 
            groupId = input.nextLine() 
        } 
    } 
    println(DASHES) 

    println(DASHES) 
    println("2. Create a topic.") 
    println("Enter a name for your SNS topic.") 
    topicName = input.nextLine() 
    if (selectFIFO) { 
        println("Because you have selected a FIFO topic, '.fifo' must be appended 
 to the topic name.") 
        topicName = "$topicName.fifo" 
        println("The name of the topic is $topicName") 
        topicArn = createFIFO(topicName, duplication) 
        println("The ARN of the FIFO topic is $topicArn") 

Publish messages to queues 529



Amazon Simple Queue Service Developer Guide

    } else { 
        println("The name of the topic is $topicName") 
        topicArn = createSNSTopic(topicName) 
        println("The ARN of the non-FIFO topic is $topicArn") 
    } 
    println(DASHES) 

    println(DASHES) 
    println("3. Create an SQS queue.") 
    println("Enter a name for your SQS queue.") 
    sqsQueueName = input.nextLine() 
    if (selectFIFO) { 
        sqsQueueName = "$sqsQueueName.fifo" 
    } 
    sqsQueueUrl = createQueue(sqsQueueName, selectFIFO) 
    println("The queue URL is $sqsQueueUrl") 
    println(DASHES) 

    println(DASHES) 
    println("4. Get the SQS queue ARN attribute.") 
    sqsQueueArn = getSQSQueueAttrs(sqsQueueUrl) 
    println("The ARN of the new queue is $sqsQueueArn") 
    println(DASHES) 

    println(DASHES) 
    println("5. Attach an IAM policy to the queue.") 
    // Define the policy to use. 
    val policy = """{ 
     "Statement": [ 
     { 
         "Effect": "Allow", 
                 "Principal": { 
             "Service": "sns.amazonaws.com" 
         }, 
         "Action": "sqs:SendMessage", 
                 "Resource": "$sqsQueueArn", 
                 "Condition": { 
             "ArnEquals": { 
                 "aws:SourceArn": "$topicArn" 
             } 
         } 
     } 
     ] 
     }""" 

Publish messages to queues 530



Amazon Simple Queue Service Developer Guide

    setQueueAttr(sqsQueueUrl, policy) 
    println(DASHES) 

    println(DASHES) 
    println("6. Subscribe to the SQS queue.") 
    if (selectFIFO) { 
        println( 
            """If you add a filter to this subscription, then only the filtered 
 messages will be received in the queue.
For information about message filtering, see https://docs.aws.amazon.com/sns/
latest/dg/sns-message-filtering.html
For this example, you can filter messages by a "tone" attribute.""", 
        ) 
        println("Would you like to filter messages for $sqsQueueName's 
 subscription to the topic $topicName?  (y/n)") 
        val filterAns: String = input.nextLine() 
        if (filterAns.compareTo("y") == 0) { 
            var moreAns = false 
            println("You can filter messages by using one or more of the 
 following \"tone\" attributes.") 
            println("1. cheerful") 
            println("2. funny") 
            println("3. serious") 
            println("4. sincere") 
            while (!moreAns) { 
                println("Select a number or choose 0 to end.") 
                val ans: String = input.nextLine() 
                when (ans) { 
                    "1" -> filterList.add("cheerful") 
                    "2" -> filterList.add("funny") 
                    "3" -> filterList.add("serious") 
                    "4" -> filterList.add("sincere") 
                    else -> moreAns = true 
                } 
            } 
        } 
    } 
    subscriptionArn = subQueue(topicArn, sqsQueueArn, filterList) 
    println(DASHES) 

    println(DASHES) 
    println("7. Publish a message to the topic.") 
    if (selectFIFO) { 
        println("Would you like to add an attribute to this message?  (y/n)") 

Publish messages to queues 531



Amazon Simple Queue Service Developer Guide

        val msgAns: String = input.nextLine() 
        if (msgAns.compareTo("y") == 0) { 
            println("You can filter messages by one or more of the following 
 \"tone\" attributes.") 
            println("1. cheerful") 
            println("2. funny") 
            println("3. serious") 
            println("4. sincere") 
            println("Select a number or choose 0 to end.") 
            val ans: String = input.nextLine() 
            msgAttValue = when (ans) { 
                "1" -> "cheerful" 
                "2" -> "funny" 
                "3" -> "serious" 
                else -> "sincere" 
            } 
            println("Selected value is $msgAttValue") 
        } 
        println("Enter a message.") 
        message = input.nextLine() 
        pubMessageFIFO(message, topicArn, msgAttValue, duplication, groupId, 
 deduplicationID) 
    } else { 
        println("Enter a message.") 
        message = input.nextLine() 
        pubMessage(message, topicArn) 
    } 
    println(DASHES) 

    println(DASHES) 
    println("8. Display the message. Press any key to continue.") 
    input.nextLine() 
    messageList = receiveMessages(sqsQueueUrl, msgAttValue) 
    if (messageList != null) { 
        for (mes in messageList) { 
            println("Message Id: ${mes.messageId}") 
            println("Full Message: ${mes.body}") 
        } 
    } 
    println(DASHES) 

    println(DASHES) 
    println("9. Delete the received message. Press any key to continue.") 
    input.nextLine() 

Publish messages to queues 532



Amazon Simple Queue Service Developer Guide

    if (messageList != null) { 
        deleteMessages(sqsQueueUrl, messageList) 
    } 
    println(DASHES) 

    println(DASHES) 
    println("10. Unsubscribe from the topic and delete the queue. Press any key 
 to continue.") 
    input.nextLine() 
    unSub(subscriptionArn) 
    deleteSQSQueue(sqsQueueName) 
    println(DASHES) 

    println(DASHES) 
    println("11. Delete the topic. Press any key to continue.") 
    input.nextLine() 
    deleteSNSTopic(topicArn) 
    println(DASHES) 

    println(DASHES) 
    println("The SNS/SQS workflow has completed successfully.") 
    println(DASHES)
}

suspend fun deleteSNSTopic(topicArnVal: String?) { 
    val request = DeleteTopicRequest { 
        topicArn = topicArnVal 
    } 

    SnsClient { region = "us-east-1" }.use { snsClient -> 
        snsClient.deleteTopic(request) 
        println("$topicArnVal was deleted") 
    }
}

suspend fun deleteSQSQueue(queueNameVal: String) { 
    val getQueueRequest = GetQueueUrlRequest { 
        queueName = queueNameVal 
    } 

    SqsClient { region = "us-east-1" }.use { sqsClient -> 
        val queueUrlVal = sqsClient.getQueueUrl(getQueueRequest).queueUrl 
        val deleteQueueRequest = DeleteQueueRequest { 
            queueUrl = queueUrlVal 

Publish messages to queues 533



Amazon Simple Queue Service Developer Guide

        } 

        sqsClient.deleteQueue(deleteQueueRequest) 
        println("$queueNameVal was successfully deleted.") 
    }
}

suspend fun unSub(subscripArn: String?) { 
    val request = UnsubscribeRequest { 
        subscriptionArn = subscripArn 
    } 
    SnsClient { region = "us-east-1" }.use { snsClient -> 
        snsClient.unsubscribe(request) 
        println("Subscription was removed for $subscripArn") 
    }
}

suspend fun deleteMessages(queueUrlVal: String?, messages: List<Message>) { 
    val entriesVal: MutableList<DeleteMessageBatchRequestEntry> = mutableListOf() 
    for (msg in messages) { 
        val entry = DeleteMessageBatchRequestEntry { 
            id = msg.messageId 
        } 
        entriesVal.add(entry) 
    } 

    val deleteMessageBatchRequest = DeleteMessageBatchRequest { 
        queueUrl = queueUrlVal 
        entries = entriesVal 
    } 

    SqsClient { region = "us-east-1" }.use { sqsClient -> 
        sqsClient.deleteMessageBatch(deleteMessageBatchRequest) 
        println("The batch delete of messages was successful") 
    }
}

suspend fun receiveMessages(queueUrlVal: String?, msgAttValue: String): 
 List<Message>? { 
    if (msgAttValue.isEmpty()) { 
        val request = ReceiveMessageRequest { 
            queueUrl = queueUrlVal 
            maxNumberOfMessages = 5 
        } 

Publish messages to queues 534



Amazon Simple Queue Service Developer Guide

        SqsClient { region = "us-east-1" }.use { sqsClient -> 
            return sqsClient.receiveMessage(request).messages 
        } 
    } else { 
        val receiveRequest = ReceiveMessageRequest { 
            queueUrl = queueUrlVal 
            waitTimeSeconds = 1 
            maxNumberOfMessages = 5 
        } 
        SqsClient { region = "us-east-1" }.use { sqsClient -> 
            return sqsClient.receiveMessage(receiveRequest).messages 
        } 
    }
}

suspend fun pubMessage(messageVal: String?, topicArnVal: String?) { 
    val request = PublishRequest { 
        message = messageVal 
        topicArn = topicArnVal 
    } 

    SnsClient { region = "us-east-1" }.use { snsClient -> 
        val result = snsClient.publish(request) 
        println("${result.messageId} message sent.") 
    }
}

suspend fun pubMessageFIFO( 
    messageVal: String?, 
    topicArnVal: String?, 
    msgAttValue: String, 
    duplication: String, 
    groupIdVal: String?, 
    deduplicationID: String?,
) { 
    // Means the user did not choose to use a message attribute. 
    if (msgAttValue.isEmpty()) { 
        if (duplication.compareTo("y") == 0) { 
            val request = PublishRequest { 
                message = messageVal 
                messageGroupId = groupIdVal 
                topicArn = topicArnVal 
            } 

Publish messages to queues 535



Amazon Simple Queue Service Developer Guide

            SnsClient { region = "us-east-1" }.use { snsClient -> 
                val result = snsClient.publish(request) 
                println(result.messageId.toString() + " Message sent.") 
            } 
        } else { 
            val request = PublishRequest { 
                message = messageVal 
                messageDeduplicationId = deduplicationID 
                messageGroupId = groupIdVal 
                topicArn = topicArnVal 
            } 

            SnsClient { region = "us-east-1" }.use { snsClient -> 
                val result = snsClient.publish(request) 
                println(result.messageId.toString() + " Message sent.") 
            } 
        } 
    } else { 
        val messAttr = aws.sdk.kotlin.services.sns.model.MessageAttributeValue { 
            dataType = "String" 
            stringValue = "true" 
        } 

        val mapAtt: Map<String, 
 aws.sdk.kotlin.services.sns.model.MessageAttributeValue> = 
            mapOf(msgAttValue to messAttr) 
        if (duplication.compareTo("y") == 0) { 
            val request = PublishRequest { 
                message = messageVal 
                messageGroupId = groupIdVal 
                topicArn = topicArnVal 
            } 

            SnsClient { region = "us-east-1" }.use { snsClient -> 
                val result = snsClient.publish(request) 
                println(result.messageId.toString() + " Message sent.") 
            } 
        } else { 
            // Create a publish request with the message and attributes. 
            val request = PublishRequest { 
                topicArn = topicArnVal 
                message = messageVal 
                messageDeduplicationId = deduplicationID 
                messageGroupId = groupIdVal 

Publish messages to queues 536



Amazon Simple Queue Service Developer Guide

                messageAttributes = mapAtt 
            } 

            SnsClient { region = "us-east-1" }.use { snsClient -> 
                val result = snsClient.publish(request) 
                println(result.messageId.toString() + " Message sent.") 
            } 
        } 
    }
}

// Subscribe to the SQS queue.
suspend fun subQueue(topicArnVal: String?, queueArnVal: String, filterList: 
 List<String?>): String? { 
    val request: SubscribeRequest 
    if (filterList.isEmpty()) { 
        // No filter subscription is added. 
        request = SubscribeRequest { 
            protocol = "sqs" 
            endpoint = queueArnVal 
            returnSubscriptionArn = true 
            topicArn = topicArnVal 
        } 

        SnsClient { region = "us-east-1" }.use { snsClient -> 
            val result = snsClient.subscribe(request) 
            println( 
                "The queue " + queueArnVal + " has been subscribed to the topic " 
 + topicArnVal + "\n" + 
                    "with the subscription ARN " + result.subscriptionArn, 
            ) 
            return result.subscriptionArn 
        } 
    } else { 
        request = SubscribeRequest { 
            protocol = "sqs" 
            endpoint = queueArnVal 
            returnSubscriptionArn = true 
            topicArn = topicArnVal 
        } 

        SnsClient { region = "us-east-1" }.use { snsClient -> 
            val result = snsClient.subscribe(request) 

Publish messages to queues 537



Amazon Simple Queue Service Developer Guide

            println("The queue $queueArnVal has been subscribed to the topic 
 $topicArnVal with the subscription ARN ${result.subscriptionArn}") 

            val attributeNameVal = "FilterPolicy" 
            val gson = Gson() 
            val jsonString = "{\"tone\": []}" 
            val jsonObject = gson.fromJson(jsonString, JsonObject::class.java) 
            val toneArray = jsonObject.getAsJsonArray("tone") 
            for (value: String? in filterList) { 
                toneArray.add(JsonPrimitive(value)) 
            } 

            val updatedJsonString: String = gson.toJson(jsonObject) 
            println(updatedJsonString) 
            val attRequest = SetSubscriptionAttributesRequest { 
                subscriptionArn = result.subscriptionArn 
                attributeName = attributeNameVal 
                attributeValue = updatedJsonString 
            } 

            snsClient.setSubscriptionAttributes(attRequest) 
            return result.subscriptionArn 
        } 
    }
}

suspend fun setQueueAttr(queueUrlVal: String?, policy: String) { 
    val attrMap: MutableMap<String, String> = HashMap() 
    attrMap[QueueAttributeName.Policy.toString()] = policy 

    val attributesRequest = SetQueueAttributesRequest { 
        queueUrl = queueUrlVal 
        attributes = attrMap 
    } 

    SqsClient { region = "us-east-1" }.use { sqsClient -> 
        sqsClient.setQueueAttributes(attributesRequest) 
        println("The policy has been successfully attached.") 
    }
}

suspend fun getSQSQueueAttrs(queueUrlVal: String?): String { 
    val atts: MutableList<QueueAttributeName> = ArrayList() 
    atts.add(QueueAttributeName.QueueArn) 

Publish messages to queues 538



Amazon Simple Queue Service Developer Guide

    val attributesRequest = GetQueueAttributesRequest { 
        queueUrl = queueUrlVal 
        attributeNames = atts 
    } 
    SqsClient { region = "us-east-1" }.use { sqsClient -> 
        val response = sqsClient.getQueueAttributes(attributesRequest) 
        val mapAtts = response.attributes 
        if (mapAtts != null) { 
            mapAtts.forEach { entry -> 
                println("${entry.key} : ${entry.value}") 
                return entry.value 
            } 
        } 
    } 
    return ""
}

suspend fun createQueue(queueNameVal: String?, selectFIFO: Boolean): String? { 
    println("\nCreate Queue") 
    if (selectFIFO) { 
        val attrs = mutableMapOf<String, String>() 
        attrs[QueueAttributeName.FifoQueue.toString()] = "true" 

        val createQueueRequest = CreateQueueRequest { 
            queueName = queueNameVal 
            attributes = attrs 
        } 

        SqsClient { region = "us-east-1" }.use { sqsClient -> 
            sqsClient.createQueue(createQueueRequest) 
            println("\nGet queue url") 

            val urlRequest = GetQueueUrlRequest { 
                queueName = queueNameVal 
            } 

            val getQueueUrlResponse = sqsClient.getQueueUrl(urlRequest) 
            return getQueueUrlResponse.queueUrl 
        } 
    } else { 
        val createQueueRequest = CreateQueueRequest { 
            queueName = queueNameVal 
        } 

Publish messages to queues 539



Amazon Simple Queue Service Developer Guide

        SqsClient { region = "us-east-1" }.use { sqsClient -> 
            sqsClient.createQueue(createQueueRequest) 
            println("Get queue url") 

            val urlRequest = GetQueueUrlRequest { 
                queueName = queueNameVal 
            } 

            val getQueueUrlResponse = sqsClient.getQueueUrl(urlRequest) 
            return getQueueUrlResponse.queueUrl 
        } 
    }
}

suspend fun createSNSTopic(topicName: String?): String? { 
    val request = CreateTopicRequest { 
        name = topicName 
    } 

    SnsClient { region = "us-east-1" }.use { snsClient -> 
        val result = snsClient.createTopic(request) 
        return result.topicArn 
    }
}

suspend fun createFIFO(topicName: String?, duplication: String): String? { 
    val topicAttributes: MutableMap<String, String> = HashMap() 
    if (duplication.compareTo("n") == 0) { 
        topicAttributes["FifoTopic"] = "true" 
        topicAttributes["ContentBasedDeduplication"] = "false" 
    } else { 
        topicAttributes["FifoTopic"] = "true" 
        topicAttributes["ContentBasedDeduplication"] = "true" 
    } 

    val topicRequest = CreateTopicRequest { 
        name = topicName 
        attributes = topicAttributes 
    } 
    SnsClient { region = "us-east-1" }.use { snsClient -> 
        val response = snsClient.createTopic(topicRequest) 
        return response.topicArn 
    }

Publish messages to queues 540



Amazon Simple Queue Service Developer Guide

}

• For API details, see the following topics in Amazon SDK for Kotlin API reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Run an interactive scenario at a command prompt.

class TopicsAndQueuesScenario: 
    """Manages the Topics and Queues feature scenario.""" 

    DASHES = "-" * 80 

    def __init__(self, sns_wrapper: SnsWrapper, sqs_wrapper: SqsWrapper) -> None: 
        """ 
        Initialize the Topics and Queues scenario. 

Publish messages to queues 541

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/topics_and_queues#code-examples


Amazon Simple Queue Service Developer Guide

        :param sns_wrapper: SnsWrapper instance for SNS operations. 
        :param sqs_wrapper: SqsWrapper instance for SQS operations. 
        """ 
        self.sns_wrapper = sns_wrapper 
        self.sqs_wrapper = sqs_wrapper 
         
        # Scenario state 
        self.use_fifo_topic = False 
        self.use_content_based_deduplication = False 
        self.topic_name = None 
        self.topic_arn = None 
        self.queue_count = 2 
        self.queue_urls = [] 
        self.subscription_arns = [] 
        self.tones = ["cheerful", "funny", "serious", "sincere"] 

    def run_scenario(self) -> None: 
        """Run the Topics and Queues feature scenario.""" 
        print(self.DASHES) 
        print("Welcome to messaging with topics and queues.") 
        print(self.DASHES) 
        print(f""" 
    In this scenario, you will create an SNS topic and subscribe 
 {self.queue_count} SQS queues to the topic. 
    You can select from several options for configuring the topic and the 
 subscriptions for the queues. 
    You can then post to the topic and see the results in the queues. 
        """) 

        try: 
            # Setup Phase 
            print(self.DASHES) 
            self._setup_topic() 
            print(self.DASHES) 

            self._setup_queues() 
            print(self.DASHES) 

            # Demonstration Phase 
            self._publish_messages() 
            print(self.DASHES) 

            # Examination Phase 
            self._poll_queues_for_messages() 

Publish messages to queues 542



Amazon Simple Queue Service Developer Guide

            print(self.DASHES) 

            # Cleanup Phase 
            self._cleanup_resources() 
            print(self.DASHES) 

        except Exception as e: 
            logger.error(f"Scenario failed: {e}") 
            print(f"There was a problem with the scenario: {e}") 
            print("\nInitiating cleanup...") 
            try: 
                self._cleanup_resources() 
            except Exception as cleanup_error: 
                logger.error(f"Error during cleanup: {cleanup_error}") 

        print("Messaging with topics and queues scenario is complete.") 
        print(self.DASHES) 

    def _setup_topic(self) -> None: 
        """Set up the SNS topic to be used with the queues.""" 
        print("SNS topics can be configured as FIFO (First-In-First-Out).") 
        print("FIFO topics deliver messages in order and support deduplication 
 and message filtering.") 
        print() 

        self.use_fifo_topic = q.ask("Would you like to work with FIFO topics? (y/
n): ", q.is_yesno) 

        if self.use_fifo_topic: 
            print(self.DASHES) 
            self.topic_name = q.ask("Enter a name for your SNS topic: ", 
 q.non_empty) 
            print("Because you have selected a FIFO topic, '.fifo' must be 
 appended to the topic name.") 
            print() 

            print(self.DASHES) 
            print(""" 
    Because you have chosen a FIFO topic, deduplication is supported. 
    Deduplication IDs are either set in the message or automatically generated  
    from content using a hash function. 
     
    If a message is successfully published to an SNS FIFO topic, any message  
    published and determined to have the same deduplication ID,  

Publish messages to queues 543



Amazon Simple Queue Service Developer Guide

    within the five-minute deduplication interval, is accepted but not delivered. 
     
    For more information about deduplication,  
    see https://docs.aws.amazon.com/sns/latest/dg/fifo-message-dedup.html. 
            """) 

            self.use_content_based_deduplication = q.ask( 
                "Use content-based deduplication instead of entering a 
 deduplication ID? (y/n): ",  
                q.is_yesno 
            ) 
        else: 
            self.topic_name = q.ask("Enter a name for your SNS topic: ", 
 q.non_empty) 

        print(self.DASHES) 

        # Create the topic 
        self.topic_arn = self.sns_wrapper.create_topic( 
            self.topic_name,  
            self.use_fifo_topic,  
            self.use_content_based_deduplication 
        ) 

        print(f"Your new topic with the name {self.topic_name}") 
        print(f"  and Amazon Resource Name (ARN) {self.topic_arn}") 
        print(f"  has been created.") 
        print() 

    def _setup_queues(self) -> None: 
        """Set up the SQS queues and subscribe them to the topic.""" 
        print(f"Now you will create {self.queue_count} Amazon Simple Queue 
 Service (Amazon SQS) queues to subscribe to the topic.") 

        for i in range(self.queue_count): 
            queue_name = q.ask(f"Enter a name for SQS queue #{i+1}: ", 
 q.non_empty) 
             
            if self.use_fifo_topic and i == 0: 
                print("Because you have selected a FIFO topic, '.fifo' must be 
 appended to the queue name.") 

            # Create the queue 

Publish messages to queues 544



Amazon Simple Queue Service Developer Guide

            queue_url = self.sqs_wrapper.create_queue(queue_name, 
 self.use_fifo_topic) 
            self.queue_urls.append(queue_url) 

            print(f"Your new queue with the name {queue_name}") 
            print(f"  and queue URL {queue_url}") 
            print(f"  has been created.") 
            print() 

            if i == 0: 
                print("The queue URL is used to retrieve the queue ARN,") 
                print("which is used to create a subscription.") 
                print(self.DASHES) 

            # Get queue ARN 
            queue_arn = self.sqs_wrapper.get_queue_arn(queue_url) 

            if i == 0: 
                print("An AWS Identity and Access Management (IAM) policy must be 
 attached to an SQS queue,") 
                print("enabling it to receive messages from an SNS topic.") 

            # Set queue policy to allow SNS to send messages 
            self.sqs_wrapper.set_queue_policy_for_topic(queue_arn, 
 self.topic_arn, queue_url) 

            # Set up message filtering if using FIFO 
            subscription_arn = self._setup_subscription_with_filter(i, queue_arn, 
 queue_name) 
            self.subscription_arns.append(subscription_arn) 

    def _setup_subscription_with_filter(self, queue_index: int, queue_arn: str, 
 queue_name: str) -> str: 
        """Set up subscription with optional message filtering.""" 
        filter_policy = None 
         
        if self.use_fifo_topic: 
            print(self.DASHES) 
            if queue_index == 0: 
                print("Subscriptions to a FIFO topic can have filters.") 
                print("If you add a filter to this subscription, then only the 
 filtered messages") 
                print("will be received in the queue.") 
                print() 

Publish messages to queues 545



Amazon Simple Queue Service Developer Guide

                print("For information about message filtering,") 
                print("see https://docs.aws.amazon.com/sns/latest/dg/sns-message-
filtering.html") 
                print() 
                print("For this example, you can filter messages by a TONE 
 attribute.") 

            use_filter = q.ask(f"Filter messages for {queue_name}'s subscription 
 to the topic? (y/n): ", q.is_yesno) 
             
            if use_filter: 
                filter_policy = self._create_filter_policy() 

        subscription_arn = self.sns_wrapper.subscribe_queue_to_topic( 
            self.topic_arn, queue_arn, filter_policy 
        ) 

        print(f"The queue {queue_name} has been subscribed to the topic 
 {self.topic_name}") 
        print(f"  with the subscription ARN {subscription_arn}") 

        return subscription_arn 

    def _create_filter_policy(self) -> str: 
        """Create a message filter policy based on user selections.""" 
        print(self.DASHES) 
        print("You can filter messages by one or more of the following TONE 
 attributes.") 

        filter_selections = [] 
        selection_number = 0 

        while True: 
            print("Enter a number to add a TONE filter, or enter 0 to stop adding 
 filters.") 
            for i, tone in enumerate(self.tones, 1): 
                print(f"  {i}. {tone}") 

            selection = q.ask("Your choice: ", q.is_int, q.in_range(0, 
 len(self.tones))) 
             
            if selection == 0: 
                break 

Publish messages to queues 546



Amazon Simple Queue Service Developer Guide

            elif selection > 0 and self.tones[selection - 1] not in 
 filter_selections: 
                filter_selections.append(self.tones[selection - 1]) 
                print(f"Added '{self.tones[selection - 1]}' to filter list.") 

        if filter_selections: 
            filters = {"tone": filter_selections} 
            return json.dumps(filters) 
        return None 

    def _publish_messages(self) -> None: 
        """Publish messages to the topic with various options.""" 
        print("Now we can publish messages.") 

        keep_sending = True 
        while keep_sending: 
            print() 
            message = q.ask("Enter a message to publish: ", q.non_empty) 

            message_group_id = None 
            deduplication_id = None 
            tone_attribute = None 

            if self.use_fifo_topic: 
                print("Because you are using a FIFO topic, you must set a message 
 group ID.") 
                print("All messages within the same group will be received in the 
 order they were published.") 
                print() 
                message_group_id = q.ask("Enter a message group ID for this 
 message: ", q.non_empty) 

                if not self.use_content_based_deduplication: 
                    print("Because you are not using content-based 
 deduplication,") 
                    print("you must enter a deduplication ID.") 
                    deduplication_id = q.ask("Enter a deduplication ID for this 
 message: ", q.non_empty) 

                # Ask about tone attribute 
                add_attribute = q.ask("Add an attribute to this message? (y/n): 
 ", q.is_yesno) 
                if add_attribute: 
                    print("Enter a number for an attribute:") 

Publish messages to queues 547



Amazon Simple Queue Service Developer Guide

                    for i, tone in enumerate(self.tones, 1): 
                        print(f"  {i}. {tone}") 
                     
                    selection = q.ask("Your choice: ", q.is_int, q.in_range(1, 
 len(self.tones))) 
                    if 1 <= selection <= len(self.tones): 
                        tone_attribute = self.tones[selection - 1] 

            # Publish the message 
            message_id = self.sns_wrapper.publish_message( 
                self.topic_arn, 
                message, 
                tone_attribute, 
                deduplication_id, 
                message_group_id 
            ) 

            print(f"Message published with ID: {message_id}") 

            keep_sending = q.ask("Send another message? (y/n): ", q.is_yesno) 

    def _poll_queues_for_messages(self) -> None: 
        """Poll all queues for messages and display results.""" 
        for i, queue_url in enumerate(self.queue_urls): 
            print(f"Polling queue #{i+1} at {queue_url} for messages...") 
             
            q.ask("Press Enter to continue...") 

            messages = self._poll_queue_for_messages(queue_url) 
             
            if messages: 
                print(f"{len(messages)} message(s) were received by queue #{i
+1}") 
                for j, message in enumerate(messages, 1): 
                    print(f"  Message {j}:") 
                    # Parse the SNS message body to get the actual message 
                    try: 
                        sns_message = json.loads(message['Body']) 
                        actual_message = sns_message.get('Message', 
 message['Body']) 
                        print(f"    {actual_message}") 
                    except (json.JSONDecodeError, KeyError): 
                        print(f"    {message['Body']}") 

Publish messages to queues 548



Amazon Simple Queue Service Developer Guide

                # Delete the messages 
                self.sqs_wrapper.delete_messages(queue_url, messages) 
                print(f"Messages deleted from queue #{i+1}") 
            else: 
                print(f"No messages received by queue #{i+1}") 
             
            print(self.DASHES) 

    def _poll_queue_for_messages(self, queue_url: str) -> List[Dict[str, Any]]: 
        """Poll a single queue for messages.""" 
        all_messages = [] 
        max_polls = 3  # Limit polling to avoid infinite loops 
         
        for poll_count in range(max_polls): 
            messages = self.sqs_wrapper.receive_messages(queue_url, 10) 
             
            if messages: 
                all_messages.extend(messages) 
                print(f"  Received {len(messages)} messages in poll {poll_count + 
 1}") 
                # Small delay between polls 
                time.sleep(1) 
            else: 
                print(f"  No messages in poll {poll_count + 1}") 
                break 
                 
        return all_messages 

    def _cleanup_resources(self) -> None: 
        """Clean up all resources created during the scenario.""" 
        print("Cleaning up resources...") 

        # Delete queues 
        for i, queue_url in enumerate(self.queue_urls): 
            if queue_url: 
                delete_queue = q.ask(f"Delete queue #{i+1} with URL {queue_url}? 
 (y/n): ", q.is_yesno) 
                if delete_queue: 
                    try: 
                        self.sqs_wrapper.delete_queue(queue_url) 
                        print(f"Deleted queue #{i+1}") 
                    except Exception as e: 
                        print(f"Error deleting queue #{i+1}: {e}") 

Publish messages to queues 549



Amazon Simple Queue Service Developer Guide

        # Unsubscribe from topic 
        for i, subscription_arn in enumerate(self.subscription_arns): 
            if subscription_arn: 
                try: 
                    self.sns_wrapper.unsubscribe(subscription_arn) 
                    print(f"Unsubscribed subscription #{i+1}") 
                except Exception as e: 
                    print(f"Error unsubscribing #{i+1}: {e}") 

        # Delete topic 
        if self.topic_arn: 
            delete_topic = q.ask(f"Delete topic {self.topic_name}? (y/n): ", 
 q.is_yesno) 
            if delete_topic: 
                try: 
                    self.sns_wrapper.delete_topic(self.topic_arn) 
                    print(f"Deleted topic {self.topic_name}") 
                except Exception as e: 
                    print(f"Error deleting topic: {e}") 

        print("Resource cleanup complete.")

Create classes that wrap Amazon SNS and Amazon SQS operations for use in the scenario.

class SnsWrapper: 
    """Wrapper class for managing Amazon SNS operations.""" 

    def __init__(self, sns_client: Any) -> None: 
        """ 
        Initialize the SnsWrapper. 

        :param sns_client: A Boto3 Amazon SNS client. 
        """ 
        self.sns_client = sns_client 

    @classmethod 
    def from_client(cls) -> 'SnsWrapper': 
        """ 
        Create an SnsWrapper instance using a default boto3 client. 

        :return: An instance of this class. 

Publish messages to queues 550



Amazon Simple Queue Service Developer Guide

        """ 
        sns_client = boto3.client('sns') 
        return cls(sns_client) 

    def create_topic( 
        self,  
        topic_name: str,  
        is_fifo: bool = False,  
        content_based_deduplication: bool = False 
    ) -> str: 
        """ 
        Create an SNS topic. 

        :param topic_name: The name of the topic to create. 
        :param is_fifo: Whether to create a FIFO topic. 
        :param content_based_deduplication: Whether to use content-based 
 deduplication for FIFO topics. 
        :return: The ARN of the created topic. 
        :raises ClientError: If the topic creation fails. 
        """ 
        try: 
            # Add .fifo suffix for FIFO topics 
            if is_fifo and not topic_name.endswith('.fifo'): 
                topic_name += '.fifo' 

            attributes = {} 
            if is_fifo: 
                attributes['FifoTopic'] = 'true' 
                if content_based_deduplication: 
                    attributes['ContentBasedDeduplication'] = 'true' 

            response = self.sns_client.create_topic( 
                Name=topic_name, 
                Attributes=attributes 
            ) 

            topic_arn = response['TopicArn'] 
            logger.info(f"Created topic: {topic_name} with ARN: {topic_arn}") 
            return topic_arn 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 

Publish messages to queues 551



Amazon Simple Queue Service Developer Guide

            logger.error(f"Error creating topic {topic_name}: {error_code} - 
 {e}") 
            raise 

    def subscribe_queue_to_topic( 
        self,  
        topic_arn: str,  
        queue_arn: str,  
        filter_policy: Optional[str] = None 
    ) -> str: 
        """ 
        Subscribe an SQS queue to an SNS topic. 

        :param topic_arn: The ARN of the SNS topic. 
        :param queue_arn: The ARN of the SQS queue. 
        :param filter_policy: Optional JSON filter policy for message filtering. 
        :return: The ARN of the subscription. 
        :raises ClientError: If the subscription fails. 
        """ 
        try: 
            attributes = {} 
            if filter_policy: 
                attributes['FilterPolicy'] = filter_policy 

            response = self.sns_client.subscribe( 
                TopicArn=topic_arn, 
                Protocol='sqs', 
                Endpoint=queue_arn, 
                Attributes=attributes 
            ) 

            subscription_arn = response['SubscriptionArn'] 
            logger.info(f"Subscribed queue {queue_arn} to topic {topic_arn}") 
            return subscription_arn 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error subscribing queue to topic: {error_code} - {e}") 
            raise 

    def publish_message( 
        self, 

Publish messages to queues 552



Amazon Simple Queue Service Developer Guide

        topic_arn: str, 
        message: str, 
        tone_attribute: Optional[str] = None, 
        deduplication_id: Optional[str] = None, 
        message_group_id: Optional[str] = None 
    ) -> str: 
        """ 
        Publish a message to an SNS topic. 

        :param topic_arn: The ARN of the SNS topic. 
        :param message: The message content to publish. 
        :param tone_attribute: Optional tone attribute for message filtering. 
        :param deduplication_id: Optional deduplication ID for FIFO topics. 
        :param message_group_id: Optional message group ID for FIFO topics. 
        :return: The message ID of the published message. 
        :raises ClientError: If the message publication fails. 
        """ 
        try: 
            publish_args = { 
                'TopicArn': topic_arn, 
                'Message': message 
            } 

            # Add message attributes if tone is specified 
            if tone_attribute: 
                publish_args['MessageAttributes'] = { 
                    'tone': { 
                        'DataType': 'String', 
                        'StringValue': tone_attribute 
                    } 
                } 

            # Add FIFO-specific parameters 
            if message_group_id: 
                publish_args['MessageGroupId'] = message_group_id 

            if deduplication_id: 
                publish_args['MessageDeduplicationId'] = deduplication_id 

            response = self.sns_client.publish(**publish_args) 

            message_id = response['MessageId'] 
            logger.info(f"Published message to topic {topic_arn} with ID: 
 {message_id}") 

Publish messages to queues 553



Amazon Simple Queue Service Developer Guide

            return message_id 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error publishing message to topic: {error_code} - 
 {e}") 
            raise 

    def unsubscribe(self, subscription_arn: str) -> bool: 
        """ 
        Unsubscribe from an SNS topic. 

        :param subscription_arn: The ARN of the subscription to remove. 
        :return: True if successful. 
        :raises ClientError: If the unsubscribe operation fails. 
        """ 
        try: 
            self.sns_client.unsubscribe(SubscriptionArn=subscription_arn) 
             
            logger.info(f"Unsubscribed: {subscription_arn}") 
            return True 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
             
            if error_code == 'NotFound': 
                logger.warning(f"Subscription not found: {subscription_arn}") 
                return True  # Already unsubscribed 
            else: 
                logger.error(f"Error unsubscribing: {error_code} - {e}") 
                raise 

    def delete_topic(self, topic_arn: str) -> bool: 
        """ 
        Delete an SNS topic. 

        :param topic_arn: The ARN of the topic to delete. 
        :return: True if successful. 
        :raises ClientError: If the topic deletion fails. 
        """ 
        try: 
            self.sns_client.delete_topic(TopicArn=topic_arn) 

Publish messages to queues 554



Amazon Simple Queue Service Developer Guide

            
            logger.info(f"Deleted topic: {topic_arn}") 
            return True 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
             
            if error_code == 'NotFound': 
                logger.warning(f"Topic not found: {topic_arn}") 
                return True  # Already deleted 
            else: 
                logger.error(f"Error deleting topic: {error_code} - {e}") 
                raise 

    def list_topics(self) -> list: 
        """ 
        List all SNS topics in the account using pagination. 

        :return: List of topic ARNs. 
        :raises ClientError: If listing topics fails. 
        """ 
        try: 
            topics = [] 
            paginator = self.sns_client.get_paginator('list_topics') 
             
            for page in paginator.paginate(): 
                topics.extend([topic['TopicArn'] for topic in page.get('Topics', 
 [])]) 
             
            logger.info(f"Found {len(topics)} topics") 
            return topics 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            if error_code == 'AuthorizationError': 
                logger.error("Authorization error listing topics - check IAM 
 permissions") 
            else: 
                logger.error(f"Error listing topics: {error_code} - {e}") 
            raise

class SqsWrapper: 

Publish messages to queues 555



Amazon Simple Queue Service Developer Guide

    """Wrapper class for managing Amazon SQS operations.""" 

    def __init__(self, sqs_client: Any) -> None: 
        """ 
        Initialize the SqsWrapper. 

        :param sqs_client: A Boto3 Amazon SQS client. 
        """ 
        self.sqs_client = sqs_client 

    @classmethod 
    def from_client(cls) -> 'SqsWrapper': 
        """ 
        Create an SqsWrapper instance using a default boto3 client. 

        :return: An instance of this class. 
        """ 
        sqs_client = boto3.client('sqs') 
        return cls(sqs_client) 

    def create_queue(self, queue_name: str, is_fifo: bool = False) -> str: 
        """ 
        Create an SQS queue. 

        :param queue_name: The name of the queue to create. 
        :param is_fifo: Whether to create a FIFO queue. 
        :return: The URL of the created queue. 
        :raises ClientError: If the queue creation fails. 
        """ 
        try: 
            # Add .fifo suffix for FIFO queues 
            if is_fifo and not queue_name.endswith('.fifo'): 
                queue_name += '.fifo' 

            attributes = {} 
            if is_fifo: 
                attributes['FifoQueue'] = 'true' 

            response = self.sqs_client.create_queue( 
                QueueName=queue_name, 
                Attributes=attributes 
            ) 

Publish messages to queues 556



Amazon Simple Queue Service Developer Guide

            queue_url = response['QueueUrl'] 
            logger.info(f"Created queue: {queue_name} with URL: {queue_url}") 
            return queue_url 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error creating queue {queue_name}: {error_code} - 
 {e}") 
            raise 

    def get_queue_arn(self, queue_url: str) -> str: 
        """ 
        Get the ARN of an SQS queue. 

        :param queue_url: The URL of the queue. 
        :return: The ARN of the queue. 
        :raises ClientError: If getting queue attributes fails. 
        """ 
        try: 
            response = self.sqs_client.get_queue_attributes( 
                QueueUrl=queue_url, 
                AttributeNames=['QueueArn'] 
            ) 

            queue_arn = response['Attributes']['QueueArn'] 
            logger.info(f"Queue ARN for {queue_url}: {queue_arn}") 
            return queue_arn 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error getting queue ARN: {error_code} - {e}") 
            raise 

    def set_queue_policy_for_topic(self, queue_arn: str, topic_arn: str, 
 queue_url: str) -> bool: 
        """ 
        Set the queue policy to allow SNS to send messages to the queue. 

        :param queue_arn: The ARN of the SQS queue. 
        :param topic_arn: The ARN of the SNS topic. 
        :param queue_url: The URL of the SQS queue. 
        :return: True if successful. 

Publish messages to queues 557



Amazon Simple Queue Service Developer Guide

        :raises ClientError: If setting the queue policy fails. 
        """ 
        try: 
            # Create policy that allows SNS to send messages to the queue 
            policy = { 
                "Version":"2012-10-17",        
                "Statement": [ 
                    { 
                        "Effect": "Allow", 
                        "Principal": { 
                            "Service": "sns.amazonaws.com" 
                        }, 
                        "Action": "sqs:SendMessage", 
                        "Resource": queue_arn, 
                        "Condition": { 
                            "ArnEquals": { 
                                "aws:SourceArn": topic_arn 
                            } 
                        } 
                    } 
                ] 
            } 

            self.sqs_client.set_queue_attributes( 
                QueueUrl=queue_url, 
                Attributes={ 
                    'Policy': json.dumps(policy) 
                } 
            ) 

            logger.info(f"Set queue policy for {queue_url} to allow messages from 
 {topic_arn}") 
            return True 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error setting queue policy: {error_code} - {e}") 
            raise 

    def receive_messages(self, queue_url: str, max_messages: int = 10) -> 
 List[Dict[str, Any]]: 
        """ 
        Receive messages from an SQS queue. 

Publish messages to queues 558



Amazon Simple Queue Service Developer Guide

        :param queue_url: The URL of the queue to receive messages from. 
        :param max_messages: Maximum number of messages to receive (1-10). 
        :return: List of received messages. 
        :raises ClientError: If receiving messages fails. 
        """ 
        try: 
            # Ensure max_messages is within valid range 
            max_messages = max(1, min(10, max_messages)) 

            response = self.sqs_client.receive_message( 
                QueueUrl=queue_url, 
                MaxNumberOfMessages=max_messages, 
                WaitTimeSeconds=2,  # Short polling 
                MessageAttributeNames=['All'] 
            ) 

            messages = response.get('Messages', []) 
            logger.info(f"Received {len(messages)} messages from {queue_url}") 
            return messages 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error receiving messages: {error_code} - {e}") 
            raise 

    def delete_messages(self, queue_url: str, messages: List[Dict[str, Any]]) -> 
 bool: 
        """ 
        Delete messages from an SQS queue in batches. 

        :param queue_url: The URL of the queue. 
        :param messages: List of messages to delete. 
        :return: True if successful. 
        :raises ClientError: If deleting messages fails. 
        """ 
        try: 
            if not messages: 
                return True 

            # Build delete entries for batch delete 
            delete_entries = [] 
            for i, message in enumerate(messages): 

Publish messages to queues 559



Amazon Simple Queue Service Developer Guide

                delete_entries.append({ 
                    'Id': str(i), 
                    'ReceiptHandle': message['ReceiptHandle'] 
                }) 

            # Delete messages in batches of 10 (SQS limit) 
            batch_size = 10 
            for i in range(0, len(delete_entries), batch_size): 
                batch = delete_entries[i:i + batch_size] 
                 
                response = self.sqs_client.delete_message_batch( 
                    QueueUrl=queue_url, 
                    Entries=batch 
                ) 

                # Check for failures 
                if 'Failed' in response and response['Failed']: 
                    for failed in response['Failed']: 
                        logger.warning(f"Failed to delete message: {failed}") 

            logger.info(f"Deleted {len(messages)} messages from {queue_url}") 
            return True 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error deleting messages: {error_code} - {e}") 
            raise 

    def delete_queue(self, queue_url: str) -> bool: 
        """ 
        Delete an SQS queue. 

        :param queue_url: The URL of the queue to delete. 
        :return: True if successful. 
        :raises ClientError: If the queue deletion fails. 
        """ 
        try: 
            self.sqs_client.delete_queue(QueueUrl=queue_url) 
             
            logger.info(f"Deleted queue: {queue_url}") 
            return True 

        except ClientError as e: 

Publish messages to queues 560



Amazon Simple Queue Service Developer Guide

            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
             
            if error_code == 'AWS.SimpleQueueService.NonExistentQueue': 
                logger.warning(f"Queue not found: {queue_url}") 
                return True  # Already deleted 
            else: 
                logger.error(f"Error deleting queue: {error_code} - {e}") 
                raise 

    def list_queues(self, queue_name_prefix: Optional[str] = None) -> List[str]: 
        """ 
        List all SQS queues in the account using pagination. 

        :param queue_name_prefix: Optional prefix to filter queue names. 
        :return: List of queue URLs. 
        :raises ClientError: If listing queues fails. 
        """ 
        try: 
            queue_urls = [] 
            paginator = self.sqs_client.get_paginator('list_queues') 
             
            page_params = {} 
            if queue_name_prefix: 
                page_params['QueueNamePrefix'] = queue_name_prefix 

            for page in paginator.paginate(**page_params): 
                queue_urls.extend(page.get('QueueUrls', [])) 
             
            logger.info(f"Found {len(queue_urls)} queues") 
            return queue_urls 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            if error_code == 'AccessDenied': 
                logger.error("Access denied listing queues - check IAM 
 permissions") 
            else: 
                logger.error(f"Error listing queues: {error_code} - {e}") 
            raise 

    def send_message(self, queue_url: str, message_body: str, **kwargs) -> str: 
        """ 
        Send a message to an SQS queue. 

Publish messages to queues 561



Amazon Simple Queue Service Developer Guide

        :param queue_url: The URL of the queue. 
        :param message_body: The message content. 
        :param kwargs: Additional message parameters (DelaySeconds, 
 MessageAttributes, etc.). 
        :return: The message ID. 
        :raises ClientError: If sending the message fails. 
        """ 
        try: 
            send_params = { 
                'QueueUrl': queue_url, 
                'MessageBody': message_body, 
                **kwargs 
            } 

            response = self.sqs_client.send_message(**send_params) 
             
            message_id = response['MessageId'] 
            logger.info(f"Sent message to {queue_url} with ID: {message_id}") 
            return message_id 

        except ClientError as e: 
            error_code = e.response.get('Error', {}).get('Code', 'Unknown') 
            logger.error(f"Error sending message: {error_code} - {e}") 
            raise

• For API details, see the following topics in Amazon SDK for Python (Boto3) API Reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe
Publish messages to queues 562

https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/CreateQueue
https://docs.amazonaws.cn/goto/boto3/sns-2010-03-31/CreateTopic
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/DeleteMessageBatch
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/DeleteQueue
https://docs.amazonaws.cn/goto/boto3/sns-2010-03-31/DeleteTopic
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/GetQueueAttributes
https://docs.amazonaws.cn/goto/boto3/sns-2010-03-31/Publish
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/ReceiveMessage
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/SetQueueAttributes
https://docs.amazonaws.cn/goto/boto3/sns-2010-03-31/Subscribe


Amazon Simple Queue Service Developer Guide

• Unsubscribe

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

import ArgumentParser
import AWSClientRuntime
import AWSSNS
import AWSSQS
import Foundation

struct ExampleCommand: ParsableCommand { 
    @Option(help: "Name of the Amazon Region to use") 
    var region = "us-east-1" 

    static var configuration = CommandConfiguration( 
        commandName: "queue-scenario", 
        abstract: """ 
        This example interactively demonstrates how to use Amazon Simple 
        Notification Service (Amazon SNS) and Amazon Simple Queue Service 
        (Amazon SQS) together to publish and receive messages using queues. 
        """, 
        discussion: """ 
        Supports filtering using a "tone" attribute. 
        """ 
    ) 

    /// Prompt for an input string. Only non-empty strings are allowed. 
    ///  
    /// - Parameter prompt: The prompt to display. 
    /// 
    /// - Returns: The string input by the user. 
    func stringRequest(prompt: String) -> String { 
        var str: String? 

Publish messages to queues 563

https://docs.amazonaws.cn/goto/boto3/sns-2010-03-31/Unsubscribe
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/sqs/scenario#code-examples


Amazon Simple Queue Service Developer Guide

        while str == nil { 
            print(prompt, terminator: "") 
            str = readLine() 

            if str != nil && str?.count == 0 { 
                str = nil 
            } 
        } 

        return str! 
    } 

    /// Ask a yes/no question. 
    ///  
    /// - Parameter prompt: A prompt string to print. 
    /// 
    /// - Returns: `true` if the user answered "Y", otherwise `false`. 
    func yesNoRequest(prompt: String) -> Bool { 
        while true { 
            let answer = stringRequest(prompt: prompt).lowercased() 
            if answer == "y" || answer == "n" { 
                return answer == "y" 
            } 
        } 
    } 

    /// Display a menu of options then request a selection. 
    ///  
    /// - Parameters: 
    ///   - prompt: A prompt string to display before the menu. 
    ///   - options: An array of strings giving the menu options. 
    /// 
    /// - Returns: The index number of the selected option or 0 if no item was 
    ///   selected. 
    func menuRequest(prompt: String, options: [String]) -> Int { 
        let numOptions = options.count 

        if numOptions == 0 { 
            return 0 
        } 

        print(prompt) 

Publish messages to queues 564



Amazon Simple Queue Service Developer Guide

        for (index, value) in options.enumerated() { 
            print("(\(index)) \(value)") 
        } 

        repeat { 
            print("Enter your selection (0 - \(numOptions-1)): ", terminator: "") 
            if let answer = readLine() { 
                guard let answer = Int(answer) else { 
                    print("Please enter the number matching your selection.") 
                    continue 
                } 

                if answer >= 0 && answer < numOptions { 
                    return answer 
                } else { 
                    print("Please enter the number matching your selection.") 
                } 
            } 
        } while true 
    } 
     
    /// Ask the user too press RETURN. Accepts any input but ignores it. 
    ///  
    /// - Parameter prompt: The text prompt to display. 
    func returnRequest(prompt: String) { 
        print(prompt, terminator: "") 
        _ = readLine() 
    } 

    var attrValues = [ 
        "<none>", 
        "cheerful", 
        "funny", 
        "serious", 
        "sincere" 
    ] 

    /// Ask the user to choose one of the attribute values to use as a filter. 
    ///  
    /// - Parameters: 
    ///   - message: A message to display before the menu of values. 
    ///   - attrValues: An array of strings giving the values to choose from. 
    ///  
    /// - Returns: The string corresponding to the selected option. 

Publish messages to queues 565



Amazon Simple Queue Service Developer Guide

    func askForFilter(message: String, attrValues: [String]) -> String? { 
        print(message) 
        for (index, value) in attrValues.enumerated() { 
            print("  [\(index)] \(value)") 
        } 

        var answer: Int? 
        repeat { 
            answer = Int(stringRequest(prompt: "Select an value for the 'tone' 
 attribute or 0 to end: ")) 
        } while answer == nil || answer! < 0 || answer! > attrValues.count + 1 

        if answer == 0 { 
            return nil 
        } 
        return attrValues[answer!] 
    } 

    /// Prompts the user for filter terms and constructs the attribute 
    /// record that specifies them. 
    ///  
    /// - Returns: A mapping of "FilterPolicy" to a JSON string representing 
    ///   the user-defined filter. 
    func buildFilterAttributes() -> [String:String] { 
        var attr: [String:String] = [:] 
        var filterString = "" 

        var first = true 

        while let ans = askForFilter(message: "Choose a value to apply to the 
 'tone' attribute.", 
                                    attrValues: attrValues) { 
            if !first { 
                filterString += "," 
            } 
            first = false 

            filterString += "\"\(ans)\"" 
        } 

        let filterJSON = "{ \"tone\": [\(filterString)]}" 
        attr["FilterPolicy"] = filterJSON 

        return attr 

Publish messages to queues 566



Amazon Simple Queue Service Developer Guide

    } 
    /// Create a queue, returning its URL string. 
    /// 
    /// - Parameters: 
    ///   - prompt: A prompt to ask for the queue name. 
    ///   - isFIFO: Whether or not to create a FIFO queue. 
    /// 
    /// - Returns: The URL of the queue. 
    func createQueue(prompt: String, sqsClient: SQSClient, isFIFO: Bool) async 
 throws -> String? { 
        repeat { 
            var queueName = stringRequest(prompt: prompt) 
            var attributes: [String: String] = [:] 

            if isFIFO { 
                queueName += ".fifo" 
                attributes["FifoQueue"] = "true" 
            } 

            do { 
                let output = try await sqsClient.createQueue( 
                    input: CreateQueueInput( 
                        attributes: attributes, 
                        queueName: queueName 
                    ) 
                ) 
                guard let url = output.queueUrl else { 
                    return nil 
                } 

                return url 
            } catch _ as QueueDeletedRecently { 
                print("You need to use a different queue name. A queue by that 
 name was recently deleted.") 
                continue 
            } 
        } while true 
    } 

    /// Return the ARN of a queue given its URL. 
    /// 
    /// - Parameter queueUrl: The URL of the queue for which to return the 
    ///   ARN. 
    /// 

Publish messages to queues 567



Amazon Simple Queue Service Developer Guide

    /// - Returns: The ARN of the specified queue. 
    func getQueueARN(sqsClient: SQSClient, queueUrl: String) async throws -> 
 String? { 
        let output = try await sqsClient.getQueueAttributes( 
            input: GetQueueAttributesInput( 
                attributeNames: [.queuearn], 
                queueUrl: queueUrl 
            ) 
        ) 

        guard let attributes = output.attributes else { 
            return nil 
        } 
         
        return attributes["QueueArn"] 
    } 

    /// Applies the needed policy to the specified queue. 
    ///  
    /// - Parameters: 
    ///   - sqsClient: The Amazon SQS client to use. 
    ///   - queueUrl: The queue to apply the policy to. 
    ///   - queueArn: The ARN of the queue to apply the policy to. 
    ///   - topicArn: The topic that should have access via the policy. 
    /// 
    /// - Throws: Errors from the SQS `SetQueueAttributes` action. 
    func setQueuePolicy(sqsClient: SQSClient, queueUrl: String, 
                        queueArn: String, topicArn: String) async throws { 
        _ = try await sqsClient.setQueueAttributes( 
            input: SetQueueAttributesInput( 
                attributes: [ 
                    "Policy": 
                        """ 
                        { 
                            "Statement": [ 
                                { 
                                    "Effect": "Allow", 
                                    "Principal": { 
                                        "Service": "sns.amazonaws.com" 
                                    }, 
                                    "Action": "sqs:SendMessage", 
                                    "Resource": "\(queueArn)", 
                                    "Condition": { 
                                        "ArnEquals": { 

Publish messages to queues 568



Amazon Simple Queue Service Developer Guide

                                            "aws:SourceArn": "\(topicArn)" 
                                        } 
                                    } 
                                } 
                            ] 
                        } 
                        """ 

                ], 
                queueUrl: queueUrl 
            ) 
        ) 
    } 

    /// Receive the available messages on a queue, outputting them to the 
    /// screen. Returns a dictionary you pass to DeleteMessageBatch to delete 
    /// all the received messages. 
    ///  
    /// - Parameters: 
    ///   - sqsClient: The Amazon SQS client to use. 
    ///   - queueUrl: The SQS queue on which to receive messages. 
    ///  
    /// - Throws: Errors from `SQSClient.receiveMessage()` 
    /// 
    /// - Returns: An array of SQSClientTypes.DeleteMessageBatchRequestEntry 
    ///   items, each describing one received message in the format needed to 
    ///   delete it. 
    func receiveAndListMessages(sqsClient: SQSClient, queueUrl: String) async 
 throws 
                                -> 
 [SQSClientTypes.DeleteMessageBatchRequestEntry] { 
        let output = try await sqsClient.receiveMessage( 
            input: ReceiveMessageInput( 
                maxNumberOfMessages: 10, 
                queueUrl: queueUrl 
            ) 
        ) 

        guard let messages = output.messages else { 
            print("No messages received.") 
            return [] 
        } 

        var deleteList: [SQSClientTypes.DeleteMessageBatchRequestEntry] = [] 

Publish messages to queues 569



Amazon Simple Queue Service Developer Guide

        // Print out all the messages that were received, including their 
        // attributes, if any. 

        for message in messages { 
            print("Message ID:     \(message.messageId ?? "<unknown>")") 
            print("Receipt handle: \(message.receiptHandle ?? "<unknown>")") 
            print("Message JSON:   \(message.body ?? "<body missing>")") 
             
            if message.receiptHandle != nil { 
                deleteList.append( 
                    SQSClientTypes.DeleteMessageBatchRequestEntry( 
                        id: message.messageId, 
                        receiptHandle: message.receiptHandle 
                    ) 
                ) 
            } 
        } 

        return deleteList 
    } 

    /// Delete all the messages in the specified list. 
    ///  
    /// - Parameters: 
    ///   - sqsClient: The Amazon SQS client to use. 
    ///   - queueUrl: The SQS queue to delete messages from. 
    ///   - deleteList: A list of `DeleteMessageBatchRequestEntry` objects 
    ///     describing the messages to delete. 
    /// 
    /// - Throws: Errors from `SQSClient.deleteMessageBatch()`. 
    func deleteMessageList(sqsClient: SQSClient, queueUrl: String, 
                           deleteList: 
 [SQSClientTypes.DeleteMessageBatchRequestEntry]) async throws { 
        let output = try await sqsClient.deleteMessageBatch( 
            input: DeleteMessageBatchInput(entries: deleteList, queueUrl: 
 queueUrl) 
        ) 

        if let failed = output.failed { 
            print("\(failed.count) errors occurred deleting messages from the 
 queue.") 
            for message in failed { 

Publish messages to queues 570



Amazon Simple Queue Service Developer Guide

                print("---> Failed to delete message \(message.id ?? "<unknown 
 ID>") with error: \(message.code ?? "<unknown>") (\(message.message ?? "..."))") 
            } 
        } 
    } 

    /// Called by ``main()`` to run the bulk of the example. 
    func runAsync() async throws { 
        let rowOfStars = String(repeating: "*", count: 75) 

        print(""" 
              \(rowOfStars) 
              Welcome to the cross-service messaging with topics and queues 
 example. 
              In this workflow, you'll create an SNS topic, then create two SQS 
              queues which will be subscribed to that topic. 

              You can specify several options for configuring the topic, as well 
 as 
              the queue subscriptions. You can then post messages to the topic 
 and 
              receive the results on the queues. 
              \(rowOfStars)\n 
              """ 
        ) 

        // 0. Create SNS and SQS clients. 

        let snsConfig = try await SNSClient.SNSClientConfiguration(region: 
 region) 
        let snsClient = SNSClient(config: snsConfig) 

        let sqsConfig = try await SQSClient.SQSClientConfiguration(region: 
 region) 
        let sqsClient = SQSClient(config: sqsConfig) 

        // 1. Ask the user whether to create a FIFO topic. If so, ask whether 
        //    to use content-based deduplication instead of requiring a 
        //    deduplication ID. 

        let isFIFO = yesNoRequest(prompt: "Do you want to create a FIFO topic (Y/
N)? ") 
        var isContentBasedDeduplication = false 

Publish messages to queues 571



Amazon Simple Queue Service Developer Guide

        if isFIFO { 
            print(""" 
                  \(rowOfStars) 
                  Because you've chosen to create a FIFO topic, deduplication is 
                  supported. 

                  Deduplication IDs are either set in the message or are 
 automatically 
                  generated from the content using a hash function. 

                  If a message is successfully published to an SNS FIFO topic, 
 any 
                  message published and found to have the same deduplication ID 
                  (within a five-minute deduplication interval), is accepted but 
                  not delivered. 

                  For more information about deduplication, see: 
                  https://docs.aws.amazon.com/sns/latest/dg/fifo-message-
dedup.html. 
                  """ 
            ) 

            isContentBasedDeduplication = yesNoRequest( 
                prompt: "Use content-based deduplication instead of entering a 
 deduplication ID (Y/N)? ") 
            print(rowOfStars) 
        } 

        var topicName = stringRequest(prompt: "Enter the name of the topic to 
 create: ") 
         
        // 2. Create the topic. Append ".fifo" to the name if FIFO was 
        //    requested, and set the "FifoTopic" attribute to "true" if so as 
        //    well. Set the "ContentBasedDeduplication" attribute to "true" if 
        //    content-based deduplication was requested. 

        if isFIFO { 
            topicName += ".fifo" 
        } 

        print("Topic name: \(topicName)") 

        var attributes = [ 
            "FifoTopic": (isFIFO ? "true" : "false") 

Publish messages to queues 572



Amazon Simple Queue Service Developer Guide

        ] 

        // If it's a FIFO topic with content-based deduplication, set the 
        // "ContentBasedDeduplication" attribute. 

        if isContentBasedDeduplication { 
            attributes["ContentBasedDeduplication"] = "true" 
        } 

        // Create the topic and retrieve the ARN. 

        let output = try await snsClient.createTopic( 
            input: CreateTopicInput( 
                attributes: attributes, 
                name: topicName 
            ) 
        ) 

        guard let topicArn = output.topicArn else { 
            print("No topic ARN returned!") 
            return 
        } 

        print(""" 
              Topic '\(topicName) has been created with the 
              topic ARN \(topicArn)." 
              """ 
        ) 
         
        print(rowOfStars) 

        // 3. Create an SQS queue. Append ".fifo" to the name if one of the 
        //    FIFO topic configurations was chosen, and set "FifoQueue" to 
        //    "true" if the topic is FIFO. 

        print(""" 
              Next, you will create two SQS queues that will be subscribed 
              to the topic you just created.\n 
              """ 
        ) 

        let q1Url = try await createQueue(prompt: "Enter the name of the first 
 queue: ", 
                                          sqsClient: sqsClient, isFIFO: isFIFO) 

Publish messages to queues 573



Amazon Simple Queue Service Developer Guide

        guard let q1Url else { 
            print("Unable to create queue 1!") 
            return 
        } 
         
        // 4. Get the SQS queue's ARN attribute using `GetQueueAttributes`. 

        let q1Arn = try await getQueueARN(sqsClient: sqsClient, queueUrl: q1Url) 

        guard let q1Arn else { 
            print("Unable to get ARN of queue 1!") 
            return 
        } 
        print("Got queue 1 ARN: \(q1Arn)") 

        // 5. Attach an AWS IAM policy to the queue using 
        //    `SetQueueAttributes`. 

        try await setQueuePolicy(sqsClient: sqsClient, queueUrl: q1Url, 
                                 queueArn: q1Arn, topicArn: topicArn) 

        // 6. Subscribe the SQS queue to the SNS topic. Set the topic ARN in 
        //    the request. Set the protocol to "sqs". Set the queue ARN to the 
        //    ARN just received in step 5. For FIFO topics, give the option to 
        //    apply a filter. A filter allows only matching messages to enter 
        //    the queue. 

        var q1Attributes: [String:String]? = nil 

        if isFIFO { 
            print( 
                """ 

                If you add a filter to this subscription, then only the filtered 
 messages will 
                be received in the queue. For information about message 
 filtering, see 
                https://docs.aws.amazon.com/sns/latest/dg/sns-message-
filtering.html 
                For this example, you can filter messages by a 'tone' attribute. 

                """ 
            ) 

Publish messages to queues 574



Amazon Simple Queue Service Developer Guide

            let subPrompt = """ 
                Would you like to filter messages for the first queue's 
 subscription to the 
                topic \(topicName) (Y/N)?  
                """ 
            if (yesNoRequest(prompt: subPrompt)) { 
                q1Attributes = buildFilterAttributes() 
            } 
        } 

        let sub1Output = try await snsClient.subscribe( 
            input: SubscribeInput( 
                attributes: q1Attributes, 
                endpoint: q1Arn, 
                protocol: "sqs", 
                topicArn: topicArn 
            ) 
        ) 

        guard let q1SubscriptionArn = sub1Output.subscriptionArn else { 
            print("Invalid subscription ARN returned for queue 1!") 
            return 
        } 

        // 7. Repeat steps 3-6 for the second queue. 

        let q2Url = try await createQueue(prompt: "Enter the name of the second 
 queue: ", 
                                sqsClient: sqsClient, isFIFO: isFIFO) 
     
        guard let q2Url else { 
            print("Unable to create queue 2!") 
            return 
        } 

        let q2Arn = try await getQueueARN(sqsClient: sqsClient, queueUrl: q2Url) 

        guard let q2Arn else { 
            print("Unable to get ARN of queue 2!") 
            return 
        } 
        print("Got queue 2 ARN: \(q2Arn)") 

        try await setQueuePolicy(sqsClient: sqsClient, queueUrl: q2Url, 

Publish messages to queues 575



Amazon Simple Queue Service Developer Guide

                                 queueArn: q2Arn, topicArn: topicArn) 

        var q2Attributes: [String:String]? = nil 

        if isFIFO { 
            let subPrompt = """ 
                Would you like to filter messages for the second queue's 
 subscription to the 
                topic \(topicName) (Y/N)?  
                """ 
            if (yesNoRequest(prompt: subPrompt)) { 
                q2Attributes = buildFilterAttributes() 
            } 
        } 

        let sub2Output = try await snsClient.subscribe( 
            input: SubscribeInput( 
                attributes: q2Attributes, 
                endpoint: q2Arn, 
                protocol: "sqs", 
                topicArn: topicArn 
            ) 
        ) 

        guard let q2SubscriptionArn = sub2Output.subscriptionArn else { 
            print("Invalid subscription ARN returned for queue 1!") 
            return 
        } 

        // 8. Let the user publish messages to the topic, asking for a message 
        //    body for each message. Handle the types of topic correctly (SEE 
        //    MVP INFORMATION AND FIX THESE COMMENTS!!! 

        print("\n\(rowOfStars)\n") 

        var first = true 

        repeat { 
            var publishInput = PublishInput( 
                topicArn: topicArn 
            ) 

            publishInput.message = stringRequest(prompt: "Enter message text to 
 publish: ") 

Publish messages to queues 576



Amazon Simple Queue Service Developer Guide

            // If using a FIFO topic, a message group ID must be set on the 
            // message. 

            if isFIFO { 
                if first { 
                    print(""" 
                        Because you're using a FIFO topic, you must set a message 
                        group ID. All messages within the same group will be 
                        received in the same order in which they were published.
\n 
                        """ 
                    ) 
                } 
                publishInput.messageGroupId = stringRequest(prompt: "Enter a 
 message group ID for this message: ") 

                if !isContentBasedDeduplication { 
                    if first { 
                        print(""" 
                              Because you're not using content-based 
 deduplication, you 
                              must enter a deduplication ID. If other messages 
 with the 
                              same deduplication ID are published within the same 
                              deduplication interval, they will not be delivered. 
                              """ 
                        ) 
                    } 
                    publishInput.messageDeduplicationId = stringRequest(prompt: 
 "Enter a deduplication ID for this message: ") 
                } 
            } 

            // Allow the user to add a value for the "tone" attribute if they 
            // wish to do so. 

            var messageAttributes: [String:SNSClientTypes.MessageAttributeValue] 
 = [:] 
            let attrValSelection = menuRequest(prompt: "Choose a tone to apply to 
 this message.", options: attrValues) 

            if attrValSelection != 0 { 

Publish messages to queues 577



Amazon Simple Queue Service Developer Guide

                let val = SNSClientTypes.MessageAttributeValue(dataType: 
 "String", stringValue: attrValues[attrValSelection]) 
                messageAttributes["tone"] = val 
            } 

            publishInput.messageAttributes = messageAttributes 
             
            // Publish the message and display its ID. 

            let publishOutput = try await snsClient.publish(input: publishInput) 

            guard let messageID = publishOutput.messageId else { 
                print("Unable to get the published message's ID!") 
                return 
            } 

            print("Message published with ID \(messageID).") 
            first = false 

            // 9. Repeat step 8 until the user says they don't want to post 
            //    another. 
         
        } while (yesNoRequest(prompt: "Post another message (Y/N)? ")) 

        // 10. Display a list of the messages in each queue by using 
        //     `ReceiveMessage`. Show at least the body and the attributes. 

        print(rowOfStars) 
        print("Contents of queue 1:") 
        let q1DeleteList = try await receiveAndListMessages(sqsClient: sqsClient, 
 queueUrl: q1Url) 
        print("\n\nContents of queue 2:") 
        let q2DeleteList = try await receiveAndListMessages(sqsClient: sqsClient, 
 queueUrl: q2Url) 
        print(rowOfStars) 

        returnRequest(prompt: "\nPress return to clean up: ") 

        // 11. Delete the received messages using `DeleteMessageBatch`. 

        print("Deleting the messages from queue 1...") 
        try await deleteMessageList(sqsClient: sqsClient, queueUrl: q1Url, 
 deleteList: q1DeleteList) 
        print("\nDeleting the messages from queue 2...") 

Publish messages to queues 578



Amazon Simple Queue Service Developer Guide

        try await deleteMessageList(sqsClient: sqsClient, queueUrl: q2Url, 
 deleteList: q2DeleteList) 

        // 12. Unsubscribe and delete both queues. 

        print("\nUnsubscribing from queue 1...") 
        _ = try await snsClient.unsubscribe( 
            input: UnsubscribeInput(subscriptionArn: q1SubscriptionArn) 
        ) 

        print("Unsubscribing from queue 2...") 
        _ = try await snsClient.unsubscribe( 
            input: UnsubscribeInput(subscriptionArn: q2SubscriptionArn) 
        ) 

        print("Deleting queue 1...") 
        _ = try await sqsClient.deleteQueue( 
            input: DeleteQueueInput(queueUrl: q1Url) 
        ) 

        print("Deleting queue 2...") 
        _ = try await sqsClient.deleteQueue( 
            input: DeleteQueueInput(queueUrl: q2Url) 
        ) 
         
        // 13. Delete the topic. 

        print("Deleting the SNS topic...") 
        _ = try await snsClient.deleteTopic( 
            input: DeleteTopicInput(topicArn: topicArn) 
        ) 
    }
}

/// The program's asynchronous entry point.
@main
struct Main { 
    static func main() async { 
        let args = Array(CommandLine.arguments.dropFirst()) 

        do { 
            let command = try ExampleCommand.parse(args) 
            try await command.runAsync() 
        } catch { 

Publish messages to queues 579



Amazon Simple Queue Service Developer Guide

            ExampleCommand.exit(withError: error) 
        } 
    }     
}

• For API details, see the following topics in Amazon SDK for Swift API reference.

• CreateQueue

• CreateTopic

• DeleteMessageBatch

• DeleteQueue

• DeleteTopic

• GetQueueAttributes

• Publish

• ReceiveMessage

• SetQueueAttributes

• Subscribe

• Unsubscribe

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Send and receive batches of messages with Amazon SQS using an 
Amazon SDK

The following code examples show how to:

• Create an Amazon SQS queue.

• Send batches of messages to the queue.

• Receive batches of messages from the queue.

• Delete batches of messages from the queue.

Send and receive batches of messages 580

https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/createqueue(input:)
https://sdk.amazonaws.com/swift/api/awssns/latest/documentation/awssns/snsclient/createtopic(input:)
https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/deletemessagebatch(input:)
https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/deletequeue(input:)
https://sdk.amazonaws.com/swift/api/awssns/latest/documentation/awssns/snsclient/deletetopic(input:)
https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/getqueueattributes(input:)
https://sdk.amazonaws.com/swift/api/awssns/latest/documentation/awssns/snsclient/publish(input:)
https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/receivemessage(input:)
https://sdk.amazonaws.com/swift/api/awssqs/latest/documentation/awssqs/sqsclient/setqueueattributes(input:)
https://sdk.amazonaws.com/swift/api/awssns/latest/documentation/awssns/snsclient/subscribe(input:)
https://sdk.amazonaws.com/swift/api/awssns/latest/documentation/awssns/snsclient/unsubscribe(input:)


Amazon Simple Queue Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

As shown in the following examples, you can handle batch message operations with Amazon 
SQS using two different approaches with the Amazon SDK for Java 2.x:

SendRecvBatch.java uses explicit batch operations. You manually create message batches 
and call sendMessageBatch() and deleteMessageBatch() directly. You also handle 
batch responses, including any failed messages. This approach gives you full control over 
batch sizing and error handling. However, it requires more code to manage the batching 
logic.

SimpleProducerConsumer.java uses the high-level SqsAsyncBatchManager library for 
automatic request batching. You make individual sendMessage() and deleteMessage()
calls with the same method signatures as the standard client. The SDK automatically buffers 
these calls and sends them as batch operations. This approach requires minimal code 
changes while providing batching performance benefits.

Use explicit batching when you need fine-grained control over batch composition and error 
handling. Use automatic batching when you want to optimize performance with minimal 
code changes.

SendRecvBatch.java - Uses explicit batch operations with messages.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.BatchResultErrorEntry;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;
import software.amazon.awssdk.services.sqs.model.DeleteMessageBatchRequest;
import software.amazon.awssdk.services.sqs.model.DeleteMessageBatchRequestEntry;
import software.amazon.awssdk.services.sqs.model.DeleteMessageBatchResponse;
import software.amazon.awssdk.services.sqs.model.DeleteMessageBatchResultEntry;
import software.amazon.awssdk.services.sqs.model.DeleteQueueRequest;

Send and receive batches of messages 581

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

import software.amazon.awssdk.services.sqs.model.Message;
import software.amazon.awssdk.services.sqs.model.MessageAttributeValue;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest;
import software.amazon.awssdk.services.sqs.model.SendMessageBatchRequest;
import software.amazon.awssdk.services.sqs.model.SendMessageBatchRequestEntry;
import software.amazon.awssdk.services.sqs.model.SendMessageBatchResponse;
import software.amazon.awssdk.services.sqs.model.SendMessageBatchResultEntry;
import software.amazon.awssdk.services.sqs.model.SqsException;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/** 
 * Before running this Java V2 code example, set up your development 
 * environment, including your credentials. 
 * 
 * For more information, see the following documentation topic: 
 * 
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html 
 */

/** 
 * This code demonstrates basic message operations in Amazon Simple Queue Service 
 (Amazon SQS). 
 */

public class SendRecvBatch { 
    private static final Logger LOGGER = 
 LoggerFactory.getLogger(SendRecvBatch.class); 
    private static final SqsClient sqsClient = SqsClient.create(); 

    public static void main(String[] args) { 
        usageDemo(); 
    } 
    /** 

Send and receive batches of messages 582



Amazon Simple Queue Service Developer Guide

     * Send a batch of messages in a single request to an SQS queue. 
     * This request may return overall success even when some messages were not 
 sent. 
     * The caller must inspect the Successful and Failed lists in the response 
 and 
     * resend any failed messages. 
     * 
     * @param queueUrl  The URL of the queue to receive the messages. 
     * @param messages  The messages to send to the queue. Each message contains 
 a body and attributes. 
     * @return The response from SQS that contains the list of successful and 
 failed messages. 
     */ 
    public static SendMessageBatchResponse sendMessages( 
            String queueUrl, List<MessageEntry> messages) { 

        try { 
            List<SendMessageBatchRequestEntry> entries = new ArrayList<>(); 

            for (int i = 0; i < messages.size(); i++) { 
                MessageEntry message = messages.get(i); 
                entries.add(SendMessageBatchRequestEntry.builder() 
                        .id(String.valueOf(i)) 
                        .messageBody(message.getBody()) 
                        .messageAttributes(message.getAttributes()) 
                        .build()); 
            } 

            SendMessageBatchRequest sendBatchRequest = 
 SendMessageBatchRequest.builder() 
                    .queueUrl(queueUrl) 
                    .entries(entries) 
                    .build(); 

            SendMessageBatchResponse response = 
 sqsClient.sendMessageBatch(sendBatchRequest); 

            if (!response.successful().isEmpty()) { 
                for (SendMessageBatchResultEntry resultEntry : 
 response.successful()) { 
                    LOGGER.info("Message sent: {}: {}", resultEntry.messageId(), 
                            
 messages.get(Integer.parseInt(resultEntry.id())).getBody()); 
                } 

Send and receive batches of messages 583



Amazon Simple Queue Service Developer Guide

            } 

            if (!response.failed().isEmpty()) { 
                for (BatchResultErrorEntry errorEntry : response.failed()) { 
                    LOGGER.warn("Failed to send: {}: {}", errorEntry.id(), 
                            
 messages.get(Integer.parseInt(errorEntry.id())).getBody()); 
                } 
            } 

            return response; 

        } catch (SqsException e) { 
            LOGGER.error("Send messages failed to queue: {}", queueUrl, e); 
            throw e; 
        } 
    } 

    /** 
     * Receive a batch of messages in a single request from an SQS queue. 
     * 
     * @param queueUrl   The URL of the queue from which to receive messages. 
     * @param maxNumber  The maximum number of messages to receive (capped at 10 
 by SQS). 
     *                   The actual number of messages received might be less. 
     * @param waitTime   The maximum time to wait (in seconds) before returning. 
 When 
     *                   this number is greater than zero, long polling is used. 
 This 
     *                   can result in reduced costs and fewer false empty 
 responses. 
     * @return The list of Message objects received. These each contain the body 
     *         of the message and metadata and custom attributes. 
     */ 
    public static List<Message> receiveMessages(String queueUrl, int maxNumber, 
 int waitTime) { 
        try { 
            ReceiveMessageRequest receiveRequest = 
 ReceiveMessageRequest.builder() 
                    .queueUrl(queueUrl) 
                    .maxNumberOfMessages(maxNumber) 
                    .waitTimeSeconds(waitTime) 
                    .messageAttributeNames("All") 
                    .build(); 

Send and receive batches of messages 584



Amazon Simple Queue Service Developer Guide

            List<Message> messages = 
 sqsClient.receiveMessage(receiveRequest).messages(); 

            for (Message message : messages) { 
                LOGGER.info("Received message: {}: {}", message.messageId(), 
 message.body()); 
            } 

            return messages; 

        } catch (SqsException e) { 
            LOGGER.error("Couldn't receive messages from queue: {}", queueUrl, 
 e); 
            throw e; 
        } 
    } 

    /** 
     * Delete a batch of messages from a queue in a single request. 
     * 
     * @param queueUrl  The URL of the queue from which to delete the messages. 
     * @param messages  The list of messages to delete. 
     * @return The response from SQS that contains the list of successful and 
 failed 
     *         message deletions. 
     */ 
    public static DeleteMessageBatchResponse deleteMessages(String queueUrl, 
 List<Message> messages) { 
        try { 
            List<DeleteMessageBatchRequestEntry> entries = new ArrayList<>(); 

            for (int i = 0; i < messages.size(); i++) { 
                entries.add(DeleteMessageBatchRequestEntry.builder() 
                        .id(String.valueOf(i)) 
                        .receiptHandle(messages.get(i).receiptHandle()) 
                        .build()); 
            } 

            DeleteMessageBatchRequest deleteRequest = 
 DeleteMessageBatchRequest.builder() 
                    .queueUrl(queueUrl) 
                    .entries(entries) 
                    .build(); 

Send and receive batches of messages 585



Amazon Simple Queue Service Developer Guide

            DeleteMessageBatchResponse response = 
 sqsClient.deleteMessageBatch(deleteRequest); 

            if (!response.successful().isEmpty()) { 
                for (DeleteMessageBatchResultEntry resultEntry : 
 response.successful()) { 
                    LOGGER.info("Deleted {}", 
 messages.get(Integer.parseInt(resultEntry.id())).receiptHandle()); 
                } 
            } 

            if (!response.failed().isEmpty()) { 
                for (BatchResultErrorEntry errorEntry : response.failed()) { 
                    LOGGER.warn("Could not delete {}", 
 messages.get(Integer.parseInt(errorEntry.id())).receiptHandle()); 
                } 
            } 

            return response; 

        } catch (SqsException e) { 
            LOGGER.error("Couldn't delete messages from queue {}", queueUrl, e); 
            throw e; 
        } 
    } 

    /** 
     * Helper class to represent a message with body and attributes. 
     */ 
    public static class MessageEntry { 
        private final String body; 
        private final Map<String, MessageAttributeValue> attributes; 

        public MessageEntry(String body, Map<String, MessageAttributeValue> 
 attributes) { 
            this.body = body; 
            this.attributes = attributes != null ? attributes : new HashMap<>(); 
        } 

        public String getBody() { 
            return body; 
        } 

Send and receive batches of messages 586



Amazon Simple Queue Service Developer Guide

        public Map<String, MessageAttributeValue> getAttributes() { 
            return attributes; 
        } 
    } 

    /** 
     * Shows how to: 
     * * Read the lines from a file and send the lines in 
     *   batches of 10 as messages to a queue. 
     * * Receive the messages in batches until the queue is empty. 
     * * Reassemble the lines of the file and verify they match the original 
 file. 
     */ 
    public static void usageDemo() { 
        LOGGER.info("-".repeat(88)); 
        LOGGER.info("Welcome to the Amazon Simple Queue Service (Amazon SQS) 
 demo!"); 
        LOGGER.info("-".repeat(88)); 

        String queueUrl = null; 
        try { 
            // Create a queue for the demo. 
            String queueName = "sqs-usage-demo-message-wrapper-" + 
 System.currentTimeMillis(); 
            CreateQueueRequest createRequest = CreateQueueRequest.builder() 
                    .queueName(queueName) 
                    .build(); 
            queueUrl = sqsClient.createQueue(createRequest).queueUrl(); 
            LOGGER.info("Created queue: {}", queueUrl); 

            try (InputStream inputStream = 
 SendRecvBatch.class.getResourceAsStream("/log4j2.xml"); 
                 BufferedReader reader = new BufferedReader(new 
 InputStreamReader(inputStream))) { 
                 
                List<String> lines = reader.lines().toList(); 

                // Send file lines in batches. 
                int batchSize = 10; 
                LOGGER.info("Sending file lines in batches of {} as messages.", 
 batchSize); 

                for (int i = 0; i < lines.size(); i += batchSize) { 
                    List<MessageEntry> messageBatch = new ArrayList<>(); 

Send and receive batches of messages 587



Amazon Simple Queue Service Developer Guide

                    for (int j = i; j < Math.min(i + batchSize, lines.size()); j+
+) { 
                        String line = lines.get(j); 
                        if (line == null || line.trim().isEmpty()) { 
                            continue; // Skip empty lines. 
                        } 

                        Map<String, MessageAttributeValue> attributes = new 
 HashMap<>(); 
                        attributes.put("line", MessageAttributeValue.builder() 
                                .dataType("String") 
                                .stringValue(String.valueOf(j)) 
                                .build()); 

                        messageBatch.add(new MessageEntry(lines.get(j), 
 attributes)); 
                    } 

                    sendMessages(queueUrl, messageBatch); 
                    System.out.print("."); 
                    System.out.flush(); 
                } 

                LOGGER.info("\nDone. Sent {} messages.", lines.size()); 

                // Receive and process messages. 
                LOGGER.info("Receiving, handling, and deleting messages in 
 batches of {}.", batchSize); 
                String[] receivedLines = new String[lines.size()]; 
                boolean moreMessages = true; 

                while (moreMessages) { 
                    List<Message> receivedMessages = receiveMessages(queueUrl, 
 batchSize, 5); 

                    for (Message message : receivedMessages) { 
                        int lineNumber = 
 Integer.parseInt(message.messageAttributes().get("line").stringValue()); 
                        receivedLines[lineNumber] = message.body(); 
                    } 

                    if (!receivedMessages.isEmpty()) { 
                        deleteMessages(queueUrl, receivedMessages); 

Send and receive batches of messages 588



Amazon Simple Queue Service Developer Guide

                    } else { 
                        moreMessages = false; 
                    } 
                } 

                LOGGER.info("\nDone."); 

                // Verify that all lines were received correctly. 
                boolean allLinesMatch = true; 
                for (int i = 0; i < lines.size(); i++) { 
                    String originalLine = lines.get(i); 
                    String receivedLine = receivedLines[i] == null ? "" : 
 receivedLines[i]; 

                    if (!originalLine.equals(receivedLine)) { 
                        allLinesMatch = false; 
                        break; 
                    } 
                } 

                if (allLinesMatch) { 
                    LOGGER.info("Successfully reassembled all file lines!"); 
                } else { 
                    LOGGER.info("Uh oh, some lines were missed!"); 
                } 
            } 
        } catch (SqsException e) { 
            LOGGER.error("SQS operation failed", e); 
        } catch (RuntimeException | IOException e) { 
            LOGGER.error("Unexpected runtime error during demo", e); 
        } finally { 
            // Clean up by deleting the queue if it was created. 
            if (queueUrl != null) { 
                try { 
                    DeleteQueueRequest deleteQueueRequest = 
 DeleteQueueRequest.builder() 
                            .queueUrl(queueUrl) 
                            .build(); 
                    sqsClient.deleteQueue(deleteQueueRequest); 
                    LOGGER.info("Deleted queue: {}", queueUrl); 
                } catch (SqsException e) { 
                    LOGGER.error("Failed to delete queue: {}", queueUrl, e); 
                } 
            } 

Send and receive batches of messages 589



Amazon Simple Queue Service Developer Guide

        } 

        LOGGER.info("Thanks for watching!"); 
        LOGGER.info("-".repeat(88)); 
    } 
 }

SimpleProducerConsumer.java - Uses automatic batching of messages.

package com.example.sqs;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.services.sqs.SqsAsyncClient;
import software.amazon.awssdk.services.sqs.batchmanager.SqsAsyncBatchManager;
import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest;
import software.amazon.awssdk.services.sqs.model.DeleteMessageResponse;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.Message;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest;
import software.amazon.awssdk.services.sqs.model.ReceiveMessageResponse;
import software.amazon.awssdk.services.sqs.model.SendMessageRequest;
import software.amazon.awssdk.services.sqs.model.SendMessageResponse;
import software.amazon.awssdk.core.exception.SdkException;

import java.math.BigInteger;
import java.util.List;
import java.util.Random;
import java.util.Scanner;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;

/** 
 * Demonstrates the AWS SDK for Java 2.x Automatic Request Batching API for 
 Amazon SQS. 
 *  
 * This example showcases the high-level SqsAsyncBatchManager library that 
 provides 
 * efficient batching and buffering for SQS operations. The batch manager offers 

Send and receive batches of messages 590



Amazon Simple Queue Service Developer Guide

 * methods that directly mirror SqsAsyncClient methods—sendMessage, 
 changeMessageVisibility, 
 * deleteMessage, and receiveMessage—making it a drop-in replacement with minimal 
 code changes. 
 *  
 * Key features of the SqsAsyncBatchManager: 
 * - Automatic batching: The SDK automatically buffers individual requests and 
 sends them 
 *   as batches when maxBatchSize (default: 10) or sendRequestFrequency (default: 
 200ms)  
 *   thresholds are reached 
 * - Familiar API: Method signatures match SqsAsyncClient exactly, requiring no 
 learning curve 
 * - Background optimization: The batch manager maintains internal buffers and 
 handles 
 *   batching logic transparently 
 * - Asynchronous operations: All methods return CompletableFuture for non-
blocking execution 
 *  
 * Performance benefits demonstrated: 
 * - Reduced API calls: Multiple individual requests are consolidated into single 
 batch operations 
 * - Lower costs: Fewer API calls result in reduced SQS charges 
 * - Higher throughput: Batch operations process more messages per second 
 * - Efficient resource utilization: Fewer network round trips and better 
 connection reuse 
 *  
 * This example compares: 
 * 1. Single-message operations using SqsAsyncClient directly 
 * 2. Batch operations using SqsAsyncBatchManager with identical method calls 
 *  
 * Usage patterns: 
 * - Set batch size to 1 to use SqsAsyncClient for baseline performance 
 measurement 
 * - Set batch size > 1 to use SqsAsyncBatchManager for optimized batch 
 processing 
 * - Monitor real-time throughput metrics to observe performance improvements 
 *  
 * Prerequisites: 
 * - AWS SDK for Java 2.x version 2.28.0 or later 
 * - An existing SQS queue 
 * - Valid AWS credentials configured 
 *  

Send and receive batches of messages 591



Amazon Simple Queue Service Developer Guide

 * The program displays real-time metrics showing the dramatic performance 
 difference 
 * between individual operations and automatic batching. 
 */
public class SimpleProducerConsumer { 

    // The maximum runtime of the program. 
    private final static int MAX_RUNTIME_MINUTES = 60; 
    private final static Logger log = 
 LoggerFactory.getLogger(SimpleProducerConsumer.class); 

    /** 
     * Runs the SQS batching demonstration with user-configured parameters. 
     *  
     * Prompts for queue name, thread counts, batch size, message size, and 
 runtime. 
     * Creates producer and consumer threads to demonstrate batching performance. 
     *  
     * @param args command line arguments (not used) 
     * @throws InterruptedException if thread operations are interrupted 
     */ 
    public static void main(String[] args) throws InterruptedException { 

        final Scanner input = new Scanner(System.in); 

        System.out.print("Enter the queue name: "); 
        final String queueName = input.nextLine(); 

        System.out.print("Enter the number of producers: "); 
        final int producerCount = input.nextInt(); 

        System.out.print("Enter the number of consumers: "); 
        final int consumerCount = input.nextInt(); 

        System.out.print("Enter the number of messages per batch: "); 
        final int batchSize = input.nextInt(); 

        System.out.print("Enter the message size in bytes: "); 
        final int messageSizeByte = input.nextInt(); 

        System.out.print("Enter the run time in minutes: "); 
        final int runTimeMinutes = input.nextInt(); 

        // Create SQS async client and batch manager for all operations. 

Send and receive batches of messages 592



Amazon Simple Queue Service Developer Guide

        // The SqsAsyncBatchManager is created from the SqsAsyncClient using the 
        // batchManager() factory method, which provides default batching 
 configuration. 
        // This high-level library automatically handles request buffering and 
 batching 
        // while maintaining the same method signatures as SqsAsyncClient. 
        final SqsAsyncClient sqsAsyncClient = SqsAsyncClient.create(); 
        final SqsAsyncBatchManager batchManager = sqsAsyncClient.batchManager(); 

        final String queueUrl = 
 sqsAsyncClient.getQueueUrl(GetQueueUrlRequest.builder() 
                .queueName(queueName) 
                .build()).join().queueUrl(); 

        // The flag used to stop producer, consumer, and monitor threads. 
        final AtomicBoolean stop = new AtomicBoolean(false); 

        // Start the producers. 
        final AtomicInteger producedCount = new AtomicInteger(); 
        final Thread[] producers = new Thread[producerCount]; 
        for (int i = 0; i < producerCount; i++) { 
            if (batchSize == 1) { 
                producers[i] = new Producer(sqsAsyncClient, queueUrl, 
 messageSizeByte, 
                        producedCount, stop); 
            } else { 
                producers[i] = new BatchProducer(batchManager, queueUrl, 
 batchSize, 
                        messageSizeByte, producedCount, stop); 
            } 
            producers[i].start(); 
        } 

        // Start the consumers. 
        final AtomicInteger consumedCount = new AtomicInteger(); 
        final Thread[] consumers = new Thread[consumerCount]; 
        for (int i = 0; i < consumerCount; i++) { 
            if (batchSize == 1) { 
                consumers[i] = new Consumer(sqsAsyncClient, queueUrl, 
 consumedCount, stop); 
            } else { 
                consumers[i] = new BatchConsumer(batchManager, queueUrl, 
 batchSize, 
                        consumedCount, stop); 

Send and receive batches of messages 593



Amazon Simple Queue Service Developer Guide

            } 
            consumers[i].start(); 
        } 

        // Start the monitor thread. 
        final Thread monitor = new Monitor(producedCount, consumedCount, stop); 
        monitor.start(); 

        // Wait for the specified amount of time then stop. 
        Thread.sleep(TimeUnit.MINUTES.toMillis(Math.min(runTimeMinutes, 
                MAX_RUNTIME_MINUTES))); 
        stop.set(true); 

        // Join all threads. 
        for (int i = 0; i < producerCount; i++) { 
            producers[i].join(); 
        } 

        for (int i = 0; i < consumerCount; i++) { 
            consumers[i].join(); 
        } 

        monitor.interrupt(); 
        monitor.join(); 

        // Close resources 
        batchManager.close(); 
        sqsAsyncClient.close(); 
    } 

    /** 
     * Creates a random string of approximately the specified size in bytes. 
     *  
     * @param sizeByte the target size in bytes for the generated string 
     * @return a random string encoded in base-32 
     */ 
    private static String makeRandomString(int sizeByte) { 
        final byte[] bs = new byte[(int) Math.ceil(sizeByte * 5 / 8)]; 
        new Random().nextBytes(bs); 
        bs[0] = (byte) ((bs[0] | 64) & 127); 
        return new BigInteger(bs).toString(32); 
    } 

    /** 

Send and receive batches of messages 594



Amazon Simple Queue Service Developer Guide

     * Sends messages individually using SqsAsyncClient for baseline performance 
 measurement. 
     *  
     * This producer demonstrates traditional single-message operations without 
 batching. 
     * Each sendMessage() call results in a separate API request to SQS, 
 providing 
     * a performance baseline for comparison with the batch operations. 
     *  
     * The sendMessage() method signature is identical to 
 SqsAsyncBatchManager.sendMessage(), 
     * showing how the high-level batching library maintains API compatibility 
 while 
     * adding automatic optimization behind the scenes. 
     */ 
    private static class Producer extends Thread { 
        final SqsAsyncClient sqsAsyncClient; 
        final String queueUrl; 
        final AtomicInteger producedCount; 
        final AtomicBoolean stop; 
        final String theMessage; 

        /** 
         * Creates a producer thread for single-message operations. 
         *  
         * @param sqsAsyncClient the SQS client for sending messages 
         * @param queueUrl the URL of the target queue 
         * @param messageSizeByte the size of messages to generate 
         * @param producedCount shared counter for tracking sent messages 
         * @param stop shared flag to signal thread termination 
         */ 
        Producer(SqsAsyncClient sqsAsyncClient, String queueUrl, int 
 messageSizeByte, 
                 AtomicInteger producedCount, AtomicBoolean stop) { 
            this.sqsAsyncClient = sqsAsyncClient; 
            this.queueUrl = queueUrl; 
            this.producedCount = producedCount; 
            this.stop = stop; 
            this.theMessage = makeRandomString(messageSizeByte); 
        } 

        /** 
         * Continuously sends messages until the stop flag is set. 
         *  

Send and receive batches of messages 595



Amazon Simple Queue Service Developer Guide

         * Uses SqsAsyncClient.sendMessage() directly, resulting in one API call 
 per message. 
         * This approach provides baseline performance metrics for comparison 
 with batching. 
         * Each call blocks until the individual message is sent, demonstrating 
 traditional 
         * one-request-per-operation behavior. 
         */ 
        public void run() { 
            try { 
                while (!stop.get()) { 
                    sqsAsyncClient.sendMessage(SendMessageRequest.builder() 
                            .queueUrl(queueUrl) 
                            .messageBody(theMessage) 
                            .build()).join(); 
                    producedCount.incrementAndGet(); 
                } 
            } catch (SdkException | java.util.concurrent.CompletionException e) { 
                // Handle both SdkException and CompletionException from async 
 operations. 
                // If this unlikely condition occurs, stop. 
                log.error("Producer: " + e.getMessage()); 
                System.exit(1); 
            } 
        } 
    } 

    /** 
     * Sends messages using SqsAsyncBatchManager for automatic request batching 
 and optimization. 
     *  
     * This producer demonstrates the AWS SDK for Java 2.x high-level batching 
 library. 
     * The SqsAsyncBatchManager automatically buffers individual sendMessage() 
 calls and 
     * sends them as batches when thresholds are reached: 
     * - maxBatchSize: Maximum 10 messages per batch (default) 
     * - sendRequestFrequency: 200ms timeout before sending partial batches 
 (default) 
     *  
     * Key advantages of the batching approach: 
     * - Identical API: batchManager.sendMessage() has the same signature as 
 sqsAsyncClient.sendMessage() 
     * - Automatic optimization: No code changes needed to benefit from batching 

Send and receive batches of messages 596



Amazon Simple Queue Service Developer Guide

     * - Transparent buffering: The SDK handles batching logic internally 
     * - Reduced API calls: Multiple messages sent in single batch requests 
     * - Lower costs: Fewer API calls result in reduced SQS charges 
     * - Higher throughput: Batch operations process significantly more messages 
 per second 
     */ 
    private static class BatchProducer extends Thread { 
        final SqsAsyncBatchManager batchManager; 
        final String queueUrl; 
        final int batchSize; 
        final AtomicInteger producedCount; 
        final AtomicBoolean stop; 
        final String theMessage; 

        /** 
         * Creates a producer thread for batch operations. 
         *  
         * @param batchManager the batch manager for efficient message sending 
         * @param queueUrl the URL of the target queue 
         * @param batchSize the number of messages to send per batch 
         * @param messageSizeByte the size of messages to generate 
         * @param producedCount shared counter for tracking sent messages 
         * @param stop shared flag to signal thread termination 
         */ 
        BatchProducer(SqsAsyncBatchManager batchManager, String queueUrl, int 
 batchSize, 
                      int messageSizeByte, AtomicInteger producedCount, 
                      AtomicBoolean stop) { 
            this.batchManager = batchManager; 
            this.queueUrl = queueUrl; 
            this.batchSize = batchSize; 
            this.producedCount = producedCount; 
            this.stop = stop; 
            this.theMessage = makeRandomString(messageSizeByte); 
        } 

        /** 
         * Continuously sends batches of messages using the high-level batching 
 library. 
         *  
         * Notice how batchManager.sendMessage() uses the exact same method 
 signature 
         * and request builder pattern as SqsAsyncClient.sendMessage(). This 
 demonstrates 

Send and receive batches of messages 597



Amazon Simple Queue Service Developer Guide

         * the drop-in replacement capability of the SqsAsyncBatchManager. 
         *  
         * The SDK automatically: 
         * - Buffers individual sendMessage() calls internally 
         * - Groups them into batch requests when thresholds are met 
         * - Sends SendMessageBatchRequest operations to SQS 
         * - Returns individual CompletableFuture responses for each message 
         *  
         * This transparent batching provides significant performance 
 improvements 
         * without requiring changes to application logic or error handling 
 patterns. 
         */ 
        public void run() { 
            try { 
                while (!stop.get()) { 
                    // Send multiple messages using the high-level batch manager. 
                    // Each batchManager.sendMessage() call uses identical syntax 
 to 
                    // sqsAsyncClient.sendMessage(), demonstrating API 
 compatibility. 
                    // The SDK automatically buffers these calls and sends them 
 as 
                    // batch operations when maxBatchSize (10) or 
 sendRequestFrequency (200ms) 
                    // thresholds are reached, significantly improving 
 throughput. 
                    for (int i = 0; i < batchSize; i++) { 
                        CompletableFuture<SendMessageResponse> future = 
 batchManager.sendMessage( 
                                SendMessageRequest.builder() 
                                        .queueUrl(queueUrl) 
                                        .messageBody(theMessage) 
                                        .build()); 
                         
                        // Handle the response asynchronously 
                        future.whenComplete((response, throwable) -> { 
                            if (throwable == null) { 
                                producedCount.incrementAndGet(); 
                            } else if (!(throwable instanceof 
 java.util.concurrent.CancellationException) && 
                                      !(throwable.getMessage() != null && 
 throwable.getMessage().contains("executor not accepting a task"))) { 

Send and receive batches of messages 598



Amazon Simple Queue Service Developer Guide

                                log.error("BatchProducer: Failed to send 
 message", throwable); 
                            } 
                            // Ignore CancellationException and executor shutdown 
 errors - expected during shutdown 
                        }); 
                    } 
                     
                    // Small delay to allow batching to occur 
                    Thread.sleep(10); 
                } 
            } catch (InterruptedException e) { 
                Thread.currentThread().interrupt(); 
                log.error("BatchProducer interrupted: " + e.getMessage()); 
            } catch (SdkException | java.util.concurrent.CompletionException e) { 
                log.error("BatchProducer: " + e.getMessage()); 
                System.exit(1); 
            } 
        } 
    } 

    /** 
     * Receives and deletes messages individually using SqsAsyncClient for 
 baseline measurement. 
     *  
     * This consumer demonstrates traditional single-message operations without 
 batching. 
     * Each receiveMessage() and deleteMessage() call results in separate API 
 requests, 
     * providing a performance baseline for comparison with batch operations. 
     *  
     * The method signatures are identical to SqsAsyncBatchManager methods: 
     * - receiveMessage() matches batchManager.receiveMessage() 
     * - deleteMessage() matches batchManager.deleteMessage() 
     *  
     * This API consistency allows easy migration to the high-level batching 
 library. 
     */ 
    private static class Consumer extends Thread { 
        final SqsAsyncClient sqsAsyncClient; 
        final String queueUrl; 
        final AtomicInteger consumedCount; 
        final AtomicBoolean stop; 

Send and receive batches of messages 599



Amazon Simple Queue Service Developer Guide

        /** 
         * Creates a consumer thread for single-message operations. 
         *  
         * @param sqsAsyncClient the SQS client for receiving messages 
         * @param queueUrl the URL of the source queue 
         * @param consumedCount shared counter for tracking processed messages 
         * @param stop shared flag to signal thread termination 
         */ 
        Consumer(SqsAsyncClient sqsAsyncClient, String queueUrl, AtomicInteger 
 consumedCount, 
                 AtomicBoolean stop) { 
            this.sqsAsyncClient = sqsAsyncClient; 
            this.queueUrl = queueUrl; 
            this.consumedCount = consumedCount; 
            this.stop = stop; 
        } 

        /** 
         * Continuously receives and deletes messages using traditional single-
request operations. 
         *  
         * Uses SqsAsyncClient methods directly: 
         * - receiveMessage(): One API call per receive operation 
         * - deleteMessage(): One API call per delete operation 
         *  
         * This approach demonstrates the baseline performance without batching 
 optimization. 
         * Compare these method calls with the identical signatures used in 
 BatchConsumer 
         * to see how the high-level batching library maintains API 
 compatibility. 
         */ 
        public void run() { 
            try { 
                while (!stop.get()) { 
                    try { 
                        final ReceiveMessageResponse result = 
 sqsAsyncClient.receiveMessage( 
                                ReceiveMessageRequest.builder() 
                                        .queueUrl(queueUrl) 
                                        .build()).join(); 

                        if (!result.messages().isEmpty()) { 
                            final Message m = result.messages().get(0); 

Send and receive batches of messages 600



Amazon Simple Queue Service Developer Guide

                            // Note: deleteMessage() signature identical to 
 batchManager.deleteMessage() 
                            
 sqsAsyncClient.deleteMessage(DeleteMessageRequest.builder() 
                                    .queueUrl(queueUrl) 
                                    .receiptHandle(m.receiptHandle()) 
                                    .build()).join(); 
                            consumedCount.incrementAndGet(); 
                        } 
                    } catch (SdkException | 
 java.util.concurrent.CompletionException e) { 
                        log.error(e.getMessage()); 
                    } 
                } 
            } catch (SdkException | java.util.concurrent.CompletionException e) { 
                // Handle both SdkException and CompletionException from async 
 operations. 
                // If this unlikely condition occurs, stop. 
                log.error("Consumer: " + e.getMessage()); 
                System.exit(1); 
            } 
        } 
    } 

    /** 
     * Receives and deletes messages using SqsAsyncBatchManager for automatic 
 optimization. 
     *  
     * This consumer demonstrates the AWS SDK for Java 2.x high-level batching 
 library 
     * for message consumption. The SqsAsyncBatchManager provides two key 
 optimizations: 
     *  
     * 1. Receive optimization: Maintains an internal buffer of messages fetched 
 in the 
     *    background, so receiveMessage() calls return immediately from the 
 buffer 
     * 2. Delete batching: Automatically buffers deleteMessage() calls and sends 
 them 
     *    as DeleteMessageBatchRequest operations when thresholds are reached 
     *  
     * Key features: 
     * - Identical API: receiveMessage() and deleteMessage() have the same 
 signatures 

Send and receive batches of messages 601



Amazon Simple Queue Service Developer Guide

     *   as SqsAsyncClient methods, making this a true drop-in replacement 
     * - Background fetching: The batch manager continuously fetches messages to 
 keep 
     *   the internal buffer populated, reducing receive latency 
     * - Automatic delete batching: Individual deleteMessage() calls are buffered 
 and 
     *   sent as batch operations (up to 10 per batch, 200ms frequency) 
     * - Transparent optimization: No application logic changes needed to benefit 
     *  
     * Performance benefits: 
     * - Reduced API calls through automatic batching of delete operations 
     * - Lower latency for receives due to background message buffering 
     * - Higher overall throughput with fewer network round trips 
     */ 
    private static class BatchConsumer extends Thread { 
        final SqsAsyncBatchManager batchManager; 
        final String queueUrl; 
        final int batchSize; 
        final AtomicInteger consumedCount; 
        final AtomicBoolean stop; 

        /** 
         * Creates a consumer thread for batch operations. 
         *  
         * @param batchManager the batch manager for efficient message processing 
         * @param queueUrl the URL of the source queue 
         * @param batchSize the maximum number of messages to receive per batch 
         * @param consumedCount shared counter for tracking processed messages 
         * @param stop shared flag to signal thread termination 
         */ 
        BatchConsumer(SqsAsyncBatchManager batchManager, String queueUrl, int 
 batchSize, 
                      AtomicInteger consumedCount, AtomicBoolean stop) { 
            this.batchManager = batchManager; 
            this.queueUrl = queueUrl; 
            this.batchSize = batchSize; 
            this.consumedCount = consumedCount; 
            this.stop = stop; 
        } 

        /** 
         * Continuously receives and deletes messages using the high-level 
 batching library. 
         *  

Send and receive batches of messages 602



Amazon Simple Queue Service Developer Guide

         * Demonstrates the key advantage of SqsAsyncBatchManager: identical 
 method signatures 
         * with automatic optimization. Notice how: 
         *  
         * - batchManager.receiveMessage() uses the same syntax as 
 sqsAsyncClient.receiveMessage() 
         * - batchManager.deleteMessage() uses the same syntax as 
 sqsAsyncClient.deleteMessage() 
         *  
         * Behind the scenes, the batch manager: 
         * 1. Maintains an internal message buffer populated by background 
 fetching 
         * 2. Returns messages immediately from the buffer (reduced latency) 
         * 3. Automatically batches deleteMessage() calls into 
 DeleteMessageBatchRequest operations 
         * 4. Sends batch deletes when maxBatchSize (10) or sendRequestFrequency 
 (200ms) is reached 
         *  
         * This provides significant performance improvements with zero code 
 changes 
         * compared to traditional SqsAsyncClient usage patterns. 
         */ 
        public void run() { 
            try { 
                while (!stop.get()) { 
                    // Receive messages using the high-level batch manager. 
                    // This call uses identical syntax to 
 sqsAsyncClient.receiveMessage() 
                    // but benefits from internal message buffering for improved 
 performance. 
                    final ReceiveMessageResponse result = 
 batchManager.receiveMessage( 
                            ReceiveMessageRequest.builder() 
                                    .queueUrl(queueUrl) 
                                    .maxNumberOfMessages(Math.min(batchSize, 10)) 
                                    .build()).join(); 

                    if (!result.messages().isEmpty()) { 
                        final List<Message> messages = result.messages(); 
                         
                        // Delete messages using the batch manager. 
                        // Each deleteMessage() call uses identical syntax to 
 SqsAsyncClient 

Send and receive batches of messages 603



Amazon Simple Queue Service Developer Guide

                        // but the SDK automatically buffers these calls and 
 sends them 
                        // as DeleteMessageBatchRequest operations for optimal 
 performance. 
                        for (Message message : messages) { 
                            CompletableFuture<DeleteMessageResponse> future = 
 batchManager.deleteMessage( 
                                    DeleteMessageRequest.builder() 
                                            .queueUrl(queueUrl) 
                                            
 .receiptHandle(message.receiptHandle()) 
                                            .build()); 
                             
                            future.whenComplete((response, throwable) -> { 
                                if (throwable == null) { 
                                    consumedCount.incrementAndGet(); 
                                } else if (!(throwable instanceof 
 java.util.concurrent.CancellationException) && 
                                          !(throwable.getMessage() != null && 
 throwable.getMessage().contains("executor not accepting a task"))) { 
                                    log.error("BatchConsumer: Failed to delete 
 message", throwable); 
                                } 
                                // Ignore CancellationException and executor 
 shutdown errors - expected during shutdown 
                            }); 
                        } 
                    } 
                     
                    // Small delay to prevent tight polling 
                    Thread.sleep(10); 
                } 
            } catch (InterruptedException e) { 
                Thread.currentThread().interrupt(); 
                log.error("BatchConsumer interrupted: " + e.getMessage()); 
            } catch (SdkException | java.util.concurrent.CompletionException e) { 
                // Handle both SdkException and CompletionException from async 
 operations. 
                // If this unlikely condition occurs, stop. 
                log.error("BatchConsumer: " + e.getMessage()); 
                System.exit(1); 
            } 
        } 
    } 

Send and receive batches of messages 604



Amazon Simple Queue Service Developer Guide

    /** 
     * Displays real-time throughput statistics every second. 
     *  
     * This thread logs the current count of produced and consumed messages 
     * to help you monitor the performance comparison. 
     */ 
    private static class Monitor extends Thread { 
        private final AtomicInteger producedCount; 
        private final AtomicInteger consumedCount; 
        private final AtomicBoolean stop; 

        /** 
         * Creates a monitoring thread that displays throughput statistics. 
         *  
         * @param producedCount shared counter for messages sent 
         * @param consumedCount shared counter for messages processed 
         * @param stop shared flag to signal thread termination 
         */ 
        Monitor(AtomicInteger producedCount, AtomicInteger consumedCount, 
                AtomicBoolean stop) { 
            this.producedCount = producedCount; 
            this.consumedCount = consumedCount; 
            this.stop = stop; 
        } 

        /** 
         * Logs throughput statistics every second until stopped. 
         *  
         * Displays the current count of produced and consumed messages 
         * to help monitor the performance comparison between batching 
 strategies. 
         */ 
        public void run() { 
            try { 
                while (!stop.get()) { 
                    Thread.sleep(1000); 
                    log.info("produced messages = " + producedCount.get() 
                            + ", consumed messages = " + consumedCount.get()); 
                } 
            } catch (InterruptedException e) { 
                // Allow the thread to exit. 
            } 
        } 

Send and receive batches of messages 605



Amazon Simple Queue Service Developer Guide

    }
}

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• CreateQueue

• DeleteMessage

• DeleteMessageBatch

• DeleteQueue

• ReceiveMessage

• SendMessage

• SendMessageBatch

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

Create functions to wrap Amazon SQS message functions.

import logging
import sys

import boto3
from botocore.exceptions import ClientError

import queue_wrapper

logger = logging.getLogger(__name__)
sqs = boto3.resource("sqs")

def send_messages(queue, messages): 
    """ 
    Send a batch of messages in a single request to an SQS queue. 

Send and receive batches of messages 606

https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/CreateQueue
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/DeleteMessage
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/DeleteMessageBatch
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/DeleteQueue
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/ReceiveMessage
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/SendMessage
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/SendMessageBatch
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

    This request may return overall success even when some messages were not 
 sent. 
    The caller must inspect the Successful and Failed lists in the response and 
    resend any failed messages. 

    :param queue: The queue to receive the messages. 
    :param messages: The messages to send to the queue. These are simplified to 
                     contain only the message body and attributes. 
    :return: The response from SQS that contains the list of successful and 
 failed 
             messages. 
    """ 
    try: 
        entries = [ 
            { 
                "Id": str(ind), 
                "MessageBody": msg["body"], 
                "MessageAttributes": msg["attributes"], 
            } 
            for ind, msg in enumerate(messages) 
        ] 
        response = queue.send_messages(Entries=entries) 
        if "Successful" in response: 
            for msg_meta in response["Successful"]: 
                logger.info( 
                    "Message sent: %s: %s", 
                    msg_meta["MessageId"], 
                    messages[int(msg_meta["Id"])]["body"], 
                ) 
        if "Failed" in response: 
            for msg_meta in response["Failed"]: 
                logger.warning( 
                    "Failed to send: %s: %s", 
                    msg_meta["MessageId"], 
                    messages[int(msg_meta["Id"])]["body"], 
                ) 
    except ClientError as error: 
        logger.exception("Send messages failed to queue: %s", queue) 
        raise error 
    else: 
        return response

Send and receive batches of messages 607



Amazon Simple Queue Service Developer Guide

def receive_messages(queue, max_number, wait_time): 
    """ 
    Receive a batch of messages in a single request from an SQS queue. 

    :param queue: The queue from which to receive messages. 
    :param max_number: The maximum number of messages to receive. The actual 
 number 
                       of messages received might be less. 
    :param wait_time: The maximum time to wait (in seconds) before returning. 
 When 
                      this number is greater than zero, long polling is used. 
 This 
                      can result in reduced costs and fewer false empty 
 responses. 
    :return: The list of Message objects received. These each contain the body 
             of the message and metadata and custom attributes. 
    """ 
    try: 
        messages = queue.receive_messages( 
            MessageAttributeNames=["All"], 
            MaxNumberOfMessages=max_number, 
            WaitTimeSeconds=wait_time, 
        ) 
        for msg in messages: 
            logger.info("Received message: %s: %s", msg.message_id, msg.body) 
    except ClientError as error: 
        logger.exception("Couldn't receive messages from queue: %s", queue) 
        raise error 
    else: 
        return messages

def delete_messages(queue, messages): 
    """ 
    Delete a batch of messages from a queue in a single request. 

    :param queue: The queue from which to delete the messages. 
    :param messages: The list of messages to delete. 
    :return: The response from SQS that contains the list of successful and 
 failed 
             message deletions. 
    """ 
    try: 

Send and receive batches of messages 608



Amazon Simple Queue Service Developer Guide

        entries = [ 
            {"Id": str(ind), "ReceiptHandle": msg.receipt_handle} 
            for ind, msg in enumerate(messages) 
        ] 
        response = queue.delete_messages(Entries=entries) 
        if "Successful" in response: 
            for msg_meta in response["Successful"]: 
                logger.info("Deleted %s", 
 messages[int(msg_meta["Id"])].receipt_handle) 
        if "Failed" in response: 
            for msg_meta in response["Failed"]: 
                logger.warning( 
                    "Could not delete %s", 
 messages[int(msg_meta["Id"])].receipt_handle 
                ) 
    except ClientError: 
        logger.exception("Couldn't delete messages from queue %s", queue) 
    else: 
        return response

Use the wrapper functions to send and receive messages in batches.

def usage_demo(): 
    """ 
    Shows how to: 
    * Read the lines from this Python file and send the lines in 
      batches of 10 as messages to a queue. 
    * Receive the messages in batches until the queue is empty. 
    * Reassemble the lines of the file and verify they match the original file. 
    """ 

    def pack_message(msg_path, msg_body, msg_line): 
        return { 
            "body": msg_body, 
            "attributes": { 
                "path": {"StringValue": msg_path, "DataType": "String"}, 
                "line": {"StringValue": str(msg_line), "DataType": "String"}, 
            }, 
        } 

Send and receive batches of messages 609



Amazon Simple Queue Service Developer Guide

    def unpack_message(msg): 
        return ( 
            msg.message_attributes["path"]["StringValue"], 
            msg.body, 
            int(msg.message_attributes["line"]["StringValue"]), 
        ) 

    print("-" * 88) 
    print("Welcome to the Amazon Simple Queue Service (Amazon SQS) demo!") 
    print("-" * 88) 

    queue = queue_wrapper.create_queue("sqs-usage-demo-message-wrapper") 

    with open(__file__) as file: 
        lines = file.readlines() 

    line = 0 
    batch_size = 10 
    received_lines = [None] * len(lines) 
    print(f"Sending file lines in batches of {batch_size} as messages.") 
    while line < len(lines): 
        messages = [ 
            pack_message(__file__, lines[index], index) 
            for index in range(line, min(line + batch_size, len(lines))) 
        ] 
        line = line + batch_size 
        send_messages(queue, messages) 
        print(".", end="") 
        sys.stdout.flush() 
    print(f"Done. Sent {len(lines) - 1} messages.") 

    print(f"Receiving, handling, and deleting messages in batches of 
 {batch_size}.") 
    more_messages = True 
    while more_messages: 
        received_messages = receive_messages(queue, batch_size, 2) 
        print(".", end="") 
        sys.stdout.flush() 
        for message in received_messages: 
            path, body, line = unpack_message(message) 
            received_lines[line] = body 
        if received_messages: 
            delete_messages(queue, received_messages) 
        else: 

Send and receive batches of messages 610



Amazon Simple Queue Service Developer Guide

            more_messages = False 
    print("Done.") 

    if all([lines[index] == received_lines[index] for index in 
 range(len(lines))]): 
        print(f"Successfully reassembled all file lines!") 
    else: 
        print(f"Uh oh, some lines were missed!") 

    queue.delete() 

    print("Thanks for watching!") 
    print("-" * 88)

• For API details, see the following topics in Amazon SDK for Python (Boto3) API Reference.

• CreateQueue

• DeleteMessage

• DeleteMessageBatch

• DeleteQueue

• ReceiveMessage

• SendMessage

• SendMessageBatch

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use the Amazon Message Processing Framework for .NET to publish 
and receive Amazon SQS messages

The following code example shows how to create applications that publish and receive Amazon 
SQS messages using the Amazon Message Processing Framework for .NET.

Use the Amazon Message Processing Framework for .NET with Amazon SQS 611

https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/CreateQueue
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/DeleteMessage
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/DeleteMessageBatch
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/DeleteQueue
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/ReceiveMessage
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/SendMessage
https://docs.amazonaws.cn/goto/boto3/sqs-2012-11-05/SendMessageBatch


Amazon Simple Queue Service Developer Guide

.NET

Amazon SDK for .NET

Provides a tutorial for the Amazon Message Processing Framework for .NET. The tutorial 
creates a web application that allows the user to publish an Amazon SQS message and a 
command-line application that receives the message.

For complete source code and instructions on how to set up and run, see the full tutorial in 
the Amazon SDK for .NET Developer Guide and the example on GitHub.

Services used in this example

• Amazon SQS

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Use the Amazon SQS Java Messaging Library to work with the Java 
Message Service (JMS) interface for Amazon SQS

The following code example shows how to use the Amazon SQS Java Messaging Library to work 
with the JMS interface.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

The following examples work with standard Amazon SQS queues and include:

• Sending a text message.

• Receiving messages synchronously.

• Receiving messages asynchronously.

Use the Amazon SQS Java Messaging Library to work with the JMS interface 612

https://docs.amazonaws.cn/sdk-for-net/latest/developer-guide/msg-proc-fw-get-started.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/MessageProcessingFramework
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

• Receiving messages using CLIENT_ACKNOWLEDGE mode.

• Receiving messages using the UNORDERED_ACKNOWLEDGE mode.

• Using Spring to inject dependencies.

• A utility class that provides common methods used by the other examples.

For more information on using JMS with Amazon SQS, see the Amazon SQS Developer 
Guide.

Sending a text message.

    /** 
     * This method establishes a connection to a standard Amazon SQS queue using 
 the Amazon SQS 
     * Java Messaging Library and sends text messages to it. It uses JMS (Java 
 Message Service) API 
     * with automatic acknowledgment mode to ensure reliable message delivery, 
 and automatically 
     * manages all messaging resources. 
     * 
     * @throws JMSException If there is a problem connecting to or sending 
 messages to the queue 
     */ 
    public static void doSendTextMessage() throws JMSException { 
        // Create a connection factory. 
        SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
                new ProviderConfiguration(), 
                SqsClient.create() 
        ); 

        // Create the connection in a try-with-resources statement so that it's 
 closed automatically. 
        try (SQSConnection connection = connectionFactory.createConnection()) { 

            // Create the queue if needed. 
            SqsJmsExampleUtils.ensureQueueExists(connection, QUEUE_NAME, 
 SqsJmsExampleUtils.QUEUE_VISIBILITY_TIMEOUT); 

            // Create a session that uses the JMS auto-acknowledge mode. 
            Session session = connection.createSession(false, 
 Session.AUTO_ACKNOWLEDGE); 
            MessageProducer producer = 
 session.createProducer(session.createQueue(QUEUE_NAME)); 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 613

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-java-message-service-jms-client.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-java-message-service-jms-client.html


Amazon Simple Queue Service Developer Guide

            createAndSendMessages(session, producer); 
        } // The connection closes automatically. This also closes the session. 
        LOGGER.info("Connection closed"); 
    } 

    /** 
     * This method reads text input from the keyboard and sends each line as a 
 separate message 
     * to a standard Amazon SQS queue using the Amazon SQS Java Messaging 
 Library. It continues 
     * to accept input until the user enters an empty line, using JMS (Java 
 Message Service) API to 
     * handle the message delivery. 
     * 
     * @param session The JMS session used to create messages 
     * @param producer The JMS message producer used to send messages to the 
 queue 
     */ 
    private static void createAndSendMessages(Session session, MessageProducer 
 producer) { 
        BufferedReader inputReader = new BufferedReader( 
                new InputStreamReader(System.in, Charset.defaultCharset())); 

        try { 
            String input; 
            while (true) { 
                LOGGER.info("Enter message to send (leave empty to exit): "); 
                input = inputReader.readLine(); 
                if (input == null || input.isEmpty()) break; 

                TextMessage message = session.createTextMessage(input); 
                producer.send(message); 
                LOGGER.info("Send message {}", message.getJMSMessageID()); 
            } 
        } catch (EOFException e) { 
            // Just return on EOF 
        } catch (IOException e) { 
            LOGGER.error("Failed reading input: {}", e.getMessage(), e); 
        } catch (JMSException e) { 
            LOGGER.error("Failed sending message: {}", e.getMessage(), e); 
        } 
    }

Use the Amazon SQS Java Messaging Library to work with the JMS interface 614



Amazon Simple Queue Service Developer Guide

Receiving messages synchronously.

    /** 
     * This method receives messages from a standard Amazon SQS queue using the 
 Amazon SQS Java 
     * Messaging Library. It creates a connection to the queue using JMS (Java 
 Message Service), 
     * waits for messages to arrive, and processes them one at a time. The method 
 handles all 
     * necessary setup and cleanup of messaging resources. 
     * 
     * @throws JMSException If there is a problem connecting to or receiving 
 messages from the queue 
     */ 
    public static void doReceiveMessageSync() throws JMSException { 
        // Create a connection factory. 
        SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
                new ProviderConfiguration(), 
                SqsClient.create() 
        ); 

        // Create a connection. 
        try (SQSConnection connection = connectionFactory.createConnection() ) { 

            // Create the queue if needed. 
            SqsJmsExampleUtils.ensureQueueExists(connection, QUEUE_NAME, 
 SqsJmsExampleUtils.QUEUE_VISIBILITY_TIMEOUT); 

            // Create a session. 
            Session session = connection.createSession(false, 
 Session.CLIENT_ACKNOWLEDGE); 
            MessageConsumer consumer = 
 session.createConsumer(session.createQueue(QUEUE_NAME)); 

            connection.start(); 

            receiveMessages(consumer); 
        }  // The connection closes automatically. This also closes the session. 
        LOGGER.info("Connection closed"); 
    } 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 615



Amazon Simple Queue Service Developer Guide

    /** 
     * This method continuously checks for new messages from a standard Amazon 
 SQS queue using 
     * the Amazon SQS Java Messaging Library. It waits up to 20 seconds for each 
 message, processes 
     * it using JMS (Java Message Service), and confirms receipt. The method 
 stops checking for 
     * messages after 20 seconds of no activity. 
     * 
     * @param consumer The JMS message consumer that receives messages from the 
 queue 
     */ 
    private static void receiveMessages(MessageConsumer consumer) { 
        try { 
            while (true) { 
                LOGGER.info("Waiting for messages..."); 
                // Wait 1 minute for a message 
                Message message = 
 consumer.receive(Duration.ofSeconds(20).toMillis()); 
                if (message == null) { 
                    LOGGER.info("Shutting down after 20 seconds of silence."); 
                    break; 
                } 
                SqsJmsExampleUtils.handleMessage(message); 
                message.acknowledge(); 
                LOGGER.info("Acknowledged message {}", 
 message.getJMSMessageID()); 
            } 
        } catch (JMSException e) { 
            LOGGER.error("Error receiving from SQS: {}", e.getMessage(), e); 
        } 
    }

Receiving messages asynchronously.

    /** 
     * This method sets up automatic message handling for a standard Amazon SQS 
 queue using the 
     * Amazon SQS Java Messaging Library. It creates a listener that processes 
 messages as soon 
     * as they arrive using JMS (Java Message Service), runs for 5 seconds, then 
 cleans up all 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 616



Amazon Simple Queue Service Developer Guide

     * messaging resources. 
     * 
     * @throws JMSException If there is a problem connecting to or receiving 
 messages from the queue 
     */ 
    public static void doReceiveMessageAsync() throws JMSException { 
        // Create a connection factory. 
        SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
                new ProviderConfiguration(), 
                SqsClient.create() 
        ); 

        // Create a connection. 
        try (SQSConnection connection = connectionFactory.createConnection() ) { 

            // Create the queue if needed. 
            SqsJmsExampleUtils.ensureQueueExists(connection, QUEUE_NAME, 
 SqsJmsExampleUtils.QUEUE_VISIBILITY_TIMEOUT); 

            // Create a session. 
            Session session = connection.createSession(false, 
 Session.CLIENT_ACKNOWLEDGE); 

            try { 
                // Create a consumer for the queue. 
                MessageConsumer consumer = 
 session.createConsumer(session.createQueue(QUEUE_NAME)); 
                // Provide an implementation of the MessageListener interface, 
 which has a single 'onMessage' method. 
                // We use a lambda expression for the implementation. 
                consumer.setMessageListener(message -> { 
                    try { 
                        SqsJmsExampleUtils.handleMessage(message); 
                        message.acknowledge(); 
                    } catch (JMSException e) { 
                        LOGGER.error("Error processing message: {}", 
 e.getMessage()); 
                    } 
                }); 
                // Start receiving incoming messages. 
                connection.start(); 
                LOGGER.info("Waiting for messages..."); 
            } catch (JMSException e) { 
                throw new RuntimeException(e); 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 617



Amazon Simple Queue Service Developer Guide

            } 
            try { 
                Thread.sleep(5000); 
            } catch (InterruptedException e) { 
                throw new RuntimeException(e); 
            } 
        }  // The connection closes automatically. This also closes the session. 
        LOGGER.info( "Connection closed" ); 
    }

Receiving messages using CLIENT_ACKNOWLEDGE mode.

    /** 
     * This method demonstrates how message acknowledgment affects message 
 processing in a standard 
     * Amazon SQS queue using the Amazon SQS Java Messaging Library. It sends 
 messages to the queue, 
     * then shows how JMS (Java Message Service) client acknowledgment mode 
 handles both explicit 
     * and implicit message confirmations, including how acknowledging one 
 message can automatically 
     * acknowledge previous messages. 
     * 
     * @throws JMSException If there is a problem with the messaging operations 
     */ 
    public static void doReceiveMessagesSyncClientAcknowledge() throws 
 JMSException { 
        // Create a connection factory. 
        SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
                new ProviderConfiguration(), 
                SqsClient.create() 
        ); 

        // Create the connection in a try-with-resources statement so that it's 
 closed automatically. 
        try (SQSConnection connection = connectionFactory.createConnection() ) { 

            // Create the queue if needed. 
            SqsJmsExampleUtils.ensureQueueExists(connection, QUEUE_NAME, 
 TIME_OUT_SECONDS); 

            // Create a session with client acknowledge mode. 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 618



Amazon Simple Queue Service Developer Guide

            Session session = connection.createSession(false, 
 Session.CLIENT_ACKNOWLEDGE); 

            // Create a producer and consumer. 
            MessageProducer producer = 
 session.createProducer(session.createQueue(QUEUE_NAME)); 
            MessageConsumer consumer = 
 session.createConsumer(session.createQueue(QUEUE_NAME)); 

            // Open the connection. 
            connection.start(); 

            // Send two text messages. 
            sendMessage(producer, session, "Message 1"); 
            sendMessage(producer, session, "Message 2"); 

            // Receive a message and don't acknowledge it. 
            receiveMessage(consumer, false); 

            // Receive another message and acknowledge it. 
            receiveMessage(consumer, true); 

            // Wait for the visibility time out, so that unacknowledged messages 
 reappear in the queue, 
            LOGGER.info("Waiting for visibility timeout..."); 
            try { 
                Thread.sleep(TIME_OUT_MILLIS); 
            } catch (InterruptedException e) { 
                LOGGER.error("Interrupted while waiting for visibility timeout", 
 e); 
                Thread.currentThread().interrupt(); 
                throw new RuntimeException("Processing interrupted", e); 
            } 

            /*  We will attempt to receive another message, but none will be 
 available. This is because in 
                CLIENT_ACKNOWLEDGE mode, when we acknowledged the second message, 
 all previous messages were 
                automatically acknowledged as well. Therefore, although we never 
 directly acknowledged the first 
                message, it was implicitly acknowledged when we confirmed the 
 second one. */ 
            receiveMessage(consumer, true); 
        } // The connection closes automatically. This also closes the session. 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 619



Amazon Simple Queue Service Developer Guide

        LOGGER.info("Connection closed."); 

    } 

    /** 
     * Sends a text message using the specified JMS MessageProducer and Session. 
     * 
     * @param producer    The JMS MessageProducer used to send the message 
     * @param session     The JMS Session used to create the text message 
     * @param messageText The text content to be sent in the message 
     * @throws JMSException If there is an error creating or sending the message 
     */ 
    private static void sendMessage(MessageProducer producer, Session session, 
 String messageText) throws JMSException { 
        // Create a text message and send it. 
        producer.send(session.createTextMessage(messageText)); 
    } 

    /** 
     * Receives and processes a message from a JMS queue using the specified 
 consumer. 
     * The method waits for a message until the configured timeout period is 
 reached. 
     * If a message is received, it is logged and optionally acknowledged based 
 on the 
     * acknowledge parameter. 
     * 
     * @param consumer    The JMS MessageConsumer used to receive messages from 
 the queue 
     * @param acknowledge Boolean flag indicating whether to acknowledge the 
 message. 
     *                    If true, the message will be acknowledged after 
 processing 
     * @throws JMSException If there is an error receiving, processing, or 
 acknowledging the message 
     */ 
    private static void receiveMessage(MessageConsumer consumer, boolean 
 acknowledge) throws JMSException { 
        // Receive a message. 
        Message message = consumer.receive(TIME_OUT_MILLIS); 

        if (message == null) { 
            LOGGER.info("Queue is empty!"); 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 620



Amazon Simple Queue Service Developer Guide

        } else { 
            // Since this queue has only text messages, cast the message object 
 and print the text. 
            LOGGER.info("Received: {}    Acknowledged: {}", ((TextMessage) 
 message).getText(), acknowledge); 

            // Acknowledge the message if asked. 
            if (acknowledge) message.acknowledge(); 
        } 
    }

Receiving messages using the UNORDERED_ACKNOWLEDGE mode.

    /** 
     * Demonstrates message acknowledgment behavior in UNORDERED_ACKNOWLEDGE mode 
 with Amazon SQS JMS. 
     * In this mode, each message must be explicitly acknowledged regardless of 
 receive order. 
     * Unacknowledged messages return to the queue after the visibility timeout 
 expires, 
     * unlike CLIENT_ACKNOWLEDGE mode where acknowledging one message 
 acknowledges all previous messages. 
     * 
     * @throws JMSException         If a JMS-related error occurs during message 
 operations 
     */ 
    public static void doReceiveMessagesUnorderedAcknowledge() throws 
 JMSException { 
        // Create a connection factory. 
        SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
                new ProviderConfiguration(), 
                SqsClient.create() 
        ); 

        // Create the connection in a try-with-resources statement so that it's 
 closed automatically. 
        try( SQSConnection connection = connectionFactory.createConnection() ) { 

            // Create the queue if needed. 
            SqsJmsExampleUtils.ensureQueueExists(connection, QUEUE_NAME, 
 TIME_OUT_SECONDS); 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 621



Amazon Simple Queue Service Developer Guide

            // Create a session with unordered acknowledge mode. 
            Session session = connection.createSession(false, 
 SQSSession.UNORDERED_ACKNOWLEDGE); 

            // Create the producer and consumer. 
            MessageProducer producer = 
 session.createProducer(session.createQueue(QUEUE_NAME)); 
            MessageConsumer consumer = 
 session.createConsumer(session.createQueue(QUEUE_NAME)); 

            // Open a connection. 
            connection.start(); 

            // Send two text messages. 
            sendMessage(producer, session, "Message 1"); 
            sendMessage(producer, session, "Message 2"); 

            // Receive a message and don't acknowledge it. 
            receiveMessage(consumer, false); 

            // Receive another message and acknowledge it. 
            receiveMessage(consumer, true); 

            // Wait for the visibility time out, so that unacknowledged messages 
 reappear in the queue. 
            LOGGER.info("Waiting for visibility timeout..."); 
            try { 
                Thread.sleep(TIME_OUT_MILLIS); 
            } catch (InterruptedException e) { 
                LOGGER.error("Interrupted while waiting for visibility timeout", 
 e); 
                Thread.currentThread().interrupt(); 
                throw new RuntimeException("Processing interrupted", e); 
            } 

            /*  We will attempt to receive another message, and we'll get the 
 first message again. This occurs 
                because in UNORDERED_ACKNOWLEDGE mode, each message requires its 
 own separate acknowledgment. 
                Since we only acknowledged the second message, the first message 
 remains in the queue for 
                redelivery. */ 
            receiveMessage(consumer, true); 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 622



Amazon Simple Queue Service Developer Guide

            LOGGER.info("Connection closed."); 
        } // The connection closes automatically. This also closes the session. 
    } 

    /** 
     * Sends a text message to an Amazon SQS queue using JMS. 
     * 
     * @param producer    The JMS MessageProducer for the queue 
     * @param session     The JMS Session for message creation 
     * @param messageText The message content 
     * @throws JMSException If message creation or sending fails 
     */ 
    private static void sendMessage(MessageProducer producer, Session session, 
 String messageText) throws JMSException { 
        // Create a text message and send it. 
        producer.send(session.createTextMessage(messageText)); 
    } 
    /** 
     * Synchronously receives a message from an Amazon SQS queue using the JMS 
 API 
     * with an acknowledgment parameter. 
     * 
     * @param consumer    The JMS MessageConsumer for the queue 
     * @param acknowledge If true, acknowledges the message after receipt 
     * @throws JMSException If message reception or acknowledgment fails 
     */ 
    private static void receiveMessage(MessageConsumer consumer, boolean 
 acknowledge) throws JMSException { 
        // Receive a message. 
        Message message = consumer.receive(TIME_OUT_MILLIS); 

        if (message == null) { 
            LOGGER.info("Queue is empty!"); 
        } else { 
            // Since this queue has only text messages, cast the message object 
 and print the text. 
            LOGGER.info("Received: {}    Acknowledged: {}", ((TextMessage) 
 message).getText(), acknowledge); 

            // Acknowledge the message if asked. 
            if (acknowledge) message.acknowledge(); 
        } 
    }

Use the Amazon SQS Java Messaging Library to work with the JMS interface 623



Amazon Simple Queue Service Developer Guide

Using Spring to inject dependencies.

package com.example.sqs.jms.spring;

import com.amazon.sqs.javamessaging.SQSConnection;
import com.example.sqs.jms.SqsJmsExampleUtils;
import jakarta.jms.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.NoSuchBeanDefinitionException;
import org.springframework.context.support.FileSystemXmlApplicationContext;

import java.io.File;
import java.net.URL;
import java.util.concurrent.TimeUnit;

/** 
 * Demonstrates how to send and receive messages using the Amazon SQS Java 
 Messaging Library 
 * with Spring Framework integration. This example connects to a standard Amazon 
 SQS message 
 * queue using Spring's dependency injection to configure the connection and 
 messaging components. 
 * The application uses the JMS (Java Message Service) API to handle message 
 operations. 
 */
public class SpringExample { 
    private static final Integer POLLING_SECONDS = 15; 
    private static final String SPRING_XML_CONFIG_FILE = 
 "SpringExampleConfiguration.xml.txt"; 
    private static final Logger LOGGER = 
 LoggerFactory.getLogger(SpringExample.class); 

    /** 
     * Demonstrates sending and receiving messages through a standard Amazon SQS 
 message queue 
     * using Spring Framework configuration. This method loads connection 
 settings from an XML file, 
     * establishes a messaging session using the Amazon SQS Java Messaging 
 Library, and processes 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 624



Amazon Simple Queue Service Developer Guide

     * messages using JMS (Java Message Service) operations. If the queue doesn't 
 exist, it will 
     * be created automatically. 
     * 
     * @param args Command line arguments (not used) 
     */ 
    public static void main(String[] args) { 

        URL resource = 
 SpringExample.class.getClassLoader().getResource(SPRING_XML_CONFIG_FILE); 
        File springFile = new File(resource.getFile()); 
        if (!springFile.exists() || !springFile.canRead()) { 
            LOGGER.error("File " + SPRING_XML_CONFIG_FILE + " doesn't exist or 
 isn't readable."); 
            System.exit(1); 
        } 

        try (FileSystemXmlApplicationContext context = 
                     new FileSystemXmlApplicationContext("file://" + 
 springFile.getAbsolutePath())) { 

            Connection connection; 
            try { 
                connection = context.getBean(Connection.class); 
            } catch (NoSuchBeanDefinitionException e) { 
                LOGGER.error("Can't find the JMS connection to use: " + 
 e.getMessage(), e); 
                System.exit(2); 
                return; 
            } 

            String queueName; 
            try { 
                queueName = context.getBean("queueName", String.class); 
            } catch (NoSuchBeanDefinitionException e) { 
                LOGGER.error("Can't find the name of the queue to use: " + 
 e.getMessage(), e); 
                System.exit(3); 
                return; 
            } 
            try { 
                if (connection instanceof SQSConnection) { 
                    SqsJmsExampleUtils.ensureQueueExists((SQSConnection) 
 connection, queueName, SqsJmsExampleUtils.QUEUE_VISIBILITY_TIMEOUT); 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 625



Amazon Simple Queue Service Developer Guide

                } 
                // Create the JMS session. 
                Session session = connection.createSession(false, 
 Session.CLIENT_ACKNOWLEDGE); 

                SqsJmsExampleUtils.sendTextMessage(session, queueName); 
                MessageConsumer consumer = 
 session.createConsumer(session.createQueue(queueName)); 

                receiveMessages(consumer); 
            } catch (JMSException e) { 
                LOGGER.error(e.getMessage(), e); 
                throw new RuntimeException(e); 
            } 
        }   // Spring context autocloses. Managed Spring beans that implement 
 AutoClosable, such as the 
        // 'connection' bean, are also closed. 
        LOGGER.info("Context closed"); 
    } 

    /** 
     * Continuously checks for and processes messages from a standard Amazon SQS 
 message queue 
     * using the Amazon SQS Java Messaging Library underlying the JMS API. This 
 method waits for incoming messages, 
     * processes them when they arrive, and acknowledges their receipt using JMS 
 (Java Message 
     * Service) operations. The method will stop checking for messages after 15 
 seconds of 
     * inactivity. 
     * 
     * @param consumer The JMS message consumer used to receive messages from the 
 queue 
     */ 
    private static void receiveMessages(MessageConsumer consumer) { 
        try { 
            while (true) { 
                LOGGER.info("Waiting for messages..."); 
                // Wait 15 seconds for a message. 
                Message message = 
 consumer.receive(TimeUnit.SECONDS.toMillis(POLLING_SECONDS)); 
                if (message == null) { 
                    LOGGER.info("Shutting down after {} seconds of silence.", 
 POLLING_SECONDS); 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 626



Amazon Simple Queue Service Developer Guide

                    break; 
                } 
                SqsJmsExampleUtils.handleMessage(message); 
                message.acknowledge(); 
                LOGGER.info("Message acknowledged."); 
            } 
        } catch (JMSException e) { 
            LOGGER.error("Error receiving from SQS.", e); 
        } 
    }
}

Spring bean definitions.

<?xml version="1.0" encoding="UTF-8"?>
<beans 
        xmlns="http://www.springframework.org/schema/beans" 
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
        xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-3.0.xsd 
        "> 
    <!-- Define the AWS Region --> 
    <bean id="region" class="software.amazon.awssdk.regions.Region" factory-
method="of"> 
        <constructor-arg value="us-east-1"/> 
    </bean> 

    <bean id="credentialsProviderBean" 
 class="software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider" 
          factory-method="create"/> 

    <bean id="clientBuilder" 
 class="software.amazon.awssdk.services.sqs.SqsClient" factory-method="builder"/> 

    <bean id="regionSetClientBuilder" factory-bean="clientBuilder" factory-
method="region"> 
        <constructor-arg ref="region"/> 
    </bean> 

    <!-- Configure the Builder with Credentials Provider --> 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 627



Amazon Simple Queue Service Developer Guide

    <bean id="sqsClient" factory-bean="regionSetClientBuilder" factory-
method="credentialsProvider"> 
        <constructor-arg ref="credentialsProviderBean"/> 
    </bean> 

    <bean id="providerConfiguration" 
 class="com.amazon.sqs.javamessaging.ProviderConfiguration"> 
        <property name="numberOfMessagesToPrefetch" value="5"/> 
    </bean> 

    <bean id="connectionFactory" 
 class="com.amazon.sqs.javamessaging.SQSConnectionFactory"> 
        <constructor-arg ref="providerConfiguration"/> 
        <constructor-arg ref="clientBuilder"/> 
    </bean> 

    <bean id="connection" 
          factory-bean="connectionFactory" 
          factory-method="createConnection" 
          init-method="start" 
          destroy-method="close"/> 

    <bean id="queueName" class="java.lang.String"> 
        <constructor-arg value="SQSJMSClientExampleQueue"/> 
    </bean>
</beans>

A utility class that provides common methods used by the other examples.

package com.example.sqs.jms;

import com.amazon.sqs.javamessaging.AmazonSQSMessagingClientWrapper;
import com.amazon.sqs.javamessaging.ProviderConfiguration;
import com.amazon.sqs.javamessaging.SQSConnection;
import com.amazon.sqs.javamessaging.SQSConnectionFactory;
import jakarta.jms.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.core.exception.SdkException;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.CreateQueueRequest;

Use the Amazon SQS Java Messaging Library to work with the JMS interface 628



Amazon Simple Queue Service Developer Guide

import software.amazon.awssdk.services.sqs.model.QueueAttributeName;

import java.time.Duration;
import java.util.Base64;
import java.util.Map;

/** 
 * This utility class provides helper methods for working with Amazon Simple 
 Queue Service (Amazon SQS) 
 * through the Java Message Service (JMS) interface. It contains common 
 operations for managing message 
 * queues and handling message delivery. 
 */
public class SqsJmsExampleUtils { 
    private static final Logger LOGGER = 
 LoggerFactory.getLogger(SqsJmsExampleUtils.class); 
    public static final Long QUEUE_VISIBILITY_TIMEOUT = 5L; 

    /** 
     * This method verifies that a message queue exists and creates it if 
 necessary. The method checks for 
     * an existing queue first to optimize performance. 
     * 
     * @param connection The active connection to the messaging service 
     * @param queueName The name of the queue to verify or create 
     * @param visibilityTimeout The duration in seconds that messages will be 
 hidden after being received 
     * @throws JMSException If there is an error accessing or creating the queue 
     */ 
    public static void ensureQueueExists(SQSConnection connection, String 
 queueName, Long visibilityTimeout) throws JMSException { 
        AmazonSQSMessagingClientWrapper client = 
 connection.getWrappedAmazonSQSClient(); 

       /* In most cases, you can do this with just a 'createQueue' call, but 
 'getQueueUrl' 
       (called by 'queueExists') is a faster operation for the common case where 
 the queue 
       already exists. Also, many users and roles have permission to call 
 'getQueueUrl' 
       but don't have permission to call 'createQueue'. 
       */ 
        if( !client.queueExists(queueName) ) { 
            CreateQueueRequest createQueueRequest = CreateQueueRequest.builder() 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 629



Amazon Simple Queue Service Developer Guide

                    .queueName(queueName) 
                    .attributes(Map.of(QueueAttributeName.VISIBILITY_TIMEOUT, 
 String.valueOf(visibilityTimeout))) 
                    .build(); 
            client.createQueue( createQueueRequest ); 
        } 
    } 

    /** 
     * This method sends a simple text message to a specified message queue. It 
 handles all necessary 
     * setup for the message delivery process. 
     * 
     * @param session The active messaging session used to create and send the 
 message 
     * @param queueName The name of the queue where the message will be sent 
     */ 
    public static void sendTextMessage(Session session, String queueName) { 
        // Rest of implementation... 

        try { 
            MessageProducer producer = 
 session.createProducer( session.createQueue( queueName) ); 
            Message message = session.createTextMessage("Hello world!"); 
            producer.send(message); 
        } catch (JMSException e) { 
            LOGGER.error( "Error receiving from SQS", e ); 
        } 
    } 

    /** 
     * This method processes incoming messages and logs their content based on 
 the message type. 
     * It supports text messages, binary data, and Java objects. 
     * 
     * @param message The message to be processed and logged 
     * @throws JMSException If there is an error reading the message content 
     */ 
    public static void handleMessage(Message message) throws JMSException { 
        // Rest of implementation... 
        LOGGER.info( "Got message {}", message.getJMSMessageID() ); 
        LOGGER.info( "Content: "); 
        if(message instanceof TextMessage txtMessage) { 
            LOGGER.info( "\t{}", txtMessage.getText() ); 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 630



Amazon Simple Queue Service Developer Guide

        } else if(message instanceof BytesMessage byteMessage){ 
            // Assume the length fits in an int - SQS only supports sizes up to 
 256k so that 
            // should be true 
            byte[] bytes = new byte[(int)byteMessage.getBodyLength()]; 
            byteMessage.readBytes(bytes); 
            LOGGER.info( "\t{}", Base64.getEncoder().encodeToString( bytes ) ); 
        } else if( message instanceof ObjectMessage) { 
            ObjectMessage objMessage = (ObjectMessage) message; 
            LOGGER.info( "\t{}", objMessage.getObject() ); 
        } 
    } 

    /** 
     * This method sets up automatic message processing for a specified queue. It 
 creates a listener 
     * that will receive and handle incoming messages without blocking the main 
 program. 
     * 
     * @param session The active messaging session 
     * @param queueName The name of the queue to monitor 
     * @param connection The active connection to the messaging service 
     */ 
    public static void receiveMessagesAsync(Session session, String queueName, 
 Connection connection) { 
        // Rest of implementation... 
        try { 
            // Create a consumer for the queue. 
            MessageConsumer consumer = 
 session.createConsumer(session.createQueue(queueName)); 
            // Provide an implementation of the MessageListener interface, which 
 has a single 'onMessage' method. 
            // We use a lambda expression for the implementation. 
            consumer.setMessageListener(message -> { 
                try { 
                    SqsJmsExampleUtils.handleMessage(message); 
                    message.acknowledge(); 
                } catch (JMSException e) { 
                    LOGGER.error("Error processing message: {}", e.getMessage()); 
                } 
            }); 
            // Start receiving incoming messages. 
            connection.start(); 
        } catch (JMSException e) { 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 631



Amazon Simple Queue Service Developer Guide

            throw new RuntimeException(e); 
        } 
        try { 
            Thread.sleep(2000); 
        } catch (InterruptedException e) { 
            throw new RuntimeException(e); 
        } 
    } 

    /** 
     * This method performs cleanup operations after message processing is 
 complete. It receives 
     * any messages in the specified queue, removes the message queue and closes 
 all 
     * active connections to prevent resource leaks. 
     * 
     * @param queueName The name of the queue to be removed 
     * @param visibilityTimeout The duration in seconds that messages are hidden 
 after being received 
     * @throws JMSException If there is an error during the cleanup process 
     */ 
    public static void cleanUpExample(String queueName, Long visibilityTimeout) 
 throws JMSException { 
        LOGGER.info("Performing cleanup."); 

        SQSConnectionFactory connectionFactory = new SQSConnectionFactory( 
                new ProviderConfiguration(), 
                SqsClient.create() 
        ); 

        try (SQSConnection connection = connectionFactory.createConnection() ) { 
            ensureQueueExists(connection, queueName, visibilityTimeout); 
            Session session = connection.createSession(false, 
 Session.AUTO_ACKNOWLEDGE); 

            receiveMessagesAsync(session, queueName, connection); 

            SqsClient sqsClient = 
 connection.getWrappedAmazonSQSClient().getAmazonSQSClient(); 
            try { 
                String queueUrl = sqsClient.getQueueUrl(b -> 
 b.queueName(queueName)).queueUrl(); 
                sqsClient.deleteQueue(b -> b.queueUrl(queueUrl)); 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 632



Amazon Simple Queue Service Developer Guide

                LOGGER.info("Queue deleted: {}", queueUrl); 
            } catch (SdkException e) { 
                LOGGER.error("Error during SQS operations: ", e); 
            } 
        } 
        LOGGER.info("Clean up: Connection closed"); 
    } 

    /** 
     * This method creates a background task that sends multiple messages to a 
 specified queue 
     * after waiting for a set time period. The task operates independently to 
 ensure efficient 
     * message processing without interrupting other operations. 
     * 
     * @param queueName The name of the queue where messages will be sent 
     * @param secondsToWait The number of seconds to wait before sending messages 
     * @param numMessages The number of messages to send 
     * @param visibilityTimeout The duration in seconds that messages remain 
 hidden after being received 
     * @return A task that can be executed to send the messages 
     */ 
    public static Runnable sendAMessageAsync(String queueName, Long 
 secondsToWait, Integer numMessages, Long visibilityTimeout) { 
        return () -> { 
            try { 
                Thread.sleep(Duration.ofSeconds(secondsToWait).toMillis()); 
            } catch (InterruptedException e) { 
                Thread.currentThread().interrupt(); 
                throw new RuntimeException(e); 
            } 
            try { 
                SQSConnectionFactory connectionFactory = new 
 SQSConnectionFactory( 
                        new ProviderConfiguration(), 
                        SqsClient.create() 
                ); 
                try (SQSConnection connection = 
 connectionFactory.createConnection()) { 
                    ensureQueueExists(connection, queueName, visibilityTimeout); 
                    Session session = connection.createSession(false, 
 Session.CLIENT_ACKNOWLEDGE); 
                    for (int i = 1; i <= numMessages; i++) { 

Use the Amazon SQS Java Messaging Library to work with the JMS interface 633



Amazon Simple Queue Service Developer Guide

                        MessageProducer producer = 
 session.createProducer(session.createQueue(queueName)); 
                        producer.send(session.createTextMessage("Hello World " + 
 i + "!")); 
                    } 
                } 
            } catch (JMSException e) { 
                LOGGER.error(e.getMessage(), e); 
                throw new RuntimeException(e); 
            } 
        }; 
    }
}

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• CreateQueue

• DeleteQueue

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Work with queue tags and Amazon SQS using an Amazon SDK

The following code example shows how to perform tagging operation with Amazon SQS.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Amazon Code Examples Repository.

The following example creates tags for a queue, lists tags, and removes a tag.

Work with queue tags 634

https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/CreateQueue
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/DeleteQueue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/sqs#code-examples


Amazon Simple Queue Service Developer Guide

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.ListQueueTagsResponse;
import software.amazon.awssdk.services.sqs.model.QueueDoesNotExistException;
import software.amazon.awssdk.services.sqs.model.SqsException;

import java.util.Map;
import java.util.UUID;

/** 
 * Before running this Java V2 code example, set up your development environment, 
 including your credentials. For more 
 * information, see the <a href="https://docs.aws.amazon.com/sdk-for-java/latest/
developer-guide/get-started.html">AWS 
 * SDK for Java Developer Guide</a>. 
 */
public class TagExamples { 
    static final SqsClient sqsClient = SqsClient.create(); 
    static final String queueName = "TagExamples-queue-" + 
 UUID.randomUUID().toString().replace("-", "").substring(0, 20); 
    private static final Logger LOGGER = 
 LoggerFactory.getLogger(TagExamples.class); 

    public static void main(String[] args) { 
        final String queueUrl; 
        try { 
            queueUrl = sqsClient.createQueue(b -> 
 b.queueName(queueName)).queueUrl(); 
            LOGGER.info("Queue created. The URL is: {}", queueUrl); 
        } catch (RuntimeException e) { 
            LOGGER.error("Program ending because queue was not created."); 
            throw new RuntimeException(e); 
        } 
        try { 
            addTags(queueUrl); 
            listTags(queueUrl); 
            removeTags(queueUrl); 
        } catch (RuntimeException e) { 
            LOGGER.error("Program ending because of an error in a method."); 
        } finally { 
            try { 
                sqsClient.deleteQueue(b -> b.queueUrl(queueUrl)); 

Work with queue tags 635



Amazon Simple Queue Service Developer Guide

                LOGGER.info("Queue successfully deleted. Program ending."); 
                sqsClient.close(); 
            } catch (RuntimeException e) { 
                LOGGER.error("Program ending."); 
            } finally { 
                sqsClient.close(); 
            } 
        } 
    } 

    /** This method demonstrates how to use a Java Map to a tag a aueue. 
     * @param queueUrl The URL of the queue to tag. 
     */ 
    public static void addTags(String queueUrl) { 
        // Build a map of the tags. 
        final Map<String, String> tagsToAdd = Map.of( 
                "Team", "Development", 
                "Priority", "Beta", 
                "Accounting ID", "456def"); 

        try { 
            // Add tags to the queue using a Consumer<TagQueueRequest.Builder> 
 parameter. 
            sqsClient.tagQueue(b -> b 
                    .queueUrl(queueUrl) 
                    .tags(tagsToAdd) 
            ); 
        } catch (QueueDoesNotExistException e) { 
            LOGGER.error("Queue does not exist: {}", e.getMessage(), e); 
            throw new RuntimeException(e); 
        } 
    } 

    /** This method demonstrates how to view the tags for a queue. 
     * @param queueUrl The URL of the queue whose tags you want to list. 
     */ 
    public static void listTags(String queueUrl) { 
        ListQueueTagsResponse response; 
        try { 
            // Call the listQueueTags method with a 
 Consumer<ListQueueTagsRequest.Builder> parameter that creates a 
 ListQueueTagsRequest. 
            response = sqsClient.listQueueTags(b -> b 
                    .queueUrl(queueUrl)); 

Work with queue tags 636



Amazon Simple Queue Service Developer Guide

        } catch (SqsException e) { 
            LOGGER.error("Exception thrown: {}", e.getMessage(), e); 
            throw new RuntimeException(e); 
        } 

        // Log the tags. 
        response.tags() 
                .forEach((k, v) -> 
                        LOGGER.info("Key: {} -> Value: {}", k, v)); 
    } 

    /** 
     * This method demonstrates how to remove tags from a queue. 
     * @param queueUrl The URL of the queue whose tags you want to remove. 
     */ 
    public static void removeTags(String queueUrl) { 
        try { 
            // Call the untagQueue method with a 
 Consumer<UntagQueueRequest.Builder> parameter. 
            sqsClient.untagQueue(b -> b 
                    .queueUrl(queueUrl) 
                    .tagKeys("Accounting ID") // Remove a single tag. 
            ); 
        } catch (SqsException e) { 
            LOGGER.error("Exception thrown: {}", e.getMessage(), e); 
            throw new RuntimeException(e); 
        } 
    }
}

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• ListQueueTags

• TagQueue

• UntagQueue

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Work with queue tags 637

https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/ListQueueTags
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/TagQueue
https://docs.amazonaws.cn/goto/SdkForJavaV2/sqs-2012-11-05/UntagQueue


Amazon Simple Queue Service Developer Guide

Serverless examples for Amazon SQS

The following code examples show how to use Amazon SQS with Amazon SDKs.

Examples

• Invoke a Lambda function from an Amazon SQS trigger

• Reporting batch item failures for Lambda functions with an Amazon SQS trigger

Invoke a Lambda function from an Amazon SQS trigger

The following code examples show how to implement a Lambda function that receives an event 
triggered by receiving messages from an SQS queue. The function retrieves the messages from the 
event parameter and logs the content of each message.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Consuming an SQS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted 
 into a .NET class.
[assembly: 
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SqsIntegrationSampleCode
{ 
    public async Task FunctionHandler(SQSEvent evnt, ILambdaContext context) 

Serverless examples 638

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda


Amazon Simple Queue Service Developer Guide

    { 
        foreach (var message in evnt.Records) 
        { 
            await ProcessMessageAsync(message, context); 
        } 

        context.Logger.LogInformation("done"); 
    } 

    private async Task ProcessMessageAsync(SQSEvent.SQSMessage message, 
 ILambdaContext context) 
    { 
        try 
        { 
            context.Logger.LogInformation($"Processed message {message.Body}"); 

            // TODO: Do interesting work based on the new message 
            await Task.CompletedTask; 
        } 
        catch (Exception e) 
        { 
            //You can use Dead Letter Queue to handle failures. By configuring a 
 Lambda DLQ. 
            context.Logger.LogError($"An error occurred"); 
            throw; 
        } 

    }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Consuming an SQS event with Lambda using Go.

Invoke a Lambda function from an Amazon SQS trigger 639

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda


Amazon Simple Queue Service Developer Guide

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package integration_sqs_to_lambda

import ( 
 "fmt" 
 "github.com/aws/aws-lambda-go/events" 
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(event events.SQSEvent) error { 
 for _, record := range event.Records { 
  err := processMessage(record) 
  if err != nil { 
   return err 
  } 
 } 
 fmt.Println("done") 
 return nil
}

func processMessage(record events.SQSMessage) error { 
 fmt.Printf("Processed message %s\n", record.Body) 
 // TODO: Do interesting work based on the new message 
 return nil
}

func main() { 
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Invoke a Lambda function from an Amazon SQS trigger 640

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda


Amazon Simple Queue Service Developer Guide

Consuming an SQS event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSEvent.SQSMessage;

public class Function implements RequestHandler<SQSEvent, Void> { 
    @Override 
    public Void handleRequest(SQSEvent sqsEvent, Context context) { 
        for (SQSMessage msg : sqsEvent.getRecords()) { 
            processMessage(msg, context); 
        } 
        context.getLogger().log("done"); 
        return null; 
    } 

    private void processMessage(SQSMessage msg, Context context) { 
        try { 
            context.getLogger().log("Processed message " + msg.getBody()); 

            // TODO: Do interesting work based on the new message 

        } catch (Exception e) { 
            context.getLogger().log("An error occurred"); 
            throw e; 
        } 

    }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Invoke a Lambda function from an Amazon SQS trigger 641

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sqs-to-lambda


Amazon Simple Queue Service Developer Guide

Consuming an SQS event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => { 
  for (const message of event.Records) { 
    await processMessageAsync(message); 
  } 
  console.info("done");
};

async function processMessageAsync(message) { 
  try { 
    console.log(`Processed message ${message.body}`); 
    // TODO: Do interesting work based on the new message 
    await Promise.resolve(1); //Placeholder for actual async work 
  } catch (err) { 
    console.error("An error occurred"); 
    throw err; 
  }
}

Consuming an SQS event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, Context, SQSHandler, SQSRecord } from "aws-lambda";

export const functionHandler: SQSHandler = async ( 
  event: SQSEvent, 
  context: Context
): Promise<void> => { 
  for (const message of event.Records) { 
    await processMessageAsync(message); 
  } 
  console.info("done");
};

async function processMessageAsync(message: SQSRecord): Promise<any> { 
  try { 
    console.log(`Processed message ${message.body}`); 
    // TODO: Do interesting work based on the new message 

Invoke a Lambda function from an Amazon SQS trigger 642



Amazon Simple Queue Service Developer Guide

    await Promise.resolve(1); //Placeholder for actual async work 
  } catch (err) { 
    console.error("An error occurred"); 
    throw err; 
  }
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Consuming an SQS event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

# using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\InvalidLambdaEvent;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends SqsHandler
{ 
    private StderrLogger $logger; 
    public function __construct(StderrLogger $logger) 
    { 
        $this->logger = $logger; 
    } 

Invoke a Lambda function from an Amazon SQS trigger 643

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda


Amazon Simple Queue Service Developer Guide

    /** 
     * @throws InvalidLambdaEvent 
     */ 
    public function handleSqs(SqsEvent $event, Context $context): void 
    { 
        foreach ($event->getRecords() as $record) { 
            $body = $record->getBody(); 
            // TODO: Do interesting work based on the new message 
        } 
    }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Consuming an SQS event with Lambda using Python.

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
def lambda_handler(event, context): 
    for message in event['Records']: 
        process_message(message) 
    print("done")

def process_message(message): 
    try: 
        print(f"Processed message {message['body']}") 
        # TODO: Do interesting work based on the new message 
    except Exception as err: 
        print("An error occurred") 
        raise err

Invoke a Lambda function from an Amazon SQS trigger 644

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda


Amazon Simple Queue Service Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Consuming an SQS event with Lambda using Ruby.

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:) 
  event['Records'].each do |message| 
    process_message(message) 
  end 
  puts "done"
end

def process_message(message) 
  begin 
    puts "Processed message #{message['body']}" 
    # TODO: Do interesting work based on the new message 
  rescue StandardError => err 
    puts "An error occurred" 
    raise err 
  end
end

Invoke a Lambda function from an Amazon SQS trigger 645

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda


Amazon Simple Queue Service Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Consuming an SQS event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::sqs::SqsEvent;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<SqsEvent>) -> Result<(), Error> { 
    event.payload.records.iter().for_each(|record| { 
        // process the record 
        tracing::info!("Message body: {}", 
 record.body.as_deref().unwrap_or_default()) 
    }); 

    Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> { 
    tracing_subscriber::fmt() 
        .with_max_level(tracing::Level::INFO) 
        // disable printing the name of the module in every log line. 
        .with_target(false) 
        // disabling time is handy because CloudWatch will add the ingestion 
 time. 
        .without_time() 
        .init(); 

    run(service_fn(function_handler)).await
}

Invoke a Lambda function from an Amazon SQS trigger 646

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda


Amazon Simple Queue Service Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Reporting batch item failures for Lambda functions with an Amazon 
SQS trigger

The following code examples show how to implement partial batch response for Lambda functions 
that receive events from an SQS queue. The function reports the batch item failures in the 
response, signaling to Lambda to retry those messages later.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted 
 into a .NET class.
[assembly: 
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]
namespace sqsSample;

public class Function
{ 
    public async Task<SQSBatchResponse> FunctionHandler(SQSEvent evnt, 
 ILambdaContext context) 
    { 
        List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new 
 List<SQSBatchResponse.BatchItemFailure>(); 

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 647

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures


Amazon Simple Queue Service Developer Guide

        foreach(var message in evnt.Records) 
        { 
            try 
            { 
                //process your message 
                await ProcessMessageAsync(message, context); 
            } 
            catch (System.Exception) 
            { 
                //Add failed message identifier to the batchItemFailures list 
                batchItemFailures.Add(new 
 SQSBatchResponse.BatchItemFailure{ItemIdentifier=message.MessageId});  
            } 
        } 
        return new SQSBatchResponse(batchItemFailures); 
    } 

    private async Task ProcessMessageAsync(SQSEvent.SQSMessage message, 
 ILambdaContext context) 
    { 
        if (String.IsNullOrEmpty(message.Body)) 
        { 
            throw new Exception("No Body in SQS Message."); 
        } 
        context.Logger.LogInformation($"Processed message {message.Body}"); 
        // TODO: Do interesting work based on the new message 
        await Task.CompletedTask; 
    }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Go.

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 648

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures


Amazon Simple Queue Service Developer Guide

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import ( 
 "context" 
 "fmt" 
 "github.com/aws/aws-lambda-go/events" 
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, sqsEvent events.SQSEvent) 
 (map[string]interface{}, error) { 
 batchItemFailures := []map[string]interface{}{} 

 for _, message := range sqsEvent.Records { 
  if len(message.Body) > 0 { 
   // Your message processing condition here 
   fmt.Printf("Successfully processed message: %s\n", message.Body) 
  } else { 
   // Message processing failed 
   fmt.Printf("Failed to process message %s\n", message.MessageId) 
   batchItemFailures = append(batchItemFailures, map[string]interface{}
{"itemIdentifier": message.MessageId}) 
  } 
 } 

 sqsBatchResponse := map[string]interface{}{ 
  "batchItemFailures": batchItemFailures, 
 } 
 return sqsBatchResponse, nil
}

func main() { 
 lambda.Start(handler)
}

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 649



Amazon Simple Queue Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSBatchResponse; 
  
import java.util.ArrayList;
import java.util.List; 
  
public class ProcessSQSMessageBatch implements RequestHandler<SQSEvent, 
 SQSBatchResponse> { 
    @Override 
    public SQSBatchResponse handleRequest(SQSEvent sqsEvent, Context context) { 
         List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new 
 ArrayList<SQSBatchResponse.BatchItemFailure>(); 

         for (SQSEvent.SQSMessage message : sqsEvent.getRecords()) { 
             try { 
                 //process your message 
             } catch (Exception e) { 
                 //Add failed message identifier to the batchItemFailures list 
                 batchItemFailures.add(new 
 SQSBatchResponse.BatchItemFailure(message.getMessageId())); 
             } 
         } 
         return new SQSBatchResponse(batchItemFailures); 
     }
}

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 650

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures


Amazon Simple Queue Service Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using JavaScript.

// Node.js 20.x Lambda runtime, AWS SDK for Javascript V3
export const handler = async (event, context) => { 
    const batchItemFailures = []; 
    for (const record of event.Records) { 
        try { 
            await processMessageAsync(record, context); 
        } catch (error) { 
            batchItemFailures.push({ itemIdentifier: record.messageId }); 
        } 
    } 
    return { batchItemFailures };
};

async function processMessageAsync(record, context) { 
    if (record.body && record.body.includes("error")) { 
        throw new Error("There is an error in the SQS Message."); 
    } 
    console.log(`Processed message: ${record.body}`);
}

Reporting SQS batch item failures with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, SQSBatchResponse, Context, SQSBatchItemFailure, SQSRecord } 
 from 'aws-lambda';

export const handler = async (event: SQSEvent, context: Context): 
 Promise<SQSBatchResponse> => { 
    const batchItemFailures: SQSBatchItemFailure[] = []; 

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 651

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures


Amazon Simple Queue Service Developer Guide

    for (const record of event.Records) { 
        try { 
            await processMessageAsync(record); 
        } catch (error) { 
            batchItemFailures.push({ itemIdentifier: record.messageId }); 
        } 
    } 

    return {batchItemFailures: batchItemFailures};
};

async function processMessageAsync(record: SQSRecord): Promise<void> { 
    if (record.body && record.body.includes("error")) { 
        throw new Error('There is an error in the SQS Message.'); 
    } 
    console.log(`Processed message ${record.body}`);
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

use Bref\Context\Context;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 652

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures


Amazon Simple Queue Service Developer Guide

class Handler extends SqsHandler
{ 
    private StderrLogger $logger; 
    public function __construct(StderrLogger $logger) 
    { 
        $this->logger = $logger; 
    } 

    /** 
     * @throws JsonException 
     * @throws \Bref\Event\InvalidLambdaEvent 
     */ 
    public function handleSqs(SqsEvent $event, Context $context): void 
    { 
        $this->logger->info("Processing SQS records"); 
        $records = $event->getRecords(); 

        foreach ($records as $record) { 
            try { 
                // Assuming the SQS message is in JSON format 
                $message = json_decode($record->getBody(), true); 
                $this->logger->info(json_encode($message)); 
                // TODO: Implement your custom processing logic here 
            } catch (Exception $e) { 
                $this->logger->error($e->getMessage()); 
                // failed processing the record 
                $this->markAsFailed($record); 
            } 
        } 
        $totalRecords = count($records); 
        $this->logger->info("Successfully processed $totalRecords SQS records"); 
    }
}

$logger = new StderrLogger();
return new Handler($logger);

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 653



Amazon Simple Queue Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Python.

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0

def lambda_handler(event, context): 
    if event: 
        batch_item_failures = [] 
        sqs_batch_response = {} 
      
        for record in event["Records"]: 
            try: 
                print(f"Processed message: {record['body']}") 
            except Exception as e: 
                batch_item_failures.append({"itemIdentifier": 
 record['messageId']}) 
         
        sqs_batch_response["batchItemFailures"] = batch_item_failures 
        return sqs_batch_response

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 654

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures
https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda-with-batch-item-handling


Amazon Simple Queue Service Developer Guide

Reporting SQS batch item failures with Lambda using Ruby.

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
require 'json'

def lambda_handler(event:, context:) 
  if event 
    batch_item_failures = [] 
    sqs_batch_response = {} 

    event["Records"].each do |record| 
      begin 
        # process message 
      rescue StandardError => e 
        batch_item_failures << {"itemIdentifier" => record['messageId']} 
      end 
    end 

    sqs_batch_response["batchItemFailures"] = batch_item_failures 
    return sqs_batch_response 
  end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run 
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::{ 
    event::sqs::{SqsBatchResponse, SqsEvent}, 

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 655

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures


Amazon Simple Queue Service Developer Guide

    sqs::{BatchItemFailure, SqsMessage},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn process_record(_: &SqsMessage) -> Result<(), Error> { 
    Err(Error::from("Error processing message"))
}

async fn function_handler(event: LambdaEvent<SqsEvent>) -> 
 Result<SqsBatchResponse, Error> { 
    let mut batch_item_failures = Vec::new(); 
    for record in event.payload.records { 
        match process_record(&record).await { 
            Ok(_) => (), 
            Err(_) => batch_item_failures.push(BatchItemFailure { 
                item_identifier: record.message_id.unwrap(), 
            }), 
        } 
    } 

    Ok(SqsBatchResponse { 
        batch_item_failures, 
    })
}

#[tokio::main]
async fn main() -> Result<(), Error> { 
    run(service_fn(function_handler)).await
}

For a complete list of Amazon SDK developer guides and code examples, see Using Amazon SQS 
with an Amazon SDK. This topic also includes information about getting started and details about 
previous SDK versions.

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 656



Amazon Simple Queue Service Developer Guide

Troubleshooting issues in Amazon SQS

This topic provides troubleshooting advice for common errors and issues that you might encounter 
when using the Amazon SQS console, Amazon SQS API, or other tools with Amazon SQS. If you 
find an issue that is not listed here, you can use the Feedback button on this page to report it.

For more troubleshooting advice and answers to common support questions, visit the Amazon 
Knowledge Center.

Topics

• Troubleshoot an access denied error in Amazon SQS

• Troubleshoot Amazon SQS API errors

• Troubleshoot Amazon SQS dead-letter queue and DLQ redrive issues

• Troubleshoot FIFO throttling issues in Amazon SQS

• Troubleshoot messages not returned for an Amazon SQS ReceiveMessage API call

• Troubleshoot Amazon SQS network errors

• Troubleshooting Amazon Simple Queue Service queues using Amazon X-Ray

Troubleshoot an access denied error in Amazon SQS

The following topics cover the most common causes of AccessDenied or
AccessDeniedException errors on Amazon SQS API calls. For more information on how to 
troubleshoot these errors, see How do I troubleshoot "AccessDenied" or "AccessDeniedException" 
errors on Amazon SQS API calls? in the Amazon Knowledge Center Guide.

Error message examples:

An error occurred (AccessDenied) when calling the SendMessage operation: Access to 
        the resource https://sqs.us-east-1.amazonaws.com/ is denied.

- or -

An error occurred (KMS.AccessDeniedException) when calling the SendMessage 
        operation: User: arn:aws-cn:iam::xxxxx:user/xxxx is not authorized to perform: 
        kms:GenerateDataKey on resource: arn:aws-cn:kms:us-east-1:xxxx:key/xxxx with an 
 explicit 

Access denied error 657

http://www.amazonaws.cn/premiumsupport/knowledge-center/
http://www.amazonaws.cn/premiumsupport/knowledge-center/
https://repost.aws/knowledge-center/sqs-accessdenied-errors
https://repost.aws/knowledge-center/sqs-accessdenied-errors


Amazon Simple Queue Service Developer Guide

        deny.

Amazon SQS queue policy and IAM policy

To verify if the requester has proper permissions to perform an Amazon SQS operation, do the 
following:

• Identify the IAM principal that’s making the Amazon SQS API call. If the IAM principal is from 
the same account, then either the Amazon SQS queue policy or the Amazon Identity and Access 
Management (IAM) policy must include permissions to explicitly allow access for the action.

• If the principal is an IAM entity:

• You can identify your IAM user or role by checking the upper-right corner of the Amazon Web 
Services Management Console, or by using the aws sts get-caller-identity command.

• Check the IAM policies that are related to the IAM user or role. You can use one of the 
following methods:

• Test IAM policies with the IAM Policy Simulator.

• Review the different IAM policy types.

• If needed, edit your IAM user policy.

• Check the queue policy and edit if required.

• If the principal is an Amazon service, then the Amazon SQS queue policy must explicitly allow 
access.

• If the principal is a cross-account principal, then both the Amazon SQS queue policy and the IAM 
policy must explicitly allow access.

• If the policy uses a condition element, then check that the condition restricts access.

Important

An explicit deny in either policy overrides an explicit allow. Here are some basic examples of
Amazon SQS policies.

Amazon Key Management Service permissions

If your Amazon SQS queue has server-side encryption (SSE) turned on with a customer managed 
Amazon KMS key, then permissions must be granted to both producers and consumers. To confirm 

Amazon SQS queue policy and IAM policy 658

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sts/get-caller-identity.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_testing-policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policy-types
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-edit.html


Amazon Simple Queue Service Developer Guide

if a queue is encrypted, you can use the GetQueueAttributes API KmsMasterKeyId attribute, 
or from the queue console under Encryption.

• Required permissions for producers:

{
"Effect": "Allow",
"Action": [ 
    "kms:Decrypt", 
    "kms:GenerateDataKey"
],
"Resource": "<Key ARN>"
}

• Required permissions for consumers:

{
"Effect": "Allow",
"Action": [ 
    "kms:Decrypt"
],
"Resource": "<Key ARN>"
}

• Required permissions for cross-account access:

{
"Effect": "Allow",
"Action": [          
    "kms:DescribeKey", 
    "kms:Decrypt", 
    "kms:ReEncrypt", 
    "kms:GenerateDataKey"
],
"Resource": "<Key ARN>"
}

Choose one of the following options to enable encryption for an Amazon SQS queue:

• SSE-Amazon SQS (Encryption key created and managed by the Amazon SQS service.)

• Amazon managed default key (alias/aws/sqs)

Amazon Key Management Service (Amazon KMS) permissions 659

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk


Amazon Simple Queue Service Developer Guide

• Customer managed key

However, if you are using an Amazon-managed KMS key, you can't modify the default key policy. 
Therefore, to provide access to other services and cross-accounts, use customer managed key. 
Doing this allows you to edit the key policy.

VPC endpoint policy

If you access Amazon SQS through an Amazon Virtual Private Cloud (Amazon VPC) endpoint, the 
Amazon SQS VPC endpoint policy must allow access. You can create a policy for Amazon VPC 
endpoints for Amazon SQS, where you can specify the following:

1. The principal that can perform actions.

2. The actions that can be performed.

3. The resources on which actions can be performed.

In the following example, the VPC endpoint policy specifies that the IAM user MyUser is allowed 
to send messages to the Amazon SQS queue MyQueue. Other actions, IAM users, and Amazon SQS 
resources are denied access through the VPC endpoint.

{ 
   "Statement": [{ 
      "Action": ["sqs:SendMessage"], 
      "Effect": "Allow", 
      "Resource": "arn:aws-cn:sqs:us-east-2:123456789012:MyQueue", 
      "Principal": { 
        "AWS": "arn:aws-cn:iam:123456789012:user/MyUser" 
      } 
   }]
}

Organization service control policy

If your Amazon Web Services account belongs to an organization, Amazon Organizations policies 
can block you from accessing your Amazon SQS queues. By default, Amazon Organizations policies 
do not block any requests to Amazon SQS. However, make sure that your Amazon Organizations 
policies haven’t been configured to block access to Amazon SQS queues. For instructions on how to 

VPC endpoint policy 660

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk


Amazon Simple Queue Service Developer Guide

check your Amazon Organizations policies, see Listing all policies in the Amazon Organizations User 
Guide.

Troubleshoot Amazon SQS API errors

The following topics cover the most common errors returned when making Amazon SQS API calls, 
and how to troubleshoot them.

QueueDoesNotExist error

This error will be returned when the Amazon SQS service can't find the mentioned queue for the 
Amazon SQS action.

Possible causes and mitigations:

• Incorrect region: Review the Amazon SQS client configuration to confirm that you configured 
the correct Region on the client. When you don't configure a Region on the client, then the SDK 
or Amazon CLI chooses the Region from the configuration file or the environment variable. If the 
SDK doesn't find a Region in the configuration file, then the SDK sets the Region to us-east-1 by 
default.

• Queue might be recently deleted: If the queue was deleted before the API call was made, then 
the API call will return this error. Check CloudTrail for any DeleteQueue operations before the 
time of the error.

• Permission issues: If the requesting Amazon Identity and Access Management (IAM) user or role 
doesn't have the required permissions, then you might receive the following error:

The specified queue does not exist or you do not have access to it.

Check the permissions, and make the API call with correct permissions.

For more details on troubleshooting the QueueDoesNotExist error, see How do I troubleshoot 
the QueueDoesNotExist error when I make API calls to my Amazon SQS queue? in the Amazon 
Knowledge Center Guide.

InvalidAttributeValue error

This error will be returned upon updating the Amazon SQS queue resource policy, or properties 
with an incorrect policy or a principal.

API errors 661

https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_info-operations.html#list-all-pols-in-org
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-files.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://repost.aws/knowledge-center/sqs-queuedoesnotexist-errors
https://repost.aws/knowledge-center/sqs-queuedoesnotexist-errors


Amazon Simple Queue Service Developer Guide

Possible causes and mitigations:

• Invalid resource policy: Check that the resource policy has all the required fields. For more 
information, see IAM JSON policy elements reference and Validating IAM policies. You can also 
use the IAM policy generator to create and test an Amazon SQS resource policy. Make sure that 
the policy is in JSON format.

• Invalid principal: Ensure that the Principal element exists in the resource policy and that the 
value is valid. If your Amazon SQS resource policy Principal element includes an IAM entity, 
make sure that the entity exists before you use the policy. Amazon SQS validates the resource 
policy and checks for the IAM entity. If the IAM entity doesn't exist, you will receive an error. To 
confirm IAM entities, use the GetRole and GetUser APIs.

For additional information on how to troubleshoot an InvalidAttributeValue error, see How 
do I troubleshoot the QueueDoesNotExist error when I make API calls to my Amazon SQS queue? in 
the Amazon Knowledge Center Guide.

ReceiptHandle error

Upon making a DeleteMessage API call, the error ReceiptHandleIsInvalid or
InvalidParameterValue might be returned if the receipt handle is incorrect or expired.

• ReceiptHandleIsInvalid error: If the receipt handle is incorrect, you'll receive an error similar to 
this example:

An error occurred (ReceiptHandleIsInvalid) when calling the DeleteMessage operation: 
 The input receipt handle <YOUR RECEIPT HANDLE> is not a valid receipt handle.

• InvalidParameterValue error: If the receipt handle is expired, you'll receive an error similar to 
this example:

An error occurred (InvalidParameterValue) when calling the DeleteMessage operation: 
 Value <YOUR RECEIPT HANDLE> for parameter ReceiptHandle is invalid. Reason: The 
 receipt handle has expired.

Possible causes and mitigations:

The receipt handle is created for every received message, and is only valid for the visibility timeout 
period. When the visibility timeout period expires, the message becomes visible on the queue for 

ReceiptHandle error 662

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_policy-validator.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-generation.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_GetRole.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_GetUser.html
https://repost.aws/knowledge-center/sqs-invalid-parameter-policy
https://repost.aws/knowledge-center/sqs-invalid-parameter-policy
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html


Amazon Simple Queue Service Developer Guide

consumers. When you receive the message again from the consumer, you receive a new receipt 
handle. To prevent incorrect or expired receipt handle errors, use the correct receipt handle to 
delete the message within the Amazon SQS queue visibility timeout period.

For additional information on how to troubleshoot a ReceiptHandle error, see How do I 
troubleshoot "ReceiptHandleIsInvalid" and "InvalidParameterValue" errors when I use the Amazon 
SQS DeleteMessage API call? in the Amazon Knowledge Center Guide.

Troubleshoot Amazon SQS dead-letter queue and DLQ redrive 
issues

The following topics cover the most common causes of Amazon SQS DLQ and DLQ redrive issues, 
and how to troubleshoot them. For more information, see How do I troubleshoot Amazon SQS DLQ 
redrive issues? in the Amazon Knowledge Center Guide.

DLQ issues

Learn about common DLQ issues and how to solve them.

Viewing messages using the console might cause messages to be moved to a 
dead-letter queue

Amazon SQS counts viewing a message in the console against the corresponding queue's redrive 
policy. Therefore, if you view a message in the console the number of times specified in the 
corresponding queue's redrive policy, the message is moved to the corresponding queue's dead-
letter queue.

To adjust this behavior, you can do one of the following:

• Increase the Maximum Receives setting for the corresponding queue's redrive policy.

• Avoid viewing the corresponding queue's messages in the console.

The NumberOfMessagesSent and NumberOfMessagesReceived for a dead-
letter queue don't match

If you send a message to a dead-letter queue manually, it is captured by the
NumberOfMessagesSent metric. However, if a message is sent to a dead-letter queue as a result 

DLQ and DLQ redrive issues 663

https://repost.aws/knowledge-center/sqs-receipt-handle-error
https://repost.aws/knowledge-center/sqs-receipt-handle-error
https://repost.aws/knowledge-center/sqs-receipt-handle-error
https://repost.aws/knowledge-center/sqs-dead-letter-queue-redrive
https://repost.aws/knowledge-center/sqs-dead-letter-queue-redrive


Amazon Simple Queue Service Developer Guide

of a failed processing attempt, it isn't captured by this metric. Therefore, it's possible for the values 
of NumberOfMessagesSent and NumberOfMessagesReceived to be different.

Creating and configuring a dead-letter queue redrive

Dead-letter queue redrive requires you to set appropriate permissions for Amazon SQS to receive 
messages from the dead-letter queue, and send messages to the destination queue. If you don't 
have the correct permissions, the dead-letter queue redrive task can fail. You can view the status of 
your message redrive task to remediate the issues, and try again.

Standard and FIFO queue message failure handling

Standard queues keep processing messages until the expiration of the retention period. This 
continuous processing minimizes chances of the queue being blocked by unconsumed messages. 
Having a large number of messages that the consumer repeatedly fails to delete can increase costs, 
and place extra load on the hardware. To keep costs down, move failed messages to the dead-
letter queue.

Standard queues also allow a high number of in-flight messages. If the majority of your messages 
can't be consumed, and aren't sent to a dead-letter queue, your rate of processing messages can 
slow down. To maintain the efficiency of your queue, make sure that your application correctly 
handles message processing.

FIFO queues provide exactly-once processing by consuming messages in sequence from a message 
group. Therefore, although the consumer can continue to retrieve ordered messages from another 
message group, the first message group remains unavailable until the message blocking the queue 
is processed successfully or moved to a dead-letter queue.

Additionally, FIFO queues allow a lower number of in-flight messages. To keep your FIFO queue 
from getting blocked by a message, make sure that your application correctly handles message 
processing.

For more information, see Amazon SQS message quotas and Amazon SQS best practices.

DLQ-redrive issues

Learn about common DLQ-redrive issues and how to solve them.

DLQ-redrive issues 664



Amazon Simple Queue Service Developer Guide

AccessDenied permission issue

The AccessDenied error occurs when the DLQ redrive fails because the Amazon Identity and 
Access Management (IAM) entity doesn't have the required permissions.

Example error message:

Failed to create redrive task. Error code: AccessDenied - Queue Permissions to Redrive.

The following API permissions are required to make DLQ redrive requests:

To start a message redrive:

• Dead-letter queue permissions:

• sqs:StartMessageMoveTask

• sqs:ReceiveMessage

• sqs:DeleteMessage

• sqs:GetQueueAttributes

• kms:Decrypt – When either the dead-letter queue or the original source queue are 
encrypted.

• Destination queue permissions:

• sqs:SendMessage

• kms:GenerateDataKey – When the destination queue is encrypted.

• kms:Decrypt – When the destination queue is encrypted.

To cancel an in-progress message redrive:

• Dead-letter queue permissions:

• sqs:CancelMessageMoveTask

• sqs:ReceiveMessage

• sqs:DeleteMessage

• sqs:GetQueueAttributes

• kms:Decrypt – When either the dead-letter queue or the original source queue are 
encrypted.

DLQ-redrive issues 665



Amazon Simple Queue Service Developer Guide

To show a message move status:

• Dead-letter queue permissions:

• sqs:ListMessageMoveTasks

• sqs:GetQueueAttributes

NonExistentQueue error

The NonExistentQueue error occurs when the Amazon SQS source queue doesn't exist, or was 
deleted. Check and redrive to an Amazon SQS queue that is present.

Example error message:

Failed: AWS.SimpleQueueService.NonExistentQueue

CouldNotDetermineMessageSource error

The CouldNotDetermineMessageSource error occurs when you attempt to start a DLQ redrive 
with the following scenarios:

• An Amazon SQS message sent directly to the DLQ with SendMessage API.

• A message from the Amazon Simple Notification Service (Amazon SNS) topic or Amazon Lambda 
function with the DLQ configured.

To resolve this error, choose Redrive to a custom destination when you start the redrive. Then, 
enter the Amazon SQS queue ARN to move all messages from the DLQ to the destination queue.

Example error message:

Failed: CouldNotDetermineMessageSource

Troubleshoot FIFO throttling issues in Amazon SQS

By default, FIFO queues support 300 transactions per second, per API action for SendMessage,
ReceiveMessage, and DeleteMessage. Requests over 300 TPS get the ThrottlingException
error even if messages in the queue are available. To mitigate this, you can use following methods:

FIFO throttling issues 666

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html


Amazon Simple Queue Service Developer Guide

• Enabling high throughput for FIFO queues in Amazon SQS.

• Use the Amazon SQS API batch actions SendMessageBatch, DeleteMessageBatch, and
ChangeMessageVisibilityBatch to increase the TPS limit of up to 3,000 messages 
per second per API action, and to reduce cost. For the ReceiveMessage API, set the
MaxNumberofMessages parameter to receive up to ten messages per transaction. For more 
information, see Amazon SQS batch actions.

• For FIFO queues with high throughput, follow the recommendations to optimize partition 
utilization. Send messages with the same message group IDs in batches. Delete messages, or 
change the message visibility timeout values in batches with receipt handles from the same
ReceiveMessage API requests.

• Increase the number of unique MessageGroupId values. This allows for an even distribution 
across FIFO queue partitions. For more information, see Using the Amazon SQS message group 
ID.

For more information, see Why doesn't my Amazon SQS FIFO queue return all messages or 
messages in other message groups? in the Amazon Knowledge Center Guide.

Troubleshoot messages not returned for an Amazon SQS 
ReceiveMessage API call

The following topics cover the most common causes why an Amazon SQS message may not be 
returned to consumers, and how to troubleshoot them. For more information, see Why can't I 
receive messages from my Amazon SQS queue? in the Amazon Knowledge Center Guide.

Empty queue

To determine if a queue is empty, use long polling to call the ReceiveMessage
API. You can also use the ApproximateNumberOfMessagesVisible,
ApproximateNumberOfMessagesNotVisible, and
ApproximateNumberOfMessagesDelayed CloudWatch metrics. If all the metric values are set to 
0 for several minutes, the queue is considered empty.

In flight limit reached

If you use long polling and if the queue’s in flight limit (120000 by default) is breached, Amazon 
SQS won't return error messages that exceed quota limits.

Messages not returned for a ReceiveMessage API call 667

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html#SQS-SendMessage-request-MessageGroupId
https://repost.aws/knowledge-center/sqs-fifo-messages-not-returned
https://repost.aws/knowledge-center/sqs-fifo-messages-not-returned
https://repost.aws/knowledge-center/sqs-queue-message
https://repost.aws/knowledge-center/sqs-queue-message
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

Message delay

If the Amazon SQS queue is configured as a delay queue, or the messages were sent with message 
timers, then the messages aren't visible until the delay time ends. To verify if a queue is configured 
as a delay queue, use the GetQueueAttributes API DelaySeconds attribute, or from the queue 
console under Delivery delay. Check the ApproximateNumberOfMessagesDelayed CloudWatch 
metric to understand if any messages are delayed.

Message is in flight

If a different consumer has polled the message, the message will be in flight or invisible for 
the visibility timeout period. The additional polls might return an empty receive. Check the
ApproximateNumberOfMessagesVisible CloudWatch metric to understand the number of messages 
that are available to be received. In the case of FIFO queues, if a message with the message 
group ID is in flight, then no more messages will be returned unless you delete the message, or it 
becomes visible. This is because message ordering is maintained at the message group level in a 
FIFO queue.

Polling method

If you are using short polling, (WaitTimeSeconds is 0) Amazon SQS samples a subset of its servers, 
and returns messages from only those servers. Therefore, you might not get the messages even if 
they are available for to be received. Subsequent poll requests will return the messages.

If you are using long polling, Amazon SQS polls all the servers and sends a response after 
collecting at least one available message, and up to the maximum number that's specified. If the 
value for ReceiveMessage WaitTimeSeconds is too low, you might not receive all the available 
messages.

Troubleshoot Amazon SQS network errors

The following topics cover the most common causes for network issues in Amazon SQS, and how 
to troubleshoot them.

ETIMEOUT error

The ETIMEOUT error occurs when the client can't establish a TCP connection to an Amazon SQS 
endpoint.

Message delay 668

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#API_ReceiveMessage_RequestSyntax
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html#API_ReceiveMessage_RequestSyntax


Amazon Simple Queue Service Developer Guide

Troubleshooting:

• Check the network connection

Test your network connection to Amazon SQS by running commands like telnet.

Example: telnet sqs.us-east-1.amazonaws.com 443

• Check network settings

• Make sure that your local firewall rules, routes, and access control lists (ACLs) allow traffic on 
the port that you use.

• The security group outbound (egress) rules must allow traffic to the port 80 or 443.

• The network ACL outbound (egress) rules must allow traffic to TCP port 80 or 443.

• The network ACL inbound (ingress) rules must allow traffic on TCP ports 1024-65535.

• Amazon Elastic Compute Cloud (Amazon EC2) instances that connect to the public internet 
must have internet connectivity.

• Amazon Virtual Private Cloud (Amazon VPC) endpoints

If you access Amazon SQS through an Amazon VPC endpoint, then the endpoints security group 
must allow inbound traffic to the clients security group on port 443. The network ACL associated 
with the subnet of the VPC endpoint must have this configuration:

• The network ACL outbound (egress) rules must allow traffic on TCP ports 1024-65535 
(ephemeral ports).

• The network ACL inbound (ingress) rules must allow traffic on port 443.

Also, the Amazon SQS VPC endpoint Amazon Identity and Access Management (IAM) policy must 
allow access. The following example VPC endpoint policy specifies that the IAM user MyUser is 
allowed to send messages to the Amazon SQS queue MyQueue. Other actions, IAM users, and 
Amazon SQS resources are denied access through the VPC endpoint.

{ 
    "Statement": [{ 
        "Action": ["sqs:SendMessage"], 
        "Effect": "Allow", 
        "Resource": "arn:aws-cn:sqs:us-east-2:123456789012:MyQueue", 
        "Principal": { 
            "AWS": "arn:aws-cn:iam:123456789012:user/MyUser" 

ETIMEOUT error 669

https://docs.amazonaws.cn/vpc/latest/userguide/VPC_Internet_Gateway.html#vpc-igw-internet-access


Amazon Simple Queue Service Developer Guide

        } 
    }]
}

UnknownHostException error

The UnknownHostException error occurs when the host IP address couldn't be determined.

Troubleshooting:

Use the nslookup utility to return the IP address associated with the host name:

• Windows and Linux OS

nslookup sqs.<region>.amazonaws.com 

• Amazon CLI or SDK for Python legacy endpoints:

nslookup <region>.queue.amazonaws.com

If you received an unsuccessful output, follow the instructions in How does DNS work and how do I 
troubleshoot partial or intermittent DNS failures? in the Amazon Knowledge Center Guide.

If you received a valid output, then it is likely to be an application-level issue. To resolve 
application-level issues, try the following methods:

• Restart your application.

• Confirm that your Java application doesn't have a bad DNS cache. If possible, configure your 
application to adhere to the DNS TTL. For more information, see Setting the JVM TTL for DNS 
name lookups.

For additional information on how to troubleshoot network errors, see How do I troubleshoot 
Amazon SQS “ETIMEOUT” and “UnknownHostException” connection errors? in the Amazon 
Knowledge Center Guide.

UnknownHostException error 670

https://repost.aws/knowledge-center/sqs-connection-error
https://repost.aws/knowledge-center/sqs-connection-error
https://docs.amazonaws.cn/sdk-for-java/v1/developer-guide/jvm-ttl-dns.html
https://docs.amazonaws.cn/sdk-for-java/v1/developer-guide/jvm-ttl-dns.html
https://repost.aws/knowledge-center/sqs-connection-error
https://repost.aws/knowledge-center/sqs-connection-error


Amazon Simple Queue Service Developer Guide

Troubleshooting Amazon Simple Queue Service queues using 
Amazon X-Ray

Amazon X-Ray collects data about requests that your application serves and lets you view and filter 
data to identify potential issues and opportunities for optimization. For any traced request to your 
application, you can see detailed information about the request, the response, and the calls that 
your application makes to downstream Amazon resources, microservices, databases and HTTP web 
APIs.

To send Amazon X-Ray trace headers through Amazon SQS, you can do one of the following:

• Use the X-Amzn-Trace-Id tracing header.

• Use the AWSTraceHeader message system attribute.

To collect data on errors and latency, you must instrument the AmazonSQS client using the
Amazon X-Ray SDK.

You can use the Amazon X-Ray console to view the map of connections between Amazon SQS 
and other services that your application uses. You can also use the console to view metrics such as 
average latency and failure rates. For more information, see Amazon SQS and Amazon X-Ray in the
Amazon X-Ray Developer Guide.

Troubleshooting queues using X-Ray 671

https://docs.amazonaws.cn/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader
https://docs.amazonaws.cn/sdk-for-java/latest/reference/index.html?com/amazonaws/services/sqs/AmazonSQSClient.html
https://docs.amazonaws.cn/xray-sdk-for-java/latest/javadoc/index.html
https://docs.amazonaws.cn/xray/latest/devguide/xray-services-sqs.html


Amazon Simple Queue Service Developer Guide

Security in Amazon SQS

This section provides information about Amazon SQS security, authentication and access control, 
and the Amazon SQS Access Policy Language.

Topics

• Data protection in Amazon SQS

• Identity and access management in Amazon SQS

• Logging and monitoring in Amazon SQS

• Compliance validation for Amazon SQS

• Resilience in Amazon SQS

• Infrastructure security in Amazon SQS

• Amazon SQS security best practices

Data protection in Amazon SQS

The Amazon shared responsibility model applies to data protection in Amazon Simple Queue 
Service. As described in this model, Amazon is responsible for protecting the global infrastructure 
that runs all of the Amazon Web Services Cloud. You are responsible for maintaining control 
over your content that is hosted on this infrastructure. You are also responsible for the security 
configuration and management tasks for the Amazon Web Services services that you use. For more 
information about data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect Amazon Web Services account 
credentials and set up individual users with Amazon IAM Identity Center or Amazon Identity and 
Access Management (IAM). That way, each user is given only the permissions necessary to fulfill 
their job duties. We also recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with Amazon resources. We require TLS 1.2 and recommend TLS 
1.3.

• Set up API and user activity logging with Amazon CloudTrail. For information about using 
CloudTrail trails to capture Amazon activities, see Working with CloudTrail trails in the Amazon 
CloudTrail User Guide.

Data protection 672

https://aws.amazon.com/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/data-privacy-faq/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-trails.html


Amazon Simple Queue Service Developer Guide

• Use Amazon encryption solutions, along with all default security controls within Amazon Web 
Services services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and 
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing Amazon through a 
command line interface or an API, use a FIPS endpoint. For more information about the available 
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your 
customers' email addresses, into tags or free-form text fields such as a Name field. This includes 
when you work with Amazon SQS or other Amazon Web Services services using the console, API, 
Amazon CLI, or Amazon SDKs. Any data that you enter into tags or free-form text fields used for 
names may be used for billing or diagnostic logs. If you provide a URL to an external server, we 
strongly recommend that you do not include credentials information in the URL to validate your 
request to that server.

The following sections provide information about data protection in Amazon SQS.

Data encryption in Amazon SQS

Data protection refers to protecting data while in-transit (as it travels to and from Amazon SQS) 
and at rest (while it is stored on disks in Amazon SQS data centers). You can protect data in 
transit using Secure Sockets Layer (SSL) or client-side encryption. By default, Amazon SQS stores 
messages and files using disk encryption. You can protect data at rest by requesting Amazon SQS 
to encrypt your messages before saving them to the encrypted file system in its data centers. 
Amazon SQS recommends using SSE for optimized data encryption.

Topics

• Encryption at rest in Amazon SQS

• Amazon SQS Key management

Encryption at rest in Amazon SQS

Server-side encryption (SSE) lets you transmit sensitive data in encrypted queues. SSE protects the 
contents of messages in queues using SQS-managed encryption keys (SSE-SQS) or keys managed 
in the Amazon Key Management Service (SSE-KMS). For information about managing SSE using the 
Amazon Web Services Management Console, see the following:

Data encryption 673

https://www.amazonaws.cn/compliance/fips/


Amazon Simple Queue Service Developer Guide

• Configuring SSE-SQS for a queue (console)

• Configuring SSE-KMS for a queue (console)

For information about managing SSE using the Amazon SDK for Java (and the CreateQueue,
SetQueueAttributes, and GetQueueAttributes actions), see the following examples:

• Using server-side encryption with Amazon SQS queues

• Configuring KMS permissions for Amazon Web Services services

SSE encrypts messages as soon as Amazon SQS receives them. The messages are stored in 
encrypted form and Amazon SQS decrypts messages only when they are sent to an authorized 
consumer.

Important

All requests to queues with SSE enabled must use HTTPS and Signature Version 4.
Some features of Amazon services that can send notifications to Amazon SQS using the 
Amazon Security Token Service AssumeRole action are compatible with SSE but work only 
with standard queues:

• Auto Scaling Lifecycle Hooks

• Amazon Lambda Dead-Letter Queues

For information about compatibility of other services with encrypted queues, see Configure 
KMS permissions for Amazon services and your service documentation.

Amazon KMS combines secure, highly available hardware and software to provide a key 
management system scaled for the cloud. When you use Amazon SQS with Amazon KMS, the data 
keys that encrypt your message data are also encrypted and stored with the data they protect.

The following are benefits of using Amazon KMS:

• You can create and manage Amazon KMS keys yourself.

• You can also use the Amazon managed KMS key for Amazon SQS, which is unique for each 
account and region.

Data encryption 674

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRole.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.amazonaws.cn/lambda/latest/dg/dlq.html


Amazon Simple Queue Service Developer Guide

• The Amazon KMS security standards can help you meet encryption-related compliance 
requirements.

For more information, see What is Amazon Key Management Service? in the Amazon Key 
Management Service Developer Guide.

Encryption scope

SSE encrypts the body of a message in an Amazon SQS queue.

SSE doesn't encrypt the following:

• Queue metadata (queue name and attributes)

• Message metadata (message ID, timestamp, and attributes)

• Per-queue metrics

Encrypting a message makes its contents unavailable to unauthorized or anonymous users. With 
SSE enabled, anonymous SendMessage and ReceiveMessage requests to the encrypted queue 
will be rejected. Amazon SQS security best practices recommends against using anonymous 
requests. If you wish to send anonymous requests to an Amazon SQS queue, make sure you disable 
SSE. This doesn't affect the normal functioning of Amazon SQS:

• A message is encrypted only if it is sent after the encryption of a queue is enabled. Amazon SQS 
doesn't encrypt backlogged messages.

• Any encrypted message remains encrypted even if the encryption of its queue is disabled.

Moving a message to a dead-letter queue doesn't affect its encryption:

• When Amazon SQS moves a message from an encrypted source queue to an unencrypted dead-
letter queue, the message remains encrypted.

• When Amazon SQS moves a message from an unencrypted source queue to an encrypted dead-
letter queue, the message remains unencrypted.

Key terms

The following key terms can help you better understand the functionality of SSE. For detailed 
descriptions, see the Amazon Simple Queue Service API Reference.

Data encryption 675

https://docs.amazonaws.cn/kms/latest/developerguide/overview.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/


Amazon Simple Queue Service Developer Guide

Data key

The key (DEK) responsible for encrypting the contents of Amazon SQS messages.

For more information, see Data Keys in the Amazon Key Management Service Developer Guide in 
the Amazon Encryption SDK Developer Guide.

Data key reuse period

The length of time, in seconds, for which Amazon SQS can reuse a data key to encrypt or 
decrypt messages before calling Amazon KMS again. An integer representing seconds, between 
60 seconds (1 minute) and 86,400 seconds (24 hours). The default is 300 (5 minutes). For more 
information, see Understanding the data key reuse period.

Note

In the unlikely event of being unable to reach Amazon KMS, Amazon SQS continues to 
use the cached data key until a connection is reestablished.

KMS key ID

The alias, alias ARN, key ID, or key ARN of an Amazon managed KMS key or a custom KMS key
—in your account or in another account. While the alias of the Amazon managed KMS key for 
Amazon SQS is always alias/aws/sqs, the alias of a custom KMS key can, for example, be
alias/MyAlias. You can use these KMS keys to protect the messages in Amazon SQS queues.

Note

Keep the following in mind:

• If you don't specify a custom KMS key, Amazon SQS uses the Amazon managed KMS 
key for Amazon SQS.

• The first time you use the Amazon Web Services Management Console to specify the 
Amazon managed KMS key for Amazon SQS for a queue, Amazon KMS creates the 
Amazon managed KMS key for Amazon SQS.

• Alternatively, the first time you use the SendMessage or SendMessageBatch action 
on a queue with SSE enabled, Amazon KMS creates the Amazon managed KMS key 
for Amazon SQS.

Data encryption 676

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#data-keys


Amazon Simple Queue Service Developer Guide

You can create KMS keys, define the policies that control how KMS keys can be used, and audit 
KMS key usage using the Customer managed keys section of the Amazon KMS console or the
CreateKey Amazon KMS action. For more information, see KMS keys and Creating Keys in the
Amazon Key Management Service Developer Guide. For more examples of KMS key identifiers, 
see KeyId in the Amazon Key Management Service API Reference. For information about finding 
KMS key identifiers, see Find the Key ID and ARN in the Amazon Key Management Service 
Developer Guide.

Important

There are additional charges for using Amazon KMS. For more information, see
Estimating Amazon KMS costs and Amazon Key Management Service Pricing.

Envelope Encryption

The security of your encrypted data depends in part on protecting the data key that can decrypt 
it. Amazon SQS uses the KMS key to encrypt the data key and then the encrypted data key is 
stored with the encrypted message. This practice of using a KMS key to encrypt data keys is 
known as envelope encryption.

For more information, see Envelope Encryption in the Amazon Encryption SDK Developer Guide.

Amazon SQS Key management

Amazon SQS integrates with the Amazon Key Management Service (KMS) to manage KMS keys for 
server-side encryption (SSE). See Encryption at rest in Amazon SQS for SSE information and key 
management definitions. Amazon SQS uses KMS keys to validate and secure the data keys that 
encrypt and decrypt the messages. The following sections provide information about working with 
KMS keys and data keys in the Amazon SQS service.

Configuring Amazon KMS permissions

Every KMS key must have a key policy. Note that you cannot modify the key policy of an Amazon 
managed KMS key for Amazon SQS. The policy for this KMS key includes permissions for all 
principals in the account (that are authorized to use Amazon SQS) to use encrypted queues.

Amazon SQS distinguishes between callers based on their Amazon credentials, whether they 
are using different Amazon accounts, IAM users, or IAM roles. Additionally, the same IAM role 

Data encryption 677

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#master_keys
https://docs.amazonaws.cn/kms/latest/developerguide/create-keys.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html#API_DescribeKey_RequestParameters
https://docs.amazonaws.cn/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
http://www.amazonaws.cn/kms/pricing
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#master_keys


Amazon Simple Queue Service Developer Guide

with different scoping policies will be treated as distinct requesters. However, when using IAM 
role sessions, varying only the RoleSessionName while keeping the same IAM role and scoping 
policies will not create distinct requesters. Therefore, when specifying Amazon KMS key policy 
principals, avoid relying on RoleSessionName differences alone, as these sessions will be treated 
as the same requester.

Alternatively, you can specify the required permissions in an IAM policy assigned to the principals 
that produce and consume encrypted messages. For more information, see Using IAM Policies with 
Amazon KMS in the Amazon Key Management Service Developer Guide.

Note

While you can configure global permissions to send to and receive from Amazon SQS, 
Amazon KMS requires explicitly naming the full ARN of KMS keys in specific regions in the
Resource section of an IAM policy.

Configure KMS permissions for Amazon services

Several Amazon services act as event sources that can send events to Amazon SQS queues. To 
allow these event sources to work with encrypted queues, you must create a customer managed 
KMS key and add permissions in the key policy for the service to use the required Amazon KMS API 
methods. Perform the following steps to configure the permissions.

Warning

When changing the KMS key for encrypting your Amazon SQS messages, be aware that 
existing messages encrypted with the old KMS key will remain encrypted with that key. To 
decrypt these messages, you must retain the old KMS key and ensure that its key policy 
grants Amazon SQS the permissions for kms:Decrypt and kms:GenerateDataKey. After 
updating to a new KMS key for encrypting new messages, ensure all existing messages 
encrypted with the old KMS key are processed and removed from the queue before 
deleting or disabling the old KMS key.

1. Create a customer managed KMS key. For more information, see Creating Keys in the Amazon 
Key Management Service Developer Guide.

Data encryption 678

https://docs.amazonaws.cn/kms/latest/developerguide/iam-policies.html
https://docs.amazonaws.cn/kms/latest/developerguide/iam-policies.html
https://docs.amazonaws.cn/kms/latest/developerguide/create-keys.html


Amazon Simple Queue Service Developer Guide

2. To allow the Amazon service event source to use the kms:Decrypt and
kms:GenerateDataKey API methods, add the following statement to the KMS key policy.

JSON

{ 
   "Version":"2012-10-17",        
      "Statement": [{ 
         "Effect": "Allow", 
         "Principal": { 
            "Service": "service.amazonaws.com" 
         }, 
         "Action": [ 
            "kms:Decrypt", 
            "kms:GenerateDataKey" 
         ], 
         "Resource": "*" 
       }]
}

Replace "service" in the above example with the Service name of the event source. Event 
sources include the following services.

Event source Service name

Amazon CloudWatch Events events.amazonaws.com

Amazon S3 event notifications s3.amazonaws.com

Amazon SNS topic subscriptions sns.amazonaws.com

3. Configure an existing SSE queue using the ARN of your KMS key.

4. Provide the ARN of the encrypted queue to the event source.

Configure Amazon KMS permissions for producers

When the data key reuse period expires, the producer's next call to SendMessage or
SendMessageBatch also triggers calls to kms:Decrypt and kms:GenerateDataKey. The call to

Data encryption 679

https://docs.amazonaws.cn/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/NotificationHowTo.html
https://docs.amazonaws.cn/sns/latest/dg/sns-tutorial-create-subscribe-endpoint-to-topic.html


Amazon Simple Queue Service Developer Guide

kms:Decrypt is to verify the integrity of the new data key before using it. Therefore, the producer 
must have the kms:Decrypt and kms:GenerateDataKey permissions for the KMS key.

Add the following statement to the IAM policy of the producer. Remember to use the correct ARN 
values for the key resource and the queue resource.

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "kms:Decrypt", 
                "kms:GenerateDataKey" 
            ], 
            "Resource": "arn:aws-cn:kms:us-
east-2:123456789012:key/111112222233333" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "sqs:SendMessage" 
            ], 
            "Resource": "arn:aws-cn:sqs:*:123456789012:MyQueue" 
        } 
    ]
}

Configure Amazon KMS permissions for consumers

When the data key reuse period expires, the consumer's next call to ReceiveMessage also triggers 
a call to kms:Decrypt, to verify the integrity of the new data key before using it. Therefore, the 
consumer must have the kms:Decrypt permission for any KMS key that is used to encrypt the 
messages in the specified queue. If the queue acts as a dead-letter queue, the consumer must also 
have the kms:Decrypt permission for any KMS key that is used to encrypt the messages in the 
source queue. Add the following statement to the IAM policy of the consumer. Remember to use 
the correct ARN values for the key resource and the queue resource.

Data encryption 680



Amazon Simple Queue Service Developer Guide

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "kms:Decrypt" 
            ], 
            "Resource": "arn:aws-cn:kms:us-
east-2:123456789012:key/111112222233333" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "sqs:ReceiveMessage" 
            ], 
            "Resource": "arn:aws-cn:sqs:*:123456789012:MyQueue" 
        } 
    ]
}

Configure Amazon KMS permissions with confused deputy protection

When the principal in a key policy statement is an Amazon service principal, you can use the
aws:SourceArn or aws:SourceAccount global condition keys to protect against the confused 
deputy scenario. To use these condition keys, set the value to the Amazon Resource Name 
(ARN) of the resource that is being encrypted. If you don't know the ARN of the resource, use
aws:SourceAccount instead.

In this KMS key policy, a specific resource from service that is owned by account 111122223333 is 
allowed to call KMS for Decrypt and GenerateDataKey actions, which occur during SSE usage of 
Amazon SQS.

JSON

{ 
    "Version":"2012-10-17",        

Data encryption 681

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html


Amazon Simple Queue Service Developer Guide

    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Principal": { 
                "Service": "sqs.amazonaws.com" 
            }, 
            "Action": [ 
                "kms:GenerateDataKey", 
                "kms:Decrypt" 
            ], 
            "Resource": "*", 
            "Condition": { 
                "ArnEquals": { 
                    "aws:SourceArn": [ 
                        "arn:aws:sqs:us-west-1:111122223333:resource" 
                    ] 
                } 
            } 
        } 
    ]
}

When using SSE enabled Amazon SQS queues, the following services support aws:SourceArn:

• Amazon SNS

• Amazon S3

• CloudWatch Events

• Amazon Lambda

• CodeBuild

• Amazon Connect Customer Profiles

• Amazon Auto Scaling

• Amazon Chime

Understanding the data key reuse period

The  data key reuse period defines the maximum duration for Amazon SQS to reuse the same 
data key. When the data key reuse period ends, Amazon SQS generates a new data key. Note the 
following guidelines about the reuse period.

Data encryption 682



Amazon Simple Queue Service Developer Guide

• A shorter reuse period provides better security but results in more calls to Amazon KMS, which 
might incur charges beyond the Free Tier.

• Although the data key is cached separately for encryption and for decryption, the reuse period 
applies to both copies of the data key.

• When the data key reuse period ends, the next call to SendMessage or SendMessageBatch
typically triggers a call to the Amazon KMS GenerateDataKey method to get a new data key. 
Also, the next calls to SendMessage and ReceiveMessage will each trigger a call to Amazon 
KMS Decrypt to verify the integrity of the data key before using it.

• Principals (Amazon Web Services accounts or users) don't share data keys (messages sent by 
unique principals always get unique data keys). Therefore, the volume of calls to Amazon KMS is 
a multiple of the number of unique principals in use during the data key reuse period.

Estimating Amazon KMS costs

To predict costs and better understand your Amazon bill, you might want to know how often 
Amazon SQS uses your KMS key.

Note

Although the following formula can give you a very good idea of expected costs, actual 
costs might be higher because of the distributed nature of Amazon SQS.

To calculate the number of API requests (R) per queue, use the following formula:

R = (B / D) * (2 * P + C)

B is the billing period (in seconds).

D is the data key reuse period (in seconds).

P is the number of producing principals that send to the Amazon SQS queue.

C is the number of consuming principals that receive from the Amazon SQS queue.

Important

In general, producing principals incur double the cost of consuming principals. For more 
information, see Understanding the data key reuse period.

Data encryption 683

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html#Principal
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html#Principal


Amazon Simple Queue Service Developer Guide

If the producer and consumer have different users, the cost increases.

The following are example calculations. For exact pricing information, see Amazon Key 
Management Service Pricing.

Example 1: Calculating the number of Amazon KMS API calls for 2 principals and 1 queue

This example assumes the following:

• The billing period is January 1-31 (2,678,400 seconds).

• The data key reuse period is set to 5 minutes (300 seconds).

• There is 1 queue.

• There is 1 producing principal and 1 consuming principal.

(2,678,400 / 300) * (2 * 1 + 1) = 26,784

Example 2: Calculating the number of Amazon KMS API calls for multiple producers and 
consumers and 2 queues

This example assumes the following:

• The billing period is February 1-28 (2,419,200 seconds).

• The data key reuse period is set to 24 hours (86,400 seconds).

• There are 2 queues.

• The first queue has 3 producing principals and 1 consuming principal.

• The second queue has 5 producing principals and 2 consuming principals.

(2,419,200 / 86,400 * (2 * 3 + 1)) + (2,419,200 / 86,400 * (2 * 5 + 2)) = 532

Amazon KMS errors

When you work with Amazon SQS and Amazon KMS, you might encounter errors. The following 
references describe the errors and possible troubleshooting solutions.

• Common Amazon KMS errors

Data encryption 684

http://www.amazonaws.cn/kms/pricing/
http://www.amazonaws.cn/kms/pricing/
https://docs.amazonaws.cn/kms/latest/APIReference/CommonErrors.html


Amazon Simple Queue Service Developer Guide

• Amazon KMS Decrypt errors

• Amazon KMS GenerateDataKey errors

Internetwork traffic privacy in Amazon SQS

An Amazon Virtual Private Cloud (Amazon VPC) endpoint for Amazon SQS is a logical entity within 
a VPC that allows connectivity only to Amazon SQS. The VPC routes requests to Amazon SQS and 
routes responses back to the VPC. The following sections provide information about working with 
VPC endpoints and creating VPC endpoint policies.

Amazon Virtual Private Cloud endpoints for Amazon SQS

If you use Amazon VPC to host your Amazon resources, you can establish a connection between 
your VPC and Amazon SQS. You can use this connection to send messages to your Amazon SQS 
queues without crossing the public internet.

Amazon VPC lets you launch Amazon resources in a custom virtual network. You can use a VPC to 
control your network settings, such as the IP address range, subnets, route tables, and network 
gateways. For more information about VPCs, see the Amazon VPC User Guide.

To connect your VPC to Amazon SQS, you must first define an interface VPC endpoint, which 
lets you connect your VPC to other Amazon services. The endpoint provides reliable, scalable 
connectivity to Amazon SQS without requiring an internet gateway, network address translation 
(NAT) instance, or VPN connection. For more information, see Tutorial: Sending a message to an 
Amazon SQS queue from Amazon Virtual Private Cloud and Example 5: Deny access if it isn't from 
a VPC endpoint in this guide and Interface VPC Endpoints (Amazon PrivateLink) in the Amazon VPC 
User Guide.

Important

• You can use Amazon Virtual Private Cloud only with HTTPS Amazon SQS endpoints.

• When you configure Amazon SQS to send messages from Amazon VPC, you must enable 
private DNS and specify endpoints in the format sqs.us-east-2.amazonaws.com or
sqs.us-east-2.api.aws for the dual-stack endpoint.

• Amazon SQS also supports FIPS endpoints through PrivateLink using the
com.amazonaws.region.sqs-fips endpoint service. You can connect to FIPS 
endpoints in the format sqs-fips.region.amazonaws.com.

Internetwork traffic privacy 685

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html#API_Decrypt_Errors
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html#API_GenerateDataKey_Errors
https://docs.amazonaws.cn/vpc/latest/userguide/
https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html


Amazon Simple Queue Service Developer Guide

• When using the dual-stack endpoint in Amazon Virtual Private Cloud, requests will be 
sent using IPv4 and IPv6.

• Private DNS doesn't support legacy endpoints such as queue.amazonaws.com or us-
east-2.queue.amazonaws.com.

Creating an Amazon VPC endpoint policy for Amazon SQS

You can create a policy for Amazon VPC endpoints for Amazon SQS in which you specify the 
following:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC 
User Guide

The following example VPC endpoint policy specifies that the user MyUser is allowed to send 
messages to the Amazon SQS queue MyQueue.

{ 
   "Statement": [{ 
      "Action": ["sqs:SendMessage"], 
      "Effect": "Allow", 
      "Resource": "arn:aws:sqs:us-east-2:123456789012:MyQueue", 
      "Principal": { 
        "AWS": "arn:aws:iam:123456789012:user/MyUser" 
      } 
   }]
}

The following are denied:

• Other Amazon SQS API actions, such as sqs:CreateQueue and sqs:DeleteQueue.

• Other users and rules which attempt to use this VPC endpoint.

• MyUser sending messages to a different Amazon SQS queue.

Internetwork traffic privacy 686

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints-access.html


Amazon Simple Queue Service Developer Guide

Note

The user can still use other Amazon SQS API actions from outside the VPC. For more 
information, see Example 5: Deny access if it isn't from a VPC endpoint.

Connect to Amazon SQS using Dual-stack (IPv4 and IPv6) endpoints

Dual-stack endpoints support both IPv4 and IPv6 traffic. When you make a request to a dual-stack 
endpoint, the endpoint URL resolves to an IPv4 or an IPv6 address. For more information on dual-
stack and FIPS endpoints, see the SDK Reference guide.

Amazon SQS supports Regional dual-stack endpoints, which means that you must specify the 
Amazon Region as part of the endpoint name. Dual-stack endpoint names use the following 
naming convention: sqs.Region.amazonaws.com. For example, the dual-stack endpoint name 
for the eu-west-1 Region is sqs.eu-west-1.amazonaws.com.

For the full list of Amazon SQS endpoints, see the Amazon General Reference.

Identity and access management in Amazon SQS

Amazon Identity and Access Management (IAM) is an Amazon Web Services service that helps an 
administrator securely control access to Amazon resources. IAM administrators control who can be
authenticated (signed in) and authorized (have permissions) to use Amazon SQS resources. IAM is an 
Amazon Web Services service that you can use with no additional charge.

Audience

How you use Amazon Identity and Access Management (IAM) differs based on your role:

• Service user - request permissions from your administrator if you cannot access features (see
Troubleshooting Amazon Simple Queue Service identity and access)

• Service administrator - determine user access and submit permission requests (see How Amazon 
Simple Queue Service works with IAM)

• IAM administrator - write policies to manage access (see Policy best practices)

Using dual-stack endpoints for connectivity 687

https://docs.amazonaws.cn/sdkref/latest/guide/feature-endpoints.html
https://docs.amazonaws.cn/general/latest/gr/sqs-service.html


Amazon Simple Queue Service Developer Guide

Authenticating with identities

Authentication is how you sign in to Amazon using your identity credentials. You must be 
authenticated as the Amazon Web Services account root user, an IAM user, or by assuming an IAM 
role.

For programmatic access, Amazon provides an SDK and CLI to cryptographically sign requests. For 
more information, see Amazon Signature Version 4 for API requests in the IAM User Guide.

Amazon Web Services account root user

When you create an Amazon Web Services account, you begin with one sign-in identity called the 
Amazon Web Services account root user that has complete access to all Amazon Web Services 
services and resources. We strongly recommend that you don't use the root user for everyday tasks. 
For tasks that require root user credentials, see Tasks that require root user credentials in the IAM 
User Guide.

Federated identity

As a best practice, require human users to use federation with an identity provider to access 
Amazon Web Services services using temporary credentials.

A federated identity is a user from your enterprise directory, web identity provider, or Amazon 
Directory Service that accesses Amazon Web Services services using credentials from an identity 
source. Federated identities assume roles that provide temporary credentials.

IAM users and groups

An IAM user is an identity with specific permissions for a single person or application. We 
recommend using temporary credentials instead of IAM users with long-term credentials. For more 
information, see Require human users to use federation with an identity provider to access Amazon 
using temporary credentials in the IAM User Guide.

An IAM group specifies a collection of IAM users and makes permissions easier to manage for large 
sets of users. For more information, see Use cases for IAM users in the IAM User Guide.

IAM roles

An IAM role is an identity with specific permissions that provides temporary credentials. You can 
assume a role by switching from a user to an IAM role (console) or by calling an Amazon CLI or 
Amazon API operation. For more information, see Methods to assume a role in the IAM User Guide.

Authenticating with identities 688

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_sigv.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html


Amazon Simple Queue Service Developer Guide

IAM roles are useful for federated user access, temporary IAM user permissions, cross-account 
access, cross-service access, and applications running on Amazon EC2. For more information, see
Cross account resource access in IAM in the IAM User Guide.

Managing access using policies

You control access in Amazon by creating policies and attaching them to Amazon identities or 
resources. A policy defines permissions when associated with an identity or resource. Amazon 
evaluates these policies when a principal makes a request. Most policies are stored in Amazon as 
JSON documents. For more information about JSON policy documents, see Overview of JSON 
policies in the IAM User Guide.

Using policies, administrators specify who has access to what by defining which principal can 
perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. An IAM administrator creates IAM policies and 
adds them to roles, which users can then assume. IAM policies define permissions regardless of the 
method used to perform the operation.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you attach to an identity (user, 
group, or role). These policies control what actions identities can perform, on which resources, and 
under what conditions. To learn how to create an identity-based policy, see Define custom IAM 
permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be inline policies (embedded directly into a single identity) or managed 
policies (standalone policies attached to multiple identities). To learn how to choose between 
managed and inline policies, see Choose between managed policies and inline policies in the IAM 
User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples 
include IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. You 
must specify a principal in a resource-based policy.

Resource-based policies are inline policies that are located in that service. You can't use Amazon 
managed policies from IAM in a resource-based policy.

Managing access using policies 689

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html


Amazon Simple Queue Service Developer Guide

Other policy types

Amazon supports additional policy types that can set the maximum permissions granted by more 
common policy types:

• Permissions boundaries – Set the maximum permissions that an identity-based policy can grant 
to an IAM entity. For more information, see Permissions boundaries for IAM entities in the IAM 
User Guide.

• Service control policies (SCPs) – Specify the maximum permissions for an organization or 
organizational unit in Amazon Organizations. For more information, see Service control policies
in the Amazon Organizations User Guide.

• Resource control policies (RCPs) – Set the maximum available permissions for resources 
in your accounts. For more information, see Resource control policies (RCPs) in the Amazon 
Organizations User Guide.

• Session policies – Advanced policies passed as a parameter when creating a temporary session 
for a role or federated user. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated 
to understand. To learn how Amazon determines whether to allow a request when multiple policy 
types are involved, see Policy evaluation logic in the IAM User Guide.

Overview of managing access in Amazon SQS

Every Amazon resource is owned by an Amazon Web Services account, and permissions to create 
or access a resource are governed by permissions policies. An account administrator can attach 
permissions policies to IAM identities (users, groups, and roles), and some services (such as Amazon 
SQS) also support attaching permissions policies to resources.

Note

An account administrator (or administrator user) is a user with administrative privileges. For 
more information, see IAM Best Practices in the IAM User Guide.

When granting permissions, you specify what users get permissions, the resource they get 
permissions for, and the specific actions that you want to allow on the resource.

Overview 690

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html


Amazon Simple Queue Service Developer Guide

Amazon Simple Queue Service resource and operations

In Amazon SQS, the only resource is the queue. In a policy, use an Amazon Resource Name (ARN) to 
identify the resource that the policy applies to. The following resource has a unique ARN associated 
with it:

Resource type ARN format

Queue arn:aws-cn:sqs: region:account_i 
d :queue_name

The following are examples of the ARN format for queues:

• An ARN for a queue named my_queue in the US East (Ohio) region, belonging to Amazon 
Account 123456789012:

arn:aws-cn:sqs:us-east-2:123456789012:my_queue

• An ARN for a queue named my_queue in each of the different regions that Amazon SQS 
supports:

arn:aws-cn:sqs:*:123456789012:my_queue

• An ARN that uses * or ? as a wildcard for the queue name. In the following examples, the ARN 
matches all queues prefixed with my_prefix_:

arn:aws-cn:sqs:*:123456789012:my_prefix_*

You can get the ARN value for an existing queue by calling the GetQueueAttributes action. The 
value of the QueueArn attribute is the ARN of the queue. For more information about ARNs, see
IAM ARNs in the IAM User Guide.

Amazon SQS provides a set of actions that work with the queue resource. For more information, 
see Amazon SQS API permissions: Actions and resource reference.

Overview 691

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns


Amazon Simple Queue Service Developer Guide

Understanding resource ownership

The Amazon Web Services account owns the resources that are created in the account, regardless 
of who created the resources. Specifically, the resource owner is the Amazon Web Services account 
of the principal entity (that is, the root account, a user , or an IAM role) that authenticates the 
resource creation request. The following examples illustrate how this works:

• If you use the root account credentials of your Amazon Web Services account to create an 
Amazon SQS queue, your Amazon Web Services account is the owner of the resource (in Amazon 
SQS, the resource is the Amazon SQS queue).

• If you create a user in your Amazon Web Services account and grant permissions to create a 
queue to the user, the user can create the queue. However, your Amazon Web Services account 
(to which the user belongs) owns the queue resource.

• If you create an IAM role in your Amazon Web Services account with permissions to create an 
Amazon SQS queue, anyone who can assume the role can create a queue. Your Amazon Web 
Services account (to which the role belongs) owns the queue resource.

Managing access to resources

A permissions policy describes the permissions granted to accounts. The following section explains 
the available options for creating permissions policies.

Note

This section discusses using IAM in the context of Amazon SQS. It doesn't provide detailed 
information about the IAM service. For complete IAM documentation, see What is IAM? in 
the IAM User Guide. For information about IAM policy syntax and descriptions, see Amazon 
IAM Policy Reference in the IAM User Guide.

Policies attached to an IAM identity are referred to as identity-based policies (IAM policies) and 
policies attached to a resource are referred to as resource-based policies.

Identity-based policies

There are two ways to give your users permissions to your Amazon SQS queues: using the Amazon 
SQS policy system and using the IAM policy system. You can use either system, or both, to attach 

Overview 692

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html


Amazon Simple Queue Service Developer Guide

policies to users or roles. In most cases, you can achieve the same result using either system. For 
example, you can do the following:

• Attach a permission policy to a user or a group in your account – To grant user permissions 
to create an Amazon SQS queue, attach a permissions policy to a user or group that the user 
belongs to.

• Attach a permission policy to a user in another Amazon Web Services account – You can 
attach a permissions policy to a user in another Amazon Web Services account to allow them to 
interact with an Amazon SQS queue. However, cross-account permissions do not apply to the 
following actions:

Cross-account permissions don't apply to the following actions:

• AddPermission

• CancelMessageMoveTask

• CreateQueue

• DeleteQueue

• ListMessageMoveTask

• ListQueues

• ListQueueTags

• RemovePermission

• SetQueueAttributes

• StartMessageMoveTask

• TagQueue

• UntagQueue

To grant access for these actions, the user must belong to the same Amazon Web Services 
account that owns the Amazon SQS queue.

• Attach a permission policy to a role (grant cross-account permissions) – To grant cross-
account permissions to an SQS queue, you must combine both IAM and resource-based policies:

1. In Account A (which owns the queue):

• Attach a resource-based policy to the SQS queue. This policy must explicitly grant the 
necessary permissions (for example, SendMessage, ReceiveMessage) to the principal in
Account B (such as an IAM role).

2. In Account A, create an IAM role:Overview 693

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CancelMessageMoveTask.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_TagQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_UntagQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

• A trust policy that allows Account B or an Amazon Web Services service to assume the role.

Note

If you want an Amazon Web Services service (such as Lambda or EventBridge) to 
assume the role, specify the service principal (for example, lambda.amazonaws.com) 
in the trust policy.

• An identity-based policy that grants the assumed role permissions to interact with the 
queue.

3. In Account B, grant permission to assume the role in Account A.

You must configure the queue’s access policy to allow the cross-account principal. IAM identity-
based policies alone aren't sufficient for cross-account access to SQS queues.

For more information about using IAM to delegate permissions, see Access Management in the IAM 
User Guide.

While Amazon SQS works with IAM policies, it has its own policy infrastructure. You can use an 
Amazon SQS policy with a queue to specify which Amazon Accounts have access to the queue. You 
can specify the type of access and conditions (for example, a condition that grants permissions 
to use SendMessage, ReceiveMessage if the request is made before December 31, 2010). 
The specific actions you can grant permissions for are a subset of the overall list of Amazon SQS 
actions. When you write an Amazon SQS policy and specify * to "allow all Amazon SQS actions," it 
means that a user can perform all actions in this subset.

The following diagram illustrates the concept of one of these basic Amazon SQS policies that 
covers the subset of actions. The policy is for queue_xyz, and it gives Amazon Account 1 and 
Amazon Account 2 permissions to use any of the allowed actions with the specified queue.

Note

The resource in the policy is specified as 123456789012/queue_xyz, where
123456789012 is the Amazon Account ID of the account that owns the queue.

Overview 694

https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html


Amazon Simple Queue Service Developer Guide

With the introduction of IAM and the concepts of Users and Amazon Resource Names (ARNs), a few 
things have changed about SQS policies. The following diagram and table describe the changes.

For information about giving permissions to users in different accounts, see Tutorial: Delegate 
Access Across Amazon Accounts Using IAM Roles in the IAM User Guide.

The subset of actions included in * has expanded. For a list of allowed actions, see Amazon SQS 
API permissions: Actions and resource reference.

You can specify the resource using the Amazon Resource Name (ARN), the standard means of 

Overview 695

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html


Amazon Simple Queue Service Developer Guide

specifying resources in IAM policies. For information about the ARN format for Amazon SQS 
queues, see Amazon Simple Queue Service resource and operations.

For example, according to the Amazon SQS policy in the preceding diagram, anyone who possesses 
the security credentials for Amazon Account 1 or Amazon Account 2 can access queue_xyz. In 
addition, Users Bob and Susan in your own Amazon Account (with ID 123456789012) can access 
the queue.

Before the introduction of IAM, Amazon SQS automatically gave the creator of a queue full control 
over the queue (that is, access to all of the possible Amazon SQS actions on that queue). This is 
no longer true, unless the creator uses Amazon security credentials. Any user who has permissions 
to create a queue must also have permissions to use other Amazon SQS actions in order to do 
anything with the created queues.

The following is an example policy that allows a user to use all Amazon SQS actions, but only with 
queues whose names are prefixed with the literal string bob_queue_.

JSON

{ 
   "Version":"2012-10-17",        
   "Statement": [{ 
      "Effect": "Allow", 
      "Action": "sqs:*", 
      "Resource": "arn:aws-cn:sqs:*:123456789012:bob_queue_*" 
   }]
}

For more information, see Using policies with Amazon SQS, and Identities (Users, Groups, and 
Roles) in the IAM User Guide.

Specifying policy elements: Actions, effects, resources, and principals

For each Amazon Simple Queue Service resource, the service defines a set of actions. To grant 
permissions for these actions, Amazon SQS defines a set of actions that you can specify in a policy.

Overview 696

https://docs.amazonaws.cn/IAM/latest/UserGuide/id.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_Operations.html


Amazon Simple Queue Service Developer Guide

Note

Performing an action can require permissions for more than one action. When granting 
permissions for specific actions, you also identify the resource for which the actions are 
allowed or denied.

The following are the most basic policy elements:

• Resource – In a policy, you use an Amazon Resource Name (ARN) to identify the resource to 
which the policy applies.

• Action – You use action keywords to identify resource actions that you want to allow or deny. 
For example, the sqs:CreateQueue permission allows the user to perform the Amazon Simple 
Queue Service CreateQueue action.

• Effect – You specify the effect when the user requests the specific action—this can be either 
allow or deny. If you don't explicitly grant access to a resource, access is implicitly denied. You 
can also explicitly deny access to a resource, which you might do to make sure that a user can't 
access it, even if a different policy grants access.

• Principal – In identity-based policies (IAM policies), the user that the policy is attached to is the 
implicit principal. For resource-based policies, you specify the user, account, service, or other 
entity that you want to receive permissions (applies to resource-based policies only).

To learn more about Amazon SQS policy syntax and descriptions, see Amazon IAM Policy Reference
in the IAM User Guide.

For a table of all Amazon Simple Queue Service actions and the resources that they apply to, see
Amazon SQS API permissions: Actions and resource reference.

How Amazon Simple Queue Service works with IAM

Before you use IAM to manage access to Amazon SQS, learn what IAM features are available to use 
with Amazon SQS.

How Amazon Simple Queue Service works with IAM 697

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html


Amazon Simple Queue Service Developer Guide

IAM features you can use with Amazon Simple Queue Service

IAM feature Amazon SQS support

Identity-based policies Yes

Resource-based policies Yes

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in  policies) Partial

Temporary credentials Yes

Forward access sessions (FAS) Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how Amazon SQS and other Amazon services work with most IAM 
features, see Amazon services that work with IAM in the IAM User Guide.

Access control

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

Amazon S3, Amazon WAF, and Amazon VPC are examples of services that support ACLs. To learn 
more about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service 
Developer Guide.

How Amazon Simple Queue Service works with IAM 698

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/acl-overview.html


Amazon Simple Queue Service Developer Guide

Note

It is important to understand that all Amazon Web Services accounts can delegate their 
permissions to users under their accounts. Cross-account access allows you to share access 
to your Amazon resources without having to manage additional users. For information 
about using cross-account access, see Enabling Cross-Account Access in the IAM User Guide.
See Limitations of Amazon SQS custom policies for further details on cross-content 
permissions and condition keys within Amazon SQS custom policies.

Identity-based policies for Amazon SQS

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well 
as the conditions under which actions are allowed or denied. To learn about all of the elements 
that you can use in a JSON policy, see IAM JSON policy elements reference in the IAM User Guide.

Identity-based policy examples for Amazon SQS

To view examples of Amazon SQS identity-based policies, see Policy best practices.

Resource-based policies within Amazon SQS

Supports resource-based policies: Yes

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal in 
a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon 
Web Services services.

How Amazon Simple Queue Service works with IAM 699

https://docs.amazonaws.cn/IAM/latest/UserGuide/Delegation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html


Amazon Simple Queue Service Developer Guide

To enable cross-account access, you can specify an entire account or IAM entities in another 
account as the principal in a resource-based policy. For more information, see Cross account 
resource access in IAM in the IAM User Guide.

Policy actions for Amazon SQS

Supports policy actions: Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny 
access in a policy. Include actions in a policy to grant permissions to perform the associated 
operation.

To see a list of Amazon SQS actions, see Resources Defined by Amazon Simple Queue Service in the
Service Authorization Reference.

Policy actions in Amazon SQS use the following prefix before the action:

sqs

To specify multiple actions in a single statement, separate them with commas.

"Action": [ 
      "sqs:action1", 
      "sqs:action2" 
         ]

To view examples of Amazon SQS identity-based policies, see Policy best practices.

Policy resources for Amazon SQS

Supports policy resources: Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How Amazon Simple Queue Service works with IAM 700

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-resources-for-iam-policies


Amazon Simple Queue Service Developer Guide

The Resource JSON policy element specifies the object or objects to which the action applies. As 
a best practice, specify a resource using its Amazon Resource Name (ARN). For actions that don't 
support resource-level permissions, use a wildcard (*) to indicate that the statement applies to all 
resources.

"Resource": "*"

To see a list of Amazon SQS resource types and their ARNs, see Actions Defined by Amazon Simple 
Queue Service in the Service Authorization Reference. To learn with which actions you can specify 
the ARN of each resource, see Resources Defined by Amazon Simple Queue Service.

To view examples of Amazon SQS identity-based policies, see Policy best practices.

Policy condition keys for Amazon SQS

Supports service-specific policy condition keys: Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element specifies when statements execute based on defined criteria. You can 
create conditional expressions that use condition operators, such as equals or less than, to match 
the condition in the policy with values in the request. To see all Amazon global condition keys, see
Amazon global condition context keys in the IAM User Guide.

To see a list of Amazon SQS condition keys, see Condition Keys for Amazon Simple Queue Service
in the Service Authorization Reference. To learn with which actions and resources you can use a 
condition key, see Resources Defined by Amazon Simple Queue Service.

To view examples of Amazon SQS identity-based policies, see Policy best practices.

ACLs in Amazon SQS

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

How Amazon Simple Queue Service works with IAM 701

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference-arns.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-resources-for-iam-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-policy-keys
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_amazonsqs.html#amazonsqs-resources-for-iam-policies


Amazon Simple Queue Service Developer Guide

ABAC with Amazon SQS

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based 
on attributes called tags. You can attach tags to IAM entities and Amazon resources, then design 
ABAC policies to allow operations when the principal's tag matches the tag on the resource.

To control access based on tags, you provide tag information in the condition element of a policy 
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the 
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User 
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control 
(ABAC) in the IAM User Guide.

Using temporary credentials with Amazon SQS

Supports temporary credentials: Yes

Temporary credentials provide short-term access to Amazon resources and are automatically 
created when you use federation or switch roles. Amazon recommends that you dynamically 
generate temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM and Amazon Web Services services that work with IAM in the
IAM User Guide.

Forward access sessions for Amazon SQS

Supports forward access sessions (FAS): Yes

Forward access sessions (FAS) use the permissions of the principal calling an Amazon Web 
Services service, combined with the requesting Amazon Web Services service to make requests to 
downstream services. For policy details when making FAS requests, see Forward access sessions.

Service roles for Amazon SQS

Supports service roles: Yes

How Amazon Simple Queue Service works with IAM 702

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html


Amazon Simple Queue Service Developer Guide

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM 
administrator can create, modify, and delete a service role from within IAM. For more information, 
see Create a role to delegate permissions to an Amazon Web Services service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Amazon SQS functionality. Edit 
service roles only when Amazon SQS provides guidance to do so.

Service-linked roles for Amazon SQS

Supports service-linked roles: No

A service-linked role is a type of service role that is linked to an Amazon Web Services service. The 
service can assume the role to perform an action on your behalf. Service-linked roles appear in 
your Amazon Web Services account and are owned by the service. An IAM administrator can view, 
but not edit the permissions for service-linked roles.

For details about creating or managing service-linked roles, see Amazon services that work with 
IAM. Find a service in the table that includes a Yes in the Service-linked role column. Choose the
Yes link to view the service-linked role documentation for that service.

Amazon SQS updates to Amazon managed policies

To add permissions to users, groups, and roles, it is easier to use Amazon managed policies than 
to write policies yourself. It takes time and expertise to create IAM customer managed policies
that provide your team with only the permissions they need. To get started quickly, you can use 
our Amazon managed policies. These policies cover common use cases and are available in your 
Amazon account. For more information about Amazon managed policies, see Amazon managed 
policies in the IAM User Guide.

Amazon services maintain and update Amazon managed policies. You can't change the permissions 
in Amazon managed policies. Services occasionally add additional permissions to an Amazon 
managed policy to support new features. This type of update affects all identities (users, groups, 
and roles) where the policy is attached. Services are most likely to update an Amazon managed 
policy when a new feature is launched or when new operations become available. Services do not 

Amazon managed policies 703

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies


Amazon Simple Queue Service Developer Guide

remove permissions from an Amazon managed policy, so policy updates won't break your existing 
permissions.

Additionally, Amazon supports managed policies for job functions that span multiple services. For 
example, the ReadOnlyAccess Amazon managed policy provides read-only access to all Amazon 
services and resources. When a service launches a new feature, Amazon adds read-only permissions 
for new operations and resources. For a list and descriptions of job function policies, see Amazon 
managed policies for job functions in the IAM User Guide.

Amazon managed policy: AmazonSQSFullAccess

You can attach the AmazonSQSFullAccess policy to your Amazon SQS identities. This policy 
grants permissions that allow full access to Amazon SQS.

To view the permissions for this policy, see AmazonSQSFullAccess in the Amazon Managed Policy 
Reference.

Amazon managed policy: AmazonSQSReadOnlyAccess

You can attach the AmazonSQSReadOnlyAccess policy to your Amazon SQS identities. This policy 
grants permissions that allow read-only access to Amazon SQS.

To view the permissions for this policy, see AmazonSQSReadOnlyAccess in the Amazon Managed 
Policy Reference.

Amazon managed policy: SQSUnlockQueuePolicy

If you incorrectly configured your queue policy for a member account to deny all users access to 
your Amazon SQS queue, you can use the SQSUnlockQueuePolicy Amazon managed policy to 
unlock the queue.

For more information on how to remove a misconfigured queue policy that denies all principals 
from accessing an Amazon SQS queue, see Perform a privileged task on an Amazon Organizations 
member account in the IAM User Guide.

Amazon SQS updates to Amazon managed policies

View details about updates to Amazon managed policies for Amazon SQS since this service began 
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed 
on the Amazon SQS Document history page.

Amazon managed policies 704

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonSQSFullAccess.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonSQSReadOnlyAccess.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user-privileged-task.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user-privileged-task.html


Amazon Simple Queue Service Developer Guide

Change Description Date

SQSUnlockQueuePolicy Amazon SQS added a 
new Amazon-managed 
policy called   SQSUnlock 
QueuePolicy  to unlock 
a queue and  remove a 
misconfigured queue policy 
that denies all principals  
 from accessing an Amazon 
SQS queue.

November 15, 2024

AmazonSQSReadOnlyAccess Amazon SQS added the
ListQueueTags  action, 
which  retrieves all tags 
associated with a specified 
Amazon SQS queue.  It allows 
you to view the key-value 
pairs that have been  assigned 
to the queue for organizat 
ional or metadata purposes.  
 This action is associated with 
the ListQueueTags   API 
operation.

June 20, 2024

AmazonSQSReadOnlyAccess Amazon SQS added a new 
action that allows you to list 
the most  recent message 
movement tasks (up to 10) 
under a specific source  qu 
eue. This action is associate 
d with the ListMessa 
geMoveTasks  API  opera 
tion.

June 9, 2023

Amazon managed policies 705

https://docs.amazonaws.cn/IAM/latest/UserGuide/security-iam-awsmanpol.html#security-iam-awsmanpol-SQSUnlockQueuePolicy
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/AmazonSQSReadOnlyAccess
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/AmazonSQSReadOnlyAccess
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html


Amazon Simple Queue Service Developer Guide

Troubleshooting Amazon Simple Queue Service identity and access

Use the following information to help you diagnose and fix common issues that you might 
encounter when working with Amazon SQS and IAM.

I am not authorized to perform an action in Amazon SQS

If you receive an error that you're not authorized to perform an action, your policies must be 
updated to allow you to perform the action.

The following example error occurs when the mateojackson user tries to use the console to 
view details about a fictional my-example-widget resource but does not have the fictional
sqs:GetWidget permissions.

User: arn:aws-cn:iam::123456789012:user/mateojackson is not authorized to perform: 
 sqs:GetWidget on resource: my-example-widget

In this case, Mateo's policy must be updated to allow him to access the my-example-widget
resource using the sqs:GetWidget action.

If you need help, contact your Amazon administrator. Your administrator is the person who 
provided you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your 
policies must be updated to allow you to pass a role to Amazon SQS.

Some Amazon Web Services services allow you to pass an existing role to that service instead of 
creating a new service role or service-linked role. To do this, you must have permissions to pass the 
role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console 
to perform an action in Amazon SQS. However, the action requires the service to have permissions 
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws-cn:iam::123456789012:user/marymajor is not authorized to perform: 
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

Troubleshooting 706



Amazon Simple Queue Service Developer Guide

If you need help, contact your Amazon administrator. Your administrator is the person who 
provided you with your sign-in credentials.

I want to allow people outside of my Amazon Web Services account to access my 
Amazon SQS resources

You can create a role that users in other accounts or people outside of your organization can use to 
access your resources. You can specify who is trusted to assume the role. For services that support 
resource-based policies or access control lists (ACLs), you can use those policies to grant people 
access to your resources.

To learn more, consult the following:

• To learn whether Amazon SQS supports these features, see How Amazon Simple Queue Service 
works with IAM.

• To learn how to provide access to your resources across Amazon Web Services accounts that you 
own, see Providing access to an IAM user in another Amazon Web Services account that you own
in the IAM User Guide.

• To learn how to provide access to your resources to third-party Amazon Web Services accounts, 
see Providing access to Amazon Web Services accounts owned by third parties in the IAM User 
Guide.

• To learn how to provide access through identity federation, see Providing access to externally 
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, 
see Cross account resource access in IAM in the IAM User Guide.

I want to unlock my queue

If your Amazon Web Services account belongs to an organization, Amazon Organizations policies 
can block you from accessing Amazon SQS resources. By default, Amazon Organizations policies 
don't block any requests to Amazon SQS. However, make sure that your Amazon Organizations 
policies haven’t been configured to block access to Amazon SQS queues. For instructions on how to 
check your Amazon Organizations policies, see Listing all policies in the Amazon Organizations User 
Guide.

Additionally, if you incorrectly configured your queue policy for a member account to deny all 
users access to your Amazon SQS queue, you can unlock the queue by launching a privileged 

Troubleshooting 707

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_info-operations.html#list-all-pols-in-org.html


Amazon Simple Queue Service Developer Guide

session for the member account in IAM. Once you launch a privileged session, you can delete the 
misconfigured queue policy to regain access to the queue. For more information, see Perform a 
privileged task on an Amazon Organizations member account in the IAM User Guide.

Using policies with Amazon SQS

This topic provides examples of identity-based policies in which an account administrator can 
attach permissions policies to IAM identities (users, groups, and roles).

Important

We recommend that you first review the introductory topics that explain the basic concepts 
and options available for you to manage access to your Amazon Simple Queue Service 
resources. For more information, see Overview of managing access in Amazon SQS.
With the exception of ListQueues, all Amazon SQS actions support resource-level 
permissions. For more information, see Amazon SQS API permissions: Actions and resource 
reference.

Using Amazon SQS and IAM policies

There are two ways to give your users permissions to your Amazon SQS resources: using the 
Amazon SQS policy system (resource-based policies) and using the IAM policy system (identity-
based policies). You can use one or both methods, with the exception of the ListQueues action, 
which is a regional permission that can only be set in an IAM policy.

For example, the following diagram shows an IAM policy and an Amazon SQS policy equivalent 
to it. The IAM policy grants the rights to the Amazon SQS ReceiveMessage and SendMessage
actions for the queue called queue_xyz in your Amazon Account, and the policy is attached 
to users named Bob and Susan (Bob and Susan have the permissions stated in the policy). This 
Amazon SQS policy also gives Bob and Susan rights to the ReceiveMessage and SendMessage
actions for the same queue.

Note

The following example shows simple policies without conditions. You can specify a 
particular condition in either policy and get the same result.

Using policies 708

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user-privileged-task.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user-privileged-task.html


Amazon Simple Queue Service Developer Guide

There is one major difference between IAM and Amazon SQS policies: the Amazon SQS policy 
system lets you grant permission to other Amazon Accounts, whereas IAM doesn't.

It is up to you how you use both of the systems together to manage your permissions. The 
following examples show how the two policy systems work together.

• In the first example, Bob has both an IAM policy and an Amazon SQS policy that apply to his 
account. The IAM policy grants his account permission for the ReceiveMessage action on
queue_xyz, whereas the Amazon SQS policy gives his account permission for the SendMessage
action on the same queue. The following diagram illustrates the concept.

If Bob sends a ReceiveMessage request to queue_xyz, the IAM policy allows the action. If Bob 
sends a SendMessage request to queue_xyz, the Amazon SQS policy allows the action.

Using policies 709



Amazon Simple Queue Service Developer Guide

• In the second example, Bob abuses his access to queue_xyz, so it becomes necessary to remove 
his entire access to the queue. The easiest thing to do is to add a policy that denies him access 
to all actions for the queue. This policy overrides the other two because an explicit deny always 
overrides an allow. For more information about policy evaluation logic, see Using custom 
policies with the Amazon SQS Access Policy Language. The following diagram illustrates the 
concept.

You can also add an additional statement to the Amazon SQS policy that denies Bob any type 
of access to the queue. It has the same effect as adding an IAM policy that denies Bob access 
to the queue. For examples of policies that cover Amazon SQS actions and resources, see Basic 
examples of Amazon SQS policies. For more information about writing Amazon SQS policies, see
Using custom policies with the Amazon SQS Access Policy Language.

Permissions required to use the Amazon SQS console

A user who wants to work with the Amazon SQS console must have the minimum set of 
permissions to work with the Amazon SQS queues in the user's Amazon Web Services account. 
For example, the user must have the permission to call the ListQueues action to be able to list 
queues, or the permission to call the CreateQueue action to be able to create queues. In addition 
to Amazon SQS permissions, to subscribe an Amazon SQS queue to an Amazon SNS topic, the 
console also requires permissions for Amazon SNS actions.

Using policies 710



Amazon Simple Queue Service Developer Guide

If you create an IAM policy that is more restrictive than the minimum required permissions, the 
console might not function as intended for users with that IAM policy.

You don't need to allow minimum console permissions for users that make calls only to the 
Amazon CLI or Amazon SQS actions.

Identity-based policy examples for Amazon SQS

By default, users and roles don't have permission to create or modify Amazon SQS resources. To 
grant users permission to perform actions on the resources that they need, an IAM administrator 
can create IAM policies.

To learn how to create an IAM identity-based policy by using these example JSON policy 
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by Amazon SQS, including the format of the 
ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Amazon Simple 
Queue Service in the Service Authorization Reference.

Note

When you configure lifecycle hooks for Amazon EC2 Auto Scaling, you don't need to write a 
policy to send messages to an Amazon SQS queue. For more information, see Amazon EC2 
Auto Scaling Lifecycle Hooks in the Amazon EC2 User Guide.

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon SQS 
resources in your account. These actions can incur costs for your Amazon Web Services account. 
When you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with Amazon managed policies and move toward least-privilege permissions
– To get started granting permissions to your users and workloads, use the Amazon managed 
policies that grant permissions for many common use cases. They are available in your Amazon 
Web Services account. We recommend that you reduce permissions further by defining Amazon 
customer managed policies that are specific to your use cases. For more information, see Amazon 
managed policies or Amazon managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the 
permissions required to perform a task. You do this by defining the actions that can be taken on 

Using policies 711

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_amazonsqs.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_amazonsqs.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html


Amazon Simple Queue Service Developer Guide

specific resources under specific conditions, also known as least-privilege permissions. For more 
information about using IAM to apply permissions, see  Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your 
policies to limit access to actions and resources. For example, you can write a policy condition to 
specify that all requests must be sent using SSL. You can also use conditions to grant access to 
service actions if they are used through a specific Amazon Web Services service, such as Amazon 
CloudFormation. For more information, see  IAM JSON policy elements: Condition in the IAM 
User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional 
permissions – IAM Access Analyzer validates new and existing policies so that the policies 
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides 
more than 100 policy checks and actionable recommendations to help you author secure and 
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a 
root user in your Amazon Web Services account, turn on MFA for additional security. To require 
MFA when API operations are called, add MFA conditions to your policies. For more information, 
see  Secure API access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User 
Guide.

Using the Amazon SQS console

To access the Amazon Simple Queue Service console, you must have a minimum set of permissions. 
These permissions must allow you to list and view details about the Amazon SQS resources in your 
Amazon Web Services account. If you create an identity-based policy that is more restrictive than 
the minimum required permissions, the console won't function as intended for entities (users or 
roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to 
the Amazon CLI or the Amazon API. Instead, allow access to only the actions that match the API 
operation that they're trying to perform.

Using policies 712

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html


Amazon Simple Queue Service Developer Guide

To ensure that users and roles can still use the Amazon SQS console, also attach the Amazon SQS
AmazonSQSReadOnlyAccess Amazon managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and 
managed policies that are attached to their user identity. This policy includes permissions to 
complete this action on the console or programmatically using the Amazon CLI or Amazon API.

{ 
    "Version": "2012-10-17",        
    "Statement": [ 
        { 
            "Sid": "ViewOwnUserInfo", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetUserPolicy", 
                "iam:ListGroupsForUser", 
                "iam:ListAttachedUserPolicies", 
                "iam:ListUserPolicies", 
                "iam:GetUser" 
            ], 
            "Resource": ["arn:aws-cn:iam::*:user/${aws:username}"] 
        }, 
        { 
            "Sid": "NavigateInConsole", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetGroupPolicy", 
                "iam:GetPolicyVersion", 
                "iam:GetPolicy", 
                "iam:ListAttachedGroupPolicies", 
                "iam:ListGroupPolicies", 
                "iam:ListPolicyVersions", 
                "iam:ListPolicies", 
                "iam:ListUsers" 
            ], 
            "Resource": "*" 
        } 
    ]
}

Using policies 713

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console


Amazon Simple Queue Service Developer Guide

Allow a user to create queues

In the following example, we create a policy for Bob that lets him access all Amazon SQS actions, 
but only with queues whose names are prefixed with the literal string alice_queue_.

Amazon SQS doesn't automatically grant the creator of a queue permissions to use the queue. 
Therefore, we must explicitly grant Bob permissions to use all Amazon SQS actions in addition to
CreateQueue action in the IAM policy.

JSON

{ 
   "Version":"2012-10-17",        
   "Statement": [{ 
      "Effect": "Allow", 
      "Action": "sqs:*", 
      "Resource": "arn:aws-cn:sqs:*:123456789012:alice_queue_*" 
   }]
}

Allow developers to write messages to a shared queue

In the following example, we create a group for developers and attach a policy that lets the group 
use the Amazon SQS SendMessage action, but only with the queue that belongs to the specified 
Amazon Web Services account and is named MyCompanyQueue.

JSON

{ 
   "Version":"2012-10-17",        
   "Statement": [{ 
      "Effect": "Allow", 
      "Action": "sqs:SendMessage", 
      "Resource": "arn:aws-cn:sqs:*:123456789012:MyCompanyQueue" 
   }]
}

Using policies 714



Amazon Simple Queue Service Developer Guide

You can use * instead of SendMessage to grant the following actions to a principal on a shared 
queue: ChangeMessageVisibility, DeleteMessage, GetQueueAttributes, GetQueueUrl,
ReceiveMessage, and SendMessage.

Note

Although * includes access provided by other permission types, Amazon SQS considers 
permissions separately. For example, it is possible to grant both * and SendMessage
permissions to a user, even though a * includes the access provided by SendMessage.
This concept also applies when you remove a permission. If a principal has only a *
permission, requesting to remove a SendMessage permission doesn't leave the principal 
with an everything-but permission. Instead, the request has no effect, because the principal 
doesn't possess an explicit SendMessage permission. To leave the principal with only the
ReceiveMessage permission, first add the ReceiveMessage permission and then remove 
the * permission.

Allow managers to get the general size of queues

In the following example, we create a group for managers and attach a policy that lets the group 
use the Amazon SQS GetQueueAttributes action with all of the queues that belong to the 
specified Amazon account.

JSON

{ 
   "Version":"2012-10-17",        
   "Statement": [{ 
      "Effect": "Allow", 
      "Action": "sqs:GetQueueAttributes", 
      "Resource": "*"    
   }]
}

Allow a partner to send messages to a specific queue

You can accomplish this task using an Amazon SQS policy or an IAM policy. If your partner has an 
Amazon Web Services account, it might be easier to use an Amazon SQS policy. However, any user 

Using policies 715



Amazon Simple Queue Service Developer Guide

in the partner's company who possesses the Amazon security credentials can send messages to the 
queue. If you want to limit access to a particular user or application, you must treat the partner like 
a user in your own company and use an IAM policy instead of an Amazon SQS policy.

This example performs the following actions:

1. Create a group called WidgetCo to represent the partner company.

2. Create a user for the specific user or application at the partner's company who needs access.

3. Add the user to the group.

4. Attach a policy that gives the group access only to the SendMessage action for only the queue 
named WidgetPartnerQueue.

JSON

{ 
   "Version":"2012-10-17",        
   "Statement": [{ 
         "Effect": "Allow", 
         "Action": "sqs:SendMessage", 
         "Resource": "arn:aws-cn:sqs:*:123456789012:WidgetPartnerQueue" 
   }]
}

Basic examples of Amazon SQS policies

This section shows example policies for common Amazon SQS use cases.

You can use the console to verify the effects of each policy as you attach the policy to the user. 
Initially, the user doesn't have permissions and won't be able to do anything in the console. As you 
attach policies to the user, you can verify that the user can perform various actions in the console.

Note

We recommend that you use two browser windows: one to grant permissions and the other 
to sign into the Amazon Web Services Management Console using the user's credentials to 
verify permissions as you grant them to the user.

Using policies 716



Amazon Simple Queue Service Developer Guide

Example 1: Grant one permission to one Amazon Web Services account

The following example policy grants Amazon Web Services account number 111122223333 the
SendMessage permission for the queue named 444455556666/queue1 in the US East (Ohio) 
region.

JSON

{ 
   "Version":"2012-10-17",        
   "Id": "Queue1_Policy_UUID", 
   "Statement": [{ 
      "Sid":"Queue1_SendMessage", 
      "Effect": "Allow", 
      "Principal": { 
         "AWS": [  
            "111122223333" 
         ] 
      }, 
      "Action": "sqs:SendMessage", 
      "Resource": "arn:aws-cn:sqs:us-east-2:444455556666:queue1" 
   }]   
}

Example 2: Grant two permissions to one Amazon Web Services account

The following example policy grants Amazon Web Services account number 111122223333 both 
the SendMessage and ReceiveMessage permission for the queue named 444455556666/
queue1.

JSON

{ 
   "Version":"2012-10-17",        
   "Id": "Queue1_Policy_UUID", 
   "Statement": [{ 
      "Sid":"Queue1_Send_Receive", 
      "Effect": "Allow", 
      "Principal": { 
         "AWS": [ 

Using policies 717



Amazon Simple Queue Service Developer Guide

            "111122223333" 
         ] 
      }, 
      "Action": [ 
         "sqs:SendMessage", 
         "sqs:ReceiveMessage" 
      ], 
      "Resource": "arn:aws-cn:sqs:*:444455556666:queue1" 
   }]
}

Example 3: Grant all permissions to two Amazon Web Services accounts

The following example policy grants two different Amazon Web Services accounts numbers 
(111122223333 and 444455556666) permission to use all actions to which Amazon SQS allows 
shared access for the queue named 123456789012/queue1 in the US East (Ohio) region.

JSON

{ 
   "Version":"2012-10-17",        
   "Id": "Queue1_Policy_UUID", 
   "Statement": [{ 
      "Sid":"Queue1_AllActions", 
      "Effect": "Allow", 
      "Principal": { 
         "AWS": [ 
            "111122223333", 
            "444455556666" 
         ] 
      }, 
      "Action": "sqs:*", 
      "Resource": "arn:aws-cn:sqs:us-east-2:123456789012:queue1" 
   }]
}

Using policies 718



Amazon Simple Queue Service Developer Guide

Example 4: Grant cross-account permissions to a role and a username

The following example policy grants role1 and username1 under Amazon Web Services account 
number 111122223333 cross-account permission to use all actions to which Amazon SQS allows 
shared access for the queue named 123456789012/queue1 in the US East (Ohio) region.

Cross-account permissions don't apply to the following actions:

• AddPermission

• CancelMessageMoveTask

• CreateQueue

• DeleteQueue

• ListMessageMoveTask

• ListQueues

• ListQueueTags

• RemovePermission

• SetQueueAttributes

• StartMessageMoveTask

• TagQueue

• UntagQueue

JSON

{ 
   "Version":"2012-10-17",        
   "Id": "Queue1_Policy_UUID", 
   "Statement": [{ 
      "Sid":"Queue1_AllActions", 
      "Effect": "Allow", 
      "Principal": { 
         "AWS": [ 
            "arn:aws-cn:iam::111122223333:role/role1", 
            "arn:aws-cn:iam::111122223333:user/username1" 
         ] 
      }, 
      "Action": "sqs:*", 

Using policies 719

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CancelMessageMoveTask.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_TagQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_UntagQueue.html


Amazon Simple Queue Service Developer Guide

      "Resource": "arn:aws-cn:sqs:us-east-2:123456789012:queue1" 
   }]
}

Example 5: Grant a permission to all users

The following example policy grants all users (anonymous users) ReceiveMessage permission for 
the queue named 111122223333/queue1.

JSON

{ 
   "Version":"2012-10-17",        
   "Id": "Queue1_Policy_UUID", 
   "Statement": [{ 
      "Sid":"Queue1_AnonymousAccess_ReceiveMessage", 
      "Effect": "Allow", 
      "Principal": "*", 
      "Action": "sqs:ReceiveMessage", 
      "Resource": "arn:aws-cn:sqs:*:111122223333:queue1" 
   }]
}

Example 6: Grant a time-limited permission to all users

The following example policy grants all users (anonymous users) ReceiveMessage permission for 
the queue named 111122223333/queue1, but only between 12:00 p.m. (noon) and 3:00 p.m. on 
January 31, 2009.

JSON

{ 
   "Version":"2012-10-17",        
   "Id": "Queue1_Policy_UUID", 
   "Statement": [{ 
      "Sid":"Queue1_AnonymousAccess_ReceiveMessage_TimeLimit", 
      "Effect": "Allow", 
      "Principal": "*", 
      "Action": "sqs:ReceiveMessage", 

Using policies 720



Amazon Simple Queue Service Developer Guide

      "Resource": "arn:aws-cn:sqs:*:111122223333:queue1", 
      "Condition" : { 
         "DateGreaterThan" : { 
            "aws:CurrentTime":"2009-01-31T12:00Z" 
         }, 
         "DateLessThan" : { 
            "aws:CurrentTime":"2009-01-31T15:00Z" 
         } 
      } 
   }]
}

Example 7: Grant all permissions to all users in a CIDR range

The following example policy grants all users (anonymous users) permission to use all possible 
Amazon SQS actions that can be shared for the queue named 111122223333/queue1, but only if 
the request comes from the 192.0.2.0/24 CIDR range.

JSON

{ 
   "Version":"2012-10-17",        
   "Id": "Queue1_Policy_UUID", 
   "Statement": [{ 
      "Sid":"Queue1_AnonymousAccess_AllActions_AllowlistIP", 
      "Effect": "Allow", 
      "Principal": "*", 
      "Action": "sqs:*", 
      "Resource": "arn:aws-cn:sqs:*:111122223333:queue1", 
      "Condition" : { 
         "IpAddress" : { 
            "aws:SourceIp":"192.0.2.0/24" 
         } 
      } 
   }]
}

Example 8: Allowlist and blocklist permissions for users in different CIDR ranges

The following example policy has two statements:

Using policies 721



Amazon Simple Queue Service Developer Guide

• The first statement grants all users (anonymous users) in the 192.0.2.0/24 CIDR range 
(except for 192.0.2.188) permission to use the SendMessage action for the queue named
111122223333/queue1.

• The second statement blocks all users (anonymous users) in the 12.148.72.0/23 CIDR range 
from using the queue.

JSON

{ 
   "Version":"2012-10-17",        
   "Id": "Queue1_Policy_UUID", 
   "Statement": [{ 
      "Sid":"Queue1_AnonymousAccess_SendMessage_IPLimit", 
      "Effect": "Allow", 
      "Principal": "*", 
      "Action": "sqs:SendMessage", 
      "Resource": "arn:aws-cn:sqs:*:111122223333:queue1", 
      "Condition" : { 
         "IpAddress" : { 
            "aws:SourceIp":"192.0.2.0/24" 
         }, 
         "NotIpAddress" : { 
            "aws:SourceIp":"192.0.2.188/32" 
         } 
      } 
   }, { 
      "Sid":"Queue1_AnonymousAccess_AllActions_IPLimit_Deny", 
      "Effect": "Deny", 
      "Principal": "*", 
      "Action": "sqs:*", 
      "Resource": "arn:aws-cn:sqs:*:111122223333:queue1", 
      "Condition" : { 
         "IpAddress" : { 
            "aws:SourceIp":"12.148.72.0/23" 
         } 
      } 
   }]
}

Using policies 722



Amazon Simple Queue Service Developer Guide

Using custom policies with the Amazon SQS Access Policy Language

To grant basic permissions (such as SendMessage or ReceiveMessage) based only on an Amazon 
Web Services account ID, you don’t need to write a custom policy. Instead, use the Amazon SQS
AddPermission action.

To allow or deny access based on specific conditions, such as request time or the requester's IP 
address, you must create a custom Amazon SQS policy and upload it using the SetQueueAttributes
action.

Topics

• Amazon SQS access control architecture

• Amazon SQS access control process workflow

• Amazon SQS Access Policy Language key concepts

• Amazon SQS Access Policy Language evaluation logic

• Relationships between explicit and default denials in the Amazon SQS Access Policy Language

• Limitations of Amazon SQS custom policies

• Custom Amazon SQS Access Policy Language examples

Amazon SQS access control architecture

The following diagram describes the access control for your Amazon SQS resources.

Using policies 723

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html


Amazon Simple Queue Service Developer Guide

You, the resource owner.

Your resources contained within the Amazon service (for example, Amazon SQS queues).

Your policies. It is a good practice to have one policy per resource. The Amazon service provides an 
API you use to upload and manage your policies.

Requesters and their incoming requests to the Amazon service.

The access policy language evaluation code. This is the set of code within the Amazon service that 
evaluates incoming requests against the applicable policies and determines whether the requester 
is allowed access to the resource.

Using policies 724



Amazon Simple Queue Service Developer Guide

Amazon SQS access control process workflow

The following diagram describes the general workflow of access control with the Amazon SQS 
access policy language.

You write an Amazon SQS policy for your queue.

You upload your policy to Amazon. The Amazon service provides an API that you use to upload 
your policies. For example, you use the Amazon SQS SetQueueAttributes action to upload a 
policy for a particular Amazon SQS queue.

Someone sends a request to use your Amazon SQS queue.

Amazon SQS examines all available Amazon SQS policies and determines which ones are 
applicable.

Amazon SQS evaluates the policies and determines whether the requester is allowed to use your 
queue.

Based on the policy evaluation result, Amazon SQS either returns an Access denied error to the 
requester or continues to process the request.

Using policies 725



Amazon Simple Queue Service Developer Guide

Amazon SQS Access Policy Language key concepts

To write your own policies, you must be familiar with JSON and a number of key concepts.

Allow

The result of a Statement that has Effect set to allow.

Action

The activity that the Principal has permission to perform, typically a request to Amazon.

Default-deny

The result of a Statement that has no Allow or Explicit-deny settings.

Condition

Any restriction or detail about a Permission. Typical conditions are related to date and time and 
IP addresses.

Effect

The result that you want the Statement of a Policy to return at evaluation time. You specify the
deny or allow value when you write the policy statement. There can be three possible results 
at policy evaluation time: Default-deny, Allow, and Explicit-deny.

Explicit-deny

The result of a Statement that has Effect set to deny.

Evaluation

The process that Amazon SQS uses to determine whether an incoming request should be 
denied or allowed based on a Policy.

Issuer

The user who writes a Policy to grant permissions to a resource. The issuer, by definition is 
always the resource owner. Amazon doesn't permit Amazon SQS users to create policies for 
resources they don't own.

Key

The specific characteristic that is the basis for access restriction.

Using policies 726

http://json.org/


Amazon Simple Queue Service Developer Guide

Permission

The concept of allowing or disallowing access to a resource using a Condition and a Key.

Policy

The document that acts as a container for one or more statements.

Amazon SQS uses the policy to determine whether to grant access to a user for a resource.

Principal

The user who receives Permission in the Policy.

Resource

The object that the Principal requests access to.

Statement

The formal description of a single permission, written in the access policy language as part of a 
broader Policy document.

Requester

The user who sends a request for access to a Resource.

Amazon SQS Access Policy Language evaluation logic

At evaluation time, Amazon SQS determines whether a request from someone other than the 
resource owner should be allowed or denied. The evaluation logic follows several basic rules:

• By default, all requests to use your resource coming from anyone but you are denied.

• An Allow overrides any Default-deny.

Using policies 727



Amazon Simple Queue Service Developer Guide

• An Explicit-deny overrides any allow.

• The order in which the policies are evaluated isn't important.

The following diagram describes in detail how Amazon SQS evaluates decisions about access 
permissions.

The decision starts with a default-deny.

The enforcement code evaluates all the policies that are applicable to the request (based on the 

Using policies 728



Amazon Simple Queue Service Developer Guide

resource, principal, action, and conditions). The order in which the enforcement code evaluates the 
policies isn't important.

The enforcement code looks for an explicit-deny instruction that can apply to the request. If it 
finds even one, the enforcement code returns a decision of deny and the process finishes.

If no explicit-deny instruction is found, the enforcement code looks for any allow instructions that 
can apply to the request. If it finds even one, the enforcement code returns a decision of allow and 
the process finishes (the service continues to process the request).

If no allow instruction is found, then the final decision is deny (because there is no explicit-deny or
allow, this is considered a default-deny).

Relationships between explicit and default denials in the Amazon SQS Access Policy Language

If an Amazon SQS policy doesn't directly apply to a request, the request results in a Default-deny. 
For example, if a user requests permission to use Amazon SQS but the only policy that applies to 
the user can use DynamoDB, the requests results in a default-deny.

If a condition in a statement isn't met, the request results in a default-deny. If all conditions in a 
statement are met, the request results in either an Allow or an Explicit-deny based on the value 
of the Effect element of the policy. Policies don't specify what to do if a condition isn't met, so the 
default result in this case is a default-deny. For example, you want to prevent requests that come 
from Antarctica. You write Policy A1 that allows a request only if it doesn't come from Antarctica. 
The following diagram illustrates the Amazon SQS policy.

If a user sends a request from the U.S., the condition is met (the request isn't from Antarctica), and 
the request results in an allow. However, if a user sends a request from Antarctica, the condition 

Using policies 729



Amazon Simple Queue Service Developer Guide

isn't met and the request defaults to a default-deny. You can change the result to an explicit-
deny by writing Policy A2 that explicitly denies a request if it comes from Antarctica. The following 
diagram illustrates the policy.

If a user sends a request from Antarctica, the condition is met and the request results in an
explicit-deny.

The distinction between a default-deny and an explicit-deny is important because an allow can 
overwrite the former but not the latter. For example, Policy B allows requests if they arrive on June 
1, 2010. The following diagram compares combining this policy with Policy A1 and Policy A2.

Using policies 730



Amazon Simple Queue Service Developer Guide

In Scenario 1, Policy A1 results in a default-deny and Policy B results in an allow because the 
policy allows requests that come in on June 1, 2010. The allow from Policy B overrides the default-
deny from Policy A1, and the request is allowed.

In Scenario 2, Policy B2 results in an explicit-deny and Policy B results in an allow. The explicit-
deny from Policy A2 overrides the allow from Policy B, and the request is denied.

Using policies 731



Amazon Simple Queue Service Developer Guide

Limitations of Amazon SQS custom policies

Cross-account access

Cross-account permissions don't apply to the following actions:

• AddPermission

• CancelMessageMoveTask

• CreateQueue

• DeleteQueue

• ListMessageMoveTask

• ListQueues

• ListQueueTags

• RemovePermission

• SetQueueAttributes

• StartMessageMoveTask

• TagQueue

• UntagQueue

Condition keys

Currently, Amazon SQS supports only a limited subset of the condition keys available in IAM. For 
more information, see Amazon SQS API permissions: Actions and resource reference.

Custom Amazon SQS Access Policy Language examples

The following are examples of typical Amazon SQS access policies.

Example 1: Give permission to one account

The following example Amazon SQS policy gives Amazon Web Services account 111122223333 
permission to send to and receive from queue2 owned by Amazon Web Services account 
444455556666.

JSON

{    

Using policies 732

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CancelMessageMoveTask.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_TagQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_UntagQueue.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys


Amazon Simple Queue Service Developer Guide

   "Version":"2012-10-17",        
   "Id": "UseCase1", 
   "Statement" : [{ 
      "Sid": "1",  
      "Effect": "Allow",            
      "Principal": { 
         "AWS": [ 
            "111122223333" 
         ] 
      }, 
      "Action": [ 
         "sqs:SendMessage", 
         "sqs:ReceiveMessage" 
      ],  
      "Resource": "arn:aws-cn:sqs:us-east-2:444455556666:queue2"   
   }]
}

Example 2: Give permission to one or more accounts

The following example Amazon SQS policy gives one or more Amazon Web Services accounts 
access to queues owned by your account for a specific time period. It is necessary to write this 
policy and to upload it to Amazon SQS using the SetQueueAttributes action because the
AddPermission action doesn't permit specifying a time restriction when granting access to a 
queue.

JSON

{    
   "Version":"2012-10-17",        
   "Id": "UseCase2", 
   "Statement" : [{ 
      "Sid": "1",  
      "Effect": "Allow",            
      "Principal": { 
         "AWS": [ 
            "111122223333", 
            "444455556666" 
         ] 
      }, 
      "Action": [ 

Using policies 733

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html


Amazon Simple Queue Service Developer Guide

         "sqs:SendMessage", 
         "sqs:ReceiveMessage" 
      ],  
      "Resource": "arn:aws-cn:sqs:us-east-2:444455556666:queue2", 
      "Condition": { 
         "DateLessThan": { 
            "AWS:CurrentTime": "2009-06-30T12:00Z" 
         } 
      }    
   }]
}

Example 3: Give permission to requests from Amazon EC2 instances

The following example Amazon SQS policy gives access to requests that come from Amazon 
EC2 instances. This example builds on the "Example 2: Give permission to one or more accounts" 
example: it restricts access to before June 30, 2009 at 12 noon (UTC), it restricts access to the IP 
range 203.0.113.0/24. It is necessary to write this policy and to upload it to Amazon SQS using 
the SetQueueAttributes action because the AddPermission action doesn't permit specifying 
an IP address restriction when granting access to a queue.

JSON

{    
   "Version":"2012-10-17",        
   "Id": "UseCase3", 
   "Statement" : [{ 
      "Sid": "1",  
      "Effect": "Allow",            
      "Principal": { 
         "AWS": [ 
            "111122223333" 
         ] 
      }, 
      "Action": [ 
         "sqs:SendMessage", 
         "sqs:ReceiveMessage" 
      ],  
      "Resource": "arn:aws-cn:sqs:us-east-2:444455556666:queue2", 
      "Condition": { 
         "DateLessThan": { 

Using policies 734

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html


Amazon Simple Queue Service Developer Guide

            "AWS:CurrentTime": "2009-06-30T12:00Z" 
         }, 
         "IpAddress": { 
            "AWS:SourceIp": "203.0.113.0/24" 
         } 
      }    
   }]
}

Example 4: Deny access to a specific account

The following example Amazon SQS policy denies a specific Amazon Web Services account access 
to your queue. This example builds on the "Example 1: Give permission to one account" example: it 
denies access to the specified Amazon Web Services account. It is necessary to write this policy and 
to upload it to Amazon SQS using the SetQueueAttributes action because the AddPermission
action doesn't permit deny access to a queue (it allows only granting access to a queue).

JSON

{  
   "Version":"2012-10-17",        
   "Id": "UseCase4", 
   "Statement" : [{ 
      "Sid": "1",  
      "Effect": "Deny",            
      "Principal": { 
         "AWS": [ 
            "111122223333" 
         ] 
      }, 
      "Action": [ 
         "sqs:SendMessage", 
         "sqs:ReceiveMessage" 
      ],  
      "Resource": "arn:aws-cn:sqs:us-east-2:444455556666:queue2"    
   }]
}

Using policies 735

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html


Amazon Simple Queue Service Developer Guide

Example 5: Deny access if it isn't from a VPC endpoint

The following example Amazon SQS policy restricts access to queue1: 111122223333 can perform 
the SendMessage and ReceiveMessage actions only from the VPC endpoint ID vpce-1a2b3c4d
(specified using the aws:sourceVpce condition). For more information, see Amazon Virtual 
Private Cloud endpoints for Amazon SQS.

Note

• The aws:sourceVpce condition doesn't require an ARN for the VPC endpoint resource, 
only the VPC endpoint ID.

• You can modify the following example to restrict all actions to a specific VPC endpoint 
by denying all Amazon SQS actions (sqs:*) in the second statement. However, such a 
policy statement would stipulate that all actions (including administrative actions needed 
to modify queue permissions) must be made through the specific VPC endpoint defined 
in the policy, potentially preventing the user from modifying queue permissions in the 
future.

JSON

{ 
   "Version":"2012-10-17",        
   "Id": "UseCase5", 
   "Statement": [{ 
      "Sid": "1", 
      "Effect": "Allow", 
      "Principal": { 
         "AWS": [ 
            "111122223333" 
         ] 
      }, 
      "Action": [ 
         "sqs:SendMessage", 
         "sqs:ReceiveMessage" 
      ], 
         "Resource": "arn:aws-cn:sqs:us-east-2:111122223333:queue1" 
      }, 
      { 

Using policies 736

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

         "Sid": "2", 
         "Effect": "Deny", 
         "Principal": "*", 
         "Action": [ 
            "sqs:SendMessage", 
            "sqs:ReceiveMessage" 
         ], 
         "Resource": "arn:aws-cn:sqs:us-east-2:111122223333:queue1", 
         "Condition": { 
            "StringNotEquals": { 
               "aws:sourceVpce": "vpce-1a2b3c4d" 
            } 
         } 
      } 
   ]
}

Using temporary security credentials with Amazon SQS

In addition to creating users with their own security credentials, IAM also allows you to grant 
temporary security credentials to any user, allowing the user to access your Amazon services and 
resources. You can manage users who have Amazon Web Services accounts. You can also manage 
users for your system who don't have Amazon Web Services accounts (federated users). In addition, 
applications that you create to access your Amazon resources can also be considered to be "users."

You can use these temporary security credentials to make requests to Amazon SQS. The API 
libraries compute the necessary signature value using those credentials to authenticate your 
request. If you send requests using expired credentials, Amazon SQS denies the request.

Note

You can't set a policy based on temporary credentials.

Prerequisites

1. Use IAM to create temporary security credentials:

• Security token

• Access Key ID

Using policies 737



Amazon Simple Queue Service Developer Guide

• Secret Access Key

2. Prepare your string to sign with the temporary Access Key ID and the security token.

3. Use the temporary Secret Access Key instead of your own Secret Access Key to sign your Query 
API request.

Note

When you submit the signed Query API request, use the temporary Access Key ID instead of 
your own Access Key ID and to include the security token. For more information about IAM 
support for temporary security credentials, see Granting Temporary Access to Your Amazon 
Resources in the IAM User Guide.

To call an Amazon SQS Query API action using temporary security credentials

1. Request a temporary security token using Amazon Identity and Access Management. For more 
information, see Creating Temporary Security Credentials to Enable Access for IAM Users in the
IAM User Guide.

IAM returns a security token, an Access Key ID, and a Secret Access Key.

2. Prepare your query using the temporary Access Key ID instead of your own Access Key ID and 
include the security token. Sign your request using the temporary Secret Access Key instead of 
your own.

3. Submit your signed query string with the temporary Access Key ID and the security token.

The following example demonstrates how to use temporary security credentials to 
authenticate an Amazon SQS request. The structure of AUTHPARAMS depends on the signature 
of the API request. For more information, see Signing Amazon API Requests in the Amazon 
Web Services General Reference.

https://sqs.us-east-2.amazonaws.com/
?Action=CreateQueue
&DefaultVisibilityTimeout=40
&QueueName=MyQueue
&Attribute.1.Name=VisibilityTimeout
&Attribute.1.Value=40
&Expires=2020-12-18T22%3A52%3A43PST
&SecurityToken=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Using policies 738

https://docs.amazonaws.cn/IAM/latest/UserGuide/TokenBasedAuth.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/TokenBasedAuth.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/CreatingSessionTokens.html
https://docs.amazonaws.cn/general/latest/gr/signing_aws_api_requests.html


Amazon Simple Queue Service Developer Guide

&AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE
&Version=2012-11-05
&AUTHPARAMS

The following example uses temporary security credentials to send two messages using the
SendMessageBatch action.

https://sqs.us-east-2.amazonaws.com/
?Action=SendMessageBatch
&SendMessageBatchRequestEntry.1.Id=test_msg_001
&SendMessageBatchRequestEntry.1.MessageBody=test%20message%20body%201
&SendMessageBatchRequestEntry.2.Id=test_msg_002
&SendMessageBatchRequestEntry.2.MessageBody=test%20message%20body%202
&SendMessageBatchRequestEntry.2.DelaySeconds=60
&Expires=2020-12-18T22%3A52%3A43PST
&SecurityToken=je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY
&AWSAccessKeyId=AKIAI44QH8DHBEXAMPLE
&Version=2012-11-05
&AUTHPARAMS

Access management for encrypted Amazon SQS queues with least privilege policies

You can use Amazon SQS to exchange sensitive data between applications by using server-side 
encryption (SSE) integrated with Amazon Key Management Service (KMS). With the integration of 
Amazon SQS and Amazon KMS, you can centrally manage the keys that protect Amazon SQS, as 
well as the keys that protect your other Amazon resources.

Multiple Amazon services can act as event sources that send events to Amazon SQS. To enable an 
event source to access the encrypted Amazon SQS queue, you need to configure the queue with 
a customer-managed Amazon KMS key. Then, use the key policy to allow the service to use the 
required Amazon KMS API methods. The service also requires permissions to authenticate access to 
enable the queue to send events. You can achieve this by using an Amazon SQS policy, which is a 
resource-based policy that you can use to control access to the Amazon SQS queue and its data.

The following sections provide information on how to control access to your encrypted Amazon 
SQS queue through the Amazon SQS policy and the Amazon KMS key policy. The policies in this 
guide will help you achieve least privilege.

Using policies 739

https://docs.amazonaws.cn/kms/latest/developerguide/overview.html
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege


Amazon Simple Queue Service Developer Guide

This guide also describes how resource-based policies address the confused-deputy problem
by using the aws:SourceArn, aws:SourceAccount, and aws:PrincipalOrgID global IAM 
condition context keys.

Topics

• Overview

• Least privilege key policy for Amazon SQS

• Amazon SQS policy statements for the dead-letter queue

• Prevent the cross-service confused deputy problem

• Use IAM Access Analyzer to review cross-account access

Overview

In this topic, we will walk you through a common use case to illustrate how you can build the key 
policy and the Amazon SQS queue policy. This use case is shown in the following image.

In this example, the message producer is an Amazon Simple Notification Service (SNS) topic, which 
is configured to fanout messages to your encrypted Amazon SQS queue. The message consumer is 
a compute service, such as an Amazon Lambda function, an Amazon Elastic Compute Cloud (EC2)
instance, or an Amazon Fargate container. Your Amazon SQS queue is then configured to send 
failed messages to a Dead-letter Queue (DLQ). This is useful for debugging your application or 
messaging system because DLQs let you isolate unconsumed messages to determine why their 

Using policies 740

https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalorgid
https://docs.amazonaws.cn/sns/latest/dg/welcome.html
https://docs.amazonaws.cn/lambda/latest/dg/welcome.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/concepts.html
https://docs.amazonaws.cn/AmazonECS/latest/developerguide/AWS_Fargate.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html


Amazon Simple Queue Service Developer Guide

processing didn't succeed. In the solution defined in this topic, a compute service such as a Lambda 
function is used to process messages stored in the Amazon SQS queue. If the message consumer is 
located in a virtual private cloud (VPC), the DenyReceivingIfNotThroughVPCE policy statement 
included in this guide lets you restrict message reception to that specific VPC.

Note

This guide contains only the required IAM permissions in the form of policy statements. 
To construct the policy, you need to add the statements to your Amazon SQS policy or 
your Amazon KMS key policy. This guide doesn't provide instructions on how to create 
the Amazon SQS queue or the Amazon KMS key. For instructions on how to create these 
resources, see Creating an Amazon SQS queue and Creating keys.
The Amazon SQS policy defined in this guide doesn’t support redriving messages directly 
to the same or a different Amazon SQS queue.

Least privilege key policy for Amazon SQS

In this section, we describe the required least privilege permissions in Amazon KMS for the 
customer-managed key that you use to encrypt your Amazon SQS queue. With these permissions, 
you can limit access to only the intended entities while implementing least privilege. The key policy 
must consist of the following policy statements, which we describe in detail below:

• Grant administrator permissions to the Amazon KMS key

• Grant read-only access to the key metadata

• Grant Amazon SNS KMS permissions to Amazon SNS to publish messages to the queue

• Allow consumers to decrypt messages from the queue

Grant administrator permissions to the Amazon KMS key

To create an Amazon KMS key, you need to provide Amazon KMS administrator permissions to the 
IAM role that you use to deploy the Amazon KMS key. These administrator permissions are defined 
in the following AllowKeyAdminPermissions policy statement. When you add this statement 
to your Amazon KMS key policy, make sure to replace <admin-role ARN> with the Amazon 
Resource Name (ARN) of the IAM role used to deploy the Amazon KMS key, manage the Amazon 
KMS key, or both. This can be the IAM role of your deployment pipeline, or the administrator role 
for your organization in your Amazon Organizations.

Using policies 741

https://docs.amazonaws.cn/kms/latest/developerguide/create-keys.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_accounts_access.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_accounts_access.html
http://www.amazonaws.cn/organizations/


Amazon Simple Queue Service Developer Guide

{ 
  "Sid": "AllowKeyAdminPermissions", 
  "Effect": "Allow", 
  "Principal": { 
    "AWS": [ 
      "<admin-role ARN>" 
    ] 
  }, 
  "Action": [ 
    "kms:Create*", 
    "kms:Describe*", 
    "kms:Enable*", 
    "kms:List*", 
    "kms:Put*", 
    "kms:Update*", 
    "kms:Revoke*", 
    "kms:Disable*", 
    "kms:Get*", 
    "kms:Delete*", 
    "kms:TagResource", 
    "kms:UntagResource", 
    "kms:ScheduleKeyDeletion", 
    "kms:CancelKeyDeletion" 
  ], 
  "Resource": "*"
}

Note

In an Amazon KMS key policy, the value of the Resource element needs to be *, which 
means "this Amazon KMS key". The asterisk (*) identifies the Amazon KMS key to which the 
key policy is attached.

Grant read-only access to the key metadata

To grant other IAM roles read-only access to your key metadata, add the
AllowReadAccessToKeyMetaData statement to your key policy. For example, the following 
statement lets you list all of the Amazon KMS keys in your account for auditing purposes. This 
statement grants the Amazon root user read-only access to the key metadata. Therefore, any 
IAM principal in the account can have access to the key metadata when their identity-based 

Using policies 742



Amazon Simple Queue Service Developer Guide

policies have the permissions listed in the following statement: kms:Describe*, kms:Get*, and
kms:List*. Make sure to replace <account-ID> with your own information.

{ 
  "Sid": "AllowReadAcesssToKeyMetaData", 
  "Effect": "Allow", 
  "Principal": { 
    "AWS": [ 
      "arn:aws-cn:iam::<accountID>:root" 
    ] 
  }, 
  "Action": [ 
    "kms:Describe*", 
    "kms:Get*", 
    "kms:List*" 
  ], 
  "Resource": "*"
}

Grant Amazon SNS KMS permissions to Amazon SNS to publish messages to the queue

To allow your Amazon SNS topic to publish messages to your encrypted Amazon SQS queue, add 
the AllowSNSToSendToSQS policy statement to your key policy. This statement grants Amazon 
SNS permissions to use the Amazon KMS key to publish to your Amazon SQS queue. Make sure to 
replace <account-ID> with your own information.

Note

The Condition in the statement limits access to only the Amazon SNS service in the same 
Amazon account.

{ 
  "Sid": "AllowSNSToSendToSQS", 
  "Effect": "Allow", 
  "Principal": { 
    "Service": [ 
      "sns.amazonaws.com" 
    ] 
  }, 
  "Action": [ 

Using policies 743



Amazon Simple Queue Service Developer Guide

    "kms:Decrypt", 
    "kms:GenerateDataKey" 
  ], 
  "Resource": "*", 
  "Condition": { 
    "StringEquals": { 
      "aws:SourceAccount": "<account-id>" 
    } 
  }
}

Allow consumers to decrypt messages from the queue

The following AllowConsumersToReceiveFromTheQueue statement grants the Amazon SQS 
message consumer the required permissions to decrypt messages received from the encrypted 
Amazon SQS queue. When you attach the policy statement, replace <consumer's runtime 
role ARN> with the IAM runtime role ARN of the message consumer.

{ 
  "Sid": "AllowConsumersToReceiveFromTheQueue", 
  "Effect": "Allow", 
  "Principal": { 
    "AWS": [ 
      "<consumer's execution role ARN>" 
    ] 
  }, 
  "Action": [ 
    "kms:Decrypt" 
  ], 
  "Resource": "*"
}

Least privilege Amazon SQS policy

This section walks you through the least privilege Amazon SQS queue policies for the use case 
covered by this guide (for example, Amazon SNS to Amazon SQS). The defined policy is designed 
to prevent unintended access by using a mix of both Deny and Allow statements. The Allow
statements grant access to the intended entity or entities. The Deny statements prevent other 
unintended entities from accessing the Amazon SQS queue, while excluding the intended entity 
within the policy condition.

The Amazon SQS policy includes the following statements, which we describe in detail below:

Using policies 744



Amazon Simple Queue Service Developer Guide

• Restrict Amazon SQS management permissions

• Restrict Amazon SQS queue actions from the specified organization

• Grant Amazon SQS permissions to consumers

• Enforce encryption in transit

• Restrict message transmission to a specific Amazon SNS topic

• (Optional) Restrict message reception to a specific VPC endpoint

Restrict Amazon SQS management permissions

The following RestrictAdminQueueActions policy statement restricts the Amazon SQS 
management permissions to only the IAM role or roles that you use to deploy the queue, manage 
the queue, or both. Make sure to replace the <placeholder values> with your own information. 
Specify the ARN of the IAM role used to deploy the Amazon SQS queue, as well as the ARNs of any 
administrator roles that should have Amazon SQS management permissions.

{ 
  "Sid": "RestrictAdminQueueActions", 
  "Effect": "Deny", 
  "Principal": { 
    "AWS": "*" 
  }, 
  "Action": [ 
    "sqs:AddPermission", 
    "sqs:DeleteQueue", 
    "sqs:RemovePermission", 
    "sqs:SetQueueAttributes" 
  ], 
  "Resource": "<SQS Queue ARN>", 
  "Condition": { 
    "StringNotLike": { 
      "aws:PrincipalARN": [ 
        "arn:aws-cn:iam::<account-id>:role/<deployment-role-name>", 
        "<admin-role ARN>" 
      ] 
    } 
  }
}

Using policies 745



Amazon Simple Queue Service Developer Guide

Restrict Amazon SQS queue actions from the specified organization

To help protect your Amazon SQS resources from external access (access by an entity outside of 
your Amazon organization), use the following statement. This statement limits Amazon SQS queue 
access to the organization that you specify in the Condition. Make sure to replace <SQS queue 
ARN> with the ARN of the IAM role used to deploy the Amazon SQS queue; and the <org-id>, 
with your organization ID.

{ 
  "Sid": "DenyQueueActionsOutsideOrg", 
  "Effect": "Deny", 
  "Principal": { 
    "AWS": "*" 
  }, 
  "Action": [ 
    "sqs:AddPermission", 
    "sqs:ChangeMessageVisibility", 
    "sqs:DeleteQueue", 
    "sqs:RemovePermission", 
    "sqs:SetQueueAttributes", 
    "sqs:ReceiveMessage" 
  ], 
  "Resource": "<SQS queue ARN>", 
  "Condition": { 
    "StringNotEquals": { 
      "aws:PrincipalOrgID": [ 
        "<org-id>" 
      ] 
    } 
  }
}

Grant Amazon SQS permissions to consumers

To receive messages from the Amazon SQS queue, you need to provide the message consumer with 
the necessary permissions. The following policy statement grants the consumer, which you specify, 
the required permissions to consume messages from the Amazon SQS queue. When adding the 
statement to your Amazon SQS policy, make sure to replace <consumer's IAM runtime role 
ARN> with the ARN of the IAM runtime role used by the consumer; and <SQS queue ARN>, with 
the ARN of the IAM role used to deploy the Amazon SQS queue.

{ 

Using policies 746

https://docs.amazonaws.cn/organizations/latest/userguide/orgs_introduction.html


Amazon Simple Queue Service Developer Guide

  "Sid": "AllowConsumersToReceiveFromTheQueue", 
  "Effect": "Allow", 
  "Principal": { 
    "AWS": "<consumer's IAM execution role ARN>" 
  }, 
  "Action": [ 
    "sqs:ChangeMessageVisibility", 
    "sqs:DeleteMessage", 
    "sqs:GetQueueAttributes", 
    "sqs:ReceiveMessage" 
  ], 
  "Resource": "<SQS queue ARN>"
} 
     
    

To prevent other entities from receiving messages from the Amazon SQS queue, add the
DenyOtherConsumersFromReceiving statement to the Amazon SQS queue policy. This 
statement restricts message consumption to the consumer that you specify—allowing no other 
consumers to have access, even when their identity-permissions would grant them access. Make 
sure to replace <SQS queue ARN> and <consumer’s runtime role ARN> with your own 
information.

{ 
  "Sid": "DenyOtherConsumersFromReceiving", 
  "Effect": "Deny", 
  "Principal": { 
    "AWS": "*" 
  }, 
  "Action": [ 
    "sqs:ChangeMessageVisibility", 
    "sqs:DeleteMessage", 
    "sqs:ReceiveMessage" 
  ], 
  "Resource": "<SQS queue ARN>", 
  "Condition": { 
    "StringNotLike": { 
      "aws:PrincipalARN": "<consumer's execution role ARN>" 
    } 
  }
}   
    

Using policies 747



Amazon Simple Queue Service Developer Guide

Enforce encryption in transit

The following DenyUnsecureTransport policy statement enforces the consumers and producers 
to use secure channels (TLS connections) to send and receive messages from the Amazon SQS 
queue. Make sure to replace <SQS queue ARN> with the ARN of the IAM role used to deploy the 
Amazon SQS queue.

{ 
  "Sid": "DenyUnsecureTransport", 
  "Effect": "Deny", 
  "Principal": { 
    "AWS": "*" 
  }, 
  "Action": [ 
    "sqs:ReceiveMessage", 
    "sqs:SendMessage" 
  ], 
  "Resource": "<SQS queue ARN>", 
  "Condition": { 
    "Bool": { 
      "aws:SecureTransport": "false" 
    } 
  }
} 
     
    

Restrict message transmission to a specific Amazon SNS topic

The following AllowSNSToSendToTheQueue policy statement allows the specified Amazon SNS 
topic to send messages to the Amazon SQS queue. Make sure to replace <SQS queue ARN> with 
the ARN of the IAM role used to deploy the Amazon SQS queue; and <SNS topic ARN>, with the 
Amazon SNS topic ARN.

{ 
  "Sid": "AllowSNSToSendToTheQueue", 
  "Effect": "Allow", 
  "Principal": { 
    "Service": "sns.amazonaws.com" 
  }, 
  "Action": "sqs:SendMessage", 
  "Resource": "<SQS queue ARN>", 

Using policies 748



Amazon Simple Queue Service Developer Guide

  "Condition": { 
    "ArnLike": { 
      "aws:SourceArn": "<SNS topic ARN>" 
    } 
  }
}     
    

The following DenyAllProducersExceptSNSFromSending policy statement prevents other 
producers from sending messages to the queue. Replace <SQS queue ARN> and <SNS topic 
ARN> with your own information.

{ 
  "Sid": "DenyAllProducersExceptSNSFromSending", 
  "Effect": "Deny", 
  "Principal": { 
    "AWS": "*" 
  }, 
  "Action": "sqs:SendMessage", 
  "Resource": "<SQS queue ARN>", 
  "Condition": { 
    "ArnNotLike": { 
      "aws:SourceArn": "<SNS topic ARN>" 
    } 
  }
} 
     
    

(Optional) Restrict message reception to a specific VPC endpoint

To restrict the receipt of messages to only a specific VPC endpoint, add the following policy 
statement to your Amazon SQS queue policy. This statement prevents a message consumer from 
receiving messages from the queue unless the messages are from the desired VPC endpoint. 
Replace <SQS queue ARN> with the ARN of the IAM role used to deploy the Amazon SQS queue; 
and <vpce_id> with the ID of the VPC endpoint.

{ 
  "Sid": "DenyReceivingIfNotThroughVPCE", 
  "Effect": "Deny", 
  "Principal": "*", 
  "Action": [ 

Using policies 749

https://www.amazonaws.cn/about-aws/whats-new/2018/12/amazon-sqs-vpc-endpoints-aws-privatelink/


Amazon Simple Queue Service Developer Guide

    "sqs:ReceiveMessage" 
  ], 
  "Resource": "<SQS queue ARN>", 
  "Condition": { 
    "StringNotEquals": { 
      "aws:sourceVpce": "<vpce id>" 
    } 
  }
}

Amazon SQS policy statements for the dead-letter queue

Add the following policy statements, identified by their statement ID, to your DLQ access policy:

• RestrictAdminQueueActions

• DenyQueueActionsOutsideOrg

• AllowConsumersToReceiveFromTheQueue

• DenyOtherConsumersFromReceiving

• DenyUnsecureTransport

In addition to adding the preceding policy statements to your DLQ access policy, you should also 
add a statement to restrict message transmission to Amazon SQS queues, as described in the 
following section.

Restrict message transmission to Amazon SQS queues

To restrict access to only Amazon SQS queues from the same account, add the following
DenyAnyProducersExceptSQS policy statement to the DLQ queue policy. This statement doesn't 
limit message transmission to a specific queue because you need to deploy the DLQ before you 
create the main queue, so you won't know the Amazon SQS ARN when you create the DLQ. If 
you need to limit access to only one Amazon SQS queue, modify the aws:SourceArn in the
Condition with the ARN of your Amazon SQS source queue when you know it.

{ 
  "Sid": "DenyAnyProducersExceptSQS", 
  "Effect": "Deny", 
  "Principal": { 
    "AWS": "*" 
  }, 

Using policies 750



Amazon Simple Queue Service Developer Guide

  "Action": "sqs:SendMessage", 
  "Resource": "<SQS DLQ ARN>", 
  "Condition": { 
    "ArnNotLike": { 
      "aws:SourceArn": "arn:aws-cn:sqs:<region>:<account-id>:*" 
    } 
  }
}

Important

The Amazon SQS queue policies defined in this guide don't restrict the sqs:PurgeQueue
action to a certain IAM role or roles. The sqs:PurgeQueue action enables you to delete 
all messages in the Amazon SQS queue. You can also use this action to make changes 
to the message format without replacing the Amazon SQS queue. When debugging 
an application, you can clear the Amazon SQS queue to remove potentially erroneous 
messages. When testing the application, you can drive a high message volume through the 
Amazon SQS queue and then purge the queue to start fresh before entering production. 
The reason for not restricting this action to a certain role is that this role might not be 
known when deploying the Amazon SQS queue. You will need to add this permission to the 
role’s identity-based policy to be able to purge the queue.

Prevent the cross-service confused deputy problem

The confused deputy problem is a security issue where an entity that doesn't have permission 
to perform an action can coerce a more privileged entity to perform the action. To prevent this, 
Amazon provides tools that help you protect your account if you provide third parties (known 
as cross-account) or other Amazon services (known as cross-service) access to resources in your 
account. The policy statements in this section can help you prevent the cross-service confused 
deputy problem.

Cross-service impersonation can occur when one service (the calling service) calls another service 
(the called service). The calling service can be manipulated to use its permissions to act on another 
customer's resources in a way it shouldn’t otherwise have permission to access. To help protect 
against this issue, the resource-based policies defined in this post use the aws:SourceArn,
aws:SourceAccount, and aws:PrincipalOrgID global IAM condition context keys. This 
limits the permissions that a service has to a specific resource, a specific account, or a specific 
organization in Amazon Organizations.

Using policies 751

https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalorgid


Amazon Simple Queue Service Developer Guide

Use IAM Access Analyzer to review cross-account access

You can use Amazon IAM Access Analyzer to review your Amazon SQS queue policies and Amazon 
KMS key policies and alert you when an Amazon SQS queue or a Amazon KMS key grants access to 
an external entity. IAM Access Analyzer helps identify resources in your organization and accounts 
that are shared with an entity outside the zone of trust. This zone of trust can be an Amazon 
account or the organization within Amazon Organizations that you specify when you enable IAM 
Access Analyzer.

IAM Access Analyzer identifies resources shared with external principals by using logic-based 
reasoning to analyze the resource-based policies in your Amazon environment. For each instance 
of a resource shared outside of your zone of trust, Access Analyzer generates a finding. Findings
include information about the access and the external principal granted to it. Review the findings 
to determine whether the access is intended and safe, or whether the access is unintended and a 
security risk. For any unintended access, review the affected policy and fix it. Refer to this blog post
for more information on how Amazon IAM Access Analyzer identifies unintended access to your 
Amazon resources.

For more information on Amazon IAM Access Analyzer, see the Amazon IAM Access Analyzer 
documentation.

Amazon SQS API permissions: Actions and resource reference

When you set up Access control and write permissions policies that you can attach to an IAM 
identity, you can use the following table as a reference. The list includes each Amazon Simple 
Queue Service action, the corresponding actions for which you can grant permissions to perform 
the action, and the Amazon resource for which you can grant the permissions.

Specify the actions in the policy's Action field, and the resource value in the policy's Resource
field. To specify an action, use the sqs: prefix followed by the action name (for example,
sqs:CreateQueue).

Currently, Amazon SQS supports the global condition context keys available in IAM.

Amazon Simple Queue Service API and required permissions for actions

AddPermission

Action(s): sqs:AddPermission

Resource: arn:aws-cn:sqs:region:account_id:queue_name

Using policies 752

https://docs.amazonaws.cn/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-findings.html
https://www.amazonaws.cn/blogs/aws/identify-unintended-resource-access-with-aws-identity-and-access-management-iam-access-analyzer/
https://docs.amazonaws.cn/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html


Amazon Simple Queue Service Developer Guide

ChangeMessageVisibility

Action(s): sqs:ChangeMessageVisibility

Resource: arn:aws-cn:sqs:region:account_id:queue_name

ChangeMessageVisibilityBatch

Action(s): sqs:ChangeMessageVisibilityBatch

Resource: arn:aws-cn:sqs:region:account_id:queue_name

CreateQueue

Action(s): sqs:CreateQueue

Resource: arn:aws-cn:sqs:region:account_id:queue_name

DeleteMessage

Action(s): sqs:DeleteMessage

Resource: arn:aws-cn:sqs:region:account_id:queue_name

DeleteMessageBatch

Action(s): sqs:DeleteMessageBatch

Resource: arn:aws-cn:sqs:region:account_id:queue_name

DeleteQueue

Action(s): sqs:DeleteQueue

Resource: arn:aws-cn:sqs:region:account_id:queue_name

GetQueueAttributes

Action(s): sqs:GetQueueAttributes

Resource: arn:aws-cn:sqs:region:account_id:queue_name

GetQueueUrl

Action(s): sqs:GetQueueUrl

Resource: arn:aws-cn:sqs:region:account_id:queue_name

Using policies 753

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html


Amazon Simple Queue Service Developer Guide

ListDeadLetterSourceQueues

Action(s): sqs:ListDeadLetterSourceQueues

Resource: arn:aws-cn:sqs:region:account_id:queue_name

ListQueues

Action(s): sqs:ListQueues

Resource: arn:aws-cn:sqs:region:account_id:queue_name

ListQueueTags

Action(s): sqs:ListQueueTags

Resource: arn:aws-cn:sqs:region:account_id:queue_name

PurgeQueue

Action(s): sqs:PurgeQueue

Resource: arn:aws-cn:sqs:region:account_id:queue_name

ReceiveMessage

Action(s): sqs:ReceiveMessage

Resource: arn:aws-cn:sqs:region:account_id:queue_name

RemovePermission

Action(s): sqs:RemovePermission

Resource: arn:aws-cn:sqs:region:account_id:queue_name

SendMessage and SendMessageBatch

Action(s): sqs:SendMessage

Resource: arn:aws-cn:sqs:region:account_id:queue_name

SetQueueAttributes

Action(s): sqs:SetQueueAttributes

Resource: arn:aws-cn:sqs:region:account_id:queue_name

Using policies 754

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_PurgeQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html


Amazon Simple Queue Service Developer Guide

TagQueue

Action(s): sqs:TagQueue

Resource: arn:aws-cn:sqs:region:account_id:queue_name

UntagQueue

Action(s): sqs:UntagQueue

Resource: arn:aws-cn:sqs:region:account_id:queue_name

Logging and monitoring in Amazon SQS

Amazon Simple Queue Service is integrated with Amazon CloudTrail, a service that provides a 
record of actions taken by a user, role, or an Amazon Web Services service. CloudTrail captures all 
API calls for Amazon SQS as events. The calls captured include calls from the Amazon SQS console 
and code calls to the Amazon SQS API operations. Using the information collected by CloudTrail, 
you can determine the request that was made to Amazon SQS, the IP address from which the 
request was made, when it was made, and additional details.

Every event or log entry contains information about who generated the request. The identity 
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon Web Services service.

CloudTrail is active in your Amazon Web Services account when you create the account and you 
automatically have access to the CloudTrail Event history. The CloudTrail Event history provides 
a viewable, searchable, downloadable, and immutable record of the past 90 days of recorded 
management events in an Amazon Web Services Region. For more information, see Working with 
CloudTrail Event history in the Amazon CloudTrail User Guide. There are no CloudTrail charges for 
viewing the Event history.

For an ongoing record of events in your Amazon Web Services account past 90 days, create a trail 
or a CloudTrail Lake event data store.

Logging and monitoring 755

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_TagQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_UntagQueue.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake.html


Amazon Simple Queue Service Developer Guide

Amazon CloudWatch Alarms

Monitor a single metric over a time period you specify, and take one or more actions based on 
the metric's value relative to a defined threshold over several periods. For example, you can 
configure a CloudWatch alarm to send a notification to an Amazon SNS topic or trigger an 
action to send a message to an Amazon SQS queue. CloudWatch alarms don't perform actions 
simply because they are in a specific state; the state must change and remain in that state for a 
defined number of periods.

For more information, see Creating CloudWatch alarms for Amazon SQS metrics and Creating 
alarms for dead-letter queues using Amazon CloudWatch.

Amazon CloudWatch Logs

Monitor, store, and access log files related to Amazon SQS by configuring your applications 
or Lambda functions that process messages to send logs to CloudWatch Logs. You can use 
these logs to analyze message processing, debug issues, and monitor the performance of your 
Amazon SQS workflows.

For more information, see Logging Amazon Simple Queue Service API calls using Amazon 
CloudTrail.

Amazon CloudWatch Events

Use Amazon CloudWatch Events to detect changes or specific events in your Amazon 
environment and route them to an Amazon SQS queue. This allows you to capture event data, 
trigger workflows, or store events for processing later.

For more information, see Automating notifications from Amazon services to Amazon 
SQS using Amazon EventBridge in this guide and EventBridge is the evolution of Amazon 
CloudWatch Events in the Amazon EventBridge User Guide.

Amazon CloudTrail Logs

CloudTrail captures a detailed record of actions performed on Amazon SQS by users, roles, 
or Amazon Web Services services. These logs let you track API calls, such as SendMessage,
ReceiveMessage, or DeleteQueue, and provide key details such as who made the request, 
when it occurred, and the originating IP address.

For more information, see Logging Amazon Simple Queue Service API calls using Amazon 
CloudTrail.

Logging and monitoring 756

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-cwe-now-eb.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-cwe-now-eb.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html


Amazon Simple Queue Service Developer Guide

Amazon Trusted Advisor

Trusted Advisor uses best practices developed from serving Amazon customers to help 
optimize your Amazon SQS usage. It reviews your Amazon SQS queues and provides actionable 
recommendations to enhance security, improve message processing reliability, and reduce 
costs. For example, it may suggest enabling dead-letter queues or to improve your queue access 
policies to ensure secure operations.

For more information, see Amazon Trusted Advisor in the Amazon Web Services Support User 
Guide.

CloudTrail trails

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. All trails created using the 
Amazon Web Services Management Console are multi-Region. You can create a single-Region 
or a multi-Region trail by using the Amazon CLI. Creating a multi-Region trail is recommended 
because you capture activity in all Amazon Web Services Regions in your account. If you create 
a single-Region trail, you can view only the events logged in the trail's Amazon Web Services 
Region. For more information about trails, see Creating a trail for your Amazon Web Services 
account and Creating a trail for an organization in the Amazon CloudTrail User Guide.

You can deliver one copy of your ongoing management events to your Amazon S3 bucket at 
no charge from CloudTrail by creating a trail, however, there are Amazon S3 storage charges. 
For more information about CloudTrail pricing, see Amazon CloudTrail Pricing. For information 
about Amazon S3 pricing, see Amazon S3 Pricing.

CloudTrail Lake event data stores

CloudTrail Lake lets you run SQL-based queries on your events. CloudTrail Lake converts existing 
events in row-based JSON format to  Apache ORC format. ORC is a columnar storage format 
that is optimized for fast retrieval of data. Events are aggregated into event data stores, which 
are immutable collections of events based on criteria that you select by applying advanced 
event selectors. The selectors that you apply to an event data store control which events persist 
and are available for you to query. For more information about CloudTrail Lake, see Working 
with Amazon CloudTrail Lake in the Amazon CloudTrail User Guide.

CloudTrail Lake event data stores and queries incur costs. When you create an event data store, 
you choose the pricing option you want to use for the event data store. The pricing option 
determines the cost for ingesting and storing events, and the default and maximum retention 
period for the event data store. For more information about CloudTrail pricing, see Amazon 
CloudTrail Pricing.

Logging and monitoring 757

https://docs.amazonaws.cn/awssupport/latest/user/getting-started.html#trusted-advisor
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/creating-trail-organization.html
https://www.amazonaws.cn/cloudtrail/pricing/
https://www.amazonaws.cn/s3/pricing/
https://orc.apache.org/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake-manage-costs.html#cloudtrail-lake-manage-costs-pricing-option
https://www.amazonaws.cn/cloudtrail/pricing/
https://www.amazonaws.cn/cloudtrail/pricing/


Amazon Simple Queue Service Developer Guide

Logging Amazon Simple Queue Service API calls using Amazon 
CloudTrail

CloudTrail allows you to log and monitor Amazon SQS operations using two event types: data 
events and management events. This makes it easy to track and audit Amazon SQS activity in your 
account.

Amazon SQS data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource 
(for example, sending messages to an Amazon SQS object). These are also known as data plane 
operations. Data events are often high-volume activities. By default, CloudTrail doesn’t log data 
events. The CloudTrail Event history doesn't record data events.

Additional charges apply for data events. For more information about CloudTrail pricing, see
Amazon CloudTrail Pricing.

You can log data events for the Amazon SQS resource types by using the CloudTrail console, 
Amazon CLI, or CloudTrail API operations. For more information about how to log data events, see
Logging data events with the Amazon Web Services Management Console and Logging data events 
with the Amazon Command Line Interface in the Amazon CloudTrail User Guide.

To log Amazon SQS data events with CloudTrail, you must use advanced event selectors to 
configure the specific Amazon SQS resources or actions you want to log. Include the resource type
AWS::SQS::Queue to capture queue-related actions. You can refine your logging preferences even 
further with using filters like eventName (such as SendMessage events). For more information, 
see AdvancedEventSelector in the CloudTrail API Reference.

Data event type (console) resources.type value Data APIs logged to 
CloudTrail

Amazon SQS queue AWS::SQS::Queue • ChangeMessageVisibility

• ChangeMessageVisib 
ilityBatch

• DeleteMessage

• DeleteMessageBatch

• GetQueueAttributes

Logging API calls 758

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://www.amazonaws.cn/cloudtrail/pricing/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-sqs-queue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/awscloudtrail/latest/APIReference/API_AdvancedEventSelector.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-sqs-queue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibility.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ChangeMessageVisibilityBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessageBatch.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html


Amazon Simple Queue Service Developer Guide

Data event type (console) resources.type value Data APIs logged to 
CloudTrail

• GetQueueUrl

• ListDeadLetterSour 
ceQueues

• ListQueues

• ListQueueTags

• ReceiveMessage

• SendMessage

• SendMessageBatch

Use advanced event selectors to filter fields and log only important events. For more information 
about these fields, see AdvancedFieldSelector in the Amazon CloudTrail API Reference.

Amazon SQS management events in CloudTrail

Management events provide information about management operations that are performed on 
resources in your Amazon Web Services account. These are also known as control plane operations. 
By default, CloudTrail logs management events.

Amazon SQS logs the following control plane operations to CloudTrail as management events.

• AddPermission

• CancelMessageMoveTask

• CreateQueue

• DeleteQueue

• ListMessageMoveTasks

• PurgeQueue

• RemovePermission

• SetQueueAttributes

• StartMessageMoveTask

• TagQueue

• UntagQueue

Logging API calls 759

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueUrl.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueueTags.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.amazonaws.cn/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_AddPermission.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CancelMessageMoveTask.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListMessageMoveTasks.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_PurgeQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_RemovePermission.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_StartlMessageMoveTask.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_TagQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_UntagQueue.html


Amazon Simple Queue Service Developer Guide

Amazon SQS event example

An event represents a single request from any source and includes information about the requested 
API operation, the date and time of the operation, request parameters, and so on. CloudTrail log 
files aren't an ordered stack trace of the public API calls, so events don't appear in any specific 
order.

The following example shows a CloudTrail event that demonstrates the SendMessage operation.

{ 
  "eventVersion": "1.09", 
  "userIdentity": { 
    "type": "AssumedRole", 
    "principalId": "EXAMPLE_PRINCIPAL_ID", 
    "arn": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed/SessionName", 
    "accountId": "123456789012", 
    "accessKeyId": "ACCESS_KEY_ID", 
    "sessionContext": { 
      "sessionIssuer": { 
        "type": "Role", 
        "principalId": "AKIAI44QH8DHBEXAMPLE", 
        "arn": "arn:aws:sts::123456789012:assumed-role/RoleToBeAssumed", 
        "accountId": "123456789012", 
        "userName": "RoleToBeAssumed" 
      }, 
      "attributes": { 
        "creationDate": "2023-11-07T22:13:06Z", 
        "mfaAuthenticated": "false" 
      } 
    } 
  }, 
  "eventTime": "2023-11-07T23:59:11Z", 
  "eventSource": "sqs.amazonaws.com", 
  "eventName": "SendMessage", 
  "awsRegion": "ap-southeast-4", 
  "sourceIPAddress": "10.0.118.80", 
  "userAgent": "aws-cli/1.29.16 md/Botocore#1.31.16 ua/2.0 os/
linux#5.4.250-173.369.amzn2int.x86_64 md/arch#x86_64 lang/python#3.8.17 md/
pyimpl#CPython cfg/retry-mode#legacy botocore/1.31.16", 
  "requestParameters": { 
    "queueUrl": "https://sqs.ap-southeast-4.amazonaws.com/123456789012/MyQueue", 
    "messageBody": "HIDDEN_DUE_TO_SECURITY_REASONS", 
    "messageDeduplicationId": "MsgDedupIdSdk1ae1958f2-bbe8-4442-83e7-4916e3b035aa", 

Logging API calls 760



Amazon Simple Queue Service Developer Guide

    "messageGroupId": "MsgGroupIdSdk16" 
  }, 
  "responseElements": { 
    "mD5OfMessageBody": "9a4e3f7a614d9dd9f8722092dbda17a2", 
    "mD5OfMessageSystemAttributes": "f88f0587f951b7f5551f18ae699c3a9d", 
    "messageId": "93bb6e2d-1090-416c-81b0-31eb1faa8cd8", 
    "sequenceNumber": "18881790870905840128" 
  }, 
  "requestID": "c4584600-fe8a-5aa3-a5ba-1bc42f055fae", 
  "eventID": "98c735d8-70e0-4644-9432-b6ced4d791b1", 
  "readOnly": false, 
  "resources": [ 
    { 
      "accountId": "123456789012", 
      "type": "AWS::SQS::Queue", 
      "ARN": "arn:aws:sqs:ap-southeast-4:123456789012:MyQueue" 
    } 
  ], 
  "eventType": "AwsApiCall", 
  "managementEvent": false, 
  "recipientAccountId": "123456789012", 
  "eventCategory": "Data", 
  "tlsDetails": { 
    "tlsVersion": "TLSv1.2", 
    "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256", 
    "clientProvidedHostHeader": "sqs.ap-southeast-4.amazonaws.com" 
  }     

Note

The ListQueues operation is a unique case because it doesn’t act on a specific resource. 
As a result, the ARN field doesn’t include a queue name and uses a wildcard (*) instead.

For information about CloudTrail record contents, see CloudTrail record contents in the Amazon 
CloudTrail User Guide.

Monitoring Amazon SQS queues using CloudWatch

Amazon SQS and Amazon CloudWatch are integrated so you can use CloudWatch to view and 
analyze metrics for your Amazon SQS queues. You can view and analyze your queues' metrics from 

Monitoring queues 761

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html


Amazon Simple Queue Service Developer Guide

the Amazon SQS console, the CloudWatch console, using the Amazon CLI, or using the CloudWatch 
API. You can also set CloudWatch alarms for Amazon SQS metrics.

CloudWatch metrics for your Amazon SQS queues are automatically collected and pushed to 
CloudWatch at one-minute intervals. These metrics are gathered on all queues that meet the 
CloudWatch guidelines for being active. CloudWatch considers a queue to be active for up to six 
hours if it contains any messages, or if any action accesses it.

When an Amazon SQS queue is inactive for more than six hours, the Amazon SQS service is 
considered asleep and stops delivering metrics to the CloudWatch service. Missing data, or data 
representing zero, can't be visualized in the CloudWatch metrics for Amazon SQS for the time 
period that your Amazon SQS queue was inactive.

Note

• An Amazon SQS queue can be activated when the user calling an API against the queue is 
not authorized, and the request fails.

• The Amazon SQS console performs a GetQueueAttributes API call when the queue’s 
page is opened. The GetQueueAttributes API request activates the queue.

• A delay of up to 15 minutes occurs in CloudWatch metrics when a queue is activated 
from an inactive state.

• There is no charge for the Amazon SQS metrics reported in CloudWatch. They're provided 
as part of the Amazon SQS service.

• CloudWatch metrics are supported for both standard and FIFO queues.

Accessing CloudWatch metrics for Amazon SQS

Amazon SQS and Amazon CloudWatch are integrated so you can use CloudWatch to view and 
analyze metrics for your Amazon SQS queues. You can view and analyze your queues' metrics from 
the Amazon SQS console, the CloudWatch console, using the Amazon CLI, or using the CloudWatch 
API. You can also set CloudWatch alarms for Amazon SQS metrics.

Using the Amazon SQS console

Use the Amazon SQS console to access and analyze metrics for up to 10 Amazon SQS queues.

1. Sign in to the Amazon SQS console.

Monitoring queues 762

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_GetQueueAttributes.html
https://console.amazonaws.cn/sqs/


Amazon Simple Queue Service Developer Guide

2. In the list of queues, choose (check) the boxes for the queues that you want to access metrics 
for. You can show metrics for up to 10 queues.

3. Choose the Monitoring tab.

Various graphs are displayed in the SQS metrics section.

4. To understand what a particular graph represents, hover over

next to the desired graph, or see Available CloudWatch metrics for Amazon SQS.

5. To change the time range for all of the graphs at the same time, for Time Range, choose the 
desired time range (for example, Last Hour).

6. To view additional statistics for an individual graph, choose the graph.

7. In the CloudWatch Monitoring Details dialog box, select a Statistic, (for example, Sum). For a 
list of supported statistics, see Available CloudWatch metrics for Amazon SQS.

8. To change the time range and time interval that an individual graph displays (for example, 
to show a time range of the last 24 hours instead of the last 5 minutes, or to show a time 
period of every hour instead of every 5 minutes), with the graph's dialog box still displayed, for
Time Range, choose the desired time range (for example, Last 24 Hours). For Period, choose 
the desired time period within the specified time range (for example, 1 Hour). When you're 
finished looking at the graph, choose Close.

9. (Optional) To work with additional CloudWatch features, on the Monitoring tab, choose
View all CloudWatch metrics, and then follow the instructions in the Using the Amazon 
CloudWatch console procedure.

Using the Amazon CloudWatch console

Use the CloudWatch console to access and analyze Amazon SQS metrics.

1. Sign in to the CloudWatch console.

2. On the navigation panel, choose Metrics.

3. Select the SQS metric namespace.

Monitoring queues 763

https://console.amazonaws.cn/cloudwatch/


Amazon Simple Queue Service Developer Guide

4. Select the Queue Metrics metric dimension.

5. You can now examine your Amazon SQS metrics:

• To sort the metrics, use the column heading.

• To graph a metric, select the check box next to the metric.

• To filter by metric, choose the metric name and then choose Add to search.

Monitoring queues 764



Amazon Simple Queue Service Developer Guide

For more information and additional options, see Graph Metrics and Using Amazon CloudWatch 
Dashboards in the Amazon CloudWatch User Guide.

Using the Amazon Command Line Interface

To access Amazon SQS metrics using the Amazon CLI, run the get-metric-statistics
command.

For more information, see Get Statistics for a Metric in the Amazon CloudWatch User Guide.

Using the CloudWatch API

To access Amazon SQS metrics using the CloudWatch API, use the GetMetricStatistics action.

For more information, see Get Statistics for a Metric in the Amazon CloudWatch User Guide.

Creating CloudWatch alarms for Amazon SQS metrics

CloudWatch allows you trigger alarms when a metric reaches a specified threshold. For example, 
you can create an alarm for the NumberOfMessagesSent metric. For example, if more than 100 

Monitoring queues 765

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/graph_metrics.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://docs.amazonaws.cn/cli/latest/reference/cloudwatch/get-metric-statistics.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/getting-metric-statistics.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/getting-metric-statistics.html


Amazon Simple Queue Service Developer Guide

messages are sent to the MyQueue queue in 1 hour, an email notification is sent out. For more 
information, see Creating Amazon CloudWatch Alarms in the Amazon CloudWatch User Guide.

1. Sign in to the Amazon Web Services Management Console and open the CloudWatch console 
at https://console.amazonaws.cn/cloudwatch/.

2. Choose Alarms, and then choose Create Alarm.

3. In the Select Metric section of the Create Alarm dialog box, choose Browse Metrics, SQS.

4. For SQS > Queue Metrics, choose the QueueName and Metric Name for which to set an 
alarm, and then choose Next. For a list of available metrics, see Available CloudWatch metrics 
for Amazon SQS.

In the following example, the selection is for an alarm for the NumberOfMessagesSent
metric for the MyQueue queue. The alarm triggers when the number of sent messages exceeds 
100.

5. In the Define Alarm section of the Create Alarm dialog box, do the following:

a. Under Alarm Threshold, type the Name and Description for the alarm.

b. Set is to > 100.

c. Set for to 1 out of 1 datapoints.

d. Under Alarm preview, set Period to 1 Hour.

e. Set Statistic to Standard, Sum.

f. Under Actions, set Whenever this alarm to State is ALARM.

If you want CloudWatch to send a notification when the alarm is triggered, select an 
existing Amazon SNS topic or choose New list and enter email addresses separated by 
commas.

Note

If you create a new Amazon SNS topic, the email addresses must be verified 
before they receive any notifications. If the alarm state changes before the email 
addresses are verified, the notifications aren't delivered.

6. Choose Create Alarm.

The alarm is created.

Monitoring queues 766

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://console.amazonaws.cn/cloudwatch/


Amazon Simple Queue Service Developer Guide

Available CloudWatch metrics for Amazon SQS

Amazon SQS sends the following metrics to CloudWatch.

Note

For some metrics, the result is approximate because of the distributed architecture of 
Amazon SQS. In most cases, the count should be close to the actual number of messages in 
the queue.

Amazon SQS metrics

Amazon SQS automatically publishes operational metrics to Amazon CloudWatch under the
AWS/SQS namespace. These metrics help you monitor queue health and performance. Due to 
SQS’s distributed nature, many values are approximate, but accurate enough for most operational 
decisions.

Note

• All metrics emit non-negative values only when the queue is active.

• Some metrics (such as SentMessageSize) are not emitted until at least one message is 
sent.

Metric Description Units Reporting 
behavior

Key notes

Approxima 
teAgeOfOl 
destMessa 
ge

The age of 
the oldest 
unprocessed 
message in 
the queue.

Seconds Reported if 
the queue 
contains 
at least 
one active 
message.

• For standard queues, if a 
message is received three 
or more times and not 
deleted, SQS moves it to 
the back of the queue. The 
metric then reflects the age 
of the next message that 
hasn’t exceeded the receive 
threshold. This reordering 

Monitoring queues 767

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html


Amazon Simple Queue Service Developer Guide

Metric Description Units Reporting 
behavior

Key notes

occurs even when a redrive 
policy is in place.

• Poison-pill messages (those 
repeatedly received but 
never deleted) are excluded 
from this metric until 
successfully processed.

• When a message is moved 
to a DLQ after exceeding 
the maxReceiveCount , 
the age resets. In that case, 
the DLQ’s metric reflects 
the time the message was 
moved—not when it was 
originally sent.

• FIFO queues don't reorder 
messages to preserve order. 
A failed message blocks 
its message group until 
it's deleted or expires. If 
a DLQ is configured, the 
message is sent there after 
the receive threshold is 
met.

Monitoring queues 768



Amazon Simple Queue Service Developer Guide

Metric Description Units Reporting 
behavior

Key notes

Approxima 
teNumberO 
fGroupsWi 
thInfligh 
tMessages

For FIFO 
only. The 
number of 
message 
groups with 
one or more 
in-flight 
 messages.

Count Reported 
if the FIFO 
queue is 
active.

• A message is considered 
in-flight after it’s received 
from the queue by a 
consumer but not yet 
deleted or expired.

• This metric helps you 
troubleshoot and optimize 
FIFO queue throughput. 
High values usually indicate 
strong concurrency.

• If the queue has a large 
backlog and this value 
remains low, consider 
scaling consumers or 
increasing the number of 
active message groups.

• For throughput and in-
flight limits, see Amazon 
SQS quotas.

Approxima 
teNumberO 
fMessages 
Delayed

The number 
of messages 
in the queue 
that are 
delayed 
and not 
immediately 
available for 
retrieval.

Count Reported 
if delayed 
messages 
exist in the 
queue.

• Applies to queues configure 
d with a default delay and 
to individual messages sent 
with a DelaySeconds
parameter.

• Delayed messages remain 
hidden from consumers 
until their delay period 
expires, which can affect 
perceived queue backlog or 
throughput.

Monitoring queues 769



Amazon Simple Queue Service Developer Guide

Metric Description Units Reporting 
behavior

Key notes

Approxima 
teNumberO 
fMessages 
NotVisibl 
e

The number 
of in-flight 
messages 
that have 
been 
received 
but not yet 
deleted or 
expired.

Count Reported 
if in-flight 
messages 
exist.

• Messages enter the in-
flight state after being 
sent to a consumer via the
ReceiveMessage  API.

• These messages are 
temporarily hidden from 
other consumers during the 
visibility timeout window.

• Use this metric to track 
message processing delays 
or stuck consumers.

Approxima 
teNumberO 
fMessages 
Visible

The number 
of messages 
currently 
available for 
retrieval and 
processing.

Count Reported if 
the queue is 
active.

• Reflects the current 
processing backlog in the 
queue.

• There's no hard limit on 
how many messages can 
accumulate, but they are 
subject to the queue’s 
configured retention 
period.

• A consistently high value 
may indicate under-pro 
visioned consumers or stuck 
processing logic.

Monitoring queues 770

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

Metric Description Units Reporting 
behavior

Key notes

NumberOfE 
mptyRecei 
ves ¹

The number 
of ReceiveMe 
ssage API 
calls that 
returned no 
messages.

Count Reported 
during 
receive 
operations.

• This metric can help 
identify inefficiencies 
in polling behavior or 
underutilized consumer 
instances.

• High values may occur 
when the queue is empty, 
the consumer uses short 
polling, or messages are 
being processed faster than 
they are produced.

• This isn't a precise indicator 
of queue state. It reflects 
service-side behavior and 
may include retries.

NumberOfD 
eduplicat 
edSentMes 
sages

For FIFO 
only. The 
number 
of sent 
messages 
that were 
deduplica 
ted and not 
added to the 
queue.

Count Reported 
if duplicate
MessageDe 
duplicati 
onId  values 
or content 
are detected.

• SQS deduplicates messages 
based on the MessageDe 
duplicationId  or 
content-based hashing (if 
enabled).

• A high value may indicate 
that a producer is repeatedl 
y sending the same 
message within the 5-
minute deduplication 
window.

• Use this metric to troublesh 
oot redundant producer 
logic or confirm that 
deduplication is functioning 
as intended.

Monitoring queues 771

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

Metric Description Units Reporting 
behavior

Key notes

NumberOfM 
essagesDe 
leted ¹

The number 
of messages 
successfully 
deleted from 
the queue.

Count Reported for 
each delete 
request 
with a valid 
receipt 
handle.

• This metric counts all 
successful delete operation 
s—even if the same 
message is deleted more 
than once.

• Common reasons for 
higher-than-expected 
values include:

• Multiple deletes of the 
same message using 
different receipt handles, 
after visibility timeout 
expires and the message 
is received again.

• Duplicate deletes using 
the same receipt handle, 
which still return a 
success status and 
increment the metric.

• Use this metric to track 
message processing 
success, but don't treat it 
as an exact count of unique 
deleted messages.

Monitoring queues 772



Amazon Simple Queue Service Developer Guide

Metric Description Units Reporting 
behavior

Key notes

NumberOfM 
essagesRe 
ceived ¹

The number 
of messages 
returned 
by the
ReceiveMe 
ssage API.

Count Reported 
during 
receive 
operations.

• This includes all messages 
returned to consumers, 
including those that are 
later returned to the queue 
due to visibility timeout 
expiration.

• A single message can be 
received multiple times if 
it isn’t deleted, which can 
cause this metric to exceed 
the number of messages 
sent.

• Use this to track consumer 
activity, but don't treat it as 
a count of unique messages 
processed.

Monitoring queues 773

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html


Amazon Simple Queue Service Developer Guide

Metric Description Units Reporting 
behavior

Key notes

NumberOfM 
essagesSe 
nt ¹

The number 
of messages 
successfully 
added to a 
queue.

Count Reported 
for each 
successful 
manual send.

• Manual calls to SendMessa 
ge  or SendMessa 
geBatch  are counted, 
including those targeting a 
DLQ directly.

• Messages that are 
automatically moved to a 
DLQ after exceeding the
maxReceiveCount  are 
not included in this metric.

• As a result, NumberOfM 
essagesSent  may be 
lower than NumberOfM 
essagesReceived —
especially if redrive policies 
are moving many messages 
to DLQs behind the scenes.

SentMessa 
geSize ¹

The size of 
messages 
successfully 
sent to the 
queue.

Bytes Not emitted 
until at least 
one message 
is sent.

• This metric will not appear 
in the CloudWatch console 
until the queue receives its 
first message.

• Use this metric to track 
the size of each message 
in bytes. This is useful for 
analyzing payload trends or 
estimating throughput cost.

• The maximum message size 
for SQS is 1 MiB.

Monitoring queues 774



Amazon Simple Queue Service Developer Guide

Metric Description Units Reporting 
behavior

Key notes

Approxima 
teNumberO 
fNoisyGro 
ups

The number 
of message 
groups that 
are considere 
d noisy in a 
fair queue. 
A noisy 
message 
group 
represent 
s a noisy 
neighbor 
tenant of a 
multi-tenant 
queue.

Count A non-negat 
ive value is 
reported if 
the queue is 
active.

• Helps identify potential 
noisy neighbor problems in 
multi-tenant environments 
by tracking message groups 
consuming dispropor 
tionate resources.

• Use this metric to set 
alarms that trigger when 
the number of noisy groups 
exceeds your acceptabl 
e threshold, indicating 
potential queue fairness 
issues.

Approxima 
teNumberO 
fMessages 
VisibleIn 
QuietGrou 
ps

The number 
of messages 
visible 
excluding 
messages 
from noisy 
message 
groups.

Count A non-negat 
ive value is 
reported if 
the queue is 
active.

• Provides visibility into 
the queue backlog for 
standard-rate message 
groups, excluding messages 
from noisy neighbors.

• Helps identify the true 
processing backlog for 
typical message groups by 
filtering out the impact of 
noisy neighbors.

Monitoring queues 775



Amazon Simple Queue Service Developer Guide

Metric Description Units Reporting 
behavior

Key notes

Approxima 
teNumberO 
fMessages 
NotVisibl 
eInQuietG 
roups

The number 
of messages 
in-flight 
excluding 
messages 
from noisy 
message 
groups.

Count A non-negat 
ive value is 
reported if 
the queue is 
active.

• Tracks in-flight messages 
(being processed but not 
yet deleted) from well-beha 
ved message groups.

• Use this metric to monitor 
processing throughput of 
normal message groups 
and detect processing 
bottlenecks that aren't 
caused by noisy neighbors.

Monitoring queues 776



Amazon Simple Queue Service Developer Guide

Metric Description Units Reporting 
behavior

Key notes

Approxima 
teNumberO 
fMessages 
DelayedIn 
QuietGrou 
ps

The number 
of messages 
excluding 
messages 
from noisy 
message 
groups that 
are delayed 
and not 
available 
for reading 
immediate 
ly. Delayed 
messages 
occur when 
the queue 
is configure 
d as a delay 
queue or 
when a 
message has 
been sent 
with a delay 
parameter.

Count A non-negat 
ive value is 
reported if 
the queue is 
active.

• Helps monitor the delayed 
message backlog from 
message groups with 
normal or expected 
throughput patterns (as 
opposed to high-volume or 
noisy groups)

• Useful for understan 
ding future processing 
requirements and capacity 
planning for typical 
workloads.

Monitoring queues 777



Amazon Simple Queue Service Developer Guide

Metric Description Units Reporting 
behavior

Key notes

Approxima 
teAgeOfOl 
destMessa 
geInQuiet 
Groups

The age of 
the oldest 
non-deleted 
message in 
the queue 
excluding 
messages 
from noisy 
message 
groups.

Seconds A non-negat 
ive value is 
reported if 
the queue is 
active.

• Used for monitoring SLA 
compliance and detecting 
processing bottlenec 
ks in message groups 
with normal or expected 
throughput patterns (as 
opposed to high-volume or 
noisy message groups that 
might otherwise skew the 
metric).

• Use this metric to set 
alarms for message 
processing timeouts that 
ignore artificially aged 
messages from noisy 
neighbors.

¹ These metrics reflect system-level activity and may include retries, duplicates, or delayed 
messages. Don’t use raw counts to estimate real-time queue state without factoring in message 
lifecycle behavior.

Dead-letter queues (DLQs) and CloudWatch metrics

When working with DLQs, it's important to understand how Amazon SQS metrics behave:

• NumberOfMessagesSent – This metric behaves differently for DLQs:

• Manual Sending – Messages manually sent to a DLQ are captured by this metric.

• Automatic Redrive – Messages automatically moved to a DLQ due to processing 
failures are not captured by this metric. As a result, the NumberOfMessagesSent and
NumberOfMessagesReceived metrics may show discrepancies for DLQs.

• Recommended Metric for DLQs – To monitor the state of a DLQ, use the
ApproximateNumberOfMessagesVisible metric. This metric indicates the number of 
messages currently available for processing in the DLQ.

Monitoring queues 778



Amazon Simple Queue Service Developer Guide

Fair queues and CloudWatch metrics

When you use fair queues, Amazon SQS emits the following additional metrics:

• ApproximateNumberOfNoisyGroups

• ApproximateNumberOfMessagesVisibleInQuietGroups

• ApproximateNumberOfMessagesNotVisibleInQuietGroups

• ApproximateNumberOfMessagesDelayedInQuietGroups

• ApproximateAgeOfOldestMessageInQuietGroups

Note

Each QuietGroup metric is a subset of the equivalent standard queue-level Approximate
metric, but excludes messages from noisy neighbor groups.

Noisy groups

A noisy message group represents a noisy neighbor tenant of a multi-tenant queue.

Quiet groups

Message groups excluding noisy groups.

Observing SQS fair queues behavior

To monitor the effect of Amazon SQS fair queues, you can compare
Approximate..InQuietGroups metrics with standard queue-level metrics. During traffic surges 
for a specific tenant, the general queue-level metrics may reveal increasing backlogs or older 
message ages. However, looking at the quiet groups in isolation, you can identify that most non-
noisy message groups or tenants are not impacted, and provide an estimate of the total number of 
impacted message groups.

While these new metrics provide a good overview of Amazon SQS fair queues behavior, it can be 
beneficial to understand which specific tenant is causing the load. Amazon CloudWatch contributor 
insights allows you to see metrics about the top-N contributors, the total number of unique 
contributors, and their usage. This is especially helpful in scenarios where you are dealing with 
thousands of tenants that would otherwise lead to high-cardinality data (and cost) when emitting 
traditional metrics.

Monitoring queues 779

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContributorInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContributorInsights.html


Amazon Simple Queue Service Developer Guide

For an example of monitoring configuration for fair queues, see the sample on GitHub.

Dimensions for Amazon SQS metrics

Amazon SQS metrics in CloudWatch use a single dimension: QueueName. All metric data is grouped 
and filtered by the name of the queue.

Monitoring tips

Monitor SQS effectively using key metrics and CloudWatch alarms to detect queue backlogs, 
optimize performance, and stay within service limits.

• Set CloudWatch alarms based on ApproximateNumberOfMessagesVisible to catch backlog 
growth.

• Monitor NumberOfEmptyReceives to tune poll frequency and reduce API cost.

• Use ApproximateNumberOfGroupsWithInflightMessages in FIFO queues to diagnose 
throughput limits.

• Review SQS quotas to understand metric thresholds and service limits.

Compliance validation for Amazon SQS

To learn whether an Amazon Web Services service is within the scope of specific compliance 
programs, see Amazon Web Services services in Scope by Compliance Program and choose the 
compliance program that you are interested in. For general information, see Amazon Web Services 
Compliance Programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading Reports in Amazon Artifact.

Your compliance responsibility when using Amazon Web Services services is determined by 
the sensitivity of your data, your company's compliance objectives, and applicable laws and 
regulations. For more information about your compliance responsibility when using Amazon Web 
Services services, see Amazon Security Documentation.

Resilience in Amazon SQS

The Amazon global infrastructure is built around Amazon Regions and Availability Zones. Amazon 
Regions provide multiple physically separated and isolated Availability Zones, which are connected 

Compliance validation 780

https://github.com/aws-samples/sample-amazon-sqs-fair-queues
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.amazonaws.cn/security/


Amazon Simple Queue Service Developer Guide

with low-latency, high throughput, and highly redundant networking. With Availability Zones, you 
can design and operate applications and databases that automatically fail over between zones 
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than 
traditional single or multiple data center infrastructures. For more information about Amazon 
Regions and Availability Zones, see Amazon Global Infrastructure.

In addition to the Amazon global infrastructure, Amazon SQS offers distributed queues.

Distributed queues

There are three main parts in a distributed messaging system: the components of your distributed 
system, your queue (distributed on Amazon SQS servers), and the messages in the queue.

In the following scenario, your system has several producers (components that send messages 
to the queue) and consumers (components that receive messages from the queue). The queue 
(which holds messages A through E) redundantly stores the messages across multiple Amazon SQS 
servers.

Infrastructure security in Amazon SQS

As a managed service, Amazon SQS is protected by the Amazon global network security procedures 
described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use Amazon published API actions to access Amazon SQS through the network. Clients must 
support Transport Layer Security (TLS) 1.2 or later. Clients must also support cipher suites with 

Distributed queues 781

https://www.amazonaws.cn/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf


Amazon Simple Queue Service Developer Guide

Perfect Forward Secrecy (PFS), such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral 
Diffie-Hellman (ECDHE).

You must sign requests using an access key ID and a secret access key associated with an IAM 
principal. Alternatively, you can use the Amazon Security Token Service (Amazon STS) to generate 
temporary security credentials for signing requests.

You can call these API actions from any network location, but Amazon SQS supports resource-
based access policies, which can include restrictions based on the source IP address. You can also 
use Amazon SQS policies to control access from specific Amazon VPC endpoints or specific VPCs. 
This effectively isolates network access to a given Amazon SQS queue from only the specific VPC 
within the Amazon network. For more information, see Example 5: Deny access if it isn't from a VPC 
endpoint.

Amazon SQS security best practices

Amazon provides many security features for Amazon SQS, which you should review in the context 
of your own security policy. The following are preventative security best practices for Amazon SQS.

Note

The specific implementation guidance provided is for common use cases and 
implementations. We suggest that you view these best practices in the context of your 
specific use case, architecture, and threat model.

Make sure that queues aren't publicly accessible

Unless you explicitly require anyone on the internet to be able to read or write to your Amazon 
SQS queue, you should make sure that your queue isn't publicly accessible (accessible by everyone 
in the world or by any authenticated Amazon user).

• Avoid creating policies with Principal set to "".

• Avoid using a wildcard (*). Instead, name a specific user or users.

Best practices 782

https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html


Amazon Simple Queue Service Developer Guide

Implement least-privilege access

When you grant permissions, you decide who receives them, which queues the permissions are for, 
and specific API actions that you want to allow for these queues. Implementing least privilege is 
important to reducing security risks and reducing the effect of errors or malicious intent.

Follow the standard security advice of granting least privilege. That is, grant only the permissions 
required to perform a specific task. You can implement this using a combination of security 
policies.

Amazon SQS uses the producer-consumer model, requiring three types of user account access:

• Administrators – Access to creating, modifying, and deleting queues. Administrators also control 
queue policies.

• Producers – Access to sending messages to queues.

• Consumers – Access to receiving and deleting messages from queues.

For more information, see the following sections:

• Identity and access management in Amazon SQS

• Amazon SQS API permissions: Actions and resource reference

• Using custom policies with the Amazon SQS Access Policy Language

Use IAM roles for applications and Amazon services which require 
Amazon SQS access

For applications or Amazon services such as Amazon EC2 to access Amazon SQS queues, they 
must use valid Amazon credentials in their Amazon API requests. Because these credentials aren't 
rotated automatically, you shouldn't store Amazon credentials directly in the application or EC2 
instance.

You should use an IAM role to manage temporary credentials for applications or services that need 
to access Amazon SQS. When you use a role, you don't have to distribute long-term credentials 
(such as a username, password, and access keys) to an EC2 instance or Amazon service such as 
Amazon Lambda. Instead, the role supplies temporary permissions that applications can use when 
they make calls to other Amazon resources.

Implement least-privilege access 783



Amazon Simple Queue Service Developer Guide

For more information, see IAM Roles and Common Scenarios for Roles: Users, Applications, and 
Services in the IAM User Guide.

Implement server-side encryption

To mitigate data leakage issues, use encryption at rest to encrypt your messages using a key stored 
in a different location from the location that stores your messages. Server-side encryption (SSE) 
provides data encryption at rest. Amazon SQS encrypts your data at the message level when 
it stores it, and decrypts the messages for you when you access them. SSE uses keys managed 
in Amazon Key Management Service. As long as you authenticate your request and have access 
permissions, there is no difference between accessing encrypted and unencrypted queues.

For more information, see Encryption at rest in Amazon SQS and Amazon SQS Key management.

Enforce encryption of data in transit

Without HTTPS (TLS), a network-based attacker can eavesdrop on network traffic or manipulate 
it, using an attack such as man-in-the-middle. Allow only encrypted connections over HTTPS (TLS) 
using the aws:SecureTransport condition in the queue policy to force requests to use SSL.

Consider using VPC endpoints to access Amazon SQS

If you have queues that you must be able to interact with but which must absolutely not be 
exposed to the internet, use VPC endpoints to queue access to only the hosts within a particular 
VPC. You can use queue policies to control access to queues from specific Amazon VPC endpoints 
or from specific VPCs.

Amazon SQS VPC endpoints provide two ways to control access to your messages:

• You can control the requests, users, or groups that are allowed through a specific VPC endpoint.

• You can control which VPCs or VPC endpoints have access to your queue using a queue policy.

For more information, see Amazon Virtual Private Cloud endpoints for Amazon SQS and Creating 
an Amazon VPC endpoint policy for Amazon SQS.

Implement server-side encryption 784

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Boolean


Amazon Simple Queue Service Developer Guide

Related Amazon SQS resources

The following table lists related resources that you might find useful as you work with this service.

Resource Description

Amazon Simple Queue Service API 
Reference

Descriptions of actions, parameters, and data types and 
a list of errors  that the service returns.

Amazon SQS in the   Amazon CLI 
Command Reference

Descriptions of the Amazon CLI commands that you can 
use to work with  queues.

Regions and  Endpoints Information about Amazon SQS regions and endpoints

Product Page The primary web page for information about Amazon 
SQS.

Discussion Forum A community-based forum for developers to discuss 
technical questions related to Amazon SQS.

Amazon Premium Support  Info 
rmation

The primary web page for information about Amazon 
Premium Support, a one-on-one, fast-response support 
channel to help you build and run  applications on 
Amazon infrastructure services.

785

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/
https://docs.amazonaws.cn/cli/latest/reference/sqs/index.html
https://docs.amazonaws.cn/cli/latest/reference/sqs/index.html
https://docs.amazonaws.cn/general/latest/gr/rande.html#sqs_region
http://www.amazonaws.cn/sqs
https://forums.aws.csdn.net/forum.jspa?forumID=12
http://www.amazonaws.cn/support-plans/
http://www.amazonaws.cn/support-plans/


Amazon Simple Queue Service Developer Guide

Documentation history

The following table describes the important changes to the Amazon Simple Queue Service 
Developer Guide since Jan 2019. For notifications about updates to this documentation, subscribe 
to the RSS feed.

Service features are sometimes rolled out incrementally to the Amazon Regions where a service is 
available. We update this documentation for the first release only. We don't provide information 
about Region availability or announce subsequent Region rollouts. For information about Region 
availability of service features and to subscribe to notifications about updates, see What's New with 
Amazon?.

Change Description Date

Fair Queues support Fair Queues support added 
for standard queues.

July 21, 2025

Added support for dual-stack 
(IPv4 and IPv6) endpoints

Amazon SQS now supports 
dual-stack (IPv4 and IPv6) 
endpoints, allowing queues 
to be accessed via both IP 
protocols.

April 17, 2025

CloudTrail integration for all 
Amazon SQS APIs

CloudTrail integration added 
for all Amazon SQS APIs.

January 10, 2025

SQSUnlockQueuePolicy Amazon SQS added a 
new Amazon-managed 
policy called SQSUnlock 
QueuePolicy  to unlock 
a queue and remove a 
misconfigured queue policy 
that denies all principals from 
accessing an Amazon SQS 
queue.

November 15, 2024

Amazonkms:Decrypt Amazon SQS no longer 
requires the kms:Decry 

July 24, 2024

786

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/recent-updates.rss
https://aws.amazon.com/new
https://aws.amazon.com/new
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fair-queues.html
https://docs.amazonaws.cn/vpc/latest/userguide/aws-ipv6-support.html
https://docs.amazonaws.cn/vpc/latest/userguide/aws-ipv6-support.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/security-iam-awsmanpol.html#security-iam-awsmanpol-SQSUnlockQueuePolicy
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-key-management.html#compatibility-with-aws-services


Amazon Simple Queue Service Developer Guide

pt  permission for the
SendMessage  API. 
Customers now only need the
kms:GenerateDataKey
permission on the KMS key 
used to encrypt the queue, 
but still need kms:Decrypt
permission to call ReceiveMe 
ssage .

FIFO metrics update Support for NumberOfD 
eduplicatedSentMes 
sages  and Approxima 
teNumberOfGroupsWi 
thInflightMessages
added to Amazon SQS FIFO 
metrics.

July 3, 2024

ListQueueTags  action 
supported in the AmazonSQS 
ReadOnlyAccess managed 
policy

The AmazonSQSReadOnlyA 
ccess managed policy 
supports ListQueueTags
to retrieve all tags associated 
with a specified Amazon SQS 
queue.

May 2, 2024

AmazonJSON protocol Make API requests using 
Amazon JSON protocol.

July 27, 2023

New section describing 
Amazon managed policies for 
Amazon SQS and updates to 
these policies

Amazon SQS added a new 
action that allows you to list 
the most recent message 
movement tasks (up to 10) 
under a specific source queue. 
This action is associated with 
the ListMessageMoveTas 
ks  API operation.

June 7, 2023

787

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-making-api-requests-json.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-access-policy-aws-managed-policies.html


Amazon Simple Queue Service Developer Guide

Dead-letter queue redrive 
using APIs

Configure dead-letter queue 
redrives using Amazon SQS 
APIs.

June 7, 2023

ABAC for Amazon SQS Attribute-based access control 
(ABAC) using queue tags for 
flexible and scalable access 
permissions.

November 10, 2022

FIFO high throughput limit 
increases

Increased default quotas 
for FIFO high throughput 
mode in commercial Regions, 
plus FIFO high throughput 
document optimization.

October 20, 2022

Default server-side encryptio 
n (SSE) is available

Server-side encryption (SSE) 
using SQS-owned encryption 
(SSE-SQS) by default.

September 26, 2022

Amazon SQS confused 
deputy protection support is 
available

Confused deputy protectio 
n allows you to specify new 
headers in their requests, 
which are checked against 
conditions in the KMS policy 
when using Amazon SQS 
managed SSE.

December 29, 2021

Managed SSE is available Amazon SQS managed 
SSE (SSE-SQS) is managed 
server-side encryption that 
uses Amazon SQS-owned 
 encryption keys to protect 
sensitive data sent over 
message queues.

November 23, 2021

Dead-letter queue redrive is 
available

Amazon SQS supports dead-
letter queue redrive for 
standard queues.

November 10, 2021

788

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_StartMessageMoveTask.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-abac.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html#step-create-standard-queue
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html#step-create-standard-queue
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html#step-create-standard-queue
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html#step-create-standard-queue
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-key-management.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-key-management.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-key-management.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-sqs-sse-queue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html#sqs-dead-letter-queues-redrive
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html#sqs-dead-letter-queues-redrive
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-dead-letter-queue-redrive.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-dead-letter-queue-redrive.html


Amazon Simple Queue Service Developer Guide

High throughput for 
messages in FIFO queues is 
available

High throughput for Amazon 
SQS FIFO queues provides a 
higher number of transacti 
ons per second (TPS) for 
messages in FIFO queues. For 
information on throughput 
quotas, see Quotas related to 
messages.

May 27, 2021

High throughput for 
messages in FIFO queues is 
available in preview release

High throughput for Amazon 
SQS FIFO queues is in preview 
release and is subject to 
change. This feature provides 
a higher number of transacti 
ons per second (TPS) for 
messages in FIFO queues. For 
information on throughput 
quotas, see Quotas related to 
messages.

December 17, 2020

New Amazon SQS console 
design

To simplify development and 
production workflows, the 
Amazon SQS console has a
new user experience.

July 8, 2020

Amazon SQS supports 
pagination for listQueues and 
listDeadLetterSourceQueues

You can specify the maximum 
number of results to return 
from a listQueues or listDeadL 
etterSourceQueues request.

June 22, 2020

Amazon SQS supports 1-
minute Amazon CloudWatc 
h metrics in all Amazon 
Regions, except the Amazon 
GovCloud (US) Regions

The one-minute CloudWatc 
h metric for Amazon SQS 
is available in all Regions, 
except the Amazon GovCloud 
(US) Regions.

January 9, 2020

789

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/high-throughput-fifo.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configuring.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configuring.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configuring.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ListDeadLetterSourceQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html


Amazon Simple Queue Service Developer Guide

Amazon SQS supports 1-
minute CloudWatch metrics

The one-minute CloudWatc 
h metric for Amazon SQS is 
currently available only in 
the following Regions: US 
East (Ohio), Europe (Ireland), 
Europe (Stockholm), and Asia 
Pacific (Tokyo).

November 25, 2019

Amazon Lambda triggers for 
Amazon SQS FIFO queues are 
available

You can configure messages 
arriving in a FIFO queue as a 
Lambda function trigger.

November 25, 2019

Server-side encryption (SSE) 
for Amazon SQS is available 
in the China Regions

SSE for Amazon SQS is 
available in the China 
Regions.

November 13, 2019

FIFO queues are available 
in the Middle East (Bahrain) 
Region

FIFO queues are available 
in the Middle East (Bahrain) 
Region.

October 10, 2019

Amazon Virtual Private Cloud 
(Amazon VPC) endpoints for 
Amazon SQS are available in 
the Amazon GovCloud (US-
East) and Amazon GovCloud 
(US-West) Regions

You can send messages to 
your Amazon SQS queues 
from Amazon VPC in the 
Amazon GovCloud (US-East) 
 and Amazon GovCloud (US-
West) Regions.

September 5, 2019

790

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-available-cloudwatch-metrics.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-lambda-function-trigger.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-lambda-function-trigger.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-lambda-function-trigger.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoints


Amazon Simple Queue Service Developer Guide

Amazon SQS allows troublesh 
ooting of queues using 
Amazon X-Ray using message 
system attributes

You can troubleshoot 
messages passing through 
Amazon SQS queues 
using X-Ray. This release 
adds the MessageSy 
stemAttribute  request 
parameter (which lets you 
send X-Ray trace headers 
through Amazon SQS) to 
the SendMessage  and
SendMessageBatch  API 
operations, the AWSTraceH 
eader  attribute to 
the ReceiveMessage
API operation, and the
MessageSystemAttri 
buteValue  data type.

August 28, 2019

You can tag Amazon SQS 
queues upon creation

You can use a single Amazon 
SQS API call, Amazon 
SDK function, or Amazon 
Command Line Interface 
(Amazon CLI) command 
to simultaneously create a 
queue and specify its tags. 
In addition, Amazon SQS 
supports the aws:TagKe 
ys  and aws:RequestTag
Amazon Identity and Access 
Management (IAM) keys.

August 22, 2019

791

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-troubleshooting-using-x-ray.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-troubleshooting-using-x-ray.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-troubleshooting-using-x-ray.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-troubleshooting-using-x-ray.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_CreateQueue.html


Amazon Simple Queue Service Developer Guide

The temporary queue client 
for Amazon SQS is now 
available

Temporary queues help you 
save development time and 
deployment costs when using 
common message patterns 
such as request-response. 
You can use the Temporary 
 Queue Client to create 
high-throughput, cost-effe 
ctive, application-managed 
temporary queues.

July 25, 2019

SSE for Amazon SQS is 
available in the Amazon 
GovCloud (US-East) Region

Server-side encryption (SSE) 
for Amazon SQS is available 
in the Amazon GovCloud (US-
East) Region.

June 20, 2019

FIFO queues are available in 
the Asia Pacific (Hong Kong), 
China (Beijing), Amazon 
GovCloud (US-East), and 
Amazon GovCloud (US-West) 
Regions

FIFO queues are available in 
the Asia Pacific (Hong Kong), 
China (Beijing), Amazon 
GovCloud (US-East), and 
Amazon GovCloud (US-West) 
Regions.

May 15, 2019

Amazon VPC endpoint 
policies are available for 
Amazon SQS

You can create Amazon VPC 
endpoint policies for Amazon 
SQS.

April 4, 2019

FIFO queues are available in 
the Europe (Stockholm) and 
China (Ningxia) Regions

FIFO queues are available in 
the Europe (Stockholm) and 
China (Ningxia) Regions.

March 14, 2019

792

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-temporary-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-temporary-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-temporary-queues.html
https://github.com/awslabs/amazon-sqs-java-temporary-queues-client
https://github.com/awslabs/amazon-sqs-java-temporary-queues-client
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoint-policy
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoint-policy
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-internetwork-traffic-privacy.html#sqs-vpc-endpoint-policy
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html


Amazon Simple Queue Service Developer Guide

FIFO queues are available in 
all Regions where Amazon 
SQS is available

FIFO queues are available in 
the US East (Ohio), US East 
(N. Virginia), US West (N. 
California), US West (Oregon), 
Asia Pacific (Mumbai), Asia 
Pacific (Seoul), Asia Pacific 
(Singapore), Asia Pacific 
(Sydney), Asia Pacific (Tokyo), 
Canada (Central), Europe 
(Frankfurt), Europe (Ireland) 
, Europe (London), Europe 
(Paris), and South America 
(São Paulo) Regions.

February 7, 2019

793

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-fifo-queues.html

	Amazon Simple Queue Service
	Table of Contents
	What is Amazon Simple Queue Service?
	Benefits of using Amazon SQS
	Basic Amazon SQS architecture
	Distributed queues
	Message lifecycle

	Differences between Amazon SQS, Amazon MQ, and Amazon SNS

	Getting started with Amazon SQS
	Setting up Amazon SQS
	Step 1: Create an Amazon Web Services account and IAM user
	Sign up for an Amazon Web Services account
	Secure IAM users

	Step 2: Grant programmatic access
	Step 3: Get ready to use the example code
	Next steps

	Understanding the Amazon SQS console
	Amazon SQS queue types
	Implementing request-response systems in Amazon SQS

	Creating an Amazon SQS standard queue and sending a message
	Creating a standard queue using the Amazon SQS console
	Sending a message using a standard queue

	Creating an Amazon SQS FIFO queue and sending a message
	Creating a FIFO queue using the Amazon SQS console
	Sending a message using a FIFO queue

	Common tasks for getting started with Amazon SQS

	Managing an Amazon SQS queue
	Editing an Amazon SQS queue using the console
	Receiving and deleting a message in Amazon SQS
	Confirming that an Amazon SQS queue is empty
	Deleting an Amazon SQS queue
	Purging messages from an queue using the Amazon SQS console

	Amazon SQS standard queues
	Amazon SQS at-least-once delivery
	Amazon SQS queue and message identifiers
	Identifiers for Amazon SQS standard queues
	Queue name and URL
	Message ID
	Receipt handle



	Amazon SQS FIFO queues
	Amazon SQS FIFO queue key terms
	FIFO queue delivery logic in Amazon SQS
	Sending messages
	Receiving messages
	Retrying multiple times
	Additional notes on FIFO behavior
	Examples for better understanding

	Exactly-once processing in Amazon SQS
	Moving from a standard queue to a FIFO queue in Amazon SQS
	Amazon SQS FIFO queue and Lambda concurrency behavior
	FIFO queue message grouping
	Lambda concurrency with FIFO queues
	Use case example

	High throughput for FIFO queues in Amazon SQS
	Use cases for high throughput for Amazon SQS FIFO queues
	Partitions and data distribution for high throughput for SQS FIFO queues
	Distributing data by message group IDs
	Optimizing partition utilization

	Enabling high throughput for FIFO queues in Amazon SQS

	FIFO queue and message identifiers in Amazon SQS
	Identifiers for FIFO queues in Amazon SQS
	Queue name and URL
	Message ID
	Receipt handle

	Additional identifiers for Amazon SQS FIFO queues
	Message deduplication ID
	Message group ID
	Sequence number



	Amazon SQS quotas
	Amazon SQS FIFO queue quotas
	Amazon SQS quotas

	Amazon SQS standard queue quotas
	Amazon SQS message quotas
	Amazon SQS policy quotas

	Amazon SQS features and capabilities
	Using dead-letter queues in Amazon SQS
	Using policies for dead-letter queues
	Understanding message retention periods for dead-letter queues
	Configure a dead-letter queue using the Amazon SQS console
	Learn how to configure a dead-letter queue redrive in Amazon SQS
	Configuring a dead-letter queue redrive for an existing standard queue using the Amazon SQS API
	Configuring a dead-letter queue redrive for an existing standard queue using the Amazon SQS console
	Configuring queue permissions for dead-letter queue redrive
	Using dead-letter queue redrive with VPC endpoint access control

	CloudTrail update and permission requirements for Amazon SQS dead-letter queue redrive
	CloudTrail event renaming
	Updated permissions
	Identifying impacted policies

	Creating alarms for dead-letter queues using Amazon CloudWatch

	Message metadata for Amazon SQS
	Amazon SQS message attributes
	Message attribute components
	Message attribute data types
	Calculating the MD5 message digest for message attributes
	Overview
	To encode a single Amazon SQS message attribute


	Amazon SQS message system attributes

	Resources required to process Amazon SQS messages
	Amazon SQS list queue pagination
	Amazon SQS cost allocation tags
	Amazon SQS short and long polling
	Consuming messages using short polling
	Consuming messages using long polling
	Differences between long and short polling

	Amazon SQS visibility timeout
	Visibility timeout use cases
	Setting and adjusting the visibility timeout
	In flight messages and quotas
	Understanding visibility timeout in standard and FIFO queues
	Handling failures
	Changing and terminating visibility timeout
	Best practices

	Amazon SQS fair queues
	Difference with FIFO queues
	Using fair queues
	Fair queues CloudWatch metrics

	Amazon SQS delay queues
	Amazon SQS temporary queues
	Virtual queues
	Request-response messaging pattern (virtual queues)
	Example scenario: Processing a login request
	On the client side
	On the server side

	Cleaning up queues

	Amazon SQS message timers
	Accessing Amazon EventBridge Pipes through the Amazon SQS console
	Managing large Amazon SQS messages with Extended Client Library and Amazon Simple Storage Service
	Managing large Amazon SQS messages using Java and Amazon S3
	Prerequisites
	Amazon SDK for Java 2.x Example: Using Amazon S3 to manage large Amazon SQS messages

	Managing large Amazon SQS messages using Python and Amazon S3
	Prerequisites
	Configuring message storage
	Managing large Amazon SQS messages with Extended Client Library for Python



	Configuring Amazon SQS queues using the Amazon SQS console
	Attribute-based access control for Amazon SQS
	What is ABAC?
	Why should I use ABAC in Amazon SQS?
	Tagging for access control in Amazon SQS
	Creating IAM users and Amazon SQS queues
	Using the Amazon Web Services Management Console
	Using Amazon CloudFormation

	Testing attribute-based access control in Amazon SQS
	Create a queue with the tag key set to environment and the tag value set to prod
	Create a queue with the tag key set to environment and the tag value set to beta
	Sending a message to a queue


	Configuring queue parameters using the Amazon SQS console
	Configuring an access policy in Amazon SQS
	Configuring server-side encryption for a queue using SQS-managed encryption keys
	Configuring server-side encryption for a queue using the Amazon SQS console
	Configuring cost allocation tags for a queue using the Amazon SQS console
	Subscribing a queue to an Amazon SNS topic using the Amazon SQS console
	Cross-account subscriptions
	Cross-region subscriptions

	Configuring an Amazon SQS queue to trigger an Amazon Lambda function
	Prerequisites

	Automating notifications from Amazon services to Amazon SQS using Amazon EventBridge
	Sending a message with attributes using Amazon SQS

	Amazon SQS best practices
	Amazon SQS error handling and problematic messages
	Handling request errors in Amazon SQS
	Capturing problematic messages in Amazon SQS
	Setting-up dead-letter queue retention in Amazon SQS

	Amazon SQS message deduplication and grouping
	Avoiding inconsistent message processing in Amazon SQS
	Using the message deduplication ID in Amazon SQS
	When to provide a message deduplication ID in Amazon SQS
	Enabling deduplication for a single-producer/consumer system in Amazon SQS
	Outage recovery scenarios in Amazon SQS
	Configuring visibility timeouts in Amazon SQS

	Using the message group ID with Amazon SQS FIFO Queues
	Interleaving multiple ordered message groups in Amazon SQS
	Preventing duplicate processing in a multiple-producer/consumer system in Amazon SQS
	Avoid large message backlogs with the same message group ID in Amazon SQS
	Avoid reusing the same message group ID with virtual queues in Amazon SQS

	Using the Amazon SQS receive request attempt ID

	Amazon SQS message processing and timing
	Processing messages in a timely manner in Amazon SQS
	Setting-up long polling in Amazon SQS
	Using the appropriate polling mode in Amazon SQS


	Amazon SQS Java SDK examples
	Using server-side encryption with Amazon SQS queues
	Adding SSE to an existing queue
	Disabling SSE for a queue
	Creating a queue with SSE
	Retrieving SSE attributes

	Configuring tags for an Amazon SQS queue
	Listing tags
	Adding or updating tags
	Removing tags

	Sending message attributes to an Amazon SQS queue
	Defining attributes
	Sending a message with attributes


	Using APIs with Amazon SQS
	Making query API requests using Amazon JSON protocol in Amazon SQS
	Constructing an endpoint
	Making a POST request
	Interpreting Amazon SQS JSON API responses
	Successful JSON response structure
	JSON error response structure

	Amazon SQS Amazon JSON protocol FAQs
	What is Amazon JSON protocol, and how does it differ from existing Amazon SQS API requests and responses?
	How do I get started with Amazon JSON protocols for Amazon SQS?
	What are the risks of enabling JSON protocol for my Amazon SQS workloads?
	What if I am already on the latest Amazon SDK version, but my open sourced solution does not support JSON?
	What languages are supported for Amazon JSON protocol used in Amazon SQS APIs?
	What regions are supported for Amazon JSON protocol used in Amazon SQS APIs
	What latency improvements can I expect when upgrading to the specified Amazon SDK versions for Amazon SQS using the Amazon JSON protocol?
	Will Amazon query protocol be deprecated?
	Where can I find more information about Amazon JSON protocol?


	Making query API requests using Amazon query protocol in Amazon SQS
	Constructing an endpoint
	Making a GET request
	Making a POST request
	Interpreting Amazon SQS XML API responses
	Successful XML response structure
	XML error response structure


	Authenticating requests for Amazon SQS
	Basic authentication process with HMAC-SHA
	Part 1: The request from the user
	Part 2: The response from Amazon

	Amazon SQS batch actions
	Batching message actions
	Enabling client-side buffering and request batching with Amazon SQS
	Using AmazonSQSBufferedAsyncClient
	Amazon SDK for Java 1.x
	Configuring AmazonSQSBufferedAsyncClient
	Amazon SDK for Java 2.x
	Configuring SqsAsyncBatchManager


	Increasing throughput using horizontal scaling and action batching with Amazon SQS
	Horizontal scaling
	Action batching
	Working Java example for single-operation and batch requests
	Prerequisites
	SimpleProducerConsumer.java
	Monitoring volume metrics from the example run



	Using Amazon SQS with an Amazon SDK

	Using JMS with Amazon SQS
	Prerequisites for working with JMS and Amazon SQS
	Using the Amazon SQS Java Messaging Library
	Creating a JMS connection
	Creating an Amazon SQS queue
	To create a standard queue
	To create a FIFO queue

	Sending messages synchronously
	Receiving messages synchronously
	Receiving messages asynchronously
	Using client acknowledge mode
	Using unordered acknowledge mode

	Using the Java Message Service with other Amazon SQS clients
	Working Java examples for using JMS with Amazon SQS standard queues
	ExampleConfiguration.java
	TextMessageSender.java
	SyncMessageReceiver.java
	AsyncMessageReceiver.java
	SyncMessageReceiverClientAcknowledge.java
	SyncMessageReceiverUnorderedAcknowledge.java
	SpringExampleConfiguration.xml
	SpringExample.java
	ExampleCommon.java

	Amazon SQS supported JMS 1.1 implementations
	Supported common interfaces
	Supported message types
	Supported message acknowledgment modes
	JMS-defined headers and reserved properties
	For sending messages
	For receiving messages



	Amazon SQS tutorials
	Creating an Amazon SQS queue using Amazon CloudFormation
	Tutorial: Sending a message to an Amazon SQS queue from Amazon Virtual Private Cloud
	Step 1: Create an Amazon EC2 key pair
	Step 2: Create Amazon resources
	Step 3: Confirm that your EC2 instance isn't publicly accessible
	Step 4: Create an Amazon VPC endpoint for Amazon SQS
	Step 5: Send a message to your Amazon SQS queue


	Code examples for Amazon SQS using Amazon SDKs
	Basic examples for Amazon SQS using Amazon SDKs
	Hello Amazon SQS
	Actions for Amazon SQS using Amazon SDKs
	Use AddPermission with a CLI
	Use ChangeMessageVisibility with an Amazon SDK or CLI
	Use ChangeMessageVisibilityBatch with a CLI
	Use CreateQueue with an Amazon SDK or CLI
	Use DeleteMessage with an Amazon SDK or CLI
	Use DeleteMessageBatch with an Amazon SDK or CLI
	Use DeleteQueue with an Amazon SDK or CLI
	Use GetQueueAttributes with an Amazon SDK or CLI
	Use GetQueueUrl with an Amazon SDK or CLI
	Use ListDeadLetterSourceQueues with a CLI
	Use ListQueues with an Amazon SDK or CLI
	Use PurgeQueue with a CLI
	Use ReceiveMessage with an Amazon SDK or CLI
	Use RemovePermission with a CLI
	Use SendMessage with an Amazon SDK or CLI
	Use SendMessageBatch with an Amazon SDK or CLI
	Use SetQueueAttributes with an Amazon SDK or CLI


	Scenarios for Amazon SQS using Amazon SDKs
	Create a web application that sends and retrieves messages by using Amazon SQS
	Create a messenger application with Step Functions
	Create an Amazon Textract explorer application
	Create and publish to a FIFO Amazon SNS topic using an Amazon SDK
	Detect people and objects in a video with Amazon Rekognition using an Amazon SDK
	Manage large Amazon SQS messages using Amazon S3 with an Amazon SDK
	Receive and process Amazon S3 event notifications by using an Amazon SDK
	Publish Amazon SNS messages to Amazon SQS queues using an Amazon SDK
	Send and receive batches of messages with Amazon SQS using an Amazon SDK
	Use the Amazon Message Processing Framework for .NET to publish and receive Amazon SQS messages
	Use the Amazon SQS Java Messaging Library to work with the Java Message Service (JMS) interface for Amazon SQS
	Work with queue tags and Amazon SQS using an Amazon SDK

	Serverless examples for Amazon SQS
	Invoke a Lambda function from an Amazon SQS trigger
	Reporting batch item failures for Lambda functions with an Amazon SQS trigger


	Troubleshooting issues in Amazon SQS
	Troubleshoot an access denied error in Amazon SQS
	Amazon SQS queue policy and IAM policy
	Amazon Key Management Service permissions
	VPC endpoint policy
	Organization service control policy

	Troubleshoot Amazon SQS API errors
	QueueDoesNotExist error
	InvalidAttributeValue error
	ReceiptHandle error

	Troubleshoot Amazon SQS dead-letter queue and DLQ redrive issues
	DLQ issues
	Viewing messages using the console might cause messages to be moved to a dead-letter queue
	The NumberOfMessagesSent and NumberOfMessagesReceived for a dead-letter queue don't match
	Creating and configuring a dead-letter queue redrive
	Standard and FIFO queue message failure handling

	DLQ-redrive issues
	AccessDenied permission issue
	NonExistentQueue error
	CouldNotDetermineMessageSource error


	Troubleshoot FIFO throttling issues in Amazon SQS
	Troubleshoot messages not returned for an Amazon SQS ReceiveMessage API call
	Empty queue
	In flight limit reached
	Message delay
	Message is in flight
	Polling method

	Troubleshoot Amazon SQS network errors
	ETIMEOUT error
	UnknownHostException error

	Troubleshooting Amazon Simple Queue Service queues using Amazon X-Ray

	Security in Amazon SQS
	Data protection in Amazon SQS
	Data encryption in Amazon SQS
	Encryption at rest in Amazon SQS
	Encryption scope
	Key terms

	Amazon SQS Key management
	Configuring Amazon KMS permissions
	Configure KMS permissions for Amazon services
	Configure Amazon KMS permissions for producers
	Configure Amazon KMS permissions for consumers
	Configure Amazon KMS permissions with confused deputy protection

	Understanding the data key reuse period
	Estimating Amazon KMS costs
	Example 1: Calculating the number of Amazon KMS API calls for 2 principals and 1 queue
	Example 2: Calculating the number of Amazon KMS API calls for multiple producers and consumers and 2 queues

	Amazon KMS errors


	Internetwork traffic privacy in Amazon SQS
	Amazon Virtual Private Cloud endpoints for Amazon SQS
	Creating an Amazon VPC endpoint policy for Amazon SQS

	Connect to Amazon SQS using Dual-stack (IPv4 and IPv6) endpoints

	Identity and access management in Amazon SQS
	Audience
	Authenticating with identities
	Amazon Web Services account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Other policy types
	Multiple policy types

	Overview of managing access in Amazon SQS
	Amazon Simple Queue Service resource and operations
	Understanding resource ownership
	Managing access to resources
	Identity-based policies

	Specifying policy elements: Actions, effects, resources, and principals

	How Amazon Simple Queue Service works with IAM
	Access control
	Identity-based policies for Amazon SQS
	Identity-based policy examples for Amazon SQS

	Resource-based policies within Amazon SQS
	Policy actions for Amazon SQS
	Policy resources for Amazon SQS
	Policy condition keys for Amazon SQS
	ACLs in Amazon SQS
	ABAC with Amazon SQS
	Using temporary credentials with Amazon SQS
	Forward access sessions for Amazon SQS
	Service roles for Amazon SQS
	Service-linked roles for Amazon SQS

	Amazon SQS updates to Amazon managed policies
	Amazon managed policy: AmazonSQSFullAccess
	Amazon managed policy: AmazonSQSReadOnlyAccess
	Amazon managed policy: SQSUnlockQueuePolicy
	Amazon SQS updates to Amazon managed policies

	Troubleshooting Amazon Simple Queue Service identity and access
	I am not authorized to perform an action in Amazon SQS
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my Amazon Web Services account to access my Amazon SQS resources
	I want to unlock my queue

	Using policies with Amazon SQS
	Using Amazon SQS and IAM policies
	Permissions required to use the Amazon SQS console
	Identity-based policy examples for Amazon SQS
	Policy best practices
	Using the Amazon SQS console
	Allow users to view their own permissions
	Allow a user to create queues
	Allow developers to write messages to a shared queue
	Allow managers to get the general size of queues
	Allow a partner to send messages to a specific queue

	Basic examples of Amazon SQS policies
	Example 1: Grant one permission to one Amazon Web Services account
	Example 2: Grant two permissions to one Amazon Web Services account
	Example 3: Grant all permissions to two Amazon Web Services accounts
	Example 4: Grant cross-account permissions to a role and a username
	Example 5: Grant a permission to all users
	Example 6: Grant a time-limited permission to all users
	Example 7: Grant all permissions to all users in a CIDR range
	Example 8: Allowlist and blocklist permissions for users in different CIDR ranges

	Using custom policies with the Amazon SQS Access Policy Language
	Amazon SQS access control architecture
	Amazon SQS access control process workflow
	Amazon SQS Access Policy Language key concepts
	Amazon SQS Access Policy Language evaluation logic
	Relationships between explicit and default denials in the Amazon SQS Access Policy Language
	Limitations of Amazon SQS custom policies
	Cross-account access
	Condition keys

	Custom Amazon SQS Access Policy Language examples
	Example 1: Give permission to one account
	Example 2: Give permission to one or more accounts
	Example 3: Give permission to requests from Amazon EC2 instances
	Example 4: Deny access to a specific account
	Example 5: Deny access if it isn't from a VPC endpoint
	Using temporary security credentials with Amazon SQS
	Prerequisites
	To call an Amazon SQS Query API action using temporary security credentials

	Access management for encrypted Amazon SQS queues with least privilege policies
	Overview
	Least privilege key policy for Amazon SQS
	Grant administrator permissions to the Amazon KMS key
	Grant read-only access to the key metadata
	Grant Amazon SNS KMS permissions to Amazon SNS to publish messages to the queue
	Allow consumers to decrypt messages from the queue
	Least privilege Amazon SQS policy
	Restrict Amazon SQS management permissions
	Restrict Amazon SQS queue actions from the specified organization
	Grant Amazon SQS permissions to consumers
	Enforce encryption in transit
	Restrict message transmission to a specific Amazon SNS topic
	(Optional) Restrict message reception to a specific VPC endpoint

	Amazon SQS policy statements for the dead-letter queue
	Restrict message transmission to Amazon SQS queues

	Prevent the cross-service confused deputy problem
	Use IAM Access Analyzer to review cross-account access

	Amazon SQS API permissions: Actions and resource reference




	Logging and monitoring in Amazon SQS
	Logging Amazon Simple Queue Service API calls using Amazon CloudTrail
	Amazon SQS data events in CloudTrail
	Amazon SQS management events in CloudTrail
	Amazon SQS event example

	Monitoring Amazon SQS queues using CloudWatch
	Accessing CloudWatch metrics for Amazon SQS
	Using the Amazon SQS console
	Using the Amazon CloudWatch console
	Using the Amazon Command Line Interface
	Using the CloudWatch API

	Creating CloudWatch alarms for Amazon SQS metrics
	Available CloudWatch metrics for Amazon SQS
	Amazon SQS metrics
	Dead-letter queues (DLQs) and CloudWatch metrics
	Fair queues and CloudWatch metrics
	Dimensions for Amazon SQS metrics
	Monitoring tips



	Compliance validation for Amazon SQS
	Resilience in Amazon SQS
	Distributed queues

	Infrastructure security in Amazon SQS
	Amazon SQS security best practices
	Make sure that queues aren't publicly accessible
	Implement least-privilege access
	Use IAM roles for applications and Amazon services which require Amazon SQS access
	Implement server-side encryption
	Enforce encryption of data in transit
	Consider using VPC endpoints to access Amazon SQS


	Related Amazon SQS resources
	Documentation history

