
Developer Guide

Amazon Lambda

Amazon Lambda Developer Guide

Amazon Lambda: Developer Guide

Amazon Lambda Developer Guide

Table of Contents

What is Amazon Lambda? ... 1
When to use Lambda .. 1
Key features ... 2

Getting started .. 4
Prerequisites .. 4
Create a Lambda function with the console .. 5
Invoke the Lambda function using the console .. 11
Clean up ... 14
Additional resources and next steps .. 15

Lambda foundations ... 17
Concepts ... 18

Function .. 18
Trigger ... 18
Event .. 19
Execution environment .. 19
Instruction set architecture ... 20
Deployment package ... 20
Runtime ... 20
Layer .. 20
Extension ... 21
Concurrency .. 21
Qualifier .. 22
Destination ... 22

Programming model .. 23
Execution environment ... 25

Runtime environment lifecycle .. 26
Deployment packages ... 32

Container images .. 32
.zip file archives ... 32
Layers ... 34
Using other Amazon services ... 34

Infrastructure as code (IaC) .. 36
IaC tools for Lambda ... 36
Getting started with IaC for Lambda ... 38

iii

Amazon Lambda Developer Guide

Next steps ... 50
Supported regions for Lambda integration with Application Composer 51

Private networking ... 52
VPC network elements .. 52
Connecting Lambda functions to your VPC .. 53
Shared subnets .. 54
Lambda Hyperplane ENIs .. 54
Connections .. 56
IPv6 support ... 57
Security ... 58
Observability .. 59

Instruction sets (ARM/x86) ... 60
Advantages of using arm64 architecture ... 60
Requirements for migration to arm64 architecture .. 61
Function code compatibility with arm64 architecture .. 61
How to migrate to arm64 architecture .. 62
Configuring the instruction set architecture ... 62

Code editor .. 64
Working with files and folders .. 64
Working with code ... 67
Working in fullscreen mode ... 71
Working with preferences ... 71

Additional features .. 73
Scaling ... 73
Concurrency controls ... 73
Function URLs .. 74
Asynchronous invocation ... 74
Event source mappings ... 75
Destinations .. 76
Function blueprints .. 77
Testing and deployment tools ... 77
Application templates .. 77

Learn how to build serverless solutions .. 78
Lambda runtimes ... 79

Supported runtimes ... 79
New runtime releases .. 82

iv

Amazon Lambda Developer Guide

Runtime deprecation policy ... 82
Shared responsibility model .. 83
Runtime use after deprecation ... 85
Receiving runtime deprecation notifications .. 86
Listing functions that use a deprecated runtime .. 87
Deprecated runtimes ... 87
Runtime updates .. 91

Runtime management controls ... 92
Two-phase runtime version rollout ... 93
Roll back a runtime version .. 93
Identifying runtime version changes .. 95
Configure runtime management settings ... 97
Shared responsibility model ... 98
High-compliance applications .. 99

Runtime modifications .. 101
Language-specific environment variables ... 101
Wrapper scripts ... 101

Runtime API .. 105
Next invocation ... 105
Invocation response ... 107
Initialization error ... 107
Invocation error ... 109

OS-only runtimes ... 111
Building a custom runtime .. 113

Requirements ... 113
Implementing response streaming in a custom runtime ... 115

Custom runtime tutorial ... 117
Prerequisites .. 117
Create a function .. 118
Create a layer .. 121
Update the function .. 121
Update the runtime ... 123
Share the layer .. 124
Clean up ... 124

AVX2 vectorization .. 126
Compiling from source .. 126

v

Amazon Lambda Developer Guide

Enabling AVX2 for Intel MKL ... 127
AVX2 support in other languages ... 127

Configuring functions ... 129
Memory .. 131

When to increase memory ... 131
Using the console ... 132
Using the Amazon CLI ... 132
Using Amazon SAM .. 132
Accepting function memory recommendations (console) .. 133

Ephemeral storage ... 134
Use cases .. 134
Using the console ... 135
Using the Amazon CLI ... 135
Using Amazon SAM .. 135

Timeout .. 137
When to increase timeout .. 137
Using the console ... 137
Using the Amazon CLI ... 138
Using Amazon SAM .. 138

Environment variables .. 140
Using the console ... 140
Using the API ... 142
Using the Amazon CLI ... 142
Using Amazon SAM .. 143
Example scenario for environment variables .. 144
Retrieve environment variables ... 144
Defined runtime environment variables .. 145
Securing environment variables .. 147
Sample code and templates .. 151

Outbound networking .. 152
Managing VPC connections .. 153
Execution role and user permissions .. 153
Configuring VPC access (console) ... 155
Configuring VPC access (API) ... 156
Using IAM condition keys for VPC settings ... 157
Internet and service access for VPC-connected functions ... 162

vi

Amazon Lambda Developer Guide

VPC tutorials .. 162
Sample VPC configurations .. 163

Inbound networking .. 164
Considerations for Lambda interface endpoints .. 164
Creating an interface endpoint for Lambda ... 165
Creating an interface endpoint policy for Lambda ... 166

File system ... 168
Execution role and user permissions .. 168
Configuring a file system and access point .. 169
Connecting to a file system (console) .. 170
Configuring file system access with the Lambda API ... 171
Mounting an Amazon EFS file system in another Amazon Web Services account 172
Amazon CloudFormation and Amazon SAM ... 173
Sample applications ... 175

Aliases ... 176
Creating a function alias (Console) ... 176
Managing aliases with the Lambda API ... 177
Managing aliases with Amazon SAM and Amazon CloudFormation .. 177
Using aliases .. 177
Resource policies ... 178
Alias routing configuration ... 178

Versions .. 182
Creating function versions .. 183
Using versions ... 184
Granting permissions ... 184

Response streaming .. 186
Writing response streaming-enabled functions ... 186
Invoking a response streaming enabled function using Lambda function URLs 188
Bandwidth limits for response streaming ... 189
Tutorial: Creating a response streaming function with a function URL 190

Deploying functions .. 194
.zip file archives .. 194

Deployment package file permissions ... 194
Container images ... 195

Image security ... 196
.zip file archives .. 197

vii

Amazon Lambda Developer Guide

Creating the function .. 197
Using the console code editor ... 199
Updating function code .. 199
Changing the runtime ... 200
Changing the architecture .. 200
Using the Lambda API ... 201
Amazon CloudFormation .. 201

Container images ... 202
Requirements ... 203
Using an Amazon base image ... 204
Using an Amazon OS-only base image ... 205
Using a non-Amazon base image ... 205
Runtime interface clients .. 206
Amazon ECR permissions .. 206
Container image settings .. 209

Testing images .. 211
Guidelines ... 211
Environment variables ... 211
Testing Amazon base images ... 212
Testing non-Amazon images .. 214

Invoking functions ... 221
Invoking Lambda functions from another Amazon Web Service ... 221
Invoking Lambda functions from a stream or queue ... 222
Errors and retries ... 222
Testing in console .. 223

Invoking functions with test events ... 223
Creating private test events ... 224
Creating shareable test events .. 224
Deleting shareable test event schemas ... 226

Synchronous invocation .. 227
Asynchronous invocation .. 231

How Lambda handles asynchronous invocations .. 231
Configuring error handling for asynchronous invocation .. 234
Configuring destinations for asynchronous invocation .. 234
Asynchronous invocation configuration API ... 239
Dead-letter queues ... 240

viii

Amazon Lambda Developer Guide

Event source mapping .. 244
Creating an event source mapping ... 245
Updating an event source mapping ... 246
Deleting an event source mapping ... 247
Batching behavior ... 247
Configuring destinations for event source mapping invocations ... 252

Event filtering ... 255
Event filtering basics ... 256
Handling records that don't meet filter criteria ... 258
Filter rule syntax ... 259
Attaching filter criteria to an event source mapping (console) ... 260
Attaching filter criteria to an event source mapping (Amazon CLI) ... 261
Attaching filter criteria to an event source mapping (Amazon SAM) 262
Using filters with different Amazon Web Services .. 263
Filtering with DynamoDB .. 264
Filtering with Kinesis ... 271
Filtering with Amazon MQ ... 274
Filtering with Amazon MSK and self-managed Apache Kafka .. 280
Filtering with Amazon SQS .. 285

Function states ... 290
Function states while updating ... 291

Error handling ... 293
Recursive loop detection .. 296

Understanding recursive loop detection ... 296
Supported Amazon Web Services and SDKs .. 298
Recursive loop notifications ... 300
Responding to recursive loop detection notifications .. 301

Function URLs ... 303
Creating and managing function URLs .. 305
Security and auth model .. 313
Invoking function URLs ... 321
Monitoring function URLs ... 333
Tutorial: Creating a function with a function URL ... 335

Managing functions ... 340
Tutorial - Lambda with CLI .. 341

Prerequisites .. 341

ix

Amazon Lambda Developer Guide

Create the execution role ... 342
Create the function .. 343
Update the function .. 347
List the Lambda functions in your account .. 347
Retrieve a Lambda function ... 348
Clean up ... 349

Function scaling ... 350
Understanding and visualizing concurrency ... 350
How to calculate concurrency ... 355
Concurrency vs. requests per second ... 356
Reserved concurrency and provisioned concurrency ... 357
Concurrency quotas ... 366
Configuring reserved concurrency .. 368
Configuring provisioned concurrency ... 372
Scaling behavior .. 382
Monitoring concurrency .. 384

Code signing ... 390
Signature validation ... 391
Configuration prerequisites .. 392
Creating code signing configurations ... 392
Updating a code signing configuration ... 392
Deleting a code signing configuration ... 393
Enabling code signing for a function ... 393
Configuring IAM policies ... 394
Configuring code signing with the Lambda API .. 395

Tags ... 396
Permissions .. 396
Using tags with the console ... 396
Using tags with the Amazon CLI ... 399
Requirements for tags ... 400

Testing functions ... 401
Targeted business outcomes ... 402
What to test .. 402
How to test serverless .. 403
Testing techniques ... 404

Testing in the cloud ... 404

x

Amazon Lambda Developer Guide

Testing with mocks .. 407
Testing with emulation ... 408

Best practices .. 409
Prioritize testing in the cloud .. 409
Structure your code for testability ... 409
Accelerate development feedback loops ... 410
Focus on integration tests .. 410
Create isolated test environments .. 411
Use mocks for isolated business logic ... 412
Use emulators sparingly ... 412

Challenges testing locally .. 413
Example: Lambda function creates an S3 bucket .. 413
Example: Lambda function processes messages from an Amazon SQS queue 414

FAQ .. 414
Next steps and resources ... 415

Building with Node.js .. 417
Node.js initialization .. 420

Designating a function handler as an ES module ... 420
Runtime-included SDK versions .. 421
Using keep-alive ... 422
CA certificate loading ... 422
Handler ... 424

Naming .. 425
Using async/await .. 425
Using callbacks .. 428

Deploy .zip file archives .. 431
Runtime dependencies in Node.js ... 431
Creating a .zip deployment package with no dependencies ... 432
Creating a .zip deployment package with dependencies ... 432
Creating a Node.js layer for your dependencies .. 433
Dependency search path and runtime-included libraries .. 434
Creating and updating Node.js Lambda functions using .zip files ... 435

Deploy container images .. 442
Amazon base images for Node.js .. 443
Using an Amazon base image ... 444
Using a non-Amazon base image ... 449

xi

Amazon Lambda Developer Guide

Context ... 459
Logging .. 461

Creating a function that returns logs .. 461
Using Lambda advanced logging controls with Node.js .. 463
Using the Lambda console ... 469
Using the CloudWatch console .. 469
Using the Amazon Command Line Interface (Amazon CLI) ... 470
Deleting logs ... 473

Errors .. 474
Syntax .. 474
How it works ... 475
Using the Lambda console ... 476
Using the Amazon Command Line Interface (Amazon CLI) ... 476
Error handling in other Amazon services .. 477
What's next? .. 478

Tracing .. 479
Using ADOT to instrument your Node.js functions ... 480
Using the X-Ray SDK to instrument your Node.js functions .. 480
Activating tracing with the Lambda console .. 481
Activating tracing with the Lambda API ... 482
Activating tracing with Amazon CloudFormation .. 482
Interpreting an X-Ray trace .. 483
Storing runtime dependencies in a layer (X-Ray SDK) .. 485

Building with TypeScript .. 487
Development environment .. 488
Handler ... 490

Using async/await .. 491
Using callbacks .. 492
Using types for the event object .. 493

Deploy .zip file archives .. 495
Using Amazon SAM .. 495
Using the Amazon CDK ... 497
Using the Amazon CLI and esbuild .. 500

Deploy container images .. 503
Using a Node.js base image to build and package TypeScript function code 503

Context ... 510

xii

Amazon Lambda Developer Guide

Logging .. 512
Tools and libraries .. 512
Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM for structured
logging .. 513
Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for structured
logging .. 515
Using the Lambda console ... 519
Using the CloudWatch console .. 519

Testing .. 521
Testing your serverless applications ... 522

Errors .. 524
Tracing .. 527

Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM for tracing 528
Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for tracing 530
Interpreting an X-Ray trace .. 534

Building with Python .. 535
Runtime-included SDK versions .. 537
Response format .. 538
Graceful shutdown for extensions ... 538
Handler ... 539

Naming .. 539
How it works ... 540
Returning a value ... 540
Examples ... 541

Deploy .zip file archives .. 544
Runtime dependencies in Python ... 544
Creating a .zip deployment package with no dependencies ... 545
Creating a .zip deployment package with dependencies ... 545
Dependency search path and runtime-included libraries .. 548
Using __pycache__ folders .. 550
Creating .zip deployment packages with native libraries ... 550
Creating and updating Python Lambda functions using .zip files .. 551

Deploy container images .. 559
Amazon base images for Python .. 560
Using an Amazon base image ... 561
Using a non-Amazon base image ... 567

xiii

Amazon Lambda Developer Guide

Layers .. 577
Prerequisites .. 577
Python layer compatibility with Amazon Linux ... 578
Layer paths for Python runtimes .. 579
Packaging the layer content .. 579
Creating the layer ... 581
Adding the layer to your function .. 581
Working with manylinux wheel distributions .. 584

Context ... 589
Logging .. 591

Printing to the log ... 591
Using a logging library .. 592
Using Lambda advanced logging controls with Python ... 594
Viewing logs in Lambda console ... 598
Viewing logs in CloudWatch console ... 599
Viewing logs with Amazon CLI .. 599
Deleting logs ... 602
Tools and libraries .. 602
Using Powertools for Amazon Lambda (Python) and Amazon SAM for structured
logging .. 603
Using Powertools for Amazon Lambda (Python) and Amazon CDK for structured
logging .. 607

Testing .. 614
Testing your serverless applications ... 615

Errors .. 617
How it works ... 617
Using the Lambda console ... 618
Using the Amazon Command Line Interface (Amazon CLI) ... 619
Error handling in other Amazon services .. 620
Error examples .. 620
Sample applications ... 622
What's next? .. 478

Tracing .. 623
Using Powertools for Amazon Lambda (Python) and Amazon SAM for tracing 624
Using Powertools for Amazon Lambda (Python) and the Amazon CDK for tracing 627
Using ADOT to instrument your Python functions ... 632

xiv

Amazon Lambda Developer Guide

Using the X-Ray SDK to instrument your Python functions .. 632
Activating tracing with the Lambda console .. 633
Activating tracing with the Lambda API ... 633
Activating tracing with Amazon CloudFormation .. 634
Interpreting an X-Ray trace .. 634
Storing runtime dependencies in a layer (X-Ray SDK) .. 636

Building with Ruby .. 638
Runtime-included SDK versions .. 640
Enabling Yet Another Ruby JIT (YJIT) .. 641
Handler ... 642
Deploy .zip file archives .. 644

Dependencies in Ruby ... 644
Creating a .zip deployment package with no dependencies ... 645
Creating a .zip deployment packaged with dependencies ... 645
Creating a Ruby layer for your dependencies .. 647
Creating .zip deployment packages with native libraries ... 648
Creating and updating Ruby Lambda functions using .zip files .. 650

Deploy container images .. 656
Amazon base images for Ruby .. 657
Using an Amazon base image ... 657
Using a non-Amazon base image ... 663

Context ... 673
Logging .. 674

Creating a function that returns logs .. 674
Using the Lambda console ... 675
Using the CloudWatch console .. 676
Using the Amazon Command Line Interface (Amazon CLI) ... 676
Deleting logs ... 680
Logger library .. 680

Errors .. 682
Syntax .. 682
How it works ... 683
Using the Lambda console ... 684
Using the Amazon Command Line Interface (Amazon CLI) ... 684
Error handling in other Amazon services .. 685
Sample applications ... 686

xv

Amazon Lambda Developer Guide

What's next? .. 686
Tracing .. 687

Enabling active tracing with the Lambda API .. 691
Enabling active tracing with Amazon CloudFormation .. 692
Storing runtime dependencies in a layer .. 692

Building with Java ... 694
Handler ... 697

Example handler: Java 17 runtimes ... 697
Example handler: Java 11 runtimes and below ... 699
Initialization code ... 700
Choosing input and output types ... 701
Handler interfaces .. 702
Sample handler code ... 704

Deploy .zip file archives .. 705
Prerequisites .. 705
Tools and libraries .. 705
Building a deployment package with Gradle ... 707
Creating a Java layer for your dependencies .. 708
Building a deployment package with Maven .. 709
Uploading a deployment package with the Lambda console ... 711
Uploading a deployment package with the Amazon CLI ... 713
Uploading a deployment package with Amazon SAM .. 714

Deploy container images .. 717
Amazon base images for Java ... 718
Using an Amazon base image ... 719
Using a non-Amazon base image ... 727

Lambda SnapStart ... 738
Supported features and limitations ... 739
Supported Regions ... 739
Compatibility considerations .. 740
Pricing ... 741
SnapStart and provisioned concurrency .. 741
Additional resources ... 742
Activating SnapStart .. 743
Handling uniqueness ... 749
Runtime hooks .. 751

xvi

Amazon Lambda Developer Guide

Monitoring .. 754
Security model .. 757
Best practices .. 758

Java customization .. 761
JAVA_TOOL_OPTIONS environment variable ... 761

Context ... 764
Context in sample applications ... 766

Logging .. 768
Creating a function that returns logs .. 768
Using Lambda advanced logging controls with Java .. 770
Advanced logging with Log4j2 and SLF4J .. 773
Tools and libraries .. 776
Using Powertools for Amazon Lambda (Java) and Amazon SAM for structured logging 777
Using the Lambda console ... 781
Using the CloudWatch console .. 781
Using the Amazon Command Line Interface (Amazon CLI) ... 782
Deleting logs ... 785
Sample logging code ... 785

Errors .. 787
Syntax .. 787
How it works ... 788
Creating a function that returns exceptions ... 789
Using the Lambda console ... 790
Using the Amazon Command Line Interface (Amazon CLI) ... 791
Error handling in other Amazon services .. 792
Sample applications ... 793
What's next? .. 794

Tracing .. 795
Using Powertools for Amazon Lambda (Java) and Amazon SAM for tracing 796
Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 798
Using ADOT to instrument your Java functions .. 810
Using the X-Ray SDK to instrument your Java functions ... 810
Activating tracing with the Lambda console .. 811
Activating tracing with the Lambda API ... 811
Activating tracing with Amazon CloudFormation .. 812
Interpreting an X-Ray trace .. 812

xvii

Amazon Lambda Developer Guide

Storing runtime dependencies in a layer (X-Ray SDK) .. 815
X-Ray tracing in sample applications (X-Ray SDK) .. 816

Sample apps ... 817
Building with Go .. 819

Go runtime support ... 819
Tools and libraries ... 820
Handler ... 822

Naming .. 824
Lambda function handler using structured types ... 824
Using global state .. 826

Context ... 829
Accessing invoke context information ... 829

Deploy .zip file archives .. 832
Creating a .zip file on macOS and Linux ... 832
Creating a .zip file on Windows ... 834
Creating and updating Go Lambda functions using .zip files .. 837
Creating a Go layer for your dependencies .. 843

Deploy container images .. 844
Amazon base images for deploying Go functions ... 844
Go runtime interface client .. 845
Using an Amazon OS-only base image ... 845
Using a non-Amazon base image ... 852

Logging .. 860
Creating a function that returns logs .. 860
Using the Lambda console ... 862
Using the CloudWatch console .. 862
Using the Amazon Command Line Interface (Amazon CLI) ... 862
Deleting logs ... 866

Errors .. 867
Creating a function that returns exceptions ... 867
How it works ... 868
Using the Lambda console ... 869
Using the Amazon Command Line Interface (Amazon CLI) ... 869
Error handling in other Amazon services .. 870
What's next? .. 871

Tracing .. 872

xviii

Amazon Lambda Developer Guide

Using ADOT to instrument your Go functions ... 873
Using the X-Ray SDK to instrument your Go functions .. 873
Activating tracing with the Lambda console .. 873
Activating tracing with the Lambda API ... 874
Activating tracing with Amazon CloudFormation .. 874
Interpreting an X-Ray trace .. 875

Environment variables .. 878
Building with C# .. 879

Development environment .. 881
Installing the .NET project templates ... 881
Installing and updating the CLI tools .. 881

Handler ... 883
.NET execution models for Lambda ... 883
Class library handlers .. 884
Executable assembly handlers ... 885
Serialization in Lambda functions .. 886
Simplify function code with the Lambda Annotations framework .. 888
Lambda function handler restrictions .. 891

Deployment package .. 892
Using the .NET Lambda Global CLI ... 893
Using the Amazon Serverless Application Model (Amazon SAM) ... 899
Using the Amazon Cloud Development Kit (Amazon CDK) ... 902
Deploy ASP.NET applications ... 906

Deploy container images .. 911
Amazon base images for .NET ... 912
Using an Amazon base image ... 912
Using a non-Amazon base image ... 915

Native AOT compilation ... 919
Lambda runtime ... 919
Prerequisites .. 920
Getting started .. 920
Serialization ... 923
Trimming .. 924
Troubleshooting .. 925

Context ... 926
Logging .. 928

xix

Amazon Lambda Developer Guide

Creating a function that returns logs .. 928
Tools and libraries .. 929
Using Powertools for Amazon Lambda (.NET) and Amazon SAM for structured logging 929
Using the Lambda console ... 932
Using the CloudWatch console .. 932
Using the Amazon Command Line Interface (Amazon CLI) ... 933
Deleting logs ... 936

Errors .. 937
Syntax .. 937
How it works ... 940
Using the Lambda console ... 941
Using the Amazon Command Line Interface (Amazon CLI) ... 942
Error handling in other Amazon services .. 943
What's next? .. 944

Tracing .. 945
Using Powertools for Amazon Lambda (.NET) and Amazon SAM for tracing 946
Using the X-Ray SDK to instrument your .NET functions ... 949
Activating tracing with the Lambda console .. 950
Activating tracing with the Lambda API ... 951
Activating tracing with Amazon CloudFormation .. 951
Interpreting an X-Ray trace .. 952

Testing .. 955
Testing your serverless applications ... 956

Building with PowerShell ... 959
Development Environment .. 961
Deployment package .. 962

Creating a Lambda function .. 962
Handler ... 965

Returning data .. 966
Context ... 967
Logging .. 968

Creating a function that returns logs .. 968
Using the Lambda console ... 970
Using the CloudWatch console .. 970
Using the Amazon Command Line Interface (Amazon CLI) ... 970
Deleting logs ... 974

xx

Amazon Lambda Developer Guide

Errors .. 975
Syntax .. 975
How it works ... 976
Using the Lambda console ... 977
Using the Amazon Command Line Interface (Amazon CLI) ... 978
Error handling in other Amazon services .. 979
What's next? .. 979

Building with Rust ... 980
Handler ... 982

Using shared state .. 983
Context ... 985

Accessing invoke context information ... 985
HTTP events .. 987
Deploy .zip file archives .. 990

Prerequisites .. 990
Building the function ... 990
Deploying the function ... 991
Invoking the function .. 993

Logging .. 994
Creating a function that writes logs .. 994
Advanced logging with the Tracing crate ... 994

Errors .. 997
Creating a function that returns errors ... 997

Integrating other services ... 998
Listing of services and links to more information .. 998
Event-driven invocation ... 1001
Lambda polling .. 1001
Use cases ... 1003

Example 1: Amazon S3 pushes events and invokes a Lambda function 1004
Example 2: Amazon Lambda pulls events from a Kinesis stream and invokes a Lambda
function .. 1004

Alexa ... 1006
Apache Kafka .. 1007

Example event .. 1008
Kafka cluster authentication .. 1009
Managing API access and permissions ... 1012

xxi

Amazon Lambda Developer Guide

Authentication and authorization errors ... 1015
Network configuration .. 1017
Adding a Kafka cluster as an event source ... 1020
Using a Kafka cluster as an event source ... 1028
Polling and stream starting positions .. 1029
Auto scaling of the Kafka event source .. 1029
Event source API operations .. 1030
Event source errors .. 1030
Amazon CloudWatch metrics ... 1031
Self-managed Apache Kafka configuration parameters .. 1031

API Gateway .. 1034
Adding an endpoint to your Lambda function .. 1034
Proxy integration .. 1035
Event format ... 1035
Response format .. 1036
Permissions .. 1037
Handling errors with an API Gateway API .. 1039
Choosing an API type .. 1041
Sample applications ... 1043
Tutorial ... 1043

Application Composer .. 1062
Exporting a Lambda function to Application Composer .. 1063
Other resources .. 1065

CloudTrail .. 1066
CloudTrail logs .. 1069
Sample code .. 1077

CloudWatch Logs ... 1080
CloudFormation ... 1082
CloudFront (Lambda@Edge) ... 1086
CodeCommit ... 1088
CodePipeline ... 1089

Permissions .. 1091
CodeWhisperer ... 1092
Cognito .. 1093
Connect .. 1094
DocumentDB ... 1096

xxii

Amazon Lambda Developer Guide

Example Amazon DocumentDB event ... 1097
Prerequisites and permissions ... 1098
Network configuration .. 1099
Creating an Amazon DocumentDB event source mapping (console) 1102
Creating an Amazon DocumentDB event source mapping (SDK or CLI) 1103
Polling and stream starting positions .. 1106
Monitoring your Amazon DocumentDB event source .. 1107
Tutorial ... 1107

DynamoDB .. 1134
Example event .. 1135
Polling and batching streams .. 1136
Polling and stream starting positions .. 1138
Simultaneous readers .. 1138
Execution role permissions ... 1138
Create the event source mapping .. 1138
Event source mapping APIs ... 1141
Error handling ... 1143
Amazon CloudWatch metrics ... 1145
Time windows ... 1145
Reporting batch item failures ... 1150
Amazon DynamoDB Streams configuration parameters .. 1154
Tutorial ... 1156
Sample code .. 1163
Sample template .. 1168

EC2 .. 1170
Permissions .. 1171

ElastiCache .. 1172
Elastic Load Balancing (Application Load Balancer) ... 1173
EFS .. 1175

Connections ... 1176
Throughput .. 1176
IOPS ... 1177

EventBridge (CloudWatch Events) .. 1178
Schedule expressions ... 1180

EventBridge Scheduler ... 1181
Set up the execution role ... 1181

xxiii

Amazon Lambda Developer Guide

Create a schedule ... 1181
Related resources ... 1186

IoT ... 1187
IoT Events .. 1189
Kinesis Firehose .. 1192
Kinesis Streams .. 1193

Example event ... 1194
Polling and batching streams .. 1195
Polling and stream starting position ... 1196
Configuring your data stream and function ... 1197
Execution role permissions ... 1198
Create the event source mapping .. 1198
Filtering Kinesis events ... 1201
Event source mapping API ... 1201
Error handling ... 1204
Amazon CloudWatch metrics ... 1205
Time windows ... 1206
Reporting batch item failures ... 1209
Amazon Kinesis configuration parameters ... 1224
Tutorial ... 1225
Sample code .. 1242
Sample template .. 1246

Kubernetes .. 1249
Amazon Controllers for Kubernetes (ACK) .. 1249
Crossplane .. 1249

Lex ... 1251
Roles and permissions ... 1251

MQ .. 1254
Lambda consumer group .. 1256
Execution role permissions ... 1260
Network configuration .. 1261
Create the event source mapping .. 1264
Event source mapping API ... 1266
Event source mapping errors ... 1268
Amazon MQ and RabbitMQ configuration parameters .. 1269

MSK ... 1271

xxiv

Amazon Lambda Developer Guide

Example event ... 1272
MSK cluster authentication .. 1273
Managing API access and permissions ... 1278
Authentication and authorization errors ... 1282
Network configuration .. 1283
Adding Amazon MSK as an event source .. 1286
Cross-account event source mappings .. 1294
Auto scaling of the Amazon MSK event source ... 1296
Polling and stream starting positions .. 1297
Amazon CloudWatch metrics ... 1297
Amazon MSK configuration parameters .. 1297

RDS ... 1300
Configuring your function .. 1300
Process event notifications from Amazon RDS .. 1303
Lambda and Amazon RDS tutorial ... 1304

S3 .. 1305
Tutorial: Use an S3 trigger ... 1306
Tutorial: Use an Amazon S3 trigger to create thumbnails .. 1329

S3 Batch .. 1358
Invoking Lambda functions from Amazon S3 batch operations .. 1359

S3 Object Lambda ... 1361
Secrets Manager .. 1362
SES .. 1363
SNS ... 1366

Tutorial ... 1368
Sample code .. 1387

SQS ... 1391
Example standard queue message event .. 1392
Example FIFO queue message event .. 1393
Configuring a queue to use with Lambda .. 1394
Execution role permissions ... 1394
Create the event source mapping .. 1395
Scaling and processing .. 1397
Maximum concurrency .. 1398
Event source mapping APIs ... 1399
Backoff strategy for failed invocations .. 1400

xxv

Amazon Lambda Developer Guide

Implementing partial batch responses .. 1401
Amazon SQS configuration parameters .. 1413
Tutorial ... 1414
SQS cross-account tutorial ... 1432
Sample code .. 1438
Sample template .. 1442

VPC Lattice .. 1444
VPC Lattice concepts ... 1444
Prerequisites and permissions ... 1446
Limitations ... 1447
Registering your Lambda function with a VPC Lattice network ... 1447
Updating the target of a service in a VPC Lattice network ... 1450
Deregistering a Lambda function target ... 1452
Cross-account networking .. 1452
Receiving events from VPC Lattice ... 1453
Sending responses back to VPC Lattice .. 1454
Monitoring a service in a VPC Lattice network .. 1455

Best practices ... 1456
Function code ... 1456
Function configuration ... 1459
Function scalability ... 1460
Metrics and alarms .. 1460
Working with streams .. 1461
Security best practices ... 1462

Access permissions .. 1463
Execution role ... 1465

Creating an execution role in the IAM console .. 1466
Grant least privilege access to your Lambda execution role ... 1466
Managing roles with the IAM API ... 1467
Session duration for temporary security credentials .. 1468
Amazon managed policies for Lambda features ... 1469
Working with Lambda execution environment credentials ... 1472

User policies .. 1476
Function development .. 1476
Layer development and use ... 1481
Cross-account roles .. 1482

xxvi

Amazon Lambda Developer Guide

Condition keys for VPC settings .. 1482
Control access using tags .. 1483

Prerequisites .. 1484
Step 1: Require tags .. 1484
Step 2: Control actions using tags ... 1485
Step 3: Grant list permissions ... 1485
Step 4: Grant IAM permissions .. 1486
Step 5: Create the IAM role ... 1487
Step 6: Create the IAM user .. 1487
Step 7: Test the permissions ... 1487
Step 8: Clean up your resources ... 1488

Resource-based policies ... 1490
Supported API actions .. 1492
Granting function access to Amazon services .. 1493
Granting function access to an organization ... 1494
Granting function access to other accounts ... 1495
Granting layer access to other accounts ... 1496
Cleaning up resource-based policies .. 1497

Resources and conditions .. 1499
Policy conditions .. 1500
Function resource names .. 1501
Function actions ... 1503
Event source mapping actions .. 1507
Layer actions ... 1507

Permissions boundaries .. 1509
Security, governance, and compliance ... 1512

Data protection .. 1513
Encryption in transit .. 1514
Encryption at rest .. 1514

Identity and Access Management .. 1514
Audience ... 1515
Authenticating with identities ... 1516
Managing access using policies ... 1519
How Amazon Lambda works with IAM ... 1521
Identity-based policy examples ... 1528
Amazon managed policies ... 1531

xxvii

Amazon Lambda Developer Guide

Troubleshooting .. 1536
Governance ... 1538

Proactive controls with Guard ... 1541
Proactive controls with Amazon Config .. 1545
Detective controls with Amazon Config .. 1552
Code signing .. 1556
Code scanning ... 1559
Observability ... 1564

Compliance validation .. 1571
Resilience ... 1571
Infrastructure security .. 1572

Monitoring functions ... 1574
Monitoring console ... 1575

Pricing ... 1575
Using the Lambda console ... 1575
Types of monitoring graphs .. 1575
Viewing graphs on the Lambda console ... 1576
Viewing queries on the CloudWatch Logs console ... 1577
What's next? .. 1578

Function metrics .. 1579
Viewing metrics on the CloudWatch console ... 1579
Types of metrics ... 1580

Function logs .. 1584
Prerequisites .. 1585
Pricing ... 1585
Configuring advanced logging controls for your Lambda function 1585
Using the Lambda console ... 1599
Using the Amazon CLI ... 1599
Runtime function logging .. 1602
What's next? .. 1603

Amazon X-Ray .. 1604
Execution role permissions ... 1607
The Amazon X-Ray daemon .. 1607
Enabling active tracing with the Lambda API .. 1608
Enabling active tracing with Amazon CloudFormation .. 1608

Function insights ... 1610

xxviii

Amazon Lambda Developer Guide

How it works ... 1610
Pricing ... 1611
Supported runtimes ... 1611
Enabling Lambda Insights in the console ... 1611
Enabling Lambda Insights programmatically ... 1611
Using the Lambda Insights dashboard .. 1612
Detecting function anomalies ... 1613
Troubleshooting a function .. 1615
What's next? .. 1578

Code profiler ... 1618
Supported runtimes ... 1618
Activating CodeGuru Profiler from the Lambda console ... 1618
What happens when you activate CodeGuru Profiler from the Lambda console? 1619
What's next? .. 1620

Example workflows ... 1621
Prerequisites .. 1621
Pricing ... 1622
Viewing a trace map .. 1622
Viewing trace details ... 1623
Using Trusted Advisor to view recommendations ... 1624
What's next? .. 1624

Lambda layers .. 1625
How to use layers .. 1627
Layers and layer versions ... 1627
Packaging layers .. 1628

Layer paths for each Lambda runtime .. 1628
Creating and deleting layers ... 1631

Creating a layer .. 1631
Deleting a layer version .. 1633

Adding layers .. 1634
Accessing layer content from your function ... 1636
Finding layer information ... 1636

Layers with Amazon CloudFormation ... 1639
Layers with Amazon SAM .. 1640

Lambda extensions .. 1641
Execution environment ... 1642

xxix

Amazon Lambda Developer Guide

Impact on performance and resources ... 1643
Permissions ... 1643
Configuring extensions ... 1644

Configuring extensions (.zip file archive) .. 1644
Using extensions in container images ... 1644
Next steps .. 1645

Extensions partners ... 1646
Amazon managed extensions .. 1647

Extensions API .. 1648
Lambda execution environment lifecycle ... 1649
Extensions API reference .. 1658

Telemetry API ... 1664
Creating extensions using the Telemetry API .. 1665
Registering your extension ... 1667
Creating a telemetry listener ... 1667
Specifying a destination protocol ... 1669
Configuring memory usage and buffering ... 1670
Sending a subscription request to the Telemetry API .. 1671
Inbound Telemetry API messages .. 1672
API reference ... 1676
Event schema reference .. 1680
Converting events to OTel Spans ... 1701
Logs API ... 1707

Troubleshooting ... 1719
Deployment ... 1719

General: Permission is denied / Cannot load such file ... 1720
General: Error occurs when calling the UpdateFunctionCode .. 1721
Amazon S3: Error Code PermanentRedirect. .. 1721
General: Cannot find, cannot load, unable to import, class not found, no such file or
directory ... 1721
General: Undefined method handler ... 1722
Lambda: Layer conversion failed .. 1722
Lambda: InvalidParameterValueException or RequestEntityTooLargeException 1723
Lambda: InvalidParameterValueException .. 1724
Lambda: Concurrency and memory quotas .. 1724

Invocation .. 1724

xxx

Amazon Lambda Developer Guide

IAM: lambda:InvokeFunction not authorized .. 1725
Lambda: Couldn't find valid bootstrap (Runtime.InvalidEntrypoint) 1725
Lambda: Operation cannot be performed ResourceConflictException 1725
Lambda: Function is stuck in Pending ... 1726
Lambda: One function is using all concurrency ... 1726
General: Cannot invoke function with other accounts or services ... 1726
General: Function invocation is looping .. 1726
Lambda: Alias routing with provisioned concurrency ... 1727
Lambda: Cold starts with provisioned concurrency .. 1727
Lambda: Cold starts with new versions .. 1728
EFS: Function could not mount the EFS file system ... 1728
EFS: Function could not connect to the EFS file system .. 1728
EFS: Function could not mount the EFS file system due to timeout 1729
Lambda: Lambda detected an IO process that was taking too long 1729

Execution ... 1729
Lambda: Execution takes too long ... 1730
Lambda: Logs or traces don't appear .. 1730
Lambda: Not all of my function's logs appear ... 1730
Lambda: The function returns before execution finishes .. 1731
Amazon SDK: Versions and updates .. 1731
Python: Libraries load incorrectly ... 1732

Networking .. 1733
VPC: Function loses internet access or times out .. 1733
VPC: Function needs access to Amazon services without using the internet 1733
VPC: Elastic network interface limit reached ... 1734
EC2: Elastic network interface with type of "lambda" .. 1734

Container images ... 1734
Container: CodeArtifactUserException errors related to the code artifact. 1734
Container: ManifestKeyCustomerException errors related to the code manifest key. 1735
Container: Error occurs on runtime InvalidEntrypoint ... 1735
Lambda: System provisioning additional capacity .. 1735
CloudFormation: ENTRYPOINT is being overridden with a null or empty value 1736

Lambda applications ... 1737
Manage applications ... 1739

Monitoring applications .. 1739
Custom monitoring dashboards .. 1740

xxxi

Amazon Lambda Developer Guide

Tutorial – Create an application ... 1742
Prerequisites .. 1743
Create an application .. 1744
Invoke the function ... 1745
Add an Amazon resource ... 1746
Update the permissions boundary ... 1748
Update the function code .. 1749
Next steps .. 1751
Troubleshooting .. 1752
Clean up ... 1753

Rolling deployments ... 1755
Example Amazon SAM Lambda template ... 1755

Mobile SDK for Android ... 1757
Tutorial ... 1757
Sample code .. 1766

Orchestrating functions .. 1769
Application patterns ... 1769

State machine components ... 1769
State machine application patterns ... 1770
Applying patterns to state machines ... 1770
Example branching application pattern .. 1771

Manage state machines ... 1774
Viewing state machine details .. 1774
Editing a state machine .. 1775
Running a state machine .. 1776

Orchestration examples ... 1776
Configuring a Lambda function as a task ... 1776
Configuring a state machine as an event source ... 1777
Handling function and service errors .. 1778
Amazon CloudFormation and Amazon SAM .. 1779

Sample applications .. 1782
Blank function .. 1786

Architecture and handler code .. 1786
Deployment automation with Amazon CloudFormation and the Amazon CLI 1788
Instrumentation with the Amazon X-Ray .. 1790
Dependency management with layers .. 1791

xxxii

Amazon Lambda Developer Guide

Error processor ... 1793
Architecture and event structure .. 1793
Instrumentation with Amazon X-Ray ... 1795
Amazon CloudFormation template and additional resources ... 1795

List manager ... 1797
Architecture and event structure .. 1797
Instrumentation with Amazon X-Ray ... 1800
Amazon CloudFormation templates and additional resources ... 1800

Working with Amazon SDKs ... 1801
Code examples ... 1802

Actions ... 1812
CreateAlias ... 1813
CreateFunction .. 1814
DeleteAlias ... 1834
DeleteFunction .. 1835
DeleteFunctionConcurrency ... 1846
DeleteProvisionedConcurrencyConfig .. 1847
GetAccountSettings .. 1848
GetAlias .. 1849
GetFunction ... 1851
GetFunctionConcurrency ... 1859
GetFunctionConfiguration .. 1861
GetPolicy .. 1863
GetProvisionedConcurrencyConfig ... 1864
Invoke ... 1866
ListFunctions .. 1879
ListProvisionedConcurrencyConfigs .. 1890
ListTags .. 1892
ListVersionsByFunction ... 1893
PublishVersion .. 1896
PutFunctionConcurrency ... 1898
PutProvisionedConcurrencyConfig ... 1899
RemovePermission ... 1900
TagResource ... 1901
UntagResource .. 1902
UpdateAlias ... 1903

xxxiii

Amazon Lambda Developer Guide

UpdateFunctionCode .. 1904
UpdateFunctionConfiguration ... 1916

Scenarios .. 1926
Get started with functions ... 1927

Serverless examples .. 2040
Connecting to an Amazon RDS database in a Lambda function .. 2040
Invoke a Lambda function from a Kinesis trigger ... 2042
Invoke a Lambda function from a DynamoDB trigger ... 2053
Invoke a Lambda function from an Amazon S3 trigger ... 2054
Invoke a Lambda function from an Amazon SNS trigger .. 2063
Invoke a Lambda function from an Amazon SQS trigger .. 2072
Reporting batch item failures for Lambda functions with a Kinesis trigger 2081
Reporting batch item failures for Lambda functions with a DynamoDB trigger 2095
Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2097

Cross-service examples ... 2107
Create a REST API to track COVID-19 data .. 2107
Create a lending library REST API .. 2108
Create a messenger application .. 2109
Create a serverless application to manage photos ... 2110
Create a websocket chat application ... 2114
Create an application to analyze customer feedback ... 2115
Invoke a Lambda function from a browser .. 2121
Transform data with S3 Object Lambda ... 2122
Use API Gateway to invoke a Lambda function .. 2123
Use Step Functions to invoke Lambda functions .. 2125
Use scheduled events to invoke a Lambda function .. 2126

Lambda quotas .. 2129
Compute and storage ... 2129
Function configuration, deployment, and execution ... 2130
Lambda API requests .. 2132
Other services ... 2133

Amazon Glossary ... 2134
Document history .. 2135

Earlier updates ... 2157

xxxiv

Amazon Lambda Developer Guide

What is Amazon Lambda?

Amazon Lambda is a compute service that lets you run code without provisioning or managing
servers.

Lambda runs your code on a high-availability compute infrastructure and performs all of the
administration of the compute resources, including server and operating system maintenance,
capacity provisioning and automatic scaling, and logging. With Lambda, all you need to do is
supply your code in one of the language runtimes that Lambda supports.

You organize your code into Lambda functions. The Lambda service runs your function only when
needed and scales automatically. You only pay for the compute time that you consume—there is
no charge when your code is not running. For more information, see Amazon Lambda Pricing.

Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

When to use Lambda

Lambda is an ideal compute service for application scenarios that need to scale up rapidly, and
scale down to zero when not in demand. For example, you can use Lambda for:

• File processing: Use Amazon Simple Storage Service (Amazon S3) to trigger Lambda data
processing in real time after an upload.

• Stream processing: Use Lambda and Amazon Kinesis to process real-time streaming data for
application activity tracking, transaction order processing, clickstream analysis, data cleansing,
log filtering, indexing, social media analysis, Internet of Things (IoT) device data telemetry, and
metering.

• Web applications: Combine Lambda with other Amazon services to build powerful web
applications that automatically scale up and down and run in a highly available configuration
across multiple data centers.

• IoT backends: Build serverless backends using Lambda to handle web, mobile, IoT, and third-
party API requests.

When to use Lambda 1

https://www.amazonaws.cn/lambda/pricing/
https://docs.amazonaws.cn/serverless/latest/devguide/

Amazon Lambda Developer Guide

• Mobile backends: Build backends using Lambda and Amazon API Gateway to authenticate and
process API requests. Use Amazon Amplify to easily integrate with your iOS, Android, Web, and
React Native frontends.

When using Lambda, you are responsible only for your code. Lambda manages the compute fleet
that offers a balance of memory, CPU, network, and other resources to run your code. Because
Lambda manages these resources, you cannot log in to compute instances or customize the
operating system on provided runtimes.

Lambda performs operational and administrative activities on your behalf, including managing
capacity, monitoring, and logging your Lambda functions.

If you do need to manage your compute resources, Amazon has other compute services to consider,
such as:

• Amazon App Runner builds and deploys containerized web applications automatically,
load balances traffic with encryption, scales to meet your traffic needs, and allows for the
configuration of how services are accessed and communicate with other Amazon applications in
a private Amazon VPC.

• Amazon Fargate with Amazon ECS runs containers without having to provision, configure, or
scale clusters of virtual machines.

• Amazon EC2 lets you customize operating system, network and security settings, and the entire
software stack. You are responsible for provisioning capacity, monitoring fleet health and
performance, and using Availability Zones for fault tolerance.

Key features

The following key features help you develop Lambda applications that are scalable, secure, and
easily extensible:

Environment variables

Use environment variables to adjust your function's behavior without updating code.

Versions

Manage the deployment of your functions with versions, so that, for example, a new function
can be used for beta testing without affecting users of the stable production version.

Key features 2

Amazon Lambda Developer Guide

Container images

Create a container image for a Lambda function by using an Amazon provided base image or
an alternative base image so that you can reuse your existing container tooling or deploy larger
workloads that rely on sizable dependencies, such as machine learning.

Layers

Package libraries and other dependencies to reduce the size of deployment archives and makes
it faster to deploy your code.

Lambda extensions

Augment your Lambda functions with tools for monitoring, observability, security, and
governance.

Function URLs

Add a dedicated HTTP(S) endpoint to your Lambda function.

Response streaming

Configure your Lambda function URLs to stream response payloads back to clients from Node.js
functions, to improve time to first byte (TTFB) performance or to return larger payloads.

Concurrency and scaling controls

Apply fine-grained control over the scaling and responsiveness of your production applications.

Code signing

Verify that only approved developers publish unaltered, trusted code in your Lambda functions

Private networking

Create a private network for resources such as databases, cache instances, or internal services.

File system access

Configure a function to mount an Amazon Elastic File System (Amazon EFS) to a local
directory, so that your function code can access and modify shared resources safely and at high
concurrency.

Lambda SnapStart for Java

Improve startup performance for Java runtimes by up to 10x at no extra cost, typically with no
changes to your function code.

Key features 3

Amazon Lambda Developer Guide

Getting started with Lambda

To get started with Lambda, use the Lambda console to create a function. In a few minutes, you
can create and deploy a function and test it in the console.

As you carry out the tutorial, you'll learn some fundamental Lambda concepts, like how to pass
arguments to your function using the Lambda event object. You'll also learn how to return log
outputs from your function, and how to view your function's invocation logs in CloudWatch Logs.

To keep things simple, you create your function using either the Python or Node.js runtime. With
these interpreted languages, you can edit function code directly in the console's built-in code
editor. With compiled languages like Java and C#, you need to create a deployment package on
your local build machine and upload it to Lambda. To learn about deploying functions to Lambda
using other runtimes, see the links in the the section called “Additional resources and next steps”
section.

Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

Prerequisites

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Prerequisites 4

https://docs.amazonaws.cn/serverless/latest/devguide/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/

Amazon Lambda Developer Guide

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Create a Lambda function with the console

In this example, your function takes a JSON object containing two integer values labeled
"length" and "width". The function multiplies these values to calculate an area and returns this
as a JSON string.

Your function also prints the calculated area, along with the name of its CloudWatch log group.
Later in the tutorial, you’ll learn to use CloudWatch Logs to view records of your functions’
invocation.

To create your function, you first use the console to create a basic Hello world function. In the
following step, you then add your own function code.

To create a Hello world Lambda function with the console

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Select Author from scratch.

4. In the Basic information pane, for Function name enter myLambdaFunction.

5. For Runtime, choose either Node.js 20.x or Python 3.12

6. Leave architecture set to x86_64 and choose Create function.

Create a Lambda function with the console 5

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Lambda creates a function that returns the message Hello from Lambda! Lambda also
creates an execution role for your function. An execution role is an Amazon Identity and Access
Management (IAM) role that grants a Lambda function permission to access Amazon Web Services
and resources. For your function, the role that Lambda creates grants basic permissions to write to
CloudWatch Logs.

You now use the console's built-in code editor to replace the Hello world code that Lambda created
with your own function code.

Node.js

To modify the code in the console

1. Choose the Code tab.

In the console's built-in code editor, you should see the function code that Lambda created.
If you don't see the index.mjs tab in the code editor, select index.mjs in the file explorer as
shown on the following diagram.

2. Paste the following code into the index.mjs tab, replacing the code that Lambda created.

export const handler = async (event, context) => {

 const length = event.length;
 const width = event.width;
 let area = calculateArea(length, width);
 console.log(`The area is ${area}`);

Create a Lambda function with the console 6

Amazon Lambda Developer Guide

 console.log('CloudWatch log group: ', context.logGroupName);

 let data = {
 "area": area,
 };
 return JSON.stringify(data);

 function calculateArea(length, width) {
 return length * width;
 }
};

3. Select Deploy to update your function's code. When Lambda has deployed the changes, the
console displays a banner letting you know that it's successfully updated your function.

Understanding your function code

Before you move to the next step, let's take a moment to look at the function code and
understand some key Lambda concepts.

• The Lambda handler:

Your Lambda function contains a Node.js function named handler. A Lambda function in
Node.js can contain more than one Node.js function, but the handler function is always the
entry point to your code. When your function is invoked, Lambda runs this method.

When you created your Hello world function using the console, Lambda automatically set the
name of the handler method for your function to handler. Be sure not to edit the name of
this Node.js function. If you do, Lambda won’t be able to run your code when you invoke your
function.

To learn more about the Lambda handler in Node.js, see the section called “Handler”.

• The Lambda event object:

The function handler takes two arguments, event and context. An event in Lambda is a
JSON formatted document that contains data for your function to process.

If your function is invoked by another Amazon Web Service, the event object contains
information about the event that caused the invocation. For example, if an Amazon Simple
Storage Service (Amazon S3) bucket invokes your function when an object is uploaded, the
event will contain the name of the Amazon S3 bucket and the object key.

Create a Lambda function with the console 7

Amazon Lambda Developer Guide

In this example, you’ll create an event in the console by entering a JSON formatted document
with two key-value pairs.

• The Lambda context object:

The second argument your function takes is context. Lambda passes the context object to
your function automatically. The context object contains information about the function
invocation and execution environment.

You can use the context object to output information about your function's invocation for
monitoring purposes. In this example, your function uses the logGroupName parameter to
output the name of its CloudWatch log group.

To learn more about the Lambda context object in Node.js, see the section called “Context”.

• Logging in Lambda:

With Node.js, you can use console methods like console.log and console.error to send
information to your function's log. The example code uses console.log statements to
output the calculated area and the name of the function's CloudWatch Logs group. You can
also use any logging library that writes to stdout or stderr.

To learn more, see the section called “Logging”. To learn about logging in other runtimes, see
the 'Building with' pages for the runtimes you're interested in.

Python

To modify the code in the console

1. Choose the Code tab.

In the console's built-in code editor, you should see the function code that Lambda created.
If you don't see the lambda_function.py tab in the code editor, select lambda_function.py
in the file explorer as shown on the following diagram.

Create a Lambda function with the console 8

Amazon Lambda Developer Guide

2. Paste the following code into the lambda_function.py tab, replacing the code that Lambda
created.

import json
import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):

 # Get the length and width parameters from the event object. The
 # runtime converts the event object to a Python dictionary
 length=event['length']
 width=event['width']

 area = calculate_area(length, width)
 print(f"The area is {area}")

 logger.info(f"CloudWatch logs group: {context.log_group_name}")

 # return the calculated area as a JSON string
 data = {"area": area}
 return json.dumps(data)

def calculate_area(length, width):
 return length*width

Create a Lambda function with the console 9

Amazon Lambda Developer Guide

3. Select Deploy to update your function's code. When Lambda has deployed the changes, the
console displays a banner letting you know that it's successfully updated your function.

Understanding your function code

Before you move to the next step, let's take a moment to look at the function code and
understand some key Lambda concepts.

• The Lambda handler:

Your Lambda function contains a Python function named lambda_handler. A Lambda
function in Python can contain more than one Python function, but the handler function
is always the entry point to your code. When your function is invoked, Lambda runs this
method.

When you created your Hello world function using the console, Lambda automatically set the
name of the handler method for your function to lambda_handler. Be sure not to edit the
name of this Python function. If you do, Lambda won’t be able to run your code when you
invoke your function.

To learn more about the Lambda handler in Python, see the section called “Handler”.

• The Lambda event object:

The function lambda_handler takes two arguments, event and context. An event in
Lambda is a JSON formatted document that contains data for your function to process.

If your function is invoked by another Amazon Web Service, the event object contains
information about the event that caused the invocation. For example, if an Amazon Simple
Storage Service (Amazon S3) bucket invokes your function when an object is uploaded, the
event will contain the name of the Amazon S3 bucket and the object key.

In this example, you’ll create an event in the console by entering a JSON formatted document
with two key-value pairs.

• The Lambda context object:

The second argument your function takes is context. Lambda passes the context object to
your function automatically. The context object contains information about the function
invocation and execution environment.

Create a Lambda function with the console 10

Amazon Lambda Developer Guide

You can use the context object to output information about your function's invocation for
monitoring purposes. In this example, your function uses the log_group_name parameter to
output the name of its CloudWatch log group.

To learn more about the Lambda context object in Python, see the section called “Context”.

• Logging in Lambda:

With Python, you can use either a print statement or a Python logging library to send
information to your function's log. To illustrate the difference in what's captured, the example
code uses both methods. In a production application, we recommend that you use a logging
library.

To learn more, see the section called “Logging”. To learn about logging in other runtimes, see
the 'Building with' pages for the runtimes you're interested in.

Invoke the Lambda function using the console

To invoke your function using the Lambda console, you first create a test event to send to your
function. The event is a JSON formatted document containing two key-value pairs with the keys
"length" and "width".

To create the test event

1. In the Code source pane, choose Test.

2. Select Create new event.

3. For Event name enter myTestEvent.

4. In the Event JSON panel, replace the default values by pasting in the following:

{
 "length": 6,
 "width": 7
}

5. Choose Save.

You now test your function and use the Lambda console and CloudWatch Logs to view records of
your function’s invocation.

Invoke the Lambda function using the console 11

Amazon Lambda Developer Guide

To test your function and view invocation records in the console

• In the Code source pane, choose Test. When your function finishes running, you’ll see the
response and function logs displayed in the Execution results tab. You should see results
similar to the following.

Node.js

Test Event Name
myTestEvent

Response
"{\"area\":42}"

Function Logs
START RequestId: 5c012b0a-18f7-4805-b2f6-40912935034a Version: $LATEST
2023-08-31T23:39:45.313Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO The area is
 42
2023-08-31T23:39:45.331Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO CloudWatch
 log group: /aws/lambda/myLambdaFunction
END RequestId: 5c012b0a-18f7-4805-b2f6-40912935034a
REPORT RequestId: 5c012b0a-18f7-4805-b2f6-40912935034a Duration: 20.67 ms Billed
 Duration: 21 ms Memory Size: 128 MB Max Memory Used: 66 MB Init Duration:
 163.87 ms

Request ID
5c012b0a-18f7-4805-b2f6-40912935034a

Python

Test Event Name
myTestEvent

Response
"{\"area\": 42}"

Function Logs
START RequestId: 2d0b1579-46fb-4bf7-a6e1-8e08840eae5b Version: $LATEST
The area is 42
[INFO] 2023-08-31T23:43:26.428Z 2d0b1579-46fb-4bf7-a6e1-8e08840eae5b CloudWatch
 logs group: /aws/lambda/myLambdaFunction
END RequestId: 2d0b1579-46fb-4bf7-a6e1-8e08840eae5b

Invoke the Lambda function using the console 12

Amazon Lambda Developer Guide

REPORT RequestId: 2d0b1579-46fb-4bf7-a6e1-8e08840eae5b Duration: 1.42 ms Billed
 Duration: 2 ms Memory Size: 128 MB Max Memory Used: 39 MB Init Duration: 123.74
 ms

Request ID
2d0b1579-46fb-4bf7-a6e1-8e08840eae5b

In this example, you invoked your code using the console's test feature. This means that you can
view your function's execution results directly in the console. When your function is invoked outside
the console, you need to use CloudWatch Logs.

To view your function's invocation records in CloudWatch Logs

1. Open the Log groups page of the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/myLambdaFunction). This is the log
group name that your function printed to the console.

3. In the Log streams tab, choose the log stream for your function's invocation.

You should see output similar to the following:

Node.js

INIT_START Runtime Version: nodejs:20.v13 Runtime Version ARN:
 arn:aws:lambda:us-
west-2::runtime:e3aaabf6b92ef8755eaae2f4bfdcb7eb8c4536a5e044900570a42bdba7b869d9
START RequestId: aba6c0fc-cf99-49d7-a77d-26d805dacd20 Version: $LATEST
2023-08-23T22:04:15.809Z 5c012b0a-18f7-4805-b2f6-40912935034a INFO The area
 is 42
2023-08-23T22:04:15.810Z aba6c0fc-cf99-49d7-a77d-26d805dacd20 INFO
 CloudWatch log group: /aws/lambda/myLambdaFunction
END RequestId: aba6c0fc-cf99-49d7-a77d-26d805dacd20
REPORT RequestId: aba6c0fc-cf99-49d7-a77d-26d805dacd20 Duration: 17.77 ms
 Billed Duration: 18 ms Memory Size: 128 MB Max Memory Used: 67 MB Init
 Duration: 178.85 ms

Python

INIT_START Runtime Version: python:3.12.v16 Runtime Version ARN:
 arn:aws:lambda:us-
west-2::runtime:ca202755c87b9ec2b58856efb7374b4f7b655a0ea3deb1d5acc9aee9e297b072

Invoke the Lambda function using the console 13

https://console.amazonaws.cn/cloudwatch/home#logs:

Amazon Lambda Developer Guide

START RequestId: 9d4096ee-acb3-4c25-be10-8a210f0a9d8e Version: $LATEST
The area is 42
[INFO] 2023-09-01T00:05:22.464Z 9315ab6b-354a-486e-884a-2fb2972b7d84 CloudWatch
 logs group: /aws/lambda/myLambdaFunction
END RequestId: 9d4096ee-acb3-4c25-be10-8a210f0a9d8e
REPORT RequestId: 9d4096ee-acb3-4c25-be10-8a210f0a9d8e Duration: 1.15 ms
 Billed Duration: 2 ms Memory Size: 128 MB Max Memory Used: 40 MB

Clean up

When you're finished working with the example function, delete it. You can also delete the log
group that stores the function's logs, and the execution role that the console created.

To delete a Lambda function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Actions, Delete.

4. In the Delete function dialog box, enter delete, and then choose Delete.

To delete the log group

1. Open the Log groups page of the CloudWatch console.

2. Select the function's log group (/aws/lambda/my-function).

3. Choose Actions, Delete log group(s).

4. In the Delete log group(s) dialog box, choose Delete.

To delete the execution role

1. Open the Roles page of the Amazon Identity and Access Management (IAM) console.

2. Select the function's execution role (for example, myLambdaFunction-role-31exxmpl).

3. Choose Delete.

4. In the Delete role dialog box, enter the role name and then choose Delete.

Clean up 14

https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/cloudwatch/home#logs:
https://console.amazonaws.cn/iam/home?#/roles

Amazon Lambda Developer Guide

You can automate the creation and cleanup of functions, log groups, and roles with Amazon
CloudFormation and the Amazon Command Line Interface (Amazon CLI).

Additional resources and next steps

Now you’ve created and tested a simple Lambda function using the console, take these next steps:

• Learn to add dependencies to your code and deploy it using a .zip deployment package. Choose
from the following links for the languages you're interested in.

Node.js

See the section called “Deploy .zip file archives”

Typescript

See the section called “Deploy .zip file archives”

Python

See the section called “Deploy .zip file archives”

Ruby

See the section called “Deploy .zip file archives”

Java

See the section called “Deploy .zip file archives”

Go

See the section called “Deploy .zip file archives”

C#

See the section called “Deployment package”

• Carry out the tutorial Using an Amazon S3 trigger to invoke a Lambda function to learn how to
configure a Lambda function to be invoked by another Amazon Web Service.

• Choose one of the following tutorials for a more complex example of using Lambda with other
Amazon Web Services.

• Using Lambda with API Gateway: Create an Amazon API Gateway REST API that invokes a
Lambda function.

Additional resources and next steps 15

Amazon Lambda Developer Guide

• Using a Lambda function to access an Amazon RDS database: Use a Lambda function to write
data to an Amazon Relational Database Service (Amazon RDS) database through RDS Proxy.

• Using an Amazon S3 trigger to create thumbnail images: Use a Lambda function to create a
thumbnail every time an image file is uploaded to an Amazon S3 bucket.

Additional resources and next steps 16

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html

Amazon Lambda Developer Guide

Amazon Lambda foundations

The Lambda function is the principal resource of the Lambda service.

You can configure your functions using the Lambda console, Lambda API, Amazon CloudFormation
or Amazon SAM. You create code for the function and upload the code using a deployment
package. Lambda invokes the function when an event occurs. Lambda runs multiple instances of
your function in parallel, governed by concurrency and scaling limits.

Topics

• Lambda concepts

• Lambda programming model

• Lambda execution environment

• Lambda deployment packages

• Using Lambda with infrastructure as code (IaC)

• Private networking with VPC

• Lambda instruction set architectures (ARM/x86)

• Edit code using the Lambda console editor

• Additional Lambda features

• Learn how to build serverless solutions

17

Amazon Lambda Developer Guide

Lambda concepts

Lambda runs instances of your function to process events. You can invoke your function directly
using the Lambda API, or you can configure an Amazon service or resource to invoke your function.

Concepts

• Function

• Trigger

• Event

• Execution environment

• Instruction set architecture

• Deployment package

• Runtime

• Layer

• Extension

• Concurrency

• Qualifier

• Destination

Function

A function is a resource that you can invoke to run your code in Lambda. A function has code to
process the events that you pass into the function or that other Amazon services send to the
function.

Trigger

A trigger is a resource or configuration that invokes a Lambda function. Triggers include Amazon
services that you can configure to invoke a function and event source mappings. An event source
mapping is a resource in Lambda that reads items from a stream or queue and invokes a function.
For more information, see Invoking Lambda functions and Using Amazon Lambda with other
services.

Concepts 18

Amazon Lambda Developer Guide

Event

An event is a JSON-formatted document that contains data for a Lambda function to process. The
runtime converts the event to an object and passes it to your function code. When you invoke a
function, you determine the structure and contents of the event.

Example custom event – weather data

{
 "TemperatureK": 281,
 "WindKmh": -3,
 "HumidityPct": 0.55,
 "PressureHPa": 1020
}

When an Amazon service invokes your function, the service defines the shape of the event.

Example service event – Amazon SNS notification

{
 "Records": [
 {
 "Sns": {
 "Timestamp": "2019-01-02T12:45:07.000Z",
 "Signature": "tcc6faL2yUC6dgZdmrwh1Y4cGa/ebXEkAi6RibDsvpi+tE/1+82j...65r==",
 "MessageId": "95df01b4-ee98-5cb9-9903-4c221d41eb5e",
 "Message": "Hello from SNS!",
 ...

For more information about events from Amazon services, see Using Amazon Lambda with other
services.

Execution environment

An execution environment provides a secure and isolated runtime environment for your Lambda
function. An execution environment manages the processes and resources that are required to run
the function. The execution environment provides lifecycle support for the function and for any
extensions associated with your function.

For more information, see Lambda execution environment.

Event 19

Amazon Lambda Developer Guide

Instruction set architecture

The instruction set architecture determines the type of computer processor that Lambda uses to
run the function. Lambda provides a choice of instruction set architectures:

• arm64 – 64-bit ARM architecture, for the Amazon Graviton2 processor.

• x86_64 – 64-bit x86 architecture, for x86-based processors.

For more information, see Lambda instruction set architectures (ARM/x86).

Deployment package

You deploy your Lambda function code using a deployment package. Lambda supports two types of
deployment packages:

• A .zip file archive that contains your function code and its dependencies. Lambda provides the
operating system and runtime for your function.

• A container image that is compatible with the Open Container Initiative (OCI) specification. You
add your function code and dependencies to the image. You must also include the operating
system and a Lambda runtime.

For more information, see Lambda deployment packages.

Runtime

The runtime provides a language-specific environment that runs in an execution environment.
The runtime relays invocation events, context information, and responses between Lambda and
the function. You can use runtimes that Lambda provides, or build your own. If you package your
code as a .zip file archive, you must configure your function to use a runtime that matches your
programming language. For a container image, you include the runtime when you build the image.

For more information, see Lambda runtimes.

Layer

A Lambda layer is a .zip file archive that can contain additional code or other content. A layer can
contain libraries, a custom runtime, data, or configuration files.

Instruction set architecture 20

https://opencontainers.org/

Amazon Lambda Developer Guide

Layers provide a convenient way to package libraries and other dependencies that you can use with
your Lambda functions. Using layers reduces the size of uploaded deployment archives and makes
it faster to deploy your code. Layers also promote code sharing and separation of responsibilities so
that you can iterate faster on writing business logic.

You can include up to five layers per function. Layers count towards the standard Lambda
deployment size quotas. When you include a layer in a function, the contents are extracted to the /
opt directory in the execution environment.

By default, the layers that you create are private to your Amazon account. You can choose to share
a layer with other accounts or to make the layer public. If your functions consume a layer that a
different account published, your functions can continue to use the layer version after it has been
deleted, or after your permission to access the layer is revoked. However, you cannot create a new
function or update functions using a deleted layer version.

Functions deployed as a container image do not use layers. Instead, you package your preferred
runtime, libraries, and other dependencies into the container image when you build the image.

For more information, see Lambda layers.

Extension

Lambda extensions enable you to augment your functions. For example, you can use extensions to
integrate your functions with your preferred monitoring, observability, security, and governance
tools. You can choose from a broad set of tools that Amazon Lambda Partners provides, or you can
create your own Lambda extensions.

An internal extension runs in the runtime process and shares the same lifecycle as the runtime.
An external extension runs as a separate process in the execution environment. The external
extension is initialized before the function is invoked, runs in parallel with the function's runtime,
and continues to run after the function invocation is complete.

For more information, see Lambda extensions.

Concurrency

Concurrency is the number of requests that your function is serving at any given time. When
your function is invoked, Lambda provisions an instance of it to process the event. When the
function code finishes running, it can handle another request. If the function is invoked again

Extension 21

https://www.amazonaws.cn/lambda/partners/

Amazon Lambda Developer Guide

while a request is still being processed, another instance is provisioned, increasing the function's
concurrency.

Concurrency is subject to quotas at the Amazon Region level. You can configure individual
functions to limit their concurrency, or to enable them to reach a specific level of concurrency. For
more information, see Configuring reserved concurrency.

Qualifier

When you invoke or view a function, you can include a qualifier to specify a version or alias. A
version is an immutable snapshot of a function's code and configuration that has a numerical
qualifier. For example, my-function:1. An alias is a pointer to a version that you can update to
map to a different version, or split traffic between two versions. For example, my-function:BLUE.
You can use versions and aliases together to provide a stable interface for clients to invoke your
function.

For more information, see Lambda function versions.

Destination

A destination is an Amazon resource where Lambda can send events from an asynchronous
invocation. You can configure a destination for events that fail processing. Some services also
support a destination for events that are successfully processed.

For more information, see Configuring destinations for asynchronous invocation.

Qualifier 22

Amazon Lambda Developer Guide

Lambda programming model

Lambda provides a programming model that is common to all of the runtimes. The programming
model defines the interface between your code and the Lambda system. You tell Lambda the entry
point to your function by defining a handler in the function configuration. The runtime passes in
objects to the handler that contain the invocation event and the context, such as the function name
and request ID.

When the handler finishes processing the first event, the runtime sends it another. The function's
class stays in memory, so clients and variables that are declared outside of the handler method in
initialization code can be reused. To save processing time on subsequent events, create reusable
resources like Amazon SDK clients during initialization. Once initialized, each instance of your
function can process thousands of requests.

Your function also has access to local storage in the /tmp directory. The directory content remains
when the execution environment is frozen, providing a transient cache that can be used for
multiple invocations. For more information, see Lambda execution environment.

When Amazon X-Ray tracing is enabled, the runtime records separate subsegments for
initialization and execution.

The runtime captures logging output from your function and sends it to Amazon CloudWatch
Logs. In addition to logging your function's output, the runtime also logs entries when function
invocation starts and ends. This includes a report log with the request ID, billed duration,
initialization duration, and other details. If your function throws an error, the runtime returns that
error to the invoker.

Note

Logging is subject to CloudWatch Logs quotas. Log data can be lost due to throttling or, in
some cases, when an instance of your function is stopped.

Lambda scales your function by running additional instances of it as demand increases, and by
stopping instances as demand decreases. This model leads to variations in application architecture,
such as:

• Unless noted otherwise, incoming requests might be processed out of order or concurrently.

Programming model 23

https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtime-environment.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html

Amazon Lambda Developer Guide

• Do not rely on instances of your function being long lived, instead store your application's state
elsewhere.

• Use local storage and class-level objects to increase performance, but keep to a minimum the
size of your deployment package and the amount of data that you transfer onto the execution
environment.

For a hands-on introduction to the programming model in your preferred programming language,
see the following chapters.

• Building Lambda functions with Node.js

• Building Lambda functions with Python

• Building Lambda functions with Ruby

• Building Lambda functions with Java

• Building Lambda functions with Go

• Building Lambda functions with C#

• Building Lambda functions with PowerShell

Programming model 24

Amazon Lambda Developer Guide

Lambda execution environment

Lambda invokes your function in an execution environment, which provides a secure and isolated
runtime environment. The execution environment manages the resources required to run your
function. The execution environment also provides lifecycle support for the function's runtime and
any external extensions associated with your function.

The function's runtime communicates with Lambda using the Runtime API. Extensions
communicate with Lambda using the Extensions API. Extensions can also receive log messages and
other telemetry from the function by using the Telemetry API.

When you create your Lambda function, you specify configuration information, such as the amount
of memory available and the maximum execution time allowed for your function. Lambda uses this
information to set up the execution environment.

The function's runtime and each external extension are processes that run within the execution
environment. Permissions, resources, credentials, and environment variables are shared between
the function and the extensions.

Topics

• Lambda execution environment lifecycle

Execution environment 25

Amazon Lambda Developer Guide

Lambda execution environment lifecycle

Each phase starts with an event that Lambda sends to the runtime and to all registered extensions.
The runtime and each extension indicate completion by sending a Next API request. Lambda
freezes the execution environment when the runtime and each extension have completed and
there are no pending events.

Topics

• Init phase

• Failures during the Init phase

• Restore phase (Lambda SnapStart only)

• Invoke phase

• Failures during the invoke phase

• Shutdown phase

Init phase

In the Init phase, Lambda performs three tasks:

• Start all extensions (Extension init)

• Bootstrap the runtime (Runtime init)

• Run the function's static code (Function init)

• Run any beforeCheckpoint runtime hooks (Lambda SnapStart only)

The Init phase ends when the runtime and all extensions signal that they are ready by sending
a Next API request. The Init phase is limited to 10 seconds. If all three tasks do not complete
within 10 seconds, Lambda retries the Init phase at the time of the first function invocation with
the configured function timeout.

Runtime environment lifecycle 26

Amazon Lambda Developer Guide

When Lambda SnapStart is activated, the Init phase happens when you publish a function
version. Lambda saves a snapshot of the memory and disk state of the initialized execution
environment, persists the encrypted snapshot, and caches it for low-latency access. If you have a
beforeCheckpoint runtime hook, then the code runs at the end of Init phase.

Note

The 10-second timeout doesn't apply to functions that are using provisioned concurrency
or SnapStart. For provisioned concurrency and SnapStart functions, your initialization code
can run for up to 15 minutes. The time limit is 130 seconds or the configured function
timeout (maximum 900 seconds), whichever is higher.

When you use provisioned concurrency, Lambda initializes the execution environment when
you configure the PC settings for a function. Lambda also ensures that initialized execution
environments are always available in advance of invocations. You may see gaps between your
function's invocation and initialization phases. Depending on your function's runtime and memory
configuration, you may also see variable latency on the first invocation on an initialized execution
environment.

For functions using on-demand concurrency, Lambda may occasionally initialize execution
environments ahead of invocation requests. When this happens, you may also observe a time gap
between your function's initialization and invocation phases. We recommend you to not take a
dependency on this behavior.

Failures during the Init phase

If a function crashes or times out during the Init phase, Lambda emits error information in the
INIT_REPORT log.

Example — INIT_REPORT log for timeout

INIT_REPORT Init Duration: 1236.04 ms Phase: init Status: timeout

Example — INIT_REPORT log for extension failure

INIT_REPORT Init Duration: 1236.04 ms Phase: init Status: error Error Type:
 Extension.Crash

Runtime environment lifecycle 27

https://docs.amazonaws.cn/lambda/latest/dg/provisioned-concurrency.html

Amazon Lambda Developer Guide

If the Init phase is successful, Lambda doesn't emit the INIT_REPORT log—unless SnapStart is
activated. SnapStart functions always emit INIT_REPORT. For more information, see Monitoring
for Lambda SnapStart.

Restore phase (Lambda SnapStart only)

When you first invoke a SnapStart function and as the function scales up, Lambda resumes
new execution environments from the persisted snapshot instead of initializing the function
from scratch. If you have an afterRestore() runtime hook, the code runs at the end of the
Restore phase. You are charged for the duration of afterRestore() runtime hooks. The
runtime (JVM) must load and afterRestore() runtime hooks must complete within the timeout
limit (10 seconds). Otherwise, you'll get a SnapStartTimeoutException. When the Restore phase
completes, Lambda invokes the function handler (the Invoke phase).

Failures during the Restore phase

If the Restore phase fails, Lambda emits error information in the RESTORE_REPORT log.

Example — RESTORE_REPORT log for timeout

RESTORE_REPORT Restore Duration: 1236.04 ms Status: timeout

Example — RESTORE_REPORT log for runtime hook failure

RESTORE_REPORT Restore Duration: 1236.04 ms Status: error Error Type: Runtime.ExitError

For more information about the RESTORE_REPORT log, see Monitoring for Lambda SnapStart.

Invoke phase

When a Lambda function is invoked in response to a Next API request, Lambda sends an Invoke
event to the runtime and to each extension.

The function's timeout setting limits the duration of the entire Invoke phase. For example, if you
set the function timeout as 360 seconds, the function and all extensions need to complete within
360 seconds. Note that there is no independent post-invoke phase. The duration is the sum of all
invocation time (runtime + extensions) and is not calculated until the function and all extensions
have finished executing.

Runtime environment lifecycle 28

Amazon Lambda Developer Guide

The invoke phase ends after the runtime and all extensions signal that they are done by sending a
Next API request.

Failures during the invoke phase

If the Lambda function crashes or times out during the Invoke phase, Lambda resets the
execution environment. The following diagram illustrates Lambda execution environment behavior
when there's an invoke failure:

In the previous diagram:

• The first phase is the INIT phase, which runs without errors.

• The second phase is the INVOKE phase, which runs without errors.

• At some point, suppose your function runs into an invoke failure (such as a function timeout or
runtime error). The third phase, labeled INVOKE WITH ERROR , illustrates this scenario. When
this happens, the Lambda service performs a reset. The reset behaves like a Shutdown event.
First, Lambda shuts down the runtime, then sends a Shutdown event to each registered external
extension. The event includes the reason for the shutdown. If this environment is used for a new
invocation, Lambda re-initializes the extension and runtime together with the next invocation.

Note

The Lambda reset does not clear the /tmp directory content prior to the next init phase.
This behavior is consistent with the regular shutdown phase.

• The fourth phase represents the INVOKE phase immediately following an invoke failure.
Here, Lambda initializes the environment again by re-running the INIT phase. This is called a
suppressed init. When suppressed inits occur, Lambda doesn't explicitly report an additional INIT
phase in CloudWatch Logs. Instead, you may notice that the duration in the REPORT line includes
an additional INIT duration + the INVOKE duration. For example, suppose you see the following
logs in CloudWatch:

2022-12-20T01:00:00.000-08:00 START RequestId: XXX Version: $LATEST
2022-12-20T01:00:02.500-08:00 END RequestId: XXX

Runtime environment lifecycle 29

Amazon Lambda Developer Guide

2022-12-20T01:00:02.500-08:00 REPORT RequestId: XXX Duration: 3022.91 ms
Billed Duration: 3000 ms Memory Size: 512 MB Max Memory Used: 157 MB

In this example, the difference between the REPORT and START timestamps is 2.5 seconds.
This doesn't match the reported duration of 3022.91 millseconds, because it doesn't take into
account the extra INIT (suppressed init) that Lambda performed. In this example, you can infer
that the actual INVOKE phase took 2.5 seconds.

For more insight into this behavior, you can use the Lambda Telemetry API. The Telemetry API
emits INIT_START, INIT_RUNTIME_DONE, and INIT_REPORT events with phase=invoke
whenever suppressed inits occur in between invoke phases.

• The fifth phase represents the SHUTDOWN phase, which runs without errors.

Shutdown phase

When Lambda is about to shut down the runtime, it sends a Shutdown event to each registered
external extension. Extensions can use this time for final cleanup tasks. The Shutdown event is a
response to a Next API request.

Duration: The entire Shutdown phase is capped at 2 seconds. If the runtime or any extension does
not respond, Lambda terminates it via a signal (SIGKILL).

After the function and all extensions have completed, Lambda maintains the execution
environment for some time in anticipation of another function invocation. In effect, Lambda
freezes the execution environment. When the function is invoked again, Lambda thaws the
environment for reuse. Reusing the execution environment has the following implications:

• Objects declared outside of the function's handler method remain initialized, providing
additional optimization when the function is invoked again. For example, if your Lambda
function establishes a database connection, instead of reestablishing the connection, the original
connection is used in subsequent invocations. We recommend adding logic in your code to check
if a connection exists before creating a new one.

• Each execution environment provides between 512 MB and 10,240 MB, in 1-MB increments, of
disk space in the /tmp directory. The directory content remains when the execution environment
is frozen, providing a transient cache that can be used for multiple invocations. You can add extra
code to check if the cache has the data that you stored. For more information on deployment
size limits, see Lambda quotas.

Runtime environment lifecycle 30

Amazon Lambda Developer Guide

• Background processes or callbacks that were initiated by your Lambda function and did not
complete when the function ended resume if Lambda reuses the execution environment. Make
sure that any background processes or callbacks in your code are complete before the code exits.

When you write your function code, do not assume that Lambda automatically reuses the
execution environment for subsequent function invocations. Other factors may dictate a need for
Lambda to create a new execution environment, which can lead to unexpected results, such as
database connection failures.

Runtime environment lifecycle 31

Amazon Lambda Developer Guide

Lambda deployment packages

Your Amazon Lambda function's code consists of scripts or compiled programs and their
dependencies. You use a deployment package to deploy your function code to Lambda. Lambda
supports two types of deployment packages: container images and .zip file archives.

Topics

• Container images

• .zip file archives

• Layers

• Using other Amazon services to build a deployment package

Container images

A container image includes the base operating system, the runtime, Lambda extensions, your
application code and its dependencies. You can also add static data, such as machine learning
models, into the image.

Lambda provides a set of open-source base images that you can use to build your container
image. To create and test container images, you can use the Amazon Serverless Application Model
(Amazon SAM) command line interface (CLI) or native container tools such as the Docker CLI.

Upload your container images to Amazon Elastic Container Registry (Amazon ECR), a managed
Amazon container image registry service. To deploy the image to your function, specify the
Amazon ECR image URL using the Lambda console, the Lambda API, command line tools, or the
Amazon SDKs.

For more information about Lambda container images, see Working with Lambda container
images.

.zip file archives

A .zip file archive includes your application code and its dependencies. When you author functions
using the Lambda console or a toolkit, Lambda automatically creates a .zip file archive of your
code.

When you create functions with the Lambda API, command line tools, or the Amazon SDKs, you
must create a deployment package. You must also create a deployment package if your function

Deployment packages 32

Amazon Lambda Developer Guide

uses a compiled language, or to add dependencies to your function. To deploy your function's code,
upload the deployment package from Amazon Simple Storage Service (Amazon S3) or your local
machine.

You can upload a .zip file as your deployment package using the Lambda console, Amazon
Command Line Interface (Amazon CLI), or to an Amazon Simple Storage Service (Amazon S3)
bucket.

Using the Lambda console

The following steps demonstrate how to upload a .zip file as your deployment package using the
Lambda console.

To upload a .zip file on the Lambda console

1. Open the Functions page on the Lambda console.

2. Select a function.

3. In the Code Source pane, choose Upload from and then .zip file.

4. Choose Upload to select your local .zip file.

5. Choose Save.

Using the Amazon CLI

You can upload a .zip file as your deployment package using the Amazon Command Line Interface
(Amazon CLI). For language-specific instructions, see the following topics.

Node.js

Deploy Node.js Lambda functions with .zip file archives

Python

Working with .zip file archives for Python Lambda functions

Ruby

Working with .zip file archives for Ruby Lambda functions

Java

Deploy Java Lambda functions with .zip or JAR file archives

.zip file archives 33

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Go

Deploy Go Lambda functions with .zip file archives

C#

Build and deploy C# Lambda functions with .zip file archives

PowerShell

Deploy PowerShell Lambda functions with .zip file archives

Using Amazon S3

You can upload a .zip file as your deployment package using Amazon Simple Storage Service
(Amazon S3). For more information, see .

Layers

If you deploy your function code using a .zip file archive, you can use Lambda layers as a
distribution mechanism for libraries, custom runtimes, and other function dependencies. Layers
enable you to manage your in-development function code independently from the unchanging
code and resources that it uses. You can configure your function to use layers that you create,
layers that Amazon provides, or layers from other Amazon customers.

You can't use layers with container images. Instead, package your preferred runtime, libraries, and
other dependencies into the container image when you build the image.

For more information about layers, see Lambda layers.

Using other Amazon services to build a deployment package

The following section describes other Amazon services you can use to package dependencies for
your Lambda function.

Deployment packages with C or C++ libraries

If your deployment package contains native libraries, you can build the deployment package
with Amazon Serverless Application Model (Amazon SAM). You can use the Amazon SAM CLI sam
build command with the --use-container to create your deployment package. This option
builds a deployment package inside a Docker image that is compatible with the Lambda execution
environment.

Layers 34

Amazon Lambda Developer Guide

For more information, see sam build in the Amazon Serverless Application Model Developer Guide.

Deployment packages over 50 MB

If your deployment package is larger than 50 MB, upload your function code and dependencies to
an Amazon S3 bucket.

You can create a deployment package and upload the .zip file to your Amazon S3 bucket in the
Amazon Region where you want to create a Lambda function. When you create your Lambda
function, specify the S3 bucket name and object key name on the Lambda console, or using the
Amazon CLI.

To create a bucket using the Amazon S3 console, see Creating a bucket in the Amazon Simple
Storage Service User Guide.

Using other Amazon services 35

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-build.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/create-bucket-overview.html

Amazon Lambda Developer Guide

Using Lambda with infrastructure as code (IaC)

Lambda offers several ways to deploy your code and create functions. For instance, you can use
the Lambda console or the Amazon Command Line Interface (Amazon CLI) to manually create
or update Lambda functions. In addition to these manual options, Amazon offers a number of
solutions for deploying Lambda functions and serverless applications using infrastructure as code
(IaC). With IaC, you can provision and maintain Lambda functions and other Amazon resources
using code instead of using manual processes and settings.

Most of the time, Lambda functions don’t run in isolation. Instead, they form part of a serverless
application with other resources such as databases, queues, and storage. With IaC, you can
automate your deployment processes to quickly and repeatably deploy and update whole
serverless applications involving many separate Amazon resources. This approach speeds up your
development cycle, makes configuration management easier, and ensures that your resources are
deployed the same way every time.

Topics

• IaC tools for Lambda

• Getting started with IaC for Lambda

• Next steps

• Supported regions for Lambda integration with Application Composer

IaC tools for Lambda

To deploy Lambda functions and serverless applications using IaC, Amazon offers a number of
different tools and services.

Amazon CloudFormation was the first service offered by Amazon to create and configure cloud
resources. With Amazon CloudFormation, you create text templates to define infrastructure
and code. As Amazon introduced more new services and the complexity of creating Amazon
CloudFormation templates increased, two further tools were released. Amazon SAM is another
template-based framework for defining serverless applications. The Amazon Cloud Development
Kit (Amazon CDK) is a code-first approach for defining and provisioning infrastructure using code
constructs in many popular programming languages.

Infrastructure as code (IaC) 36

Amazon Lambda Developer Guide

With both Amazon SAM and the Amazon CDK, Amazon CloudFormation operates behind the
scenes to build and deploy your infrastructure. The following diagram illustrates the relationship
between these tools, and the paragraphs after the diagram explain their key features.

• Amazon CloudFormation - With CloudFormation you model and set up your Amazon
resources using a YAML or JSON template that describes your resources and their properties.
CloudFormation provisions your resources in a safe, repeatable manner, enabling you to
frequently build your infrastructure and applications without manual steps. When you change
the configuration, CloudFormation determines the right operations to perform to update your
stack. CloudFormation can even roll back changes.

• Amazon Serverless Application Model (Amazon SAM) - Amazon SAM is an open-source
framework for defining serverless applications. Amazon SAM templates use a shorthand
syntax to define functions, APIs, databases, and event source mappings with just a few lines
of text (YAML) per resource. During deployment, Amazon SAM transforms and expands the
Amazon SAM syntax into Amazon CloudFormation syntax. Because of this, any CloudFormation
syntax can be added to Amazon SAM templates. This gives Amazon SAM all the power of
CloudFormation, but with fewer lines of configuration.

• Amazon Cloud Development Kit (Amazon CDK) - With the Amazon CDK, you define your
infrastructure using code constructs and provision it through Amazon CloudFormation. Amazon
CDK enables you to model application infrastructure with TypeScript, Python, Java, .NET, and Go
(in Developer Preview) using your existing IDE, testing tools, and workflow patterns. You get all

IaC tools for Lambda 37

Amazon Lambda Developer Guide

the benefits of Amazon CloudFormation, including repeatable deployment, easy rollback, and
drift detection.

Amazon also provides a service called Amazon Application Composer to develop IaC templates
using a simple graphical interface. With Application Composer, you design an application
architecture by dragging, grouping, and connecting Amazon Web Services in a visual canvas.
Application Composer then creates an Amazon SAM template or an Amazon CloudFormation
template from your design that you can use to deploy your application.

In the the section called “Getting started with IaC for Lambda” section below, you use Application
Composer to develop a template for a serverless application based on an existing Lambda function.

Getting started with IaC for Lambda

In this tutorial, you can get started using IaC with Lambda by creating an Amazon SAM template
from an existing Lambda function and then building out a serverless application in Application
Composer by adding other Amazon resources.

If you'd rather start by carrying out an Amazon SAM or Amazon CloudFormation tutorial to
learn how to work with templates without using Application Composer, you'll find links to other
resources in the the section called “Next steps” section at the end of this page.

As you carry out this tutorial, you’ll learn some fundamental concepts, like how Amazon resources
are specified in Amazon SAM. You’ll also learn how to use Application Composer to build a
serverless application you can deploy using Amazon SAM or Amazon CloudFormation.

To complete this tutorial, you’ll carry out the following steps:

• Create an example Lambda function

• Use the Lambda console to view the Amazon SAM template for the function

• Export your function’s configuration to Amazon Application Composer and design a simple
serverless application based on your function’s configuration

• Save an updated Amazon SAM template you can use as a basis to deploy your serverless
application

Getting started with IaC for Lambda 38

Amazon Lambda Developer Guide

In the the section called “Next steps” section, you’ll find resources you can use to learn more about
Amazon SAM and Application Composer. These resources include links to more advanced tutorials
that teach you how to deploy a serverless application using Amazon SAM.

Prerequisites

In this tutorial, you use Application Composer’s local sync feature to save your template and code
files to your local build machine. To use this feature, you need a browser that supports the File
System Access API, which allows web applications to read, write, and save files in your local file
system . We recommend using either Google Chrome or Microsoft Edge. For more information
about the File System Access API, see What is the File System Access API?

Create a Lambda function

In this first step, you create a Lambda function you can use to complete the rest of the tutorial. To
keep things simple, you use the Lambda console to create a basic 'Hello world' function using the
Python 3.11 runtime.

To create a 'Hello world' Lambda function using the console

1. Open the Lambda console.

2. Choose Create function.

3. Leave Author from scratch selected, and under Basic information, enter LambdaIaCDemo for
Function name.

4. For Runtime, select Python 3.11.

5. Choose Create function.

View the Amazon SAM template for your function

Before you export your function configuration to Application Composer, use the Lambda console
to view your function's current configuration as an Amazon SAM template. By following the steps
in this section, you'll learn about the anatomy of an Amazon SAM template and how to define
resources like Lambda functions to start specifying a serverless application.

To view the Amazon SAM template for your function

1. Open the Functions page of the Lambda console.

2. Choose the function you just created (LambdaIaCDemo).

Getting started with IaC for Lambda 39

https://docs.amazonaws.cn/application-composer/latest/dg/reference-features-local-sync.html
https://docs.amazonaws.cn/application-composer/latest/dg/reference-fsa.html#reference-fsa-api
https://console.amazonaws.cn/lambda
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

3. In the Function overview pane, choose Template.

In place of the diagram representing your function’s configuration, you’ll see an Amazon SAM
template for your function. The template should look like the following.

This AWS SAM template has been generated from your function's
configuration. If your function has one or more triggers, note
that the AWS resources associated with these triggers aren't fully
specified in this template and include placeholder values.Open this template
in AWS Application Composer or your favorite IDE and modify
it to specify a serverless application with other AWS resources.
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Specification template describing your function.
Resources:
 LambdaIaCDemo:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''
 MemorySize: 128
 Timeout: 3
 Handler: lambda_function.lambda_handler
 Runtime: python3.11
 Architectures:
 - x86_64
 EventInvokeConfig:
 MaximumEventAgeInSeconds: 21600
 MaximumRetryAttempts: 2
 EphemeralStorage:
 Size: 512
 RuntimeManagementConfig:
 UpdateRuntimeOn: Auto
 SnapStart:
 ApplyOn: None
 PackageType: Zip
 Policies:
 Statement:
 - Effect: Allow
 Action:
 - logs:CreateLogGroup
 Resource: arn:aws:logs:us-east-1:123456789012:*
 - Effect: Allow

Getting started with IaC for Lambda 40

Amazon Lambda Developer Guide

 Action:
 - logs:CreateLogStream
 - logs:PutLogEvents
 Resource:
 - >-
 arn:aws:logs:us-east-1:123456789012:log-group:/aws/lambda/
LambdaIaCDemo:*

Let’s take a moment to look at the YAML template for your function and understand some key
concepts.

The template starts with the declaration Transform: AWS::Serverless-2016-10-31. This
declaration is required because behind the scenes, Amazon SAM templates are deployed through
Amazon CloudFormation. Using the Transform statement identifies the template as an Amazon
SAM template file.

Following the Transform declaration comes the Resources section. This is where the Amazon
resources you want to deploy with your Amazon SAM template are defined. Amazon SAM
templates can contain a combination of Amazon SAM resources and Amazon CloudFormation
resources. This is because during deployment, Amazon SAM templates expand to Amazon
CloudFormation templates, so any valid Amazon CloudFormation syntax can be added to an
Amazon SAM template.

At the moment, there is just one resource defined in the Resources section of the template,
your Lambda function LambdaIaCDemo. To add a Lambda function to an Amazon SAM template,
you use the AWS::Serverless::Function resource type. The Properties of a Lambda
function resource define the function’s runtime, function handler, and other configuration
options. The path to your function’s source code that Amazon SAM should use to deploy the
function is also defined here. To learn more about Lambda function resources in Amazon SAM, see
AWS::Serverless::Function in the Amazon SAM Developer Guide.

As well as the function properties and configurations, the template also specifies an Amazon
Identity and Access Management (IAM) policy for your function. This policy gives your function
permission to write logs to Amazon CloudWatch Logs. When you create a function in the Lambda
console, Lambda automatically attaches this policy to your function. To learn more about
specifying an IAM policy for a function in an Amazon SAM template, see the policies property
on the AWS::Serverless::Function page of the Amazon SAM Developer Guide.

To learn more about the structure of Amazon SAM templates, see Amazon SAM template anatomy.

Getting started with IaC for Lambda 41

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-specification-template-anatomy.html

Amazon Lambda Developer Guide

Use Amazon Application Composer to design a serverless application

To start building out a simple serverless application using your function’s Amazon SAM template
as a starting point, you export your function configuration to Application Composer and activate
Application Composer’s local sync mode. Local sync automatically saves your function’s code and
your Amazon SAM template to your local build machine and keeps your saved template synced as
you add other Amazon resources in Application Composer.

To export your function to Application Composer

1. In the Function Overview pane, choose Export to Application Composer.

To export your function's configuration and code to Application Composer, Lambda creates an
Amazon S3 bucket in your account to temporarily store this data.

2. In the dialog box, choose Confirm and create project to accept the default name for this
bucket and export your function's configuration and code to Application Composer.

3. (Optional) To choose another name for the Amazon S3 bucket that Lambda creates, enter a
new name and choose Confirm and create project. Amazon S3 bucket names must be globally
unique and follow the bucket naming rules.

Selecting Confirm and create project opens the Application Composer console. On the canvas,
you’ll see your Lambda function.

4. From the Menu dropdown, choose Activate local sync.

5. In the dialog box that opens, choose Select folder and select a folder on your local build
machine.

6. Choose Activate to activate local sync.

To export your function to Application Composer, you need permission to use certain API actions. If
you're unable to export your function, see the section called “Required permissions” and make sure
you have the permissions you need.

Note

Standard Amazon S3 pricing applies for the bucket Lambda creates when you export
a function to Application Composer. The objects that Lambda puts into the bucket are
automatically deleted after 10 days, but Lambda doesn't delete the bucket itself.

Getting started with IaC for Lambda 42

https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucketnamingrules.html
https://www.amazonaws.cn/s3/pricing

Amazon Lambda Developer Guide

To avoid additional charges being added to your Amazon Web Services account, follow
the instructions in Deleting a bucket after you have exported your function to Application
Composer. For more information about the Amazon S3 bucket Lambda creates, see the
section called “Application Composer”.

To design your serverless application in Application Composer

After activating local sync, changes you make in Application Composer will be reflected in the
Amazon SAM template saved on your local build machine. You can now drag and drop additional
Amazon resources onto the Application Composer canvas to build out your application. In this
example, you add an Amazon SQS simple queue as a trigger for your Lambda function and a
DynamoDB table for the function to write data to.

1. Add an Amazon SQS trigger to your Lambda function by doing the following:

a. In the search field in the Resources palette, enter SQS.

b. Drag the SQS Queue resource onto your canvas and position it to the left of your Lambda
function.

c. Choose Details, and for Logical ID enter LambdaIaCQueue.

d. Choose Save.

e. Connect your Amazon SQS and Lambda resources by clicking on the Subscription port on
the SQS queue card and dragging it to the left hand port on the Lambda function card.
The appearance of a line between the two resources indicates a successful connection.
Application Composer also displays a message at the bottom of the canvas indicating that
the two resources are successfully connected.

2. Add an Amazon DynamoDB table for your Lambda function to write data to by doing the
following:

a. In the search field in the Resources palette, enter DynamoDB.

b. Drag the DynamoDB Table resource onto your canvas and position it to the right of your
Lambda function.

c. Choose Details, and for Logical ID enter LambdaIaCTable.

d. Choose Save.

e. Connect the DynamoDB table to your Lambda function by clicking on the right hand port
of the Lambda function card and dragging it to the left hand port on the DynamoDB card.

Getting started with IaC for Lambda 43

https://docs.amazonaws.cn/AmazonS3/latest/userguide/delete-bucket.html

Amazon Lambda Developer Guide

Now that you’ve added these extra resources, let’s take a look at the updated Amazon SAM
template Application Composer has created.

To view your updated Amazon SAM template

• On the Application Composer canvas, choose Template to switch from the canvas view to the
template view.

Your Amazon SAM template should now contain the following additional resources and properties:

• An Amazon SQS queue with the identifier LambdaIaCQueue

LambdaIaCQueue:
 Type: AWS::SQS::Queue
 Properties:
 MessageRetentionPeriod: 345600

When you add an Amazon SQS queue using Application Composer, Application Composer
sets the MessageRetentionPeriod property. You can also set the FifoQueue property by
selecting Details on the SQS Queue card and checking or unchecking Fifo queue.

To set other properties for your queue, you can manually edit the template to add them.
To learn more about the AWS::SQS::Queue resource and its available properties, see
Amazon::SQS::Queue in the Amazon CloudFormation User Guide.

• An Events property in your Lambda function definition that specifies the Amazon SQS queue as
a trigger for the function

Events:
 LambdaIaCQueue:
 Type: SQS
 Properties:
 Queue: !GetAtt LambdaIaCQueue.Arn
 BatchSize: 1

The Events property consists of an event type and a set of properties that depend on the
type. To learn about the different Amazon Web Services you can configure to trigger a Lambda
function and the properties you can set, see EventSource in the Amazon SAM Developer Guide.

• A DynamoDB table with the identifier LambdaIaCTable

Getting started with IaC for Lambda 44

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-sqs-queue.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-property-function-eventsource.html

Amazon Lambda Developer Guide

LambdaIaCTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: S
 BillingMode: PAY_PER_REQUEST
 KeySchema:
 - AttributeName: id
 KeyType: HASH
 StreamSpecification:
 StreamViewType: NEW_AND_OLD_IMAGES

When you add a DynamoDB table using Application Composer, you can set your table's keys
by choosing Details on the DynamoDB table card and editing the key values. Application
Composer also sets default values for a number of other properties including BillingMode and
StreamViewType.

To learn more about these properties and other properties you can add to your Amazon SAM
template, see Amazon::DynamoDB::Table in the Amazon CloudFormation User Guide.

• A new IAM policy that gives your function permission to perform CRUD operations on the
DynamoDB table you added.

Policies:
...
 - DynamoDBCrudPolicy:
 TableName: !Ref LambdaIaCTable

The complete final Amazon SAM template should look like the following.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Specification template describing your function.
Resources:
 LambdaIaCDemo:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''

Getting started with IaC for Lambda 45

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

Amazon Lambda Developer Guide

 MemorySize: 128
 Timeout: 3
 Handler: lambda_function.lambda_handler
 Runtime: python3.11
 Architectures:
 - x86_64
 EventInvokeConfig:
 MaximumEventAgeInSeconds: 21600
 MaximumRetryAttempts: 2
 EphemeralStorage:
 Size: 512
 RuntimeManagementConfig:
 UpdateRuntimeOn: Auto
 SnapStart:
 ApplyOn: None
 PackageType: Zip
 Policies:
 - Statement:
 - Effect: Allow
 Action:
 - logs:CreateLogGroup
 Resource: arn:aws:logs:us-east-1:594035263019:*
 - Effect: Allow
 Action:
 - logs:CreateLogStream
 - logs:PutLogEvents
 Resource:
 - arn:aws:logs:us-east-1:594035263019:log-group:/aws/lambda/
LambdaIaCDemo:*
 - DynamoDBCrudPolicy:
 TableName: !Ref LambdaIaCTable
 Events:
 LambdaIaCQueue:
 Type: SQS
 Properties:
 Queue: !GetAtt LambdaIaCQueue.Arn
 BatchSize: 1
 Environment:
 Variables:
 LAMBDAIACTABLE_TABLE_NAME: !Ref LambdaIaCTable
 LAMBDAIACTABLE_TABLE_ARN: !GetAtt LambdaIaCTable.Arn
 LambdaIaCQueue:
 Type: AWS::SQS::Queue
 Properties:

Getting started with IaC for Lambda 46

Amazon Lambda Developer Guide

 MessageRetentionPeriod: 345600
 LambdaIaCTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: S
 BillingMode: PAY_PER_REQUEST
 KeySchema:
 - AttributeName: id
 KeyType: HASH
 StreamSpecification:
 StreamViewType: NEW_AND_OLD_IMAGES

Deploy your serverless application using Amazon SAM (optional)

If you want to use Amazon SAM to deploy a serverless application using the template you just
created in Application Composer, you first need to install the Amazon SAM CLI. To do this, follow
the instructions in Installing the Amazon SAM CLI.

Before you deploy your application, you also need to update the function code that Application
Composer saved along with your template. At the moment, the lambda_function.py file that
Application Composer saved contains only the basic 'Hello world' code that Lambda provided when
you created the function.

To update your function code, copy the following code and paste it into the
lambda_function.py file Application Composer saved to your local build machine. You specified
the directory for Application Composer to save this file to when you activated Local Sync mode.

This code accepts a key value pair in a message from the Amazon SQS queue you created in
Application Composer. If both the key and value are strings, the code then uses them to write an
item to the DynamoDB table defined in your template.

Updated Python function code

import boto3
import os
import json

define the DynamoDB table that Lambda will connect to
tablename = os.environ['LAMBDAIACTABLE_TABLE_NAME']

Getting started with IaC for Lambda 47

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/install-sam-cli.html

Amazon Lambda Developer Guide

create the DynamoDB resource
dynamo = boto3.client('dynamodb')

def lambda_handler(event, context):
 # get the message out of the SQS event
 message = event['Records'][0]['body']
 data = json.loads(message)
 # write event data to DDB table
 if check_message_format(data):
 key = next(iter(data))
 value = data[key]
 dynamo.put_item(
 TableName=tablename,
 Item={
 'id': {'S': key},
 'Value': {'S': value}
 }
)
 else:
 raise ValueError("Input data not in the correct format")

check that the event object contains a single key value
pair that can be written to the database
def check_message_format(message):
 if len(message) != 1:
 return False

 key, value = next(iter(message.items()))

 if not (isinstance(key, str) and isinstance(value, str)):
 return False

 else:
 return True

To deploy your serverless application

To deploy your application using the Amazon SAM CLI, carry out the following steps. For your
function to build and deploy correctly, Python version 3.11 must be installed on your build
machine and on your PATH.

1. Run the following command from the directory in which Application Composer saved your
template.yaml and lambda_function.py files.

Getting started with IaC for Lambda 48

Amazon Lambda Developer Guide

sam build

This command gathers the build artifacts for your application and places them in the proper
format and location to deploy them.

2. To deploy your application and create the Lambda, Amazon SQS, and DynamoDB resources
specified in your Amazon SAM template, run the following command.

sam deploy --guided

Using the --guided flag means that Amazon SAM will show you prompts to guide you
through the deployment process. For this deployment, accept the default options by pressing
Enter.

During the deployment process, Amazon SAM creates the following resources in your Amazon Web
Services account:

• An Amazon CloudFormation stack named sam-app

• A Lambda function with the name format sam-app-LambdaIaCDemo-99VXPpYQVv1M

• An Amazon SQS queue with the name format sam-app-LambdaIaCQueue-xL87VeKsGiIo

• A DynamoDB table with the name format sam-app-LambdaIaCTable-CN0S66C0VLNV

Amazon SAM also creates the necessary IAM roles and policies so that your Lambda function can
read messages from the Amazon SQS queue and perform CRUD operations on the DynamoDB
table.

To learn more about using Amazon SAM to deploy serverless applications, see the resources in the
the section called “Next steps” section.

Testing your deployed application (optional)

To confirm that your serverless application deployed correctly, send a message to your Amazon
SQS queue containing a key value pair and check that Lambda writes an item into your DynamoDB
table using these values.

Getting started with IaC for Lambda 49

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html#cfn-concepts-stacks

Amazon Lambda Developer Guide

To test your serverless application

1. Open the Queues page of the Amazon SQS console and select the queue that
Amazon SAM created from your template. The name has the format sam-app-
LambdaIaCQueue-xL87VeKsGiIo.

2. Choose Send and receive messages and paste the following JSON into the Message body in
the Send message section.

{
 "myKey": "myValue"
}

3. Choose Send message.

Sending your message to the queue causes Lambda to invoke your function through the event
source mapping defined in your Amazon SAM template. To confirm that Lambda has invoked
your function as expected, confirm that an item has been added to your DynamoDB table.

4. Open the Tables page of the DynamoDB console and select your table. The name has the
format sam-app-LambdaIaCTable-CN0S66C0VLNV.

5. Choose Explore table items. In the Items returned pane, you should see an item with the id
myKey and the Value myValue.

Next steps

To learn more about using Application Composer with Amazon SAM and Amazon CloudFormation,
start with Using Application Composer with Amazon CloudFormation and Amazon SAM.

For a guided tutorial that uses Amazon SAM to deploy a serverless application designed in
Application Composer, we also recommend you carry out the Amazon Application Composer
tutorial in the Amazon Serverless Patterns Workshop.

Amazon SAM provides a command line interface (CLI) that you can use with Amazon SAM
templates and supported third-party integrations to build and run your serverless applications.
With the Amazon SAM CLI, you can build and deploy your application, perform local testing and
debugging, configure CI/CD pipelines, and more. To learn more about using the Amazon SAM CLI,
see Getting started with Amazon SAM in the Amazon Serverless Application Model Developer Guide.

Next steps 50

https://console.amazonaws.cn/sqs/v2/home#/queues
https://console.amazonaws.cn/dynamodbv2#tables
https://docs.amazonaws.cn/application-composer/latest/dg/other-services-cfn.html
https://catalog.workshops.aws/serverless-patterns/en-US/dive-deeper/module1a
https://catalog.workshops.aws/serverless-patterns/en-US/dive-deeper/module1a
https://catalog.workshops.aws/serverless-patterns/en-US
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html

Amazon Lambda Developer Guide

To learn how to deploy a serverless application with an Amazon SAM template using the Amazon
CloudFormation console, start with Using the Amazon CloudFormation console in the Amazon
CloudFormation User Guide.

Supported regions for Lambda integration with Application Composer

Lambda integration with Application Composer is supported in the following Amazon Web Services
Regions:

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Hyderabad)

• Asia Pacific (Jakarta)

• Asia Pacific (Melbourne)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Zurich)

• Europe (Ireland)

• Europe (London)

• Europe (Stockholm)

• Middle East (UAE)

Supported regions for Lambda integration with Application Composer 51

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/cfn-using-console.html

Amazon Lambda Developer Guide

Private networking with VPC

Amazon Virtual Private Cloud (Amazon VPC) is a virtual network in the Amazon cloud, dedicated
to your Amazon account. You can use Amazon VPC to create a private network for resources such
as databases, cache instances, or internal services. For more information about Amazon VPC, see
What is Amazon VPC?

A Lambda function always runs inside a VPC owned by the Lambda service. Lambda applies
network access and security rules to this VPC and Lambda maintains and monitors the VPC
automatically. If your Lambda function needs to access the resources in your account VPC,
configure the function to access the VPC. Lambda provides managed resources named Hyperplane
ENIs, which your Lambda function uses to connect from the Lambda VPC to an ENI (Elastic network
interface) in your account VPC.

There's no additional charge for using a VPC or a Hyperplane ENI. There are charges for some VPC
components, such as NAT gateways. For more information, see Amazon VPC Pricing.

Topics

• VPC network elements

• Connecting Lambda functions to your VPC

• Shared subnets

• Lambda Hyperplane ENIs

• Connections

• IPv6 support

• Security

• Observability

VPC network elements

Amazon VPC networks includes the following network elements:

• Elastic network interface – elastic network interface is a logical networking component in a VPC
that represents a virtual network card.

• Subnet – A range of IP addresses in your VPC. You can add Amazon resources to a specified
subnet. Use a public subnet for resources that must connect to the internet, and a private subnet
for resources that don't connect to the internet.

Private networking 52

https://docs.amazonaws.cn/vpc/latest/userguide/what-is-amazon-vpc.html
https://www.amazonaws.cn/vpc/pricing
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html

Amazon Lambda Developer Guide

• Security group – use security groups to control access to the Amazon resources in each subnet.

• Access control list (ACL) – use a network ACL to provide additional security in a subnet. The
default subnet ACL allows all inbound and outbound traffic.

• Route table – contains a set of routes that Amazon uses to direct the network traffic for your
VPC. You can explicitly associate a subnet with a particular route table. By default, the subnet is
associated with the main route table.

• Route – each route in a route table specifies a range of IP addresses and the destination where
Lambda sends the traffic for that range. The route also specifies a target, which is the gateway,
network interface, or connection through which to send the traffic.

• NAT gateway – An Amazon Network Address Translation (NAT) service that controls access from
a private VPC private subnet to the Internet.

• VPC endpoints – You can use an Amazon VPC endpoint to create private connectivity to
services hosted in Amazon, without requiring access over the internet or through a NAT device,
VPN connection, or Amazon Direct Connect connection. For more information, see Amazon
PrivateLink and VPC endpoints.

Tip

To configure your Lambda function to access a VPC and subnet, you can use the Lambda
Console or the API.
Refer to the VpcConfig section in CreateFunction to configure your function. See
Configuring VPC access (console) and Configuring VPC access (API) for detailed steps.

For more information about Amazon VPC networking definitions, see How Amazon VPC works in
the Amazon VPC Developer Guide and the Amazon VPC FAQs.

Connecting Lambda functions to your VPC

A Lambda function always runs inside a VPC owned by the Lambda service. By default, a Lambda
function isn't connected to VPCs in your account. When you connect a function to a VPC in your
account, the function can't access the internet unless your VPC provides access.

Lambda accesses resources in your VPC using a Hyperplane ENI. Hyperplane ENIs provide NAT
capabilities from the Lambda VPC to your account VPC using VPC-to-VPC NAT (V2N). V2N provides
connectivity from the Lambda VPC to your account VPC, but not in the other direction.

Connecting Lambda functions to your VPC 53

https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-services-overview.html
https://docs.aws.amazon.com/vpc/latest/userguide/endpoint-services-overview.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/vpc/latest/userguide/how-it-works.html
https://www.amazonaws.cn/vpc/faqs

Amazon Lambda Developer Guide

When you create a Lambda function (or update its VPC settings), Lambda allocates a Hyperplane
ENI for each subnet in your function's VPC configuration. Multiple Lambda functions can share a
network interface, if the functions share the same subnet and security group.

To connect to another Amazon service, you can use VPC endpoints for private communications
between your VPC and supported Amazon services. An alternative approach is to use a NAT
gateway to route outbound traffic to another Amazon service.

To give your function access to the internet, route outbound traffic to a NAT gateway in a public
subnet. The NAT gateway has a public IP address and can connect to the internet through the VPC's
internet gateway.

For information about how to configure Lambda VPC networking, see ??? and ???.

Shared subnets

VPC sharing allows multiple Amazon accounts to create their application resources, such as
Amazon EC2 instances and Lambda functions, in shared, centrally-managed virtual private clouds
(VPCs). In this model, the account that owns the VPC (owner) shares one or more subnets with
other accounts (participants) that belong to the same Amazon Organization.

To access private resources, connect your function to a private shared subnet in your VPC. The
subnet owner must share a subnet with you before you can connect a function to it. The subnet
owner can also unshare the subnet a later time, thereby removing connectivity. For details on how
to share, unshare, and manage VPC resources in shared subnets, see How to share your VPC with
other accounts in the Amazon VPC guide.

Lambda Hyperplane ENIs

The Hyperplane ENI is a managed network resource that the Lambda service creates and manages.
Multiple execution environments in the Lambda VPC can use a Hyperplane ENI to securely access
resources inside of VPCs in your account. Hyperplane ENIs provide NAT capabilities from the
Lambda VPC to your account VPC.

For each subnet, Lambda creates a network interface for each unique set of security groups.
Functions in the account that share the same subnet and security group combination will use
the same network interfaces. Connections made through the Hyperplane layer are automatically
tracked, even if the security group configuration does not otherwise require tracking. Inbound
packets from the VPC that don't correspond to established connections are dropped at the

Shared subnets 54

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html

Amazon Lambda Developer Guide

Hyperplane layer. For more information, see Security group connection tracking in the Amazon EC2
User Guide for Linux Instances.

Because the functions in your account share the ENI resources, the ENI lifecycle is more complex
than other Lambda resources. The following sections describe the ENI lifecycle.

ENI lifecycle

• Creating ENIs

• Managing ENIs

• Deleting ENIs

Creating ENIs

Lambda may create Hyperplane ENI resources for a newly created VPC-enabled function or for
a VPC configuration change to an existing function. The function remains in pending state while
Lambda creates the required resources. When the Hyperplane ENI is ready, the function transitions
to active state and the ENI becomes available for use. Lambda can require several minutes to create
a Hyperplane ENI.

For a newly created VPC-enabled function, any invocations or other API actions that operate on the
function fail until the function state transitions to active.

For a VPC configuration change to an existing function, any function invocations continue to use
the Hyperplane ENI associated with the old subnet and security group configuration until the
function state transitions to active.

If a Lambda function remains idle for 30 days, Lambda reclaims the unused Hyperplane ENIs and
sets the function state to idle. The next invocation causes Lambda to reactivate the idle function.
The invocation fails, and the function enters pending state until Lambda completes the creation or
allocation of a Hyperplane ENI.

For more information about function states, see Lambda function states.

Managing ENIs

Lambda uses permissions in your function's execution role to create and manage network
interfaces. Lambda creates a Hyperplane ENI when you define a unique subnet plus security
group combination for a VPC-enabled function in an account. Lambda reuses the Hyperplane ENI

Lambda Hyperplane ENIs 55

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/security-group-connection-tracking.html

Amazon Lambda Developer Guide

for other VPC-enabled functions in your account that use the same subnet and security group
combination.

There is no quota on the number of Lambda functions that can use the same Hyperplane
ENI. However, each Hyperplane ENI supports up to 65,000 connections/ports. If the number
of connections exceeds 65,000, Lambda creates a new Hyperplane ENI to provide additional
connections.

When you update your function configuration to access a different VPC, Lambda terminates
connectivity to the Hyperplane ENI in the previous VPC. The process to update the connectivity to a
new VPC can take several minutes. During this time, invocations to the function continue to use the
previous VPC. After the update is complete, new invocations start using the Hyperplane ENI in the
new VPC. At this point, the Lambda function is no longer connected to the previous VPC.

Deleting ENIs

When you update a function to remove its VPC configuration, Lambda requires up to 20 minutes
to delete the attached Hyperplane ENI. Lambda only deletes the ENI if no other function (or
published function version) is using that Hyperplane ENI.

Lambda relies on permissions in the function execution role to delete the Hyperplane ENI. If you
delete the execution role before Lambda deletes the Hyperplane ENI, Lambda won't be able to
delete the Hyperplane ENI. You can manually perform the deletion.

Lambda doesn't delete network interfaces that are in use by functions or function versions in your
account. You can use the Lambda ENI Finder to identify the functions or function versions that are
using a Hyperplane ENI. For any functions or function versions that you no longer need, you can
remove the VPC configuration so that Lambda deletes the Hyperplane ENI.

Connections

Lambda supports two types of connections: TCP (Transmission Control Protocol) and UDP (User
Datagram Protocol).

When you create a VPC, Lambda automatically creates a set of DHCP options and associates them
with the VPC. You can configure your own DHCP options set for your VPC. For more details, refer to
Amazon VPC DHCP options.

Amazon provides a DNS server (the Amazon Route 53 resolver) for your VPC. For more information,
see DNS support for your VPC.

Connections 56

https://github.com/awslabs/aws-support-tools/tree/master/Lambda/FindEniMappings
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html

Amazon Lambda Developer Guide

IPv6 support

Lambda supports inbound connections to Lambda's public dual-stack endpoints, and outbound
connections to dual-stack VPC subnets over IPv6.

Inbound

To invoke your function over IPv6, use Lambda's public dual-stack endpoints. Dual-stack
endpoints support both IPv4 and IPv6. Lambda dual-stack endpoints use the following syntax:

protocol://lambda.us-east-1.api.aws

You can also use Lambda function URLs to invoke functions over IPv6. Function URL endpoints
have the following format:

https://url-id.lambda-url.us-east-1.on.aws

Outbound

Your function can connect to resources in dual-stack VPC subnets over IPv6. This option is
turned off by default. To allow outbound IPv6 traffic, use the console or the --vpc-config
Ipv6AllowedForDualStack=true option with the create-function or update-function-
configuration command.

Note

To allow outbound IPv6 traffic in a VPC, all of the subnets that are connected to
the function must be dual-stack subnets. Lambda doesn't support outbound IPv6
connections for IPv6-only subnets in a VPC, outbound IPv6 connections for functions
that are not connected to a VPC, or inbound IPv6 connections using VPC endpoints
(Amazon PrivateLink).

You can update your function code to explicitly connect to subnet resources over IPv6. The
following Python example opens a socket and connects to an IPv6 server.

Example — Connect to IPv6 server

def connect_to_server(event, context):

IPv6 support 57

https://docs.amazonaws.cn/general/latest/gr/rande.html#dual-stack-endpoints
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

Amazon Lambda Developer Guide

 server_address = event['host']
 server_port = event['port']
 message = event['message']
 run_connect_to_server(server_address, server_port, message)

def run_connect_to_server(server_address, server_port, message):
 sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM, 0)
 try:
 # Send data
 sock.connect((server_address, int(server_port), 0, 0))
 sock.sendall(message.encode())
 BUFF_SIZE = 4096
 data = b''
 while True:
 segment = sock.recv(BUFF_SIZE)
 data += segment
 # Either 0 or end of data
 if len(segment) < BUFF_SIZE:
 break
 return data
 finally:
 sock.close()

Security

Amazon provides security groups and network ACLs to increase security in your VPC. Security
groups control inbound and outbound traffic for your resources, and network ACLs control inbound
and outbound traffic for your subnets. Security groups provide enough access control for most
subnets. You can use network ACLs if you want an additional layer of security for your VPC. For
more information, see Internetwork traffic privacy in Amazon VPC. Every subnet that you create is
automatically associated with the VPC's default network ACL. You can change the association, and
you can change the contents of the default network ACL.

For general security best practices, see VPC security best practices. For details on how you can use
IAM to manage access to the Lambda API and resources, see Amazon Lambda permissions.

You can use Lambda-specific condition keys for VPC settings to provide additional permission
controls for your Lambda functions. For more information about VPC condition keys, see Using IAM
condition keys for VPC settings.

Security 58

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html

Amazon Lambda Developer Guide

Note

Lambda functions can be invoked from the public internet or Amazon PrivateLink
endpoints. You can access your Function URLs through the public Internet only. While
Lambda functions do support Amazon PrivateLink, Function URLs do not.

Observability

You can use VPC Flow Logs to capture information about the IP traffic going to and from network
interfaces in your VPC. You can publish Flow log data to Amazon CloudWatch Logs or Amazon S3.
After you've created a flow log, you can retrieve and view its data in the chosen destination.

Note: when you attach a function to a VPC, the CloudWatch log messages do not use the VPC
routes. Lambda sends them using the regular routing for logs.

Observability 59

https://www.amazonaws.cn/privatelink
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html

Amazon Lambda Developer Guide

Lambda instruction set architectures (ARM/x86)

The instruction set architecture of a Lambda function determines the type of computer processor
that Lambda uses to run the function. Lambda provides a choice of instruction set architectures:

• arm64 – 64-bit ARM architecture, for the Amazon Graviton2 processor.

• x86_64 – 64-bit x86 architecture, for x86-based processors.

Note

The arm64 architecture is available in most Amazon Web Services Regions. For more
information, see Amazon Lambda Pricing. In the memory prices table, choose the Arm
Price tab, and then open the Region dropdown list to see which Amazon Web Services
Regions support arm64 with Lambda.
For an example of how to create a function with arm64 architecture, see Amazon Lambda
Functions Powered by Amazon Graviton2 Processor.

Topics

• Advantages of using arm64 architecture

• Requirements for migration to arm64 architecture

• Function code compatibility with arm64 architecture

• How to migrate to arm64 architecture

• Configuring the instruction set architecture

Advantages of using arm64 architecture

Lambda functions that use arm64 architecture (Amazon Graviton2 processor) can achieve
significantly better price and performance than the equivalent function running on x86_64
architecture. Consider using arm64 for compute-intensive applications such as high-performance
computing, video encoding, and simulation workloads.

The Graviton2 CPU uses the Neoverse N1 core and supports Armv8.2 (including CRC and crypto
extensions) plus several other architectural extensions.

Instruction sets (ARM/x86) 60

https://www.amazonaws.cn/lambda/pricing/#aws-element-9ccd9262-b656-4d9c-8a72-34ee6b662135
https://amazonaws-china.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/
https://amazonaws-china.com/blogs/aws/aws-lambda-functions-powered-by-aws-graviton2-processor-run-your-functions-on-arm-and-get-up-to-34-better-price-performance/

Amazon Lambda Developer Guide

Graviton2 reduces memory read time by providing a larger L2 cache per vCPU, which improves the
latency performance of web and mobile backends, microservices, and data processing systems.
Graviton2 also provides improved encryption performance and supports instruction sets that
improve the latency of CPU-based machine learning inference.

For more information about Amazon Graviton2, see Amazon Graviton Processor.

Requirements for migration to arm64 architecture

When you select a Lambda function to migrate to arm64 architecture, to ensure a smooth
migration, make sure that your function meets the following requirements:

• The function currently uses a Lambda Amazon Linux 2 runtime.

• The deployment package contains only open-source components and source code that you
control, so that you can make any necessary updates for the migration.

• If the function code includes third-party dependencies, each library or package provides an
arm64 version.

Function code compatibility with arm64 architecture

Your Lambda function code must be compatible with the instruction set architecture of the
function. Before you migrate a function to arm64 architecture, note the following points about the
current function code:

• If you added your function code using the embedded code editor, your code probably runs on
either architecture without modification.

• If you uploaded your function code, you must upload new code that is compatible with your
target architecture.

• If your function uses layers, you must check each layer to ensure that it is compatible with the
new architecture. If a layer is not compatible, edit the function to replace the current layer
version with a compatible layer version.

• If your function uses Lambda extensions, you must check each extension to ensure that it is
compatible with the new architecture.

• If your function uses a container image deployment package type, you must create a new
container image that is compatible with the architecture of the function.

Requirements for migration to arm64 architecture 61

https://www.amazonaws.cn/ec2/graviton

Amazon Lambda Developer Guide

How to migrate to arm64 architecture

To migrate a Lambda function to the arm64 architecture, we recommend following these steps:

1. Build the list of dependencies for your application or workload. Common dependencies include:

• All the libraries and packages that the function uses.

• The tools that you use to build, deploy, and test the function, such as compilers, test suites,
continuous integration and continuous delivery (CI/CD) pipelines, provisioning tools, and
scripts.

• The Lambda extensions and third-party tools that you use to monitor the function in
production.

2. For each of the dependencies, check the version, and then check whether arm64 versions are
available.

3. Build an environment to migrate your application.

4. Bootstrap the application.

5. Test and debug the application.

6. Test the performance of the arm64 function. Compare the performance with the x86_64
version.

7. Update your infrastructure pipeline to support arm64 Lambda functions.

8. Stage your deployment to production.

For example, use alias routing configuration to split traffic between the x86 and arm64 versions
of the function, and compare the performance and latency.

For more information about how to create a code environment for arm64 architecture, including
language-specific information for Java, Go, .NET, and Python, see the Getting started with Amazon
Graviton GitHub repository.

Configuring the instruction set architecture

You can configure the instruction set architecture for new and existing Lambda functions using
the Lambda console, Amazon SDKs, Amazon Command Line Interface (Amazon CLI), or Amazon
CloudFormation. Follow these steps to change the instruction set architecture for an existing
Lambda function from the console.

How to migrate to arm64 architecture 62

https://github.com/aws/aws-graviton-getting-started
https://github.com/aws/aws-graviton-getting-started

Amazon Lambda Developer Guide

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to configure the instruction set architecture
for.

3. On the main Code tab, for the Runtime settings section, choose Edit.

4. Under Architecture, choose the instruction set architecture you want your function to use.

5. Choose Save.

Note

All Amazon Linux 2 runtimes support both x86_64 and ARM CPU architectures.
Runtimes that do not use Amazon Linux 2, such as Go 1.x, do not support the arm64
architecture. To use arm64 architecture with Go 1.x, you can run your function in a
provided.al2 runtime. For more information, see the deployment instructions for .zip
packages and container images.

Configuring the instruction set architecture 63

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Edit code using the Lambda console editor

You can use the code editor in the Lambda console to write, test, and view the execution results
of your Lambda function code. The code editor supports languages that do not require compiling,
such as Node.js and Python. The code editor supports only .zip file archive deployment packages,
and the size of the deployment package must be less than 3 MB.

The code editor includes the menu bar, windows, and the editor pane.

For a list of what the commands do, see the menu bar commands reference in the Amazon Cloud9
User Guide. Note that some of the commands listed in that reference are not available in the code
editor.

Topics

• Working with files and folders

• Working with code

• Working in fullscreen mode

• Working with preferences

Working with files and folders

You can use the Environment window in the code editor to create, open, and manage files for your
function.

Code editor 64

https://docs.amazonaws.cn/cloud9/latest/user-guide/menu-commands.html

Amazon Lambda Developer Guide

To show or hide the Environment window, choose the Environment button. If the Environment
button is not visible, choose Window, Environment on the menu bar.

To open a single file and show its contents in the editor pane, double-click the file in the
Environment window.

To open multiple files and show their contents in the editor pane, choose the files in the
Environment window. Right-click the selection, and then choose Open.

To create a new file, do one of the following:

• In the Environment window, right-click the folder where you want the new file to go, and then
choose New File. Enter the file's name and extension, and then press Enter.

Working with files and folders 65

Amazon Lambda Developer Guide

• Choose File, New File on the menu bar. When you're ready to save the file, choose File, Save or
File, Save As on the menu bar. Then use the Save As dialog box that displays to name the file
and choose where to save it.

• In the tab buttons bar in the editor pane, choose the + button, and then choose New File. When
you're ready to save the file, choose File, Save or File, Save As on the menu bar. Then use the
Save As dialog box that displays to name the file and choose where to save it.

To create a new folder, right-click the folder in the Environment window where you want the new
folder to go, and then choose New Folder. Enter the folder's name, and then press Enter.

To save a file, with the file open and its contents visible in the editor pane, choose File, Save on
the menu bar.

To rename a file or folder, right-click the file or folder in the Environment window. Enter the
replacement name, and then press Enter.

To delete files or folders, choose the files or folders in the Environment window. Right-click
the selection, and then choose Delete. Then confirm the deletion by choosing Yes (for a single
selection) or Yes to All.

To cut, copy, paste, or duplicate files or folders, choose the files or folders in the Environment
window. Right-click the selection, and then choose Cut, Copy, Paste, or Duplicate, respectively.

To collapse folders, choose the gear icon in the Environment window, and then choose Collapse
All Folders.

Working with files and folders 66

Amazon Lambda Developer Guide

To show or hide hidden files, choose the gear icon in the Environment window, and then choose
Show Hidden Files.

To see environment variables that are configured for the function, do the following:

1. Choose the Code tab.

2. Choose the Environment Variables tab.

3. Choose Tools, Show Environment Variables.

Environment variables remain encrypted when listed in the console code editor. If you enabled
encryption helpers for encryption in transit, then those settings remain unchanged. For more
information, see Securing environment variables.

The environment variables list is read-only and is available only on the Lambda console. This file
is not included when you download the function's .zip file archive, and you can't add environment
variables by uploading this file.

Working with code

Use the editor pane in the code editor to view and write code.

Working with code 67

Amazon Lambda Developer Guide

Working with tab buttons

Use the tab buttons bar to select, view, and create files.

To display an open file's contents, do one of the following:

• Choose the file's tab.

• Choose the drop-down menu button in the tab buttons bar, and then choose the file's name.

To close an open file, do one of the following:

• Choose the X icon in the file's tab.

• Choose the file's tab. Then choose the drop-down menu button in the tab buttons bar, and
choose Close Pane.

Working with code 68

Amazon Lambda Developer Guide

To close multiple open files, choose the drop-down menu in the tab buttons bar, and then choose
Close All Tabs in All Panes or Close All But Current Tab as needed.

To create a new file, choose the + button in the tab buttons bar, and then choose New File. When
you're ready to save the file, choose File, Save or File, Save As on the menu bar. Then use the Save
As dialog box that displays to name the file and choose where to save it.

Working with the status bar

Use the status bar to move quickly to a line in the active file and to change how code is displayed.

To move quickly to a line in the active file, choose the line selector, enter the line number to go
to, and then press Enter.

To change the code color scheme in the active file, choose the code color scheme selector, and
then choose the new code color scheme.

Working with code 69

Amazon Lambda Developer Guide

To change in the active file whether soft tabs or spaces are used, the tab size, or whether to
convert to spaces or tabs, choose the spaces and tabs selector, and then choose the new settings.

To change for all files whether to show or hide invisible characters or the gutter, auto-pair
brackets or quotes, wrap lines, or the font size, choose the gear icon, and then choose the new
settings.

Working with code 70

Amazon Lambda Developer Guide

Working in fullscreen mode

You can expand the code editor to get more room to work with your code.

To expand the code editor to the edges of the web browser window, choose the Toggle fullscreen
button in the menu bar.

To shrink the code editor to its original size, choose the Toggle fullscreen button again.

In fullscreen mode, additional options are displayed on the menu bar: Save and Test. Choosing
Save saves the function code. Choosing Test or Configure Events enables you to create or edit the
function's test events.

Working with preferences

You can change various code editor settings such as which coding hints and warnings are displayed,
code folding behaviors, code autocompletion behaviors, and much more.

To change code editor settings, choose the Preferences gear icon in the menu bar.

For a list of what the settings do, see the following references in the Amazon Cloud9 User Guide.

• Project settings that you can change

• User setting changes you can make

Working in fullscreen mode 71

https://docs.amazonaws.cn/cloud9/latest/user-guide/settings-project.html#settings-project-change
https://docs.amazonaws.cn/cloud9/latest/user-guide/settings-user.html#settings-user-change

Amazon Lambda Developer Guide

Note that some of the settings listed in those references are not available in the code editor.

Working with preferences 72

Amazon Lambda Developer Guide

Additional Lambda features

Lambda provides a management console and API for managing and invoking functions. It provides
runtimes that support a standard set of features so that you can easily switch between languages
and frameworks, depending on your needs. In addition to functions, you can also create versions,
aliases, layers, and custom runtimes.

Advanced features

• Scaling

• Concurrency controls

• Function URLs

• Asynchronous invocation

• Event source mappings

• Destinations

• Function blueprints

• Testing and deployment tools

• Application templates

Scaling

Lambda manages the infrastructure that runs your code, and scales automatically in response
to incoming requests. When your function is invoked more quickly than a single instance of your
function can process events, Lambda scales up by running additional instances. When traffic
subsides, inactive instances are frozen or stopped. You pay only for the time that your function is
initializing or processing events.

For more information, see Lambda function scaling.

Concurrency controls

Use concurrency settings to ensure that your production applications are highly available and
highly responsive.

To prevent a function from using too much concurrency, and to reserve a portion of your account's
available concurrency for a function, use reserved concurrency. Reserved concurrency splits the pool

Additional features 73

Amazon Lambda Developer Guide

of available concurrency into subsets. A function with reserved concurrency only uses concurrency
from its dedicated subset.

To enable functions to scale without fluctuations in latency, use provisioned concurrency.
For functions that take a long time to initialize, or that require extremely low latency for all
invocations, provisioned concurrency enables you to pre-initialize instances of your function and
keep them running at all times. Lambda integrates with Application Auto Scaling to support
autoscaling for provisioned concurrency based on utilization.

For more information, see Configuring reserved concurrency.

Function URLs

Lambda offers built-in HTTP(S) endpoint support through function URLs. With function URLs,
you can assign a dedicated HTTP endpoint to your Lambda function. When your function URL is
configured, you can use it to invoke your function through a web browser, curl, Postman, or any
HTTP client.

You can add a function URL to an existing function, or create a new function with a function URL.
For more information, see Invoking Lambda function URLs.

Asynchronous invocation

When you invoke a function, you can choose to invoke it synchronously or asynchronously. With
synchronous invocation, you wait for the function to process the event and return a response.
With asynchronous invocation, Lambda queues the event for processing and returns a response
immediately.

Function URLs 74

Amazon Lambda Developer Guide

For asynchronous invocations, Lambda handles retries if the function returns an error or is
throttled. To customize this behavior, you can configure error handling settings on a function,
version, or alias. You can also configure Lambda to send events that failed processing to a dead-
letter queue, or to send a record of any invocation to a destination.

For more information, see Asynchronous invocation.

Event source mappings

To process items from a stream or queue, you can create an event source mapping. An event source
mapping is a resource in Lambda that reads items from an Amazon Simple Queue Service (Amazon
SQS) queue, an Amazon Kinesis stream, or an Amazon DynamoDB stream, and sends the items
to your function in batches. Each event that your function processes can contain hundreds or
thousands of items.

Event source mappings maintain a local queue of unprocessed items and handle retries if the
function returns an error or is throttled. You can configure an event source mapping to customize

Event source mappings 75

Amazon Lambda Developer Guide

batching behavior and error handling, or to send a record of items that fail processing to a
destination.

For more information, see Lambda event source mappings.

Destinations

A destination is an Amazon resource that receives invocation records for a function. For
asynchronous invocation, you can configure Lambda to send invocation records to a queue, topic,
function, or event bus. You can configure separate destinations for successful invocations and
events that failed processing. The invocation record contains details about the event, the function's
response, and the reason that the record was sent.

For event source mappings that read from streams, you can configure Lambda to send a record of
batches that failed processing to a queue or topic. A failure record for an event source mapping
contains metadata about the batch, and it points to the items in the stream.

Destinations 76

Amazon Lambda Developer Guide

For more information, see Configuring destinations for asynchronous invocation and the error
handling sections of Using Amazon Lambda with Amazon DynamoDB and Using Amazon Lambda
with Amazon Kinesis.

Function blueprints

When you create a function in the Lambda console, you can choose to start from scratch, use
a blueprint, or use a container image. A blueprint provides sample code that shows how to use
Lambda with an Amazon service or a popular third-party application. Blueprints include sample
code and function configuration presets for Node.js and Python runtimes.

Blueprints are provided for use under the Amazon Software License. They are available only in the
Lambda console.

Testing and deployment tools

Lambda supports deploying code as is or as container images. You can use Amazon services and
popular community tools like the Docker command line interface (CLI) to author, build, and deploy
your Lambda functions. To set up the Docker CLI, see Get Docker on the Docker Docs website. For
an introduction to using Docker with Amazon, see Getting started with Amazon ECR using the
Amazon CLI in the Amazon Elastic Container Registry User Guide.

The Amazon CLI and Amazon SAM CLI are command line tools for managing Lambda application
stacks. In addition to commands for managing application stacks with the Amazon CloudFormation
API, the Amazon CLI supports higher-level commands that simplify tasks such as uploading
deployment packages and updating templates. The Amazon SAM CLI provides additional
functionality, including validating templates, testing locally, and integrating with CI/CD systems.

• Installing the Amazon SAM CLI

• Testing and debugging serverless applications with Amazon SAM

• Deploying serverless applications using CI/CD systems with Amazon SAM

Application templates

You can use the Lambda console to create an application with a continuous delivery pipeline.
Application templates in the Lambda console include code for one or more functions, an
application template that defines functions and supporting Amazon resources, and an

Function blueprints 77

https://www.amazonaws.cn/asl/
https://docs.docker.com/get-docker
https://docs.amazonaws.cn/AmazonECR/latest/userguide/getting-started-cli.html
https://docs.amazonaws.cn/AmazonECR/latest/userguide/getting-started-cli.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-deploying.html

Amazon Lambda Developer Guide

infrastructure template that defines an Amazon CodePipeline pipeline. The pipeline has build and
deploy stages that run every time you push changes to the included Git repository.

Application templates are provided for use under the MIT No Attribution license. They are available
only in the Lambda console.

For more information, see Creating an application with continuous delivery in the Lambda console.

Learn how to build serverless solutions

Tip

To learn how to build serverless solutions, check out the Serverless Developer Guide.

Learn how to build serverless solutions 78

https://spdx.org/licenses/MIT-0.html
https://docs.amazonaws.cn/serverless/latest/devguide/

Amazon Lambda Developer Guide

Lambda runtimes

Lambda supports multiple languages through the use of runtimes. A runtime provides a language-
specific environment that relays invocation events, context information, and responses between
Lambda and the function. You can use runtimes that Lambda provides, or build your own.

Each major programming language release has a separate runtime, with a unique runtime identifier,
such as nodejs20.x or python3.12. To configure a function to use a new major language
version, you need to change the runtime identifier. Since Amazon Lambda cannot guarantee
backward compatibility between major versions, this is a customer-driven operation.

For a function defined as a container image, you choose a runtime and the Linux distribution when
you create the container image. To change the runtime, you create a new container image.

When you use a .zip file archive for the deployment package, you choose a runtime when you
create the function. To change the runtime, you can update your function's configuration.
The runtime is paired with one of the Amazon Linux distributions. The underlying execution
environment provides additional libraries and environment variables that you can access from your
function code.

Lambda invokes your function in an execution environment. The execution environment provides
a secure and isolated runtime environment that manages the resources required to run your
function. Lambda re-uses the execution environment from a previous invocation if one is available,
or it can create a new execution environment.

To use other languages in Lambda, such as Go or Rust, use an OS-only runtime. The Lambda
execution environment provides a runtime interface for getting invocation events and sending
responses. You can deploy other languages by implementing a custom runtime alongside your
function code, or in a layer.

Supported runtimes

The following table lists the supported Lambda runtimes and projected deprecation dates. After
a runtime is deprecated, you're still able to create and update functions for a limited period. For
more information, see the section called “Runtime use after deprecation”. The table provides the
currently forecasted dates for runtime deprecation. These dates are provided for planning purposes
and are subject to change.

Supported runtimes 79

Amazon Lambda Developer Guide

Supported Runtimes

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Node.js 20 nodejs20.
x

Amazon
Linux 2023

Node.js 18 nodejs18.
x

Amazon
Linux 2

Node.js 16 nodejs16.
x

Amazon
Linux 2

Jun 12, 2024 Jul 15, 2024 Aug 15, 2024

Python 3.12 python3.1
2

Amazon
Linux 2023

Python 3.11 python3.1
1

Amazon
Linux 2

Python 3.10 python3.1
0

Amazon
Linux 2

Python 3.9 python3.9 Amazon
Linux 2

Python 3.8 python3.8 Amazon
Linux 2

Oct 14, 2024 Nov 13, 2024 Jan 7, 2025

Java 21 java21 Amazon
Linux 2023

Java 17 java17 Amazon
Linux 2

Java 11 java11 Amazon
Linux 2

Supported runtimes 80

Amazon Lambda Developer Guide

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Java 8 java8.al2 Amazon
Linux 2

.NET 8 dotnet8 Amazon
Linux 2023

.NET 7
(container
only)

dotnet7 Amazon
Linux 2

May 14, 2024

.NET 6 dotnet6 Amazon
Linux 2

Nov 12, 2024 Jan 11, 2025 Feb 11, 2025

Ruby 3.3 ruby3.3 Amazon
Linux 2023

Ruby 3.2 ruby3.2 Amazon
Linux 2

OS-only
Runtime

provided.
al2023

Amazon
Linux 2023

OS-only
Runtime

provided.
al2

Amazon
Linux 2

Note

For new regions, Lambda will not support runtimes that are set to be deprecated within the
next 6 months.

Lambda keeps managed runtimes and their corresponding container base images up to date
with patches and support for minor version releases. For more information see Lambda runtime
updates.

Supported runtimes 81

https://docs.amazonaws.cn/lambda/latest/dg/runtimes-update.html
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-update.html

Amazon Lambda Developer Guide

Lambda continues to support the Go programming language after deprecation of the Go 1.x
runtime. For more information, see Migrating Amazon Lambda functions from the Go1.x runtime
to the custom runtime on Amazon Linux 2 on the Amazon Compute Blog.

All supported Lambda runtimes support both x86_64 and arm64 architectures.

New runtime releases

Lambda provides managed runtimes for new language versions only when the release reaches the
long-term support (LTS) phase of the language's release cycle. For example, for the Node.js release
cycle, when the release reaches the Active LTS phase.

Before the release reaches the long-term support phase, it remains in development and can still
be subject to breaking changes. Lambda applies runtime updates automatically by default, so
breaking changes to a runtime version could stop your functions from working as expected.

Lambda doesn't provide managed runtimes for language versions which aren't scheduled for LTS
release.

The following list shows the target launch month for upcoming Lambda runtimes. These dates are
indicative only and subject to change.

• Python 3.13 - November 2024

• Node.js 22 - November 2024

Runtime deprecation policy

Lambda runtimes for .zip file archives are built around a combination of operating system,
programming language, and software libraries that are subject to maintenance and security
updates. Lambda’s standard deprecation policy is to deprecate a runtime when any major
component of the runtime reaches the end of community long-term support (LTS) and security
updates are no longer available. Most usually, this is the language runtime, though in some cases, a
runtime can be deprecated because the operating system (OS) reaches end of LTS.

After a runtime is deprecated, Amazon may no longer apply security patches or updates to that
runtime, and functions using that runtime are no longer eligible for technical support. Such
deprecated runtimes are provided ‘as-is’, without any warranties, and may contain bugs, errors,
defects, or other vulnerabilities.

New runtime releases 82

https://amazonaws-china.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://amazonaws-china.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://nodejs.org/en/about/previous-releases
https://nodejs.org/en/about/previous-releases

Amazon Lambda Developer Guide

To learn more about managing runtime upgrades and deprecation, see the following sections and
Managing Amazon Lambda runtime upgrades on the Amazon Compute Blog.

Important

Lambda occasionally delays deprecation of a Lambda runtime for a limited period beyond
the end of support date of the language version that the runtime supports. During this
period, Lambda only applies security patches to the runtime OS. Lambda doesn’t apply
security patches to programming language runtimes after they reach their end of support
date.

Runtime deprecation for Node.js 16

In response to customer feedback, Amazon is delaying the deprecation of the Node.js 16 runtime
until 9 months after the end of community LTS. The Node.js 16 runtime will be deprecated on the
date provided in the Supported Runtimes table. As stated in the preceding note, between the end
of LTS on September 11, 2023 and the deprecation date, Lambda will only apply OS patches to the
runtime. No security patches for the language runtime will be applied during this period.

Delaying the deprecation of Node.js 16 gives customers using this runtime the opportunity to
migrate their functions directly to Node.js 20, skipping Node.js 18.

Shared responsibility model

Lambda is responsible for curating and publishing security updates for all supported managed
runtimes and container base images. By default, Lambda will apply these updates automatically
to functions using managed runtimes. Where the default automatic runtime update setting has
been changed, see the runtime management controls shared responsibility model. For functions
deployed using container images, you're responsible for rebuilding your function's container image
from the latest base image and redeploying the container image.

When a runtime is deprecated, Lambda’s responsibility for updating the managed runtime and
container base images ceases. You are responsible for upgrading your functions to use a supported
runtime or base image.

In all cases, you are responsible for applying updates to your function code, including its
dependencies. Your responsibilities under the shared responsibility model are summarized in the
following table.

Shared responsibility model 83

https://amazonaws-china.com/blogs/compute/managing-aws-lambda-runtime-upgrades/

Amazon Lambda Developer Guide

Runtime lifecycle phase Lambda's responsibilities Your responsibilities

Supported managed runtime Provide regular runtime
updates with security patches
and other updates.

Apply runtime updates
automatically by default (see
the section called “Runtime
management controls” for
non-default behaviors).

Update your function code,
including dependencies, to
address any security vulnerabi
lities.

Supported container image Provide regular updates to
container base image with
security patches and other
updates.

Update your function code,
including dependencies, to
address any security vulnerabi
lities.

Regularly re-build and re-
deploy your container image
using the latest base image.

Managed runtime approachi
ng deprecation

Notify customers prior to
runtime deprecation via
documentation, Amazon
Health Dashboard, email, and
Trusted Advisor.

Responsibility for runtime
updates ends at deprecation.

Monitor Lambda documenta
tion, Amazon Health
Dashboard, email, or Trusted
Advisor for runtime deprecati
on information.

Upgrade functions to a
supported runtime before the
previous runtime is deprecate
d.

Container image approaching
deprecation

Deprecation notifications are
not available for functions
using container images.

Be aware of deprecation
schedules and upgrade
functions to a supported base
image before the previous
image is deprecated.

Shared responsibility model 84

Amazon Lambda Developer Guide

Runtime lifecycle phase Lambda's responsibilities Your responsibilities

Responsibility for container
base image updates ends at
deprecation.

Runtime use after deprecation

After a runtime is deprecated, Amazon may no longer apply security patches or updates to that
runtime, and functions using that runtime are no longer eligible for technical support. Such
deprecated runtimes are provided ‘as-is’, without any warranties, and may contain bugs, errors,
defects, or other vulnerabilities. Functions that use a deprecated runtime may also experience
degraded performance or other issues, such as a certificate expiry, that can cause them to stop
working properly.

For at least 30 days after a runtime is deprecated, you’re still able to create new Lambda functions
using that runtime. Starting from 30 days after deprecation, Lambda begins blocking the creation
of new functions.

For at least 60 days after a runtime is deprecated, you’re still able to update function code and
configuration for existing functions. Starting from 60 days after deprecation, Lambda begins
blocking the update of function code and configuration for existing functions.

You can update a function to use a newer supported runtime indefinitely after a runtime is
deprecated. You should test that your function works with the new runtime before applying the
runtime change in production environments, since you will not be able to revert to the deprecated
runtime once the 60-day period has passed. We recommend using function versions and aliases to
enable safe deployment with rollback.

Note that the exact length of time for which you can continue to create and update functions isn’t
fixed. This period can vary for each deprecation and for different Amazon Web Services Regions.
Nominal dates for the blocking of function creates and updates are provided in the Supported
Runtimes table in the first section of this page. Lambda will not start blocking function creates or
updates before the dates given in this table.

You can continue to invoke your functions indefinitely after the runtime is deprecated. However,
Amazon strongly recommends that you migrate functions to a supported runtime so that your
functions continue to receive security patches and remain eligible for technical support.

Runtime use after deprecation 85

Amazon Lambda Developer Guide

Receiving runtime deprecation notifications

When a runtime approaches its deprecation date, Lambda sends you an email alert if any functions
in your Amazon Web Services account use that runtime. Notifications are also displayed in the
Amazon Health Dashboard and in Amazon Trusted Advisor.

• Receiving email notifications:

Lambda sends you an email alert at least 180 days before a runtime is deprecated. This email
lists the $LATEST versions of all functions using the runtime. To see a full list of affected function
versions, use Trusted Advisor or see the section called “Listing functions that use a deprecated
runtime”.

Lambda sends email notification to your Amazon Web Services account's primary account
contact. For information about viewing or updating the email addresses in your account, see
Updating contact information in the Amazon General Reference.

• Receiving notifications through the Amazon Health Dashboard:

The Amazon Health Dashboard displays a notification at least 180 days before a runtime is
deprecated. Notifications appear on the Your account health page under Other notifications.
The Affected resources tab of the notification lists the $LATEST versions of all functions using
the runtime.

Note

To see a full and up-to-date list of affected function versions, use Trusted Advisor or see
the section called “Listing functions that use a deprecated runtime”.

Amazon Health Dashboard notifications expire 90 days after the affected runtime is deprecated.

• Using Amazon Trusted Advisor

Trusted Advisor displays a notification 180 days before a runtime is deprecated. Notifications
appear on the Security page. A list of your affected functions is displayed under Amazon
Lambda Functions Using Deprecated Runtimes. This list of functions shows both $LATEST and
published versions and updates automatically to reflect your functions' current status.

Receiving runtime deprecation notifications 86

https://docs.amazonaws.cn/accounts/latest/reference/manage-acct-update-contact.html
https://health.aws.amazon.com/health/home#/account/dashboard/other-notifications
https://console.amazonaws.cn/trustedadvisor/home#/category/security

Amazon Lambda Developer Guide

You can turn on weekly email notifications from Trusted Advisor in the Preferences page of the
Trusted Advisor console.

Listing functions that use a deprecated runtime

In addition to using Trusted Advisor to see a live list of functions affected by scheduled runtime
deprecations, you can also use the Amazon Command Line Interface (Amazon CLI) to list all
of your function versions that use a particular runtime. To generate this list, run the following
command. Replace RUNTIME_IDENTIFIER with the name of the runtime that’s being deprecated
and choose your own Amazon Web Services Region. To list only $LATEST function versions, omit
--function-version ALL from the command.

aws lambda list-functions --function-version ALL --region us-east-1 --output text --
query "Functions[?Runtime=='RUNTIME_IDENTIFIER'].FunctionArn"

Tip

The example command lists functions in the us-east-1 region for a particular Amazon
Web Services account You’ll need to repeat this command for each region in which your
account has functions and for each of your Amazon Web Services accounts.

You can also use the Amazon Config Advanced queries feature to list all your functions that use
an affected runtime. This query only returns function $LATEST versions, but you can aggregate
queries to list function across all regions and multiple Amazon Web Services accounts with a single
command. To learn more, see Querying the Current Configuration State of Amazon Auto Scaling
Resources in the Amazon Config Developer Guide.

Deprecated runtimes

The following runtimes have reached end of support:

Listing functions that use a deprecated runtime 87

https://console.amazonaws.cn/trustedadvisor/home?#/preferences
https://docs.amazonaws.cn/config/latest/developerguide/querying-AWS-resources.html
https://docs.amazonaws.cn/config/latest/developerguide/querying-AWS-resources.html

Amazon Lambda Developer Guide

Deprecated runtimes

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Java 8 java8 Amazon
Linux

Jan 8, 2024 Feb 8, 2024 Mar 12, 2024

Go 1.x go1.x Amazon
Linux

Jan 8, 2024 Feb 8, 2024 Mar 12, 2024

OS-only
Runtime

provided Amazon
Linux

Jan 8, 2024 Feb 8, 2024 Mar 12, 2024

Ruby 2.7 ruby2.7 Amazon
Linux 2

Dec 7, 2023 Jan 9, 2024 Feb 8, 2024

Node.js 14 nodejs14.
x

Amazon
Linux 2

Dec 4, 2023 Jan 9, 2024 Feb 8, 2024

Python 3.7 python3.7 Amazon
Linux

Dec 4, 2023 Jan 9, 2024 Feb 8, 2024

.NET Core 3.1 dotnetcor
e3.1

Amazon
Linux 2

Apr 3, 2023 Apr 3, 2023 May 3, 2023

Node.js 12 nodejs12.
x

Amazon
Linux 2

Mar 31, 2023 Mar 31, 2023 Apr 30, 2023

Python 3.6 python3.6 Amazon
Linux

Jul 18, 2022 Jul 18, 2022 Aug 29, 2022

.NET 5
(container
only)

dotnet5.0 Amazon
Linux 2

May 10, 2022

.NET Core 2.1 dotnetcor
e2.1

Amazon
Linux

Jan 5, 2022 Jan 5, 2022 Apr 13, 2022

Deprecated runtimes 88

Amazon Lambda Developer Guide

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Node.js 10 nodejs10.
x

Amazon
Linux 2

Jul 30, 2021 Jul 30, 2021 Feb 14, 2022

Ruby 2.5 ruby2.5 Amazon
Linux

Jul 30, 2021 Jul 30, 2021 Mar 31, 2022

Python 2.7 python2.7 Amazon
Linux

Jul 15, 2021 Jul 15, 2021 May 30, 2022

Node.js 8.10 nodejs8.1
0

Amazon
Linux

Mar 6, 2020 Mar 6, 2020

Node.js 4.3 nodejs4.3 Amazon
Linux

Mar 5, 2020 Mar 5, 2020

Node.js 4.3
edge

nodejs4.3
-edge

Amazon
Linux

Mar 5, 2020 Apr 30, 2019

Node.js 6.10 nodejs6.1
0

Amazon
Linux

Aug 12, 2019 Aug 12, 2019

.NET Core 1.0 dotnetcor
e1.0

Amazon
Linux

Jun 27, 2019 Jul 30, 2019

.NET Core 2.0 dotnetcor
e2.0

Amazon
Linux

May 30, 2019 May 30, 2019

Node.js 0.10 nodejs Amazon
Linux

Oct 31, 2016

In almost all cases, the end-of-life date of a language version or operating system is known well in
advance. The following links give end-of-life schedules for each language that Lambda supports as
a managed runtime.

Deprecated runtimes 89

Amazon Lambda Developer Guide

Language and framework support policies

• Node.js – github.com

• Python – devguide.python.org

• Ruby – www.ruby-lang.org

• Java – www.oracle.com and Corretto FAQs

• Go – golang.org

• .NET – dotnet.microsoft.com

Deprecated runtimes 90

https://github.com/nodejs/Release#release-schedule
https://devguide.python.org/versions/#versions
https://www.ruby-lang.org/en/downloads/branches/
https://www.oracle.com/java/technologies/java-se-support-roadmap.html
https://www.amazonaws.cn/corretto/faqs/
https://golang.org/doc/devel/release.html
https://dotnet.microsoft.com/platform/support/policy/dotnet-core

Amazon Lambda Developer Guide

Lambda runtime updates

Lambda keeps each managed runtime up to date with security updates, bug fixes, new features,
performance enhancements, and support for minor version releases. These runtime updates are
published as runtime versions. Lambda applies runtime updates to functions by migrating the
function from an earlier runtime version to a new runtime version.

By default, for functions using managed runtimes, Lambda applies runtime updates automatically.
With automatic runtime updates, Lambda takes on the operational burden of patching the runtime
versions. For most customers, automatic updates are the right choice. For more information, see
Runtime management controls.

Lambda also publishes each new runtime version as a container image. To update runtime versions
for container-based functions, you must create a new container image from the updated base
image and redeploy your function.

Each runtime version is associated with a version number and an ARN (Amazon Resource Name).
Runtime version numbers use a numbering scheme that Lambda defines, independent of the
version numbers that the programming language uses. The runtime version ARN is a unique
identifier for each runtime version.

You can view the ARN of your function's current runtime version in the INIT_START line of your
function logs and in the Lambda console.

Runtime versions should not be confused with runtime identifiers. Each runtime has a unique
runtime identifier, such as python3.9 or nodejs18.x. These correspond to each major
programming language release. Runtime versions describe the patch version of an individual
runtime.

Note

The ARN for the same runtime version number can vary between Amazon Web Services
Regions and CPU architectures.

Topics

• Runtime management controls

• Two-phase runtime version rollout

Runtime updates 91

Amazon Lambda Developer Guide

• Roll back a runtime version

• Identifying runtime version changes

• Configure runtime management settings

• Shared responsibility model

• High-compliance applications

Runtime management controls

Lambda strives to provide runtime updates that are backward compatible with existing functions.
However, as with software patching, there are rare cases in which a runtime update can negatively
impact an existing function. For example, security patches can expose an underlying issue with an
existing function that depends on the previous, insecure behavior. Lambda runtime management
controls help reduce the risk of impact to your workloads in the rare event of a runtime version
incompatibility. For each function version ($LATEST or published version), you can choose one of
the following runtime update modes:

• Auto (default) – Automatically update to the most recent and secure runtime version using Two-
phase runtime version rollout. We recommend this mode for most customers so that you always
benefit from runtime updates.

• Function update – Update to the most recent and secure runtime version when you update
your function. When you update your function, Lambda updates the runtime of your function to
the most recent and secure runtime version. This approach synchronizes runtime updates with
function deployments, giving you control over when Lambda applies runtime updates. With this
mode, you can detect and mitigate rare runtime update incompatibilities early. When using this
mode, you must regularly update your functions to keep their runtime up to date.

• Manual – Manually update your runtime version. You specify a runtime version in your function
configuration. The function uses this runtime version indefinitely. In the rare case in which a new
runtime version is incompatible with an existing function, you can use this mode to roll back
your function to an earlier runtime version. We recommend against using Manual mode to try to
achieve runtime consistency across deployments. For more information, see Roll back a runtime
version.

Responsibility for applying runtime updates to your functions varies according to which runtime
update mode you choose. For more information, see Shared responsibility model.

Runtime management controls 92

Amazon Lambda Developer Guide

Two-phase runtime version rollout

Lambda introduces new runtime versions in the following order:

1. In the first phase, Lambda applies the new runtime version whenever you create or
update a function. A function gets updated when you call the UpdateFunctionCode or
UpdateFunctionConfiguration API operations.

2. In the second phase, Lambda updates any function that uses the Auto runtime update mode and
that hasn't already been updated to the new runtime version.

The overall duration of the rollout process varies according to multiple factors, including the
severity of any security patches included in the runtime update.

If you're actively developing and deploying your functions, you will most likely pick up new runtime
versions during the first phase. This synchronizes runtime updates with function updates. In the
rare event that the latest runtime version negatively impacts your application, this approach lets
you take prompt corrective action. Functions that aren't in active development still receive the
operational benefit of automatic runtime updates during the second phase.

This approach doesn't affect functions set to Function update or Manual mode. Functions using
Function update mode receive the latest runtime updates only when you create or update them.
Functions using Manual mode don't receive runtime updates.

Lambda publishes new runtime versions in a gradual, rolling fashion across Amazon Web Services
Regions. If your functions are set to Auto or Function update modes, it's possible that functions
deployed at the same time to different Regions, or at different times in the same Region, will pick
up different runtime versions. Customers who require guaranteed runtime version consistency
across their environments should use container images to deploy their Lambda functions. The
Manual mode is designed as a temporary mitigation to enable runtime version rollback in the rare
event that a runtime version is incompatible with your function.

Roll back a runtime version

In the rare event that a new runtime version is incompatible with your existing function, you can
roll back its runtime version to an earlier one. This keeps your application working and minimizes
disruption, providing time to remedy the incompatibility before returning to the latest runtime
version.

Two-phase runtime version rollout 93

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html

Amazon Lambda Developer Guide

Lambda doesn't impose a time limit on how long you can use any particular runtime version.
However, we strongly recommend updating to the latest runtime version as soon as possible
to benefit from the latest security patches, performance improvements, and features. Lambda
provides the option to roll back to an earlier runtime version only as a temporary mitigation in
the rare event of a runtime update compatibility issue. Functions using an earlier runtime version
for an extended period may eventually experience degraded performance or issues, such as a
certificate expiry, which can cause them to stop working properly.

You can roll back a runtime version in the following ways:

• Using the Manual runtime update mode

• Using published function versions

For more information, see Introducing Amazon Lambda runtime management controls on the
Amazon Compute Blog.

Roll back a runtime version using Manual runtime update mode

If you're using the Auto runtime version update mode, or you're using the $LATEST runtime
version, you can roll back your runtime version using the Manual mode. For the function version
you want to roll back, change the runtime version update mode to Manual and specify the ARN of
the previous runtime version. For more information about finding the ARN of the previous runtime
version, see Identifying runtime version changes.

Note

If the $LATEST version of your function is configured to use Manual mode, then you can't
change the CPU architecture or runtime version that your function uses. To make these
changes, you must change to Auto or Function update mode.

Roll back a runtime version using published function versions

Published function versions are an immutable snapshot of the $LATEST function code and
configuration at the time that you created them. In Auto mode, Lambda automatically updates the
runtime version of published function versions during phase two of the runtime version rollout.
In Function update mode, Lambda doesn't update the runtime version of published function
versions.

Roll back a runtime version 94

https://amazonaws-china.com/blogs/compute/introducing-aws-lambda-runtime-management-controls/

Amazon Lambda Developer Guide

Published function versions using Function update mode therefore create a static snapshot of the
function code, configuration, and runtime version. By using Function update mode with function
versions, you can synchronize runtime updates with your deployments. You can also coordinate
rollback of code, configuration, and runtime versions by redirecting traffic to an earlier published
function version. You can integrate this approach into your continuous integration and continuous
delivery (CI/CD) for fully automatic rollback in the rare event of runtime update incompatibility.
When using this approach, you must update your function regularly and publish new function
versions to pick up the latest runtime updates. For more information, see Shared responsibility
model.

Identifying runtime version changes

The runtime version number and ARN are logged in the INIT_START log line, which Lambda
emits to CloudWatch Logs each time that it creates a new execution environment. Because the
execution environment uses the same runtime version for all function invocations, Lambda emits
the INIT_START log line only when Lambda executes the init phase. Lambda doesn't emit this
log line for each function invocation. Lambda emits the log line to CloudWatch Logs, but it is not
visible in the console.

Example Example INIT_START log line

INIT_START Runtime Version: python:3.9.v14 Runtime Version ARN: arn:aws:lambda:eu-
south-1::runtime:7b620fc2e66107a1046b140b9d320295811af3ad5d4c6a011fad1fa65127e9e6I

Rather than working directly with the logs, you can use Amazon CloudWatch Contributor Insights
to identify transitions between runtime versions. The following rule counts the distinct runtime
versions from each INIT_START log line. To use the rule, replace the example log group name /
aws/lambda/* with the appropriate prefix for your function or group of functions.

{
 "Schema": {
 "Name": "CloudWatchLogRule",
 "Version": 1
 },
 "AggregateOn": "Count",
 "Contribution": {
 "Filters": [
 {
 "Match": "eventType",

Identifying runtime version changes 95

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights.html

Amazon Lambda Developer Guide

 "In": [
 "INIT_START"
]
 }
],
 "Keys": [
 "runtimeVersion",
 "runtimeVersionArn"
]
 },
 "LogFormat": "CLF",
 "LogGroupNames": [
 "/aws/lambda/*"
],
 "Fields": {
 "1": "eventType",
 "4": "runtimeVersion",
 "8": "runtimeVersionArn"
 }
}

The following CloudWatch Contributor Insights report shows an example of a runtime version
transition as captured by the preceding rule. The orange line shows execution environment
initialization for the earlier runtime version (python:3.9.v12), and the blue line shows execution
environment initialization for the new runtime version (python:3.9.v14).

Identifying runtime version changes 96

Amazon Lambda Developer Guide

Configure runtime management settings

You can configure runtime management settings using the Lambda console or the Amazon
Command Line Interface (Amazon CLI).

Note

You can configure runtime management settings separately for each function version.

To configure how Lambda updates your runtime version (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. On the Code tab, under Runtime settings, choose Edit runtime management configuration.

4. Under Runtime management configuration, choose one of the following:

• To have your function update to the latest runtime version automatically, choose Auto.

• To have your function update to the latest runtime version when you change the function,
choose Function update.

• To have your function update to the latest runtime version only when you change the
runtime version ARN, choose Manual.

Note

You can find the runtime version ARN under Runtime management configuration.
You can also find the ARN in the INIT_START line of your function logs.

5. Choose Save.

To configure how Lambda updates your runtime version (Amazon CLI)

To configure runtime management for a function, you can use the put-runtime-management-
config Amazon CLI command, together with the runtime update mode. When using Manual
mode, you must also provide the runtime version ARN.

aws lambda put-runtime-management-config --function-name arn:aws:lambda:eu-
west-1:069549076217:function:myfunction --update-runtime-on Manual --runtime-version-

Configure runtime management settings 97

https://console.amazonaws.cn/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-runtime-management-config.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-runtime-management-config.html

Amazon Lambda Developer Guide

arn arn:aws:lambda:eu-
west-1::runtime:8eeff65f6809a3ce81507fe733fe09b835899b99481ba22fd75b5a7338290ec1

You should see output similar to the following:

{
 "UpdateRuntimeOn": "Manual",
 "FunctionArn": "arn:aws:lambda:eu-west-1:069549076217:function:myfunction",
 "RuntimeVersionArn": "arn:aws:lambda:eu-
west-1::runtime:8eeff65f6809a3ce81507fe733fe09b835899b99481ba22fd75b5a7338290ec1"
}

Shared responsibility model

Lambda is responsible for curating and publishing security updates for all supported managed
runtimes and container images. Responsibility for updating existing functions to use the latest
runtime version varies depending on which runtime update mode you use.

Lambda is responsible for applying runtime updates to all functions configured to use the Auto
runtime update mode.

For functions configured with the Function update runtime update mode, you're responsible for
regularly updating your function. Lambda is responsible for applying runtime updates when you
make those updates. If you don't update your function, then Lambda doesn't update the runtime. If
you don't regularly update your function, then we strongly recommend configuring it for automatic
runtime updates so that it continues to receive security updates.

For functions configured to use the Manual runtime update mode, you're responsible for updating
your function to use the latest runtime version. We strongly recommend that you use this mode
only to roll back the runtime version as a temporary mitigation in the rare event of runtime update
incompatibility. We also recommend that you change to Auto mode as quickly as possible to
minimize the time in which your functions aren't patched.

If you're using container images to deploy your functions, then Lambda is responsible for
publishing updated base images. In this case, you're responsible for rebuilding your function's
container image from the latest base image and redeploying the container image.

This is summarized in the following table:

Shared responsibility model 98

Amazon Lambda Developer Guide

Deployment
mode

Lambda's responsibility Customer's responsibility

Managed
runtime,
Auto mode

Publish new runtime versions
containing the latest patches.

Apply runtime patches to
existing functions.

Roll back to a previous runtime version in the
rare event of a runtime update compatibility
issue.

Managed
runtime,
Function
update mode

Publish new runtime versions
containing the latest patches.

Update functions regularly to pick up the
latest runtime version.

Switch a function to Auto mode when you're
not regularly updating the function.

Roll back to a previous runtime version in the
rare event of a runtime update compatibility
issue.

Managed
runtime,
Manual
mode

Publish new runtime versions
containing the latest patches.

Use this mode only for temporary runtime
rollback in the rare event of a runtime update
compatibility issue.

Switch functions to Auto or Function update
mode and the latest runtime version as soon
as possible.

Container
image

Publish new container images
containing the latest patches.

Redeploy functions regularly using the latest
container base image to pick up the latest
patches.

For more information about shared responsibility with Amazon, see Shared Responsibility Model
on the Amazon Web Services Cloud Security site.

High-compliance applications

To meet patching requirements, Lambda customers typically rely on automatic runtime updates.
If your application is subject to strict patching freshness requirements, you may want to limit use

High-compliance applications 99

https://www.amazonaws.cn/compliance/shared-responsibility-model/

Amazon Lambda Developer Guide

of earlier runtime versions. You can restrict Lambda's runtime management controls by using
Amazon Identity and Access Management (IAM) to deny users in your Amazon account access to
the PutRuntimeManagementConfig API operation. This operation is used to choose the runtime
update mode for a function. Denying access to this operation causes all functions to default to
the Auto mode. You can apply this restriction across your organization by using a service control
policies (SCP). In the event that you must roll back a function to an earlier runtime version, you can
grant a policy exception on a case-by-case basis.

High-compliance applications 100

https://docs.amazonaws.cn/lambda/latest/api/API_PutRuntimeManagementConfig.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html

Amazon Lambda Developer Guide

Modifying the runtime environment

You can use internal extensions to modify the runtime process. Internal extensions are not separate
processes—they run as part of the runtime process.

Lambda provides language-specific environment variables that you can set to add options and
tools to the runtime. Lambda also provides wrapper scripts, which allow Lambda to delegate the
runtime startup to your script. You can create a wrapper script to customize the runtime startup
behavior.

Language-specific environment variables

Lambda supports configuration-only ways to enable code to be pre-loaded during function
initialization through the following language-specific environment variables:

• JAVA_TOOL_OPTIONS – On Java, Lambda supports this environment variable to set additional
command-line variables in Lambda. This environment variable allows you to specify the
initialization of tools, specifically the launching of native or Java programming language agents
using the agentlib or javaagent options. For more information, see JAVA_TOOL_OPTIONS
environment variable.

• NODE_OPTIONS – Available in Node.js runtimes.

• DOTNET_STARTUP_HOOKS – On .NET Core 3.1 and above, this environment variable specifies a
path to an assembly (dll) that Lambda can use.

Using language-specific environment variables is the preferred way to set startup properties.

Wrapper scripts

You can create a wrapper script to customize the runtime startup behavior of your Lambda
function. A wrapper script enables you to set configuration parameters that cannot be set through
language-specific environment variables.

Note

Invocations may fail if the wrapper script does not successfully start the runtime process.

Runtime modifications 101

https://docs.amazonaws.cn/lambda/latest/dg/java-customization.html#java-tool-options
https://docs.amazonaws.cn/lambda/latest/dg/java-customization.html#java-tool-options

Amazon Lambda Developer Guide

Wrapper scripts are supported on all native Lambda runtimes. Wrapper scripts are not supported
on OS-only runtimes (the provided runtime family).

When you use a wrapper script for your function, Lambda starts the runtime using your script.
Lambda sends to your script the path to the interpreter and all of the original arguments for the
standard runtime startup. Your script can extend or transform the startup behavior of the program.
For example, the script can inject and alter arguments, set environment variables, or capture
metrics, errors, and other diagnostic information.

You specify the script by setting the value of the AWS_LAMBDA_EXEC_WRAPPER environment
variable as the file system path of an executable binary or script.

Example: Create and use a wrapper script with Python 3.8

In the following example, you create a wrapper script to start the Python interpreter with the -
X importtime option. When you run the function, Lambda generates a log entry to show the
duration of the import time for each import.

To create and use a wrapper script with Python 3.8

1. To create the wrapper script, paste the following code into a file named
importtime_wrapper:

 #!/bin/bash

 # the path to the interpreter and all of the originally intended arguments
 args=("$@")

 # the extra options to pass to the interpreter
 extra_args=("-X" "importtime")

 # insert the extra options
 args=("${args[@]:0:$#-1}" "${extra_args[@]}" "${args[@]: -1}")

 # start the runtime with the extra options
 exec "${args[@]}"

2. To give the script executable permissions, enter chmod +x importtime_wrapper from the
command line.

Wrapper scripts 102

Amazon Lambda Developer Guide

3. Deploy the script as a Lambda layer.

4. Create a function using the Lambda console.

a. Open the Lambda console.

b. Choose Create function.

c. Under Basic information, for Function name, enter wrapper-test-function.

d. For Runtime, choose Python 3.8.

e. Choose Create function.

5. Add the layer to your function.

a. Choose your function, and then choose Code if it is not already selected.

b. Choose Add a layer.

c. Under Choose a layer, choose the Name and Version of the compatible layer that you
created earlier.

d. Choose Add.

6. Add the code and the environment variable to your function.

a. In the function code editor, paste the following function code:

import json

 def lambda_handler(event, context):
 # TODO implement
 return {
 'statusCode': 200,
 'body': json.dumps('Hello from Lambda!')
 }

b. Choose Save.

c. Under Environment variables, choose Edit.

d. Choose Add environment variable.

e. For Key, enter AWS_LAMBDA_EXEC_WRAPPER.

f. For Value, enter /opt/importtime_wrapper.

g. Choose Save.

7. To run the function, choose Test.Wrapper scripts 103

https://console.amazonaws.cn/lambda/home

Amazon Lambda Developer Guide

Because your wrapper script started the Python interpreter with the -X importtime option,
the logs show the time required for each import. For example:

 ...
 2020-06-30T18:48:46.780+01:00 import time: 213 | 213 | simplejson
 2020-06-30T18:48:46.780+01:00 import time: 50 | 263 | simplejson.raw_json
 ...

Wrapper scripts 104

Amazon Lambda Developer Guide

Lambda runtime API

Amazon Lambda provides an HTTP API for custom runtimes to receive invocation events from
Lambda and send response data back within the Lambda execution environment.

The OpenAPI specification for the runtime API version 2018-06-01 is available in runtime-api.zip

To create an API request URL, runtimes get the API endpoint from the
AWS_LAMBDA_RUNTIME_API environment variable, add the API version, and add the desired
resource path.

Example Request

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next"

API methods

• Next invocation

• Invocation response

• Initialization error

• Invocation error

Next invocation

Path – /runtime/invocation/next

Method – GET

Runtime API 105

samples/runtime-api.zip

Amazon Lambda Developer Guide

The runtime sends this message to Lambda to request an invocation event. The response body
contains the payload from the invocation, which is a JSON document that contains event data from
the function trigger. The response headers contain additional data about the invocation.

Response headers

• Lambda-Runtime-Aws-Request-Id – The request ID, which identifies the request that
triggered the function invocation.

For example, 8476a536-e9f4-11e8-9739-2dfe598c3fcd.

• Lambda-Runtime-Deadline-Ms – The date that the function times out in Unix time
milliseconds.

For example, 1542409706888.

• Lambda-Runtime-Invoked-Function-Arn – The ARN of the Lambda function, version, or
alias that's specified in the invocation.

For example, arn:aws-cn:lambda:us-east-2:123456789012:function:custom-
runtime.

• Lambda-Runtime-Trace-Id – The Amazon X-Ray tracing header.

For example, Root=1-5bef4de7-
ad49b0e87f6ef6c87fc2e700;Parent=9a9197af755a6419;Sampled=1.

• Lambda-Runtime-Client-Context – For invocations from the Amazon Mobile SDK, data
about the client application and device.

• Lambda-Runtime-Cognito-Identity – For invocations from the Amazon Mobile SDK, data
about the Amazon Cognito identity provider.

Do not set a timeout on the GET request as the response may be delayed. Between when Lambda
bootstraps the runtime and when the runtime has an event to return, the runtime process may be
frozen for several seconds.

The request ID tracks the invocation within Lambda. Use it to specify the invocation when you send
the response.

The tracing header contains the trace ID, parent ID, and sampling decision. If the request is
sampled, the request was sampled by Lambda or an upstream service. The runtime should set the

Next invocation 106

https://docs.amazonaws.cn/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader

Amazon Lambda Developer Guide

_X_AMZN_TRACE_ID with the value of the header. The X-Ray SDK reads this to get the IDs and
determine whether to trace the request.

Invocation response

Path – /runtime/invocation/AwsRequestId/response

Method – POST

After the function has run to completion, the runtime sends an invocation response to Lambda. For
synchronous invocations, Lambda sends the response to the client.

Example success request

REQUEST_ID=156cb537-e2d4-11e8-9b34-d36013741fb9
curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "SUCCESS"

Initialization error

If the function returns an error or the runtime encounters an error during initialization, the runtime
uses this method to report the error to Lambda.

Path – /runtime/init/error

Method – POST

Headers

Lambda-Runtime-Function-Error-Type – Error type that the runtime encountered. Required:
no.

This header consists of a string value. Lambda accepts any string, but we recommend a format of
<category.reason>. For example:

• Runtime.NoSuchHandler

• Runtime.APIKeyNotFound

• Runtime.ConfigInvalid

• Runtime.UnknownReason

Body parameters

Invocation response 107

Amazon Lambda Developer Guide

ErrorRequest – Information about the error. Required: no.

This field is a JSON object with the following structure:

{
 errorMessage: string (text description of the error),
 errorType: string,
 stackTrace: array of strings
}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Example Function error

{
 "errorMessage" : "Error parsing event data.",
 "errorType" : "InvalidEventDataException",
 "stackTrace": []
}

Response body parameters

• StatusResponse – String. Status information, sent with 202 response codes.

• ErrorResponse – Additional error information, sent with the error response codes.
ErrorResponse contains an error type and an error message.

Response codes

• 202 – Accepted

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Runtime should exit promptly.

Example initialization error request

ERROR="{\"errorMessage\" : \"Failed to load function.\", \"errorType\" :
 \"InvalidFunctionException\"}"

Initialization error 108

Amazon Lambda Developer Guide

curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/init/error" -d "$ERROR" --
header "Lambda-Runtime-Function-Error-Type: Unhandled"

Invocation error

If the function returns an error or the runtime encounters an error, the runtime uses this method to
report the error to Lambda.

Path – /runtime/invocation/AwsRequestId/error

Method – POST

Headers

Lambda-Runtime-Function-Error-Type – Error type that the runtime encountered. Required:
no.

This header consists of a string value. Lambda accepts any string, but we recommend a format of
<category.reason>. For example:

• Runtime.NoSuchHandler

• Runtime.APIKeyNotFound

• Runtime.ConfigInvalid

• Runtime.UnknownReason

Body parameters

ErrorRequest – Information about the error. Required: no.

This field is a JSON object with the following structure:

{
 errorMessage: string (text description of the error),
 errorType: string,
 stackTrace: array of strings
}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Invocation error 109

Amazon Lambda Developer Guide

Example Function error

{
 "errorMessage" : "Error parsing event data.",
 "errorType" : "InvalidEventDataException",
 "stackTrace": []
}

Response body parameters

• StatusResponse – String. Status information, sent with 202 response codes.

• ErrorResponse – Additional error information, sent with the error response codes.
ErrorResponse contains an error type and an error message.

Response codes

• 202 – Accepted

• 400 – Bad Request

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Runtime should exit promptly.

Example error request

REQUEST_ID=156cb537-e2d4-11e8-9b34-d36013741fb9
ERROR="{\"errorMessage\" : \"Error parsing event data.\", \"errorType\" :
 \"InvalidEventDataException\"}"
curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/error"
 -d "$ERROR" --header "Lambda-Runtime-Function-Error-Type: Unhandled"

Invocation error 110

Amazon Lambda Developer Guide

OS-only runtimes for Amazon Lambda

Lambda provides managed runtimes for Java, Python, Node.js, .NET, and Ruby. To create Lambda
functions in a programming language that is not available as a managed runtime, use an OS-only
runtime (the provided runtime family). There are three primary use cases for OS-only runtimes:

• Native ahead-of-time (AOT) compilation: Languages such as Go, Rust, and C++ compile natively
to an executable binary, which doesn't require a dedicated language runtime. These languages
only need an OS environment in which the compiled binary can run. You can also use Lambda
OS-only runtimes to deploy binaries compiled with .NET Native AOT and Java GraalVM Native.

You must include a runtime interface client in your binary. The runtime interface client
calls the Lambda runtime API to retrieve function invocations and then calls your function
handler. Lambda provides runtime interface clients for Go, .NET Native AOT, C++, and Rust
(experimental).

You must compile your binary for a Linux environment and for the same instruction set
architecture that you plan to use for the function (x86_64 or arm64).

• Third-party runtimes: You can run Lambda functions using off-the-shelf runtimes such as Bref
for PHP or the Swift Amazon Lambda Runtime for Swift.

• Custom runtimes: You can build your own runtime for a language or language version that
Lambda doesn't provide a managed runtime for, such as Node.js 19. For more information, see
Building a custom runtime for Amazon Lambda. This is the least common use case for OS-only
runtimes.

Lambda supports the following OS-only runtimes:

OS-only

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

OS-only
Runtime

provided.
al2023

Amazon
Linux 2023

OS-only
Runtime

provided.
al2

Amazon
Linux 2

OS-only runtimes 111

https://github.com/awslabs/aws-lambda-cpp
https://bref.sh/docs/news/01-bref-1.0.html#amazon-linux-2
https://github.com/swift-server/swift-aws-lambda-runtime#swift-aws-lambda-runtime

Amazon Lambda Developer Guide

The Amazon Linux 2023 (provided.al2023) runtime provides several advantages over Amazon
Linux 2, including a smaller deployment footprint and updated versions of libraries such as glibc.

The provided.al2023 runtime uses dnf as the package manager instead of yum, which is the
default package manager in Amazon Linux 2. For more information about the differences between
provided.al2023 and provided.al2, see Introducing the Amazon Linux 2023 runtime for
Amazon Lambda on the Amazon Compute Blog.

OS-only runtimes 112

https://amazonaws-china.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://amazonaws-china.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

Amazon Lambda Developer Guide

Building a custom runtime for Amazon Lambda

You can implement an Amazon Lambda runtime in any programming language. A runtime is a
program that runs a Lambda function's handler method when the function is invoked. You can
include the runtime in your function's deployment package or distribute it in a layer. When you
create the Lambda function, choose an OS-only runtime (the provided runtime family).

Note

Creating a custom runtime is an advanced use case. If you're looking for information about
compiling to a native binary or using a third-party off-the-shelf runtime, see OS-only
runtimes for Amazon Lambda.

For a walkthrough of the custom runtime deployment process, see Tutorial: Building a custom
runtime. You can also explore a custom runtime implemented in C++ at awslabs/aws-lambda-cpp
on GitHub.

Topics

• Requirements

• Implementing response streaming in a custom runtime

Requirements

Custom runtimes must complete certain initialization and processing tasks. A runtime runs the
function's setup code, reads the handler name from an environment variable, and reads invocation
events from the Lambda runtime API. The runtime passes the event data to the function handler,
and posts the response from the handler back to Lambda.

Intitialization tasks

The initialization tasks run once per instance of the function to prepare the environment to handle
invocations.

• Retrieve settings – Read environment variables to get details about the function and
environment.

Building a custom runtime 113

https://github.com/awslabs/aws-lambda-cpp

Amazon Lambda Developer Guide

• _HANDLER – The location to the handler, from the function's configuration. The standard
format is file.method, where file is the name of the file without an extension, and method
is the name of a method or function that's defined in the file.

• LAMBDA_TASK_ROOT – The directory that contains the function code.

• AWS_LAMBDA_RUNTIME_API – The host and port of the runtime API.

For a full list of available variables, see Defined runtime environment variables.

• Initialize the function – Load the handler file and run any global or static code that it contains.
Functions should create static resources like SDK clients and database connections once, and
reuse them for multiple invocations.

• Handle errors – If an error occurs, call the initialization error API and exit immediately.

Initialization counts towards billed execution time and timeout. When an execution triggers the
initialization of a new instance of your function, you can see the initialization time in the logs and
Amazon X-Ray trace.

Example log

REPORT RequestId: f8ac1208... Init Duration: 48.26 ms Duration: 237.17 ms Billed
 Duration: 300 ms Memory Size: 128 MB Max Memory Used: 26 MB

Processing tasks

While it runs, a runtime uses the Lambda runtime interface to manage incoming events and report
errors. After completing initialization tasks, the runtime processes incoming events in a loop. In
your runtime code, perform the following steps in order.

• Get an event – Call the next invocation API to get the next event. The response body contains
the event data. Response headers contain the request ID and other information.

• Propagate the tracing header – Get the X-Ray tracing header from the Lambda-Runtime-
Trace-Id header in the API response. Set the _X_AMZN_TRACE_ID environment variable locally
with the same value. The X-Ray SDK uses this value to connect trace data between services.

• Create a context object – Create an object with context information from environment variables
and headers in the API response.

• Invoke the function handler – Pass the event and context object to the handler.

• Handle the response – Call the invocation response API to post the response from the handler.

Requirements 114

Amazon Lambda Developer Guide

• Handle errors – If an error occurs, call the invocation error API.

• Cleanup – Release unused resources, send data to other services, or perform additional tasks
before getting the next event.

Entrypoint

A custom runtime's entry point is an executable file named bootstrap. The bootstrap file
can be the runtime, or it can invoke another file that creates the runtime. If the root of your
deployment package doesn't contain a file named bootstrap, Lambda looks for the file in the
function's layers. If the bootstrap file doesn't exist or isn't executable, your function returns a
Runtime.InvalidEntrypoint error upon invocation.

Here's an example bootstrap file that uses a bundled version of Node.js to run a JavaScript
runtime in a separate file named runtime.js.

Example bootstrap

#!/bin/sh
 cd $LAMBDA_TASK_ROOT
 ./node-v11.1.0-linux-x64/bin/node runtime.js

Implementing response streaming in a custom runtime

For response streaming functions, the response and error endpoints have slightly modified
behavior that lets the runtime stream partial responses to the client and return payloads in chunks.
For more information about the specific behavior, see the following:

• /runtime/invocation/AwsRequestId/response – Propagates the Content-Type header
from the runtime to send to the client. Lambda returns the response payload in chunks via
HTTP/1.1 chunked transfer encoding. The response stream can be a maximum size of 20 MiB. To
stream the response to Lambda, the runtime must:

• Set the Lambda-Runtime-Function-Response-Mode HTTP header to streaming.

• Set the Transfer-Encoding header to chunked.

• Write the response conforming to the HTTP/1.1 chunked transfer encoding specification.

• Close the underlying connection after it has successfully written the response.

Implementing response streaming in a custom runtime 115

Amazon Lambda Developer Guide

• /runtime/invocation/AwsRequestId/error – The runtime can use this endpoint to report
function or runtime errors to Lambda, which also accepts the Transfer-Encoding header. This
endpoint can only be called before the runtime begins sending an invocation response.

• Report midstream errors using error trailers in /runtime/invocation/AwsRequestId/
response – To report errors that occur after the runtime starts writing the invocation response,
the runtime can optionally attach HTTP trailing headers named Lambda-Runtime-Function-
Error-Type and Lambda-Runtime-Function-Error-Body. Lambda treats this as a
successful response and forwards the error metadata that the runtime provides to the client.

Note

To attach trailing headers, the runtime must set the Trailer header value at the
beginning of the HTTP request. This is a requirement of the HTTP/1.1 chunked transfer
encoding specification.

• Lambda-Runtime-Function-Error-Type – The error type that the runtime encountered.
This header consists of a string value. Lambda accepts any string, but we recommend a format
of <category.reason>. For example, Runtime.APIKeyNotFound.

• Lambda-Runtime-Function-Error-Body – Base64-encoded information about the error.

Implementing response streaming in a custom runtime 116

Amazon Lambda Developer Guide

Tutorial: Building a custom runtime

In this tutorial, you create a Lambda function with a custom runtime. You start by including the
runtime in the function's deployment package. Then you migrate it to a layer that you manage
independently from the function. Finally, you share the runtime layer with the world by updating
its resource-based permissions policy.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the Amazon Command Line Interface (Amazon CLI)
version 2. Commands and the expected output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

You need an IAM role to create a Lambda function. The role needs permission to send logs to
CloudWatch Logs and access the Amazon services that your function uses. If you don't have a role
for function development, create one now.

Custom runtime tutorial 117

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Lambda Developer Guide

To create an execution role

1. Open the roles page in the IAM console.

2. Choose Create role.

3. Create a role with the following properties.

• Trusted entity – Lambda.

• Permissions – AWSLambdaBasicExecutionRole.

• Role name – lambda-role.

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to
write logs to CloudWatch Logs.

Create a function

Create a Lambda function with a custom runtime. This example includes two files: a runtime
bootstrap file and a function handler. Both are implemented in Bash.

1. Create a directory for the project, and then switch to that directory.

mkdir runtime-tutorial
cd runtime-tutorial

2. Create a new file called bootstrap. This is the custom runtime.

Example bootstrap

#!/bin/sh

set -euo pipefail

Initialization - load function handler
source $LAMBDA_TASK_ROOT/"$(echo $_HANDLER | cut -d. -f1).sh"

Processing
while true
do
 HEADERS="$(mktemp)"
 # Get an event. The HTTP request will block until one is received

Create a function 118

https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

 EVENT_DATA=$(curl -sS -LD "$HEADERS" "http://
${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next")

 # Extract request ID by scraping response headers received above
 REQUEST_ID=$(grep -Fi Lambda-Runtime-Aws-Request-Id "$HEADERS" | tr -d
 '[:space:]' | cut -d: -f2)

 # Run the handler function from the script
 RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

 # Send the response
 curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "$RESPONSE"
done

The runtime loads a function script from the deployment package. It uses two variables
to locate the script. LAMBDA_TASK_ROOT tells it where the package was extracted, and
_HANDLER includes the name of the script.

After the runtime loads the function script, it uses the runtime API to retrieve an invocation
event from Lambda, passes the event to the handler, and posts the response back to Lambda.
To get the request ID, the runtime saves the headers from the API response to a temporary file,
and reads the Lambda-Runtime-Aws-Request-Id header from the file.

Note

Runtimes have additional responsibilities, including error handling, and providing
context information to the handler. For details, see Requirements.

3. Create a script for the function. The following example script defines a handler function that
takes event data, logs it to stderr, and returns it.

Example function.sh

function handler () {
 EVENT_DATA=$1
 echo "$EVENT_DATA" 1>&2;
 RESPONSE="Echoing request: '$EVENT_DATA'"

 echo $RESPONSE

Create a function 119

Amazon Lambda Developer Guide

}

The runtime-tutorial directory should now look like this:

runtime-tutorial
bootstrap
function.sh

4. Make the files executable and add them to a .zip file archive. This is the deployment package.

chmod 755 function.sh bootstrap
zip function.zip function.sh bootstrap

5. Create a function named bash-runtime. For --role, enter the ARN of your Lambda
execution role.

aws lambda create-function --function-name bash-runtime \
--zip-file fileb://function.zip --handler function.handler --runtime
 provided.al2023 \
--role arn:aws-cn:iam::123456789012:role/lambda-role

6. Invoke the function.

aws lambda invoke --function-name bash-runtime --payload '{"text":"Hello"}'
 response.txt --cli-binary-format raw-in-base64-out

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see a response like this:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

7. Verify the response.

Create a function 120

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

cat response.txt

You should see a response like this:

Echoing request: '{"text":"Hello"}'

Create a layer

To separate the runtime code from the function code, create a layer that only contains the runtime.
Layers let you develop your function's dependencies independently, and can reduce storage usage
when you use the same layer with multiple functions. For more information, see Working with
Lambda layers.

1. Create a .zip file that contains the bootstrap file.

zip runtime.zip bootstrap

2. Create a layer with the publish-layer-version command.

aws lambda publish-layer-version --layer-name bash-runtime --zip-file fileb://
runtime.zip

This creates the first version of the layer.

Update the function

To use the runtime layer in the function, configure the function to use the layer, and remove the
runtime code from the function.

1. Update the function configuration to pull in the layer.

aws lambda update-function-configuration --function-name bash-runtime \
--layers arn:aws-cn:lambda:us-east-1:123456789012:layer:bash-runtime:1

Create a layer 121

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-layer-version.html?highlight=nodejs16%20x

Amazon Lambda Developer Guide

This adds the runtime to the function in the /opt directory. To ensure that Lambda uses the
runtime in the layer, you must remove the boostrap from the function's deployment package,
as shown in the next two steps.

2. Create a .zip file that contains the function code.

zip function-only.zip function.sh

3. Update the function code to only include the handler script.

aws lambda update-function-code --function-name bash-runtime --zip-file fileb://
function-only.zip

4. Invoke the function to confirm that it works with the runtime layer.

aws lambda invoke --function-name bash-runtime --payload '{"text":"Hello"}'
 response.txt --cli-binary-format raw-in-base64-out

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see a response like this:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

5. Verify the response.

cat response.txt

You should see a response like this:

Echoing request: '{"text":"Hello"}'

Update the function 122

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

Update the runtime

1. To log information about the execution environment, update the runtime script to output
environment variables.

Example bootstrap

#!/bin/sh

set -euo pipefail

Configure runtime to output environment variables
echo "## Environment variables:"
env

Load function handler
source $LAMBDA_TASK_ROOT/"$(echo $_HANDLER | cut -d. -f1).sh"

Processing
while true
do
 HEADERS="$(mktemp)"
 # Get an event. The HTTP request will block until one is received
 EVENT_DATA=$(curl -sS -LD "$HEADERS" "http://
${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/next")

 # Extract request ID by scraping response headers received above
 REQUEST_ID=$(grep -Fi Lambda-Runtime-Aws-Request-Id "$HEADERS" | tr -d
 '[:space:]' | cut -d: -f2)

 # Run the handler function from the script
 RESPONSE=$($(echo "$_HANDLER" | cut -d. -f2) "$EVENT_DATA")

 # Send the response
 curl "http://${AWS_LAMBDA_RUNTIME_API}/2018-06-01/runtime/invocation/$REQUEST_ID/
response" -d "$RESPONSE"
done

2. Create a .zip file that contains the new version of the bootstrap file.

zip runtime.zip bootstrap

3. Create a new version of the bash-runtime layer.

Update the runtime 123

Amazon Lambda Developer Guide

aws lambda publish-layer-version --layer-name bash-runtime --zip-file fileb://
runtime.zip

4. Configure the function to use the new version of the layer.

aws lambda update-function-configuration --function-name bash-runtime \
--layers arn:aws-cn:lambda:us-east-1:123456789012:layer:bash-runtime:2

Share the layer

To grant layer-usage permission to another account, add a statement to the layer version's
permissions policy using the add-layer-version-permission command. In each statement, you can
grant permission to a single account, all accounts, or an organization.

The following example grants account 111122223333 access to version 2 of the bash-runtime
layer.

aws lambda add-layer-version-permission --layer-name bash-runtime --statement-id
 xaccount \
--action lambda:GetLayerVersion --principal 111122223333 --version-number 2 --output
 text

You should see output similar to the following:

e210ffdc-e901-43b0-824b-5fcd0dd26d16 {"Sid":"xaccount","Effect":"Allow","Principal":
{"AWS":"arn:aws-
cn:iam::111122223333:root"},"Action":"lambda:GetLayerVersion","Resource":"arn:aws-
cn:lambda:us-east-1:123456789012:layer:bash-runtime:2"}

Permissions apply only to a single layer version. Repeat the process each time that you create a
new layer version.

Clean up

Delete each version of the layer.

aws lambda delete-layer-version --layer-name bash-runtime --version-number 1
aws lambda delete-layer-version --layer-name bash-runtime --version-number 2

Share the layer 124

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-layer-version-permission.html

Amazon Lambda Developer Guide

Because the function holds a reference to version 2 of the layer, it still exists in Lambda. The
function continues to work, but functions can no longer be configured to use the deleted version.
If you modify the list of layers on the function, you must specify a new version or omit the deleted
layer.

Delete the function with the delete-function command.

aws lambda delete-function --function-name bash-runtime

Clean up 125

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-function.html

Amazon Lambda Developer Guide

Using AVX2 vectorization in Lambda

Advanced Vector Extensions 2 (AVX2) is a vectorization extension to the Intel x86 instruction set
that can perform single instruction multiple data (SIMD) instructions over vectors of 256 bits.
For vectorizable algorithms with highly parallelizable operation, using AVX2 can enhance CPU
performance, resulting in lower latencies and higher throughput. Use the AVX2 instruction set
for compute-intensive workloads such as machine learning inferencing, multimedia processing,
scientific simulations, and financial modeling applications.

Note

Lambda arm64 uses NEON SIMD architecture and does not support the x86 AVX2
extensions.

To use AVX2 with your Lambda function, make sure that your function code is accessing AVX2-
optimized code. For some languages, you can install the AVX2-supported version of libraries
and packages. For other languages, you can recompile your code and dependencies with the
appropriate compiler flags set (if the compiler supports auto-vectorization). You can also compile
your code with third-party libraries that use AVX2 to optimize math operations. For example, Intel
Math Kernel Library (Intel MKL), OpenBLAS (Basic Linear Algebra Subprograms), and AMD BLAS-
like Library Instantiation Software (BLIS). Auto-vectorized languages, such as Java, automatically
use AVX2 for computations.

You can create new Lambda workloads or move existing AVX2-enabled workloads to Lambda at no
additional cost.

For more information about AVX2, see Advanced Vector Extensions 2 in Wikipedia.

Compiling from source

If your Lambda function uses a C or C++ library to perform compute-intensive vectorizable
operations, you can set the appropriate compiler flags and recompile the function code. Then, the
compiler automatically vectorizes your code.

For the gcc or clang compiler, add -march=haswell to the command or set -mavx2 as a
command option.

AVX2 vectorization 126

https://en.wikipedia.org/wiki/Massively_parallel
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#Advanced_Vector_Extensions_2

Amazon Lambda Developer Guide

~ gcc -march=haswell main.c
or
~ gcc -mavx2 main.c

~ clang -march=haswell main.c
or
~ clang -mavx2 main.c

To use a specific library, follow instructions in the library's documentation to compile and build the
library. For example, to build TensorFlow from source, you can follow the installation instructions
on the TensorFlow website. Make sure to use the -march=haswell compile option.

Enabling AVX2 for Intel MKL

Intel MKL is a library of optimized math operations that implicitly use AVX2 instructions when the
compute platform supports them. Frameworks such as PyTorch build with Intel MKL by default, so
you don't need to enable AVX2.

Some libraries, such as TensorFlow, provide options in their build process to specify Intel MKL
optimization. For example, with TensorFlow, use the --config=mkl option.

You can also build popular scientific Python libraries, such as SciPy and NumPy, with Intel MKL. For
instructions on building these libraries with Intel MKL, see Numpy/Scipy with Intel MKL and Intel
Compilers on the Intel website.

For more information about Intel MKL and similar libraries, see Math Kernel Library in Wikipedia,
the OpenBLAS website, and the AMD BLIS repository on GitHub.

AVX2 support in other languages

If you don't use C or C++ libraries and don't build with Intel MKL, you can still get some AVX2
performance improvement for your applications. Note that the actual improvement depends on
the compiler or interpreter's ability to utilize the AVX2 capabilities on your code.

Python

Python users generally use SciPy and NumPy libraries for compute-intensive workloads. You can
compile these libraries to enable AVX2, or you can use the Intel MKL-enabled versions of the
libraries.

Enabling AVX2 for Intel MKL 127

https://www.tensorflow.org/install/source
https://software.intel.com/content/www/us/en/develop/articles/getting-started-with-intel-optimization-of-pytorch.html
https://software.intel.com/content/www/us/en/develop/articles/numpyscipy-with-intel-mkl.html
https://software.intel.com/content/www/us/en/develop/articles/numpyscipy-with-intel-mkl.html
https://en.wikipedia.org/wiki/Math_Kernel_Library
https://www.openblas.net/
https://github.com/amd/blis

Amazon Lambda Developer Guide

Node

For compute-intensive workloads, use AVX2-enabled or Intel MKL-enabled versions of the
libraries that you need.

Java

Java's JIT compiler can auto-vectorize your code to run with AVX2 instructions. For information
about detecting vectorized code, see the Code vectorization in the JVM presentation on the
OpenJDK website.

Go

The standard Go compiler doesn't currently support auto-vectorization, but you can use gccgo,
the GCC compiler for Go. Set the -mavx2 option:

gcc -o avx2 -mavx2 -Wall main.c

Intrinsics

It's possible to use intrinsic functions in many languages to manually vectorize your code to use
AVX2. However, we don't recommend this approach. Manually writing vectorized code takes
significant effort. Also, debugging and maintaining such code is more difficult than using code
that depends on auto-vectorization.

AVX2 support in other languages 128

https://cr.openjdk.java.net/~vlivanov/talks/2019_CodeOne_MTE_Vectors.pdf
https://golang.org/doc/install/gccgo
https://en.wikipedia.org/wiki/Intrinsic_function

Amazon Lambda Developer Guide

Configuring Amazon Lambda functions

Learn how to configure the core capabilities and options for your Lambda function using the
Lambda API or console.

Memory

Learn how and when to increase function memory.

Ephemeral storage

Learn how and when to increase your function's temporary storage capacity.

Timeout

Learn how and when to increase your function's timeout value.

Environment variables

You can make your function code portable and keep secrets out of your code by storing them in
your function's configuration by using environment variables.

Outbound networking

You can use your Lambda function with Amazon resources in an Amazon VPC. Connecting your
function to a VPC lets you access resources in a private subnet such as relational databases and
caches.

Inbound networking

You can use an interface VPC endpoint to invoke your Lambda functions without crossing the
public internet.

File system

You can use your Lambda function to mount a Amazon EFS to a local directory. A file system
allows your function code to access and modify shared resources safely and at high concurrency.

Aliases

You can configure your clients to invoke a specific Lambda function version by using an alias,
instead of updating the client.

Versions

By publishing a version of your function, you can store your code and configuration as a
separate resource that cannot be changed.

129

Amazon Lambda Developer Guide

Response streaming

You can configure your Lambda function URLs to stream response payloads back to clients.
Response streaming can benefit latency sensitive applications by improving time to first byte
(TTFB) performance. This is because you can send partial responses back to the client as they
become available. Additionally, you can use response streaming to build functions that return
larger payloads.

130

Amazon Lambda Developer Guide

Configure Lambda function memory

Lambda allocates CPU power in proportion to the amount of memory configured. Memory is the
amount of memory available to your Lambda function at runtime. You can increase or decrease the
memory and CPU power allocated to your function using the Memory setting. You can configure
memory between 128 MB and 10,240 MB in 1-MB increments. At 1,769 MB, a function has the
equivalent of one vCPU (one vCPU-second of credits per second).

This page describes how and when to update the memory setting for a Lambda function.

Sections

• Determining the appropriate memory setting for a Lambda function

• Configuring function memory (console)

• Configuring function memory (Amazon CLI)

• Configuring function memory (Amazon SAM)

• Accepting function memory recommendations (console)

Determining the appropriate memory setting for a Lambda function

Memory is the principal lever for controlling the performance of a function. The default setting,
128 MB, is the lowest possible setting. We recommend that you only use 128 MB for simple
Lambda functions, such as those that transform and route events to other Amazon services. A
higher memory allocation can improve performance for functions that use imported libraries,
Lambda layers, Amazon Simple Storage Service (Amazon S3) or Amazon Elastic File System
(Amazon EFS). Adding more memory proportionally increases the amount of CPU, increasing the
overall computational power available. If a function is CPU, network or memory-bound, then
increasing the memory setting can dramatically improve its performance.

To find the right memory configuration for your functions, we recommend using the open source
Amazon Lambda Power Tuning tool. This tool uses Amazon Step Functions to run multiple
concurrent versions of a Lambda function at different memory allocations and measure the
performance. The input function runs in your Amazon account, performing live HTTP calls and SDK
interaction, to measure likely performance in a live production scenario. You can also implement a
CI/CD process to use this tool to automatically measure the performance of new functions that you
deploy.

Memory 131

https://github.com/alexcasalboni/aws-lambda-power-tuning

Amazon Lambda Developer Guide

Configuring function memory (console)

You can configure the memory of your function in the Lambda console.

To update the memory of a function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Configuration tab and then choose General configuration.

4. Under General configuration, choose Edit.

5. For Memory, set a value from 128 MB to 10,240 MB.

6. Choose Save.

Configuring function memory (Amazon CLI)

You can use the update-function-configuration command to configure the memory of your
function.

Example

aws lambda update-function-configuration \
 --function-name my-function \
 --memory-size 1024

Configuring function memory (Amazon SAM)

You can use the Amazon Serverless Application Model to configure memory for your function.
Update the MemorySize property in your template.yaml file and then run sam deploy.

Using the console 132

https://console.amazonaws.cn/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-memorysize
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html

Amazon Lambda Developer Guide

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Application Model template describing your function.
Resources:
 my-function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''
 MemorySize: 1024
 # Other function properties...

Accepting function memory recommendations (console)

If you have administrator permissions in Amazon Identity and Access Management (IAM), you can
opt in to receive Lambda function memory setting recommendations from Amazon Compute
Optimizer. For instructions on opting in to memory recommendations for your account or
organization, see Opting in your account in the Amazon Compute Optimizer User Guide.

Note

Compute Optimizer supports only functions that use x86_64 architecture.

When you've opted in and your Lambda function meets Compute Optimizer requirements, you
can view and accept function memory recommendations from Compute Optimizer in the Lambda
console in General configuration.

Accepting function memory recommendations (console) 133

https://docs.amazonaws.cn/compute-optimizer/latest/ug/getting-started.html#account-opt-in
https://docs.amazonaws.cn/compute-optimizer/latest/ug/requirements.html#requirements-lambda-functions

Amazon Lambda Developer Guide

Configure ephemeral storage for Lambda functions

Lambda provides ephemeral storage for functions in the /tmp directory. This storage is temporary
and unique to each execution environment. You can control the amount of ephemeral storage
allocated to your function using the Ephemeral storage setting. You can configure ephemeral
storage between 512 MB and 10,240 MB, in 1-MB increments. All data stored in /tmp is encrypted
at rest with a key managed by Amazon.

This page describes common use cases and how to update the ephemeral storage for a Lambda
function.

Sections

• Common use cases for increased ephemeral storage

• Configuring ephemeral storage (console)

• Configuring ephemeral storage (Amazon CLI)

• Configuring ephemeral storage (Amazon SAM)

Common use cases for increased ephemeral storage

Here are several common use cases that benefit from increased ephemeral storage:

• Extract-transform-load (ETL) jobs: Increase ephemeral storage when your code performs
intermediate computation or downloads other resources to complete processing. More
temporary space enables more complex ETL jobs to run in Lambda functions.

• Machine learning (ML) inference: Many inference tasks rely on large reference data files,
including libraries and models. With more ephemeral storage, you can download larger models
from Amazon Simple Storage Service (Amazon S3) to /tmp and use them in your processing.

• Data processing: For workloads that download objects from Amazon S3 in response to S3
events, more /tmp space makes it possible to handle larger objects without using in-memory
processing. Workloads that create PDFs or process media also benefit from more ephemeral
storage.

• Graphics processing: Image processing is a common use case for Lambda-based applications.
For workloads that process large TIFF files or satellite images, more ephemeral storage makes it
easier to use libraries and perform the computation in Lambda.

Ephemeral storage 134

Amazon Lambda Developer Guide

Configuring ephemeral storage (console)

You can configure ephemeral storage in the Lambda console.

To modify ephemeral storage for a function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Configuration tab and then choose General configuration.

4. Under General configuration, choose Edit.

5. For Ephemeral storage, set a value between 512 MB and 10,240 MB, in 1-MB increments.

6. Choose Save.

Configuring ephemeral storage (Amazon CLI)

You can use the update-function-configuration command to configure ephemeral storage.

Example

aws lambda update-function-configuration \
 --function-name my-function \
 --ephemeral-storage '{"Size": 1024}'

Configuring ephemeral storage (Amazon SAM)

You can use the Amazon Serverless Application Model to configure ephemeral storage for your
function. Update the EphemeralStorage property in your template.yaml file and then run sam
deploy.

Using the console 135

https://console.amazonaws.cn/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-ephemeralstorage
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html

Amazon Lambda Developer Guide

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Application Model template describing your function.
Resources:
 my-function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''
 MemorySize: 128
 Timeout: 120
 Handler: index.handler
 Runtime: nodejs20.x
 Architectures:
 - x86_64
 EphemeralStorage:
 Size: 10240
 # Other function properties...

Using Amazon SAM 136

Amazon Lambda Developer Guide

Configure Lambda function timeout

Lambda runs your code for a set amount of time before timing out. Timeout is the maximum
amount of time in seconds that a Lambda function can run. The default value for this setting is 3
seconds, but you can adjust this in increments of 1 second up to a maximum value of 900 seconds
(15 minutes).

This page describes how and when to update the timeout setting for a Lambda function.

Sections

• Determining the appropriate timeout value for a Lambda function

• Configuring timeout (console)

• Configuring timeout (Amazon CLI)

• Configuring timeout (Amazon SAM)

Determining the appropriate timeout value for a Lambda function

If the timeout value is close to the average duration of a function, there is a higher risk that the
function will time out unexpectedly. The duration of a function can vary based on the amount of
data transfer and processing, and the latency of any services the function interacts with. Some
common causes of timeout include:

• Downloads from Amazon Simple Storage Service (Amazon S3) are larger or take longer than
average.

• A function makes a request to another service, which takes longer to respond.

• The parameters provided to a function require more computational complexity in the function,
which causes the invocation to take longer.

When testing your application, ensure that your tests accurately reflect the size and quantity of
data and realistic parameter values. Tests often use small samples for convenience, but you should
use datasets at the upper bounds of what is reasonably expected for your workload.

Configuring timeout (console)

You can configure ephemeral storage in the Lambda console.

Timeout 137

Amazon Lambda Developer Guide

To modify ephemeral storage for a function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Configuration tab and then choose General configuration.

4. Under General configuration, choose Edit.

5. For Timeout, set a value between 1 and 900 seconds (15 minutes).

6. Choose Save.

Configuring timeout (Amazon CLI)

You can use the update-function-configuration command to configure the timeout value, in
seconds. The following example command increases the function timeout to 120 seconds (2
minutes).

Example

aws lambda update-function-configuration \
 --function-name my-function \
 --timeout 120

Configuring timeout (Amazon SAM)

You can use the Amazon Serverless Application Model to configure the timeout value for your
function. Update the Timeout property in your template.yaml file and then run sam deploy.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Using the Amazon CLI 138

https://console.amazonaws.cn/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-timeout
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html

Amazon Lambda Developer Guide

Description: An AWS Serverless Application Model template describing your function.
Resources:
 my-function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''
 MemorySize: 128
 Timeout: 120
 # Other function properties...

Using Amazon SAM 139

Amazon Lambda Developer Guide

Using Lambda environment variables

You can use environment variables to adjust your function's behavior without updating code. An
environment variable is a pair of strings that is stored in a function's version-specific configuration.
The Lambda runtime makes environment variables available to your code and sets additional
environment variables that contain information about the function and invocation request.

Note

To increase database security, we recommend that you use Amazon Secrets Manager
instead of environment variables to store database credentials. For more information, see
Using Amazon Lambda with Amazon RDS.

Environment variables are not evaluated before the function invocation. Any value you define is
considered a literal string and not expanded. Perform the variable evaluation in your function code.

Sections

• Configuring environment variables (console)

• Configuring environment variables (API)

• Configuring environment variables (Amazon CLI)

• Configuring environment variables (Amazon SAM)

• Example scenario for environment variables

• Retrieve environment variables

• Defined runtime environment variables

• Securing environment variables

• Sample code and templates

Configuring environment variables (console)

You define environment variables on the unpublished version of your function. When you publish
a version, the environment variables are locked for that version along with other version-specific
configuration settings.

You create an environment variable for your function by defining a key and a value. Your function
uses the name of the key to retrieve the value of the environment variable.

Environment variables 140

Amazon Lambda Developer Guide

To set environment variables in the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration, then choose Environment variables.

4. Under Environment variables, choose Edit.

5. Choose Add environment variable.

6. Enter a key and value.

Requirements

• Keys start with a letter and are at least two characters.

• Keys only contain letters, numbers, and the underscore character (_).

• Keys aren't reserved by Lambda.

• The total size of all environment variables doesn't exceed 4 KB.

7. Choose Save.

To generate a list of environment variables in the console code editor

You can generate a list of environment variables in the Lambda code editor. This is a quick way to
reference your environment variables while you code.

1. Choose the Code tab.

2. Choose the Environment Variables tab.

3. Choose Tools, Show Environment Variables.

Environment variables remain encrypted when listed in the console code editor. If you enabled
encryption helpers for encryption in transit, then those settings remain unchanged. For more
information, see Securing environment variables.

The environment variables list is read-only and is available only on the Lambda console. This file
is not included when you download the function's .zip file archive, and you can't add environment
variables by uploading this file.

Using the console 141

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Configuring environment variables (API)

To manage environment variables with the Amazon CLI or Amazon SDK, use the following API
operations.

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

Configuring environment variables (Amazon CLI)

The following example sets two environment variables on a function named my-function.

aws lambda update-function-configuration \
 --function-name my-function \
 --environment "Variables={BUCKET=my-bucket,KEY=file.txt}"

When you apply environment variables with the update-function-configuration command,
the entire contents of the Variables structure is replaced. To retain existing environment
variables when you add a new one, include all existing values in your request.

To get the current configuration, use the get-function-configuration command.

aws lambda get-function-configuration \
 --function-name my-function

You should see the following output:

{
 "FunctionName": "my-function",
 "FunctionArn": "arn:aws-cn:lambda:us-west-2:111122223333:function:my-function",
 "Runtime": "nodejs20.x",
 "Role": "arn:aws-cn:iam::111122223333:role/lambda-role",
 "Environment": {
 "Variables": {
 "BUCKET": "my-bucket",
 "KEY": "file.txt"
 }
 },
 "RevisionId": "0894d3c1-2a3d-4d48-bf7f-abade99f3c15",

Using the API 142

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html

Amazon Lambda Developer Guide

 ...
}

You can pass the revision ID from the output of get-function-configuration as a parameter
to update-function-configuration. This ensures that the values don't change between when
you read the configuration and when you update it.

To configure a function's encryption key, set the KMSKeyARN option.

aws lambda update-function-configuration \
 --function-name my-function \
 --kms-key-arn arn:aws-cn:kms:us-west-2:111122223333:key/055efbb4-xmpl-4336-
ba9c-538c7d31f599

Configuring environment variables (Amazon SAM)

You can use the Amazon Serverless Application Model to configure environment variables for your
function. Update the Environment and Variables properties in your template.yaml file and then
run sam deploy.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An AWS Serverless Application Model template describing your function.
Resources:
 my-function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: .
 Description: ''
 MemorySize: 128
 Timeout: 120
 Handler: index.handler
 Runtime: nodejs18.x
 Architectures:
 - x86_64
 EphemeralStorage:
 Size: 10240
 Environment:
 Variables:
 BUCKET: my-bucket

Using Amazon SAM 143

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-environment
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-lambda-function-environment.html#cfn-lambda-function-environment-variables
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html

Amazon Lambda Developer Guide

 KEY: file.txt
 # Other function properties...

Example scenario for environment variables

You can use environment variables to customize function behavior in your test environment and
production environment. For example, you can create two functions with the same code but
different configurations. One function connects to a test database, and the other connects to a
production database. In this situation, you use environment variables to pass the hostname and
other connection details for the database to the function.

The following example shows how to define the database host and database name as environment
variables.

If you want your test environment to generate more debug information than the production
environment, you could set an environment variable to configure your test environment to use
more verbose logging or more detailed tracing.

Retrieve environment variables

To retrieve environment variables in your function code, use the standard method for your
programming language.

Node.js

let region = process.env.AWS_REGION

Python

import os
 region = os.environ['AWS_REGION']

Example scenario for environment variables 144

Amazon Lambda Developer Guide

Note

In some cases, you may need to use the following format:

region = os.environ.get('AWS_REGION')

Ruby

region = ENV["AWS_REGION"]

Java

String region = System.getenv("AWS_REGION");

Go

var region = os.Getenv("AWS_REGION")

C#

string region = Environment.GetEnvironmentVariable("AWS_REGION");

PowerShell

$region = $env:AWS_REGION

Lambda stores environment variables securely by encrypting them at rest. You can configure
Lambda to use a different encryption key, encrypt environment variable values on the client
side, or set environment variables in an Amazon CloudFormation template with Amazon Secrets
Manager.

Defined runtime environment variables

Lambda runtimes set several environment variables during initialization. Most of the environment
variables provide information about the function or runtime. The keys for these environment
variables are reserved and cannot be set in your function configuration.

Defined runtime environment variables 145

Amazon Lambda Developer Guide

Reserved environment variables

• _HANDLER – The handler location configured on the function.

• _X_AMZN_TRACE_ID – The X-Ray tracing header. This environment variable changes with each
invocation.

• This environment variable is not defined for OS-only runtimes (the provided runtime family).
You can set _X_AMZN_TRACE_ID for custom runtimes using the Lambda-Runtime-Trace-Id
response header from the Next invocation.

• For Java runtime versions 17 and later, this environment variable is not used. Instead, Lambda
stores tracing information in the com.amazonaws.xray.traceHeader system property.

• AWS_DEFAULT_REGION – The default Amazon Web Services Region where the Lambda function
is executed.

• AWS_REGION – The Amazon Web Services Region where the Lambda function is executed. If
defined, this value overrides the AWS_DEFAULT_REGION.

• For more information about using the Amazon Web Services Region environment variables
with Amazon SDKs, see Amazon Region in the Amazon SDKs and Tools Reference Guide.

• AWS_EXECUTION_ENV – The runtime identifier, prefixed by AWS_Lambda_ (for example,
AWS_Lambda_java8). This environment variable is not defined for OS-only runtimes (the
provided runtime family).

• AWS_LAMBDA_FUNCTION_NAME – The name of the function.

• AWS_LAMBDA_FUNCTION_MEMORY_SIZE – The amount of memory available to the function in
MB.

• AWS_LAMBDA_FUNCTION_VERSION – The version of the function being executed.

• AWS_LAMBDA_INITIALIZATION_TYPE – The initialization type of the function, which is on-
demand, provisioned-concurrency, or snap-start. For information, see Configuring
provisioned concurrency or Improving startup performance with Lambda SnapStart.

• AWS_LAMBDA_LOG_GROUP_NAME, AWS_LAMBDA_LOG_STREAM_NAME – The name of the Amazon
CloudWatch Logs group and stream for the function. The AWS_LAMBDA_LOG_GROUP_NAME and
AWS_LAMBDA_LOG_STREAM_NAME environment variables are not available in Lambda SnapStart
functions.

• AWS_ACCESS_KEY, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_SESSION_TOKEN –
The access keys obtained from the function's execution role.

• AWS_LAMBDA_RUNTIME_API – (Custom runtime) The host and port of the runtime API.

Defined runtime environment variables 146

https://docs.amazonaws.cn/sdkref/latest/guide/feature-region.html#feature-region-sdk-compat

Amazon Lambda Developer Guide

• LAMBDA_TASK_ROOT – The path to your Lambda function code.

• LAMBDA_RUNTIME_DIR – The path to runtime libraries.

The following additional environment variables aren't reserved and can be extended in your
function configuration.

Unreserved environment variables

• LANG – The locale of the runtime (en_US.UTF-8).

• PATH – The execution path (/usr/local/bin:/usr/bin/:/bin:/opt/bin).

• LD_LIBRARY_PATH – The system library path (/var/lang/lib:/lib64:/usr/lib64:
$LAMBDA_RUNTIME_DIR:$LAMBDA_RUNTIME_DIR/lib:$LAMBDA_TASK_ROOT:
$LAMBDA_TASK_ROOT/lib:/opt/lib).

• NODE_PATH – (Node.js) The Node.js library path (/opt/nodejs/node12/node_modules/:/
opt/nodejs/node_modules:$LAMBDA_RUNTIME_DIR/node_modules).

• PYTHONPATH – (Python 2.7, 3.6, 3.8) The Python library path ($LAMBDA_RUNTIME_DIR).

• GEM_PATH – (Ruby) The Ruby library path ($LAMBDA_TASK_ROOT/vendor/bundle/
ruby/2.5.0:/opt/ruby/gems/2.5.0).

• AWS_XRAY_CONTEXT_MISSING – For X-Ray tracing, Lambda sets this to LOG_ERROR to avoid
throwing runtime errors from the X-Ray SDK.

• AWS_XRAY_DAEMON_ADDRESS – For X-Ray tracing, the IP address and port of the X-Ray daemon.

• AWS_LAMBDA_DOTNET_PREJIT – For the .NET 6 and .NET 7 runtimes, set this variable to
enable or disable .NET specific runtime optimizations. Values include always, never, and
provisioned-concurrency. For more information, see Configuring provisioned concurrency.

• TZ – The environment's time zone (UTC). The execution environment uses NTP to synchronize the
system clock.

The sample values shown reflect the latest runtimes. The presence of specific variables or their
values can vary on earlier runtimes.

Securing environment variables

For securing your environment variables, you can use server-side encryption to protect your data at
rest and client-side encryption to protect your data in transit.

Securing environment variables 147

Amazon Lambda Developer Guide

Note

To increase database security, we recommend that you use Amazon Secrets Manager
instead of environment variables to store database credentials. For more information, see
Using Amazon Lambda with Amazon RDS.

Security at rest

Lambda always provides server-side encryption at rest with an Amazon KMS key. By default,
Lambda uses an Amazon managed key. If this default behavior suits your workflow, you don't need
to set up anything else. Lambda creates the Amazon managed key in your account and manages
permissions to it for you. Amazon doesn't charge you to use this key.

If you prefer, you can provide an Amazon KMS customer managed key instead. You might do this
to have control over rotation of the KMS key or to meet the requirements of your organization
for managing KMS keys. When you use a customer managed key, only users in your account with
access to the KMS key can view or manage environment variables on the function.

Customer managed keys incur standard Amazon KMS charges. For more information, see Amazon
Key Management Service pricing.

Security in transit

For additional security, you can enable helpers for encryption in transit, which ensures that your
environment variables are encrypted client-side for protection in transit.

To configure encryption for your environment variables

1. Use the Amazon Key Management Service (Amazon KMS) to create any customer managed
keys for Lambda to use for server-side and client-side encryption. For more information, see
Creating keys in the Amazon Key Management Service Developer Guide.

2. Using the Lambda console, navigate to the Edit environment variables page.

a. Open the Functions page of the Lambda console.

b. Choose a function.

c. Choose Configuration, then choose Environment variables from the left navigation bar.

d. In the Environment variables section, choose Edit.

e. Expand Encryption configuration.

Securing environment variables 148

https://www.amazonaws.cn/kms/pricing/
https://www.amazonaws.cn/kms/pricing/
https://docs.amazonaws.cn/kms/latest/developerguide/create-keys.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

3. (Optional) Enable console encryption helpers to use client-side encryption to protect your data
in transit.

a. Under Encryption in transit, choose Enable helpers for encryption in transit.

b. For each environment variable that you want to enable console encryption helpers for,
choose Encrypt next to the environment variable.

c. Under Amazon KMS key to encrypt in transit, choose a customer managed key that you
created at the beginning of this procedure.

d. Choose Execution role policy and copy the policy. This policy grants permission to your
function's execution role to decrypt the environment variables.

Save this policy to use in the last step of this procedure.

e. Add code to your function that decrypts the environment variables. To see an example,
choose Decrypt secrets snippet.

4. (Optional) Specify your customer managed key for encryption at rest.

a. Choose Use a customer master key.

b. Choose a customer managed key that you created at the beginning of this procedure.

5. Choose Save.

6. Set up permissions.

If you're using a customer managed key with server-side encryption, grant permissions to
any users or roles that you want to be able to view or manage environment variables on the
function. For more information, see Managing permissions to your server-side encryption KMS
key.

If you're enabling client-side encryption for security in transit, your function needs permission
to call the kms:Decrypt API operation. Add the policy that you saved previously in this
procedure to the function's execution role.

Managing permissions to your server-side encryption KMS key

No Amazon KMS permissions are required for your user or the function's execution role to use
the default encryption key. To use a customer managed key, you need permission to use the
key. Lambda uses your permissions to create a grant on the key. This allows Lambda to use it for
encryption.

Securing environment variables 149

Amazon Lambda Developer Guide

• kms:ListAliases – To view keys in the Lambda console.

• kms:CreateGrant, kms:Encrypt – To configure a customer managed key on a function.

• kms:Decrypt – To view and manage environment variables that are encrypted with a customer
managed key.

You can get these permissions from your Amazon Web Services account or from a key's resource-
based permissions policy. ListAliases is provided by the managed policies for Lambda. Key
policies grant the remaining permissions to users in the Key users group.

Users without Decrypt permissions can still manage functions, but they can't view environment
variables or manage them in the Lambda console. To prevent a user from viewing environment
variables, add a statement to the user's permissions that denies access to the default key, a
customer managed key, or all keys.

Example IAM policy – Deny access by key ARN

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Deny",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "arn:aws-cn:kms:us-west-2:111122223333:key/3be10e2d-xmpl-4be4-
bc9d-0405a71945cc"
 }
]
}

For details on managing key permissions, see Key policies in Amazon KMS in the Amazon Key
Management Service Developer Guide.

Securing environment variables 150

https://docs.amazonaws.cn/kms/latest/developerguide/key-policies.html

Amazon Lambda Developer Guide

Sample code and templates

Sample applications in this guide's GitHub repository demonstrate the use of environment
variables in function code and Amazon CloudFormation templates.

Sample applications

• Blank function – Create a basic function that shows the use of logging, environment variables,
Amazon X-Ray tracing, layers, unit tests, and the Amazon SDK.

• RDS MySQL – Create a VPC and an Amazon Relational Database Service (Amazon RDS) DB
instance in one template, with a password stored in Secrets Manager. In the application
template, import database details from the VPC stack, read the password from Secrets Manager,
and pass all connection configuration to the function in environment variables.

Sample code and templates 151

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/rds-mysql

Amazon Lambda Developer Guide

Connecting outbound networking to resources in a VPC

You can configure a Lambda function to connect to private subnets in a virtual private cloud (VPC)
in your Amazon account. Use Amazon Virtual Private Cloud (Amazon VPC) to create a private
network for resources such as databases, cache instances, or internal services. Connect your
function to the VPC to access private resources while the function is running. This section provides
a summary of Lambda VPC connections. For details about VPC networking in Lambda, see the
section called “Private networking”.

Tip

To configure your Lambda function to access a VPC and subnet, you can use the Lambda
Console or the API.
Refer to the VpcConfig section in CreateFunction to configure your function. See
Configuring VPC access (console) and Configuring VPC access (API) for detailed steps.

When you connect a function to a VPC, Lambda assigns your function to a Hyperplane ENI
(elastic network interface) for each subnet in your function's VPC configuration. Lambda creates a
Hyperplane ENI the first time a unique subnet and security group combination is defined for a VPC-
enabled function in an account.

While Lambda creates a Hyperplane ENI, you can't perform additional operations that target the
function, such as creating versions or updating the function's code. For new functions, you can't
invoke the function until its state changes from Pending to Active. For existing functions, you
can still invoke an earlier version while the update is in progress. For details about the Hyperplane
ENI lifecycle, see the section called “Lambda Hyperplane ENIs”.

Lambda functions can't connect directly to a VPC with dedicated instance tenancy. To connect to
resources in a dedicated VPC, peer it to a second VPC with default tenancy.

Sections

• Managing VPC connections

• Execution role and user permissions

• Configuring VPC access (console)

• Configuring VPC access (API)

• Using IAM condition keys for VPC settings

Outbound networking 152

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/dedicated-instance.html
http://www.amazonaws.cn/premiumsupport/knowledge-center/lambda-dedicated-vpc/

Amazon Lambda Developer Guide

• Internet and service access for VPC-connected functions

• VPC tutorials

• Sample VPC configurations

Managing VPC connections

Multiple functions can share a network interface, if the functions share the same subnet and
security group. Connecting additional functions to the same VPC configuration (subnet and
security group) that has an existing Lambda-managed network interface is much quicker than
creating a new network interface.

If your functions aren't active for a long period of time, Lambda reclaims its network interfaces,
and the functions become Idle. To reactivate an idle function, invoke it. This invocation fails, and
the function enters a Pending state again until a network interface is available.

If you update your function to access a different VPC, it terminates connectivity from the
Hyperplane ENI to the previous VPC. The process to update the connectivity to a new VPC can take
several minutes. During this time, Lambda connects function invocations to the previous VPC. After
the update is complete, new invocations start using the new VPC and the Lambda function is no
longer connected to the older VPC.

For short-lived operations, such as DynamoDB queries, the latency overhead of setting up a TCP
connection might be greater than the operation itself. To ensure connection reuse for short-
lived/infrequently invoked functions, we recommend that you use TCP keep-alive for connections
that were created during your function initialization, to avoid creating new connections for
subsequent invokes. For more information on reusing connections using keep-alive, refer to
Lambda documentation on reusing connections.

Execution role and user permissions

Lambda uses your function's permissions to create and manage network interfaces. To connect to a
VPC, your function's execution role must have the following permissions:

Execution role permissions

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces – This action only works if it's allowed on all resources
("Resource": "*").

Managing VPC connections 153

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/node-reusing-connections.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/node-reusing-connections.html

Amazon Lambda Developer Guide

• ec2:DescribeSubnets

• ec2:DeleteNetworkInterface – If you don't specify a resource ID for DeleteNetworkInterface
in the execution role, your function may not be able to access the VPC. Either specify a unique
resource ID, or include all resource IDs, for example, "Resource": "arn:aws:ec2:us-
west-2:123456789012:*/*".

• ec2:AssignPrivateIpAddresses

• ec2:UnassignPrivateIpAddresses

These permissions are included in the Amazon managed policy
AWSLambdaVPCAccessExecutionRole. Note that these permissions are required only to create
ENIs, not to invoke your VPC function. In other words, you are still able to invoke your VPC function
successfully even if you remove these permissions from your execution role. To completely
disassociate your Lambda function from the VPC, update the function's VPC configuration settings
using the console or the UpdateFunctionConfiguration API.

The Amazon EC2 permissions that you grant to your function's execution role are used by the
Lambda service to attach your function to a VPC. However, these permissions are also implicitly
granted to your function's code. This means that your function code is granted the permission
to make these Amazon EC2 API calls. To follow security best practices and apply least-privilege
permissions, add a deny policy like the following example to your function's execution role. This
policy blocks your function from making Amazon EC2 API calls.

Example Lambda Amazon EC2 deny policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DetachNetworkInterface",
 "ec2:AssignPrivateIpAddresses",
 "ec2:UnassignPrivateIpAddresses",
],
 "Resource": ["*"],
 "Condition": {

Execution role and user permissions 154

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html

Amazon Lambda Developer Guide

 "ArnEquals": {
 "lambda:SourceFunctionArn": [
 "arn:aws:lambda:us-west-2:123456789012:function:my_function"
]
 }
 }
 }
]
}

When you configure VPC connectivity, Lambda uses your permissions to verify network resources.
To configure a function to connect to a VPC, your user needs the following permissions:

User permissions

• ec2:DescribeSecurityGroups

• ec2:DescribeSubnets

• ec2:DescribeVpcs

Configuring VPC access (console)

If your IAM permissions allow you only to create Lambda functions that connect to your VPC, you
must configure the VPC when you create the function. If your IAM permissions allow you to create
functions that aren't connected to your VPC, you can add the VPC configuration after you create
the function.

To configure a VPC when you create a function

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Under Basic information, for Function name, enter a name for your function.

4. Expand Advanced settings.

5. Select Enable VPC, and then choose the VPC that you want the function to access.

6. (Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

7. Choose subnets and security groups. If you selected Allow IPv6 traffic for dual-stack subnets,
all selected subnets must have an IPv4 CIDR block and an IPv6 CIDR block.

Configuring VPC access (console) 155

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Note

To access private resources, connect your function to private subnets. If your function
needs internet access, use network address translation (NAT). Connecting a function to
a public subnet doesn't give it internet access or a public IP address.

8. Choose Create function.

To configure a VPC for an existing function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose VPC.

4. Under VPC, choose Edit.

5. Choose the VPC that you want the function to access.

6. (Optional) To allow outbound IPv6 traffic, select Allow IPv6 traffic for dual-stack subnets.

7. Choose subnets and security groups. If you selected Allow IPv6 traffic for dual-stack subnets,
all selected subnets must have an IPv4 CIDR block and an IPv6 CIDR block.

Note

To access private resources, connect your function to private subnets. If your function
needs internet access, use network address translation (NAT). Connecting a function to
a public subnet doesn't give it internet access or a public IP address.

8. Choose Save.

Configuring VPC access (API)

To connect a Lambda function to a VPC, you can use the following API operations:

• CreateFunction

• UpdateFunctionConfiguration

Configuring VPC access (API) 156

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html

Amazon Lambda Developer Guide

To create a function and connect it to a VPC using the Amazon Command Line Interface (Amazon
CLI), you can use the create-function command with the VpcConfig option. The following
example creates a function with a VPC connection. The function has access to two subnets and one
security group and allows outbound IPv6 traffic.

aws lambda create-function --function-name my-function \
--runtime nodejs20.x --handler index.js --zip-file fileb://function.zip \
--role arn:aws-cn:iam::123456789012:role/lambda-role \
--vpc-config
 Ipv6AllowedForDualStack=true,SubnetIds=subnet-071f712345678e7c8,subnet-07fd123456788a036,SecurityGroupIds=sg-085912345678492fb

To connect an existing function to a VPC, use the update-function-configuration command
with the vpc-config option.

aws lambda update-function-configuration --function-name my-function \
--vpc-config
 SubnetIds=subnet-071f712345678e7c8,subnet-07fd123456788a036,SecurityGroupIds=sg-085912345678492fb

To disconnect your function from a VPC, update the function configuration with an empty list of
subnets and security groups.

aws lambda update-function-configuration --function-name my-function \
--vpc-config SubnetIds=[],SecurityGroupIds=[]

Using IAM condition keys for VPC settings

You can use Lambda-specific condition keys for VPC settings to provide additional permission
controls for your Lambda functions. For example, you can require that all functions in your
organization are connected to a VPC. You can also specify the subnets and security groups that the
function's users can and can't use.

Lambda supports the following condition keys in IAM policies:

• lambda:VpcIds – Allow or deny one or more VPCs.

• lambda:SubnetIds – Allow or deny one or more subnets.

• lambda:SecurityGroupIds – Allow or deny one or more security groups.

Using IAM condition keys for VPC settings 157

https://docs.amazonaws.cn/lambda/latest/api/API_VpcConfig.html

Amazon Lambda Developer Guide

The Lambda API operations CreateFunction and UpdateFunctionConfiguration support these
condition keys. For more information about using condition keys in IAM policies, see IAM JSON
Policy Elements: Condition in the IAM User Guide.

Tip

If your function already includes a VPC configuration from a previous API request, you can
send an UpdateFunctionConfiguration request without the VPC configuration.

Example policies with condition keys for VPC settings

The following examples demonstrate how to use condition keys for VPC settings. After you create
a policy statement with the desired restrictions, append the policy statement for the target user or
role.

Ensure that users deploy only VPC-connected functions

To ensure that all users deploy only VPC-connected functions, you can deny function create and
update operations that don't include a valid VPC ID.

Note that VPC ID is not an input parameter to the CreateFunction or
UpdateFunctionConfiguration request. Lambda retrieves the VPC ID value based on the
subnet and security group parameters.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceVPCFunction",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {
 "Null": {
 "lambda:VpcIds": "true"
 }
 }

Using IAM condition keys for VPC settings 158

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Lambda Developer Guide

 }
]
}

Deny users access to specific VPCs, subnets, or security groups

To deny users access to specific VPCs, use StringEquals to check the value of the
lambda:VpcIds condition. The following example denies users access to vpc-1 and vpc-2.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceOutOfVPC",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "lambda:VpcIds": ["vpc-1", "vpc-2"]
 }
 }
 }

To deny users access to specific subnets, use StringEquals to check the value of the
lambda:SubnetIds condition. The following example denies users access to subnet-1 and
subnet-2.

{
 "Sid": "EnforceOutOfSubnet",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {

Using IAM condition keys for VPC settings 159

Amazon Lambda Developer Guide

 "ForAnyValue:StringEquals": {
 "lambda:SubnetIds": ["subnet-1", "subnet-2"]
 }
 }
 }

To deny users access to specific security groups, use StringEquals to check the value of the
lambda:SecurityGroupIds condition. The following example denies users access to sg-1 and
sg-2.

{
 "Sid": "EnforceOutOfSecurityGroups",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "lambda:SecurityGroupIds": ["sg-1", "sg-2"]
 }
 }
 }
]
}

Allow users to create and update functions with specific VPC settings

To allow users to access specific VPCs, use StringEquals to check the value of the
lambda:VpcIds condition. The following example allows users to access vpc-1 and vpc-2.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnforceStayInSpecificVpc",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"

Using IAM condition keys for VPC settings 160

Amazon Lambda Developer Guide

],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "lambda:VpcIds": ["vpc-1", "vpc-2"]
 }
 }
 }

To allow users to access specific subnets, use StringEquals to check the value of the
lambda:SubnetIds condition. The following example allows users to access subnet-1 and
subnet-2.

{
 "Sid": "EnforceStayInSpecificSubnets",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "lambda:SubnetIds": ["subnet-1", "subnet-2"]
 }
 }
 }

To allow users to access specific security groups, use StringEquals to check the value of the
lambda:SecurityGroupIds condition. The following example allows users to access sg-1 and
sg-2.

{
 "Sid": "EnforceStayInSpecificSecurityGroup",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Effect": "Allow",

Using IAM condition keys for VPC settings 161

Amazon Lambda Developer Guide

 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "lambda:SecurityGroupIds": ["sg-1", "sg-2"]
 }
 }
 }
]
}

Internet and service access for VPC-connected functions

By default, Lambda runs your functions in a secure VPC with access to Amazon services and the
internet. Lambda owns this VPC, which isn't connected to your account's default VPC. When you
connect a function to a VPC in your account, the function can't access the internet unless your VPC
provides access.

Note

Several Amazon services offer VPC endpoints. You can use VPC endpoints to connect to
Amazon services from within a VPC without internet access.

Internet access from a private subnet requires network address translation (NAT). To give your
function access to the internet, route outbound traffic to a NAT gateway in a public subnet. The
NAT gateway has a public IP address and can connect to the internet through the VPC's internet
gateway. An idle NAT gateway connection will time out after 350 seconds. For more information,
see How do I give internet access to my Lambda function in a VPC?

VPC tutorials

In the following tutorials, you connect a Lambda function to resources in your VPC.

• Tutorial: Using a Lambda function to access Amazon RDS in an Amazon VPC

• Tutorial: Configuring a Lambda function to access Amazon ElastiCache in an Amazon VPC

Internet and service access for VPC-connected functions 162

https://docs.amazonaws.cn/vpc/latest/userguide/default-vpc.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.amazonaws.cn/vpc/latest/userguide/nat-gateway-troubleshooting.html#nat-gateway-troubleshooting-timeout
http://www.amazonaws.cn/premiumsupport/knowledge-center/internet-access-lambda-function/
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/mem-ug/Lambda.html

Amazon Lambda Developer Guide

Sample VPC configurations

You can use the following sample Amazon CloudFormation templates to create VPC configurations
to use with Lambda functions. There are two templates available in this guide's GitHub repository:

• vpc-private.yaml – A VPC with two private subnets and VPC endpoints for Amazon Simple
Storage Service (Amazon S3) and Amazon DynamoDB. Use this template to create a VPC for
functions that don't need internet access. This configuration supports use of Amazon S3 and
DynamoDB with the Amazon SDKs, and access to database resources in the same VPC over a
local network connection.

• vpc-privatepublic.yaml – A VPC with two private subnets, VPC endpoints, a public subnet with
a NAT gateway, and an internet gateway. Internet-bound traffic from functions in the private
subnets is routed to the NAT gateway using a route table.

To create a VPC using a template, on the Amazon CloudFormation console Stacks page, choose
Create stack, and then follow the instructions in the Create stack wizard.

Sample VPC configurations 163

https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/templates/vpc-private.yaml
https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/templates/vpc-privatepublic.yaml
https://console.amazonaws.cn/cloudformation/home#/stacks

Amazon Lambda Developer Guide

Connecting inbound interface VPC endpoints for Lambda

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your Amazon resources, you can
establish a connection between your VPC and Lambda. You can use this connection to invoke your
Lambda function without crossing the public internet.

To establish a private connection between your VPC and Lambda, create an interface VPC
endpoint. Interface endpoints are powered by Amazon PrivateLink, which enables you to privately
access Lambda APIs without an internet gateway, NAT device, VPN connection, or Amazon Direct
Connect connection. Instances in your VPC don't need public IP addresses to communicate with
Lambda APIs. Traffic between your VPC and Lambda does not leave the Amazon network.

Each interface endpoint is represented by one or more elastic network interfaces in your subnets. A
network interface provides a private IP address that serves as an entry point for traffic to Lambda.

Sections

• Considerations for Lambda interface endpoints

• Creating an interface endpoint for Lambda

• Creating an interface endpoint policy for Lambda

Considerations for Lambda interface endpoints

Before you set up an interface endpoint for Lambda, be sure to review Interface endpoint
properties and limitations in the Amazon VPC User Guide.

You can call any of the Lambda API operations from your VPC. For example, you can invoke the
Lambda function by calling the Invoke API from within your VPC. For the full list of Lambda APIs,
see Actions in the Lambda API reference.

use1-az3 is a limited capacity Region for Lambda VPC functions. You shouldn't use subnets in this
availability zone with your Lambda functions because this can result in reduced zonal redundancy
in the event of an outage.

Keep-alive for persistent connections

Lambda purges idle connections over time, so you must use a keep-alive directive to maintain
persistent connections. Attempting to reuse an idle connection when invoking a function results in
a connection error. To maintain your persistent connection, use the keep-alive directive associated

Inbound networking 164

https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html
https://www.amazonaws.cn/privatelink
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-eni.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.amazonaws.cn/lambda/latest/dg/API_Operations.html

Amazon Lambda Developer Guide

with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js in the
Amazon SDK for JavaScript Developer Guide.

Billing Considerations

There is no additional cost to access a Lambda function through an interface endpoint. For more
Lambda pricing information, see Amazon Lambda Pricing.

Standard pricing for Amazon PrivateLink applies to interface endpoints for Lambda. Your Amazon
account is billed for every hour an interface endpoint is provisioned in each Availability Zone
and for data processed through the interface endpoint. For more interface endpoint pricing
information, see Amazon PrivateLink pricing.

VPC Peering Considerations

You can connect other VPCs to the VPC with interface endpoints using VPC peering. VPC peering is
a networking connection between two VPCs. You can establish a VPC peering connection between
your own two VPCs, or with a VPC in another Amazon account. The VPCs can also be in two
different Amazon Regions.

Traffic between peered VPCs stays on the Amazon network and does not traverse the public
internet. Once VPCs are peered, resources like Amazon Elastic Compute Cloud (Amazon EC2)
instances, Amazon Relational Database Service (Amazon RDS) instances, or VPC-enabled Lambda
functions in both VPCs can access the Lambda API through interface endpoints created in the one
of the VPCs.

Creating an interface endpoint for Lambda

You can create an interface endpoint for Lambda using either the Amazon VPC console or the
Amazon Command Line Interface (Amazon CLI). For more information, see Creating an interface
endpoint in the Amazon VPC User Guide.

To create an interface endpoint for Lambda (console)

1. Open the Endpoints page of the Amazon VPC console.

2. Choose Create Endpoint.

3. For Service category, verify that Amazon services is selected.

4. For Service Name, choose com.amazonaws.region.lambda. Verify that the Type is Interface.

5. Choose a VPC and subnets.

Creating an interface endpoint for Lambda 165

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html
https://www.amazonaws.cn/lambda/pricing/
https://www.amazonaws.cn/privatelink/pricing/
https://docs.amazonaws.cn/vpc/latest/peering/what-is-vpc-peering.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://console.amazonaws.cn/vpc/home?#Endpoints

Amazon Lambda Developer Guide

6. To enable private DNS for the interface endpoint, select the Enable DNS Name check box.

7. For Security group, choose one or more security groups.

8. Choose Create endpoint.

To use the private DNS option, you must set the enableDnsHostnames and
enableDnsSupportattributes of your VPC. For more information, see Viewing and updating
DNS support for your VPC in the Amazon VPC User Guide. If you enable private DNS for the
interface endpoint, you can make API requests to Lambda using its default DNS name for the
Region, for example, lambda.us-east-1.amazonaws.com. For more service endpoints, see
Service endpoints and quotas in the Amazon Web Services General Reference.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

For information about creating and configuring an endpoint using Amazon CloudFormation, see
the AWS::EC2::VPCEndpoint resource in the Amazon CloudFormation User Guide.

To create an interface endpoint for Lambda (Amazon CLI)

Use the create-vpc-endpoint command and specify the VPC ID, VPC endpoint type (interface),
service name, subnets that will use the endpoint, and security groups to associate with the
endpoint's network interfaces. For example:

aws ec2 create-vpc-endpoint --vpc-id vpc-ec43eb89 --vpc-endpoint-type Interface --
service-name \
 com.amazonaws.us-east-1.lambda --subnet-id subnet-abababab --security-group-id
 sg-1a2b3c4d

Creating an interface endpoint policy for Lambda

To control who can use your interface endpoint and which Lambda functions the user can access,
you can attach an endpoint policy to your endpoint. The policy specifies the following information:

• The principal that can perform actions.

• The actions that the principal can perform.

• The resources on which the principal can perform actions.

Creating an interface endpoint policy for Lambda 166

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.amazonaws.cn/general/latest/gr/aws-service-information.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#access-service-though-endpoint
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html

Amazon Lambda Developer Guide

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: Interface endpoint policy for Lambda actions

The following is an example of an endpoint policy for Lambda. When attached to an endpoint, this
policy allows user MyUser to invoke the function my-function.

Note

You need to include both the qualified and the unqualified function ARN in the resource.

{
 "Statement":[
 {
 "Principal":
 {
 "AWS": "arn:aws-cn:iam::111122223333:user/MyUser"
 },
 "Effect":"Allow",
 "Action":[
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function:*"
]
 }
]
}

Creating an interface endpoint policy for Lambda 167

https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon Lambda Developer Guide

Configuring file system access for Lambda functions

You can configure a function to mount an Amazon Elastic File System (Amazon EFS) file system
to a local directory. With Amazon EFS, your function code can access and modify shared resources
safely and at high concurrency.

Sections

• Execution role and user permissions

• Configuring a file system and access point

• Connecting to a file system (console)

• Configuring file system access with the Lambda API

• Mounting an Amazon EFS file system in another Amazon Web Services account

• Amazon CloudFormation and Amazon SAM

• Sample applications

Execution role and user permissions

If the file system doesn't have a user-configured Amazon Identity and Access Management (IAM)
policy, EFS uses a default policy that grants full access to any client that can connect to the file
system using a file system mount target. If the file system has a user-configured IAM policy, your
function's execution role must have the correct elasticfilesystem permissions.

Execution role permissions

• elasticfilesystem:ClientMount

• elasticfilesystem:ClientWrite (not required for read-only connections)

These permissions are included in the AmazonElasticFileSystemClientReadWriteAccess managed
policy. Additionally, your execution role must have the permissions required to connect to the file
system's VPC.

When you configure a file system, Lambda uses your permissions to verify mount targets. To
configure a function to connect to a file system, your user needs the following permissions:

User permissions

• elasticfilesystem:DescribeMountTargets

File system 168

Amazon Lambda Developer Guide

Configuring a file system and access point

Create a file system in Amazon EFS with a mount target in every Availability Zone that your
function connects to. For performance and resilience, use at least two Availability Zones. For
example, in a simple configuration you could have a VPC with two private subnets in separate
Availability Zones. The function connects to both subnets and a mount target is available in each.
Ensure that NFS traffic (port 2049) is allowed by the security groups used by the function and
mount targets.

Note

When you create a file system, you choose a performance mode that can't be changed later.
General purpose mode has lower latency, and Max I/O mode supports a higher maximum
throughput and IOPS. For help choosing, see Amazon EFS performance in the Amazon
Elastic File System User Guide.

An access point connects each instance of the function to the right mount target for the
Availability Zone it connects to. For best performance, create an access point with a non-root path,
and limit the number of files that you create in each directory. The following example creates a
directory named my-function on the file system and sets the owner ID to 1001 with standard
directory permissions (755).

Example access point configuration

• Name – files

• User ID – 1001

• Group ID – 1001

• Path – /my-function

• Permissions – 755

• Owner user ID – 1001

• Group user ID – 1001

When a function uses the access point, it is given user ID 1001 and has full access to the directory.

For more information, see the following topics in the Amazon Elastic File System User Guide:

Configuring a file system and access point 169

https://docs.amazonaws.cn/efs/latest/ug/performance.html

Amazon Lambda Developer Guide

• Creating resources for Amazon EFS

• Working with users, groups, and permissions

Connecting to a file system (console)

A function connects to a file system over the local network in a VPC. The subnets that your
function connects to can be the same subnets that contain mount points for your file system, or
subnets in the same Availability Zone that can route NFS traffic (port 2049) to the file system.

Note

If your function is not already connected to a VPC, see Connecting outbound networking to
resources in a VPC.

To configure file system access

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose File systems.

4. Under File system, choose Add file system.

5. Configure the following properties:

• EFS file system – The access point for a file system in the same VPC.

• Local mount path – The location where the file system is mounted on the Lambda function,
starting with /mnt/.

Pricing

Amazon EFS charges for storage and throughput, with rates that vary by storage class. For
details, see Amazon EFS pricing.
Lambda charges for data transfer between VPCs. This only applies if your function's VPC is
peered to another VPC with a file system. The rates are the same as for Amazon EC2 data
transfer between VPCs in the same Region. For details, see Lambda pricing.

Connecting to a file system (console) 170

https://docs.amazonaws.cn/efs/latest/ug/creating-using.html
https://docs.amazonaws.cn/efs/latest/ug/accessing-fs-nfs-permissions.html
https://console.amazonaws.cn/lambda/home#/functions
http://www.amazonaws.cn/efs/pricing
http://www.amazonaws.cn/lambda/pricing

Amazon Lambda Developer Guide

For more information about Lambda's integration with Amazon EFS, see Using Amazon EFS with
Lambda.

Configuring file system access with the Lambda API

Use the following API operations to connect your Lambda function to a file system:

• CreateFunction

• UpdateFunctionConfiguration

To connect a function to a file system, use the update-function-configuration command.
The following example connects a function named my-function to a file system with ARN of an
access point.

ARN=arn:aws-cn:elasticfilesystem:us-east-2:123456789012:access-point/
fsap-015cxmplb72b405fd
aws lambda update-function-configuration --function-name my-function \
 --file-system-configs Arn=$ARN,LocalMountPath=/mnt/efs0

You can get the ARN of a file system's access point with the describe-access-points
command.

aws efs describe-access-points

You should see the following output:

{
 "AccessPoints": [
 {
 "ClientToken": "console-aa50c1fd-xmpl-48b5-91ce-57b27a3b1017",
 "Name": "lambda-ap",
 "Tags": [
 {
 "Key": "Name",
 "Value": "lambda-ap"
 }
],
 "AccessPointId": "fsap-015cxmplb72b405fd",
 "AccessPointArn": "arn:aws-cn:elasticfilesystem:us-
east-2:123456789012:access-point/fsap-015cxmplb72b405fd",

Configuring file system access with the Lambda API 171

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html

Amazon Lambda Developer Guide

 "FileSystemId": "fs-aea3xmpl",
 "RootDirectory": {
 "Path": "/"
 },
 "OwnerId": "123456789012",
 "LifeCycleState": "available"
 }
]
}

Mounting an Amazon EFS file system in another Amazon Web Services
account

You can configure a function to mount an Amazon EFS file system in another Amazon Web Services
account. Before you mount the file system, you must ensure the following:

• VPC peering must be configured, and appropriate routes must be added to the route tables in
each VPC.

• The security group for the Amazon EFS file system you want to mount must be configured to
allow inbound access from the security group associated with your Lambda function.

• Subnets must be created in each VPC with matching Availability Zone (AZ) IDs.

• DNS Hostnames must be enabled in both VPCs.

For your Lambda function to access an Amazon EFS file system in another Amazon Web Services
account, that file system must also have a file system policy that grants permission to your funtion.
To learn how to create a file system policy, see Creating file system policies in the Amazon Elastic
File System User Guide.

The following shows an example policy that gives Lambda functions in a specified account
permission to perform all API actions on a file system.

{
 "Version": "2012-10-17",
 "Id": "efs-lambda-policy",
 "Statement": [
 {
 "Sid": "efs-lambda-statement",
 "Effect": "Allow",

Mounting an Amazon EFS file system in another Amazon Web Services account 172

https://docs.amazonaws.cn/vpc/latest/peering/what-is-vpc-peering.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-dns.html#vpc-dns-support
https://docs.amazonaws.cn/efs/latest/ug/create-file-system-policy.html

Amazon Lambda Developer Guide

 "Principal": {
 "AWS": "arn:aws:iam::{LAMBDA-ACCOUNT-ID}:root"
 },
 "Action": "*",
 "Resource": "arn:aws:elasticfilesystem:{REGION}:{ACCOUNT-ID}:file-
system/{FILE SYSTEM ID}"
 }
]
}

Note

The example policy shown uses the wildcard charcter ("*") to grant permissions for Lambda
functions in the specified Amazon Web Services account to perform any API operation on
the filesystem. This includes deleting the filesystem. To limit the operations that other
Amazon Web Services accounts can perform on your filesystem, specify the actions you
want to allow explicitly. For a list of possible API operations, see Actions, resources, and
condition keys for Amazon Elastic File System.

To configure cross-account file system mounting, you use the Amazon Command Line Interface
(Amazon CLI) update-function-configuration operation.

To mount a file system in another Amazon Web Services account, run the following command.
Use your own function name and replace the Amazon Resource Name (ARN) with the ARN of the
Amazon EFS access point for the file system you want to mount. LocalMountPath is the path
where the function can access the file system, starting with /mnt/. Ensure that the Lambda mount
path matches the access point path for the filesystem. For example, if the access point is /efs, the
Lambda mount path must be /mnt/efs.

aws lambda update-function-configuration --function-name MyFunction \
--file-system-configs Arn=arn:aws:elasticfilesystem:us-east-1:222233334444:access-
point/fsap-01234567,LocalMountPath=/mnt/test

Amazon CloudFormation and Amazon SAM

You can use Amazon CloudFormation and the Amazon Serverless Application Model (Amazon
SAM) to automate the creation of Lambda applications. To enable a file system connection on an
Amazon SAM AWS::Serverless::Function resource, use the FileSystemConfigs property.

Amazon CloudFormation and Amazon SAM 173

https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonelasticfilesystem.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonelasticfilesystem.html

Amazon Lambda Developer Guide

Example template.yml – File system configuration

Transform: AWS::Serverless-2016-10-31
Resources:
 VPC:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: 10.0.0.0/16
 Subnet1:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId:
 Ref: VPC
 CidrBlock: 10.0.1.0/24
 AvailabilityZone: "us-west-2a"
 EfsSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 VpcId:
 Ref: VPC
 GroupDescription: "mnt target sg"
 SecurityGroupIngress:
 - IpProtocol: -1
 CidrIp: "0.0.0.0/0"
 FileSystem:
 Type: AWS::EFS::FileSystem
 Properties:
 PerformanceMode: generalPurpose
 AccessPoint:
 Type: AWS::EFS::AccessPoint
 Properties:
 FileSystemId:
 Ref: FileSystem
 PosixUser:
 Uid: "1001"
 Gid: "1001"
 RootDirectory:
 CreationInfo:
 OwnerGid: "1001"
 OwnerUid: "1001"
 Permissions: "755"
 MountTarget1:
 Type: AWS::EFS::MountTarget
 Properties:

Amazon CloudFormation and Amazon SAM 174

Amazon Lambda Developer Guide

 FileSystemId:
 Ref: FileSystem
 SubnetId:
 Ref: Subnet1
 SecurityGroups:
 - Ref: EfsSecurityGroup
 MyFunctionWithEfs:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: python3.10
 VpcConfig:
 SecurityGroupIds:
 - Ref: EfsSecurityGroup
 SubnetIds:
 - Ref: Subnet1
 FileSystemConfigs:
 - Arn: !GetAtt AccessPoint.Arn
 LocalMountPath: "/mnt/efs"
 Description: Use a file system.
 DependsOn: "MountTarget1"

You must add the DependsOn to ensure that the mount targets are fully created before the
Lambda runs for the first time.

For the Amazon CloudFormation AWS::Lambda::Function type, the property name and fields
are the same. For more information, see Using Amazon Lambda with Amazon CloudFormation.

Sample applications

The GitHub repository for this guide includes a sample application that demonstrates the use of
Amazon EFS with a Lambda function.

• efs-nodejs – A function that uses an Amazon EFS file system in a Amazon VPC. This sample
includes a VPC, file system, mount targets, and access point configured for use with Lambda.

Sample applications 175

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/efs-nodejs

Amazon Lambda Developer Guide

Lambda function aliases

You can create aliases for your Lambda function. A Lambda alias is a pointer to a function version
that you can update. The function's users can access the function version using the alias Amazon
Resource Name (ARN). When you deploy a new version, you can update the alias to use the new
version, or split traffic between two versions.

Sections

• Creating a function alias (Console)

• Managing aliases with the Lambda API

• Managing aliases with Amazon SAM and Amazon CloudFormation

• Using aliases

• Resource policies

• Alias routing configuration

Creating a function alias (Console)

You can create a function alias using the Lambda console.

To create an alias

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Aliases and then choose Create alias.

4. On the Create alias page, do the following:

a. Enter a Name for the alias.

b. (Optional) Enter a Description for the alias.

c. For Version, choose a function version that you want the alias to point to.

d. (Optional) To configure routing on the alias, expand Weighted alias. For more
information, see Alias routing configuration.

e. Choose Save.

Aliases 176

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Managing aliases with the Lambda API

To create an alias using the Amazon Command Line Interface (Amazon CLI), use the create-
alias command.

aws lambda create-alias --function-name my-function --name alias-name --function-
version version-number --description " "

To change an alias to point a new version of the function, use the update-alias command.

aws lambda update-alias --function-name my-function --name alias-name --function-
version version-number

To delete an alias, use the delete-alias command.

aws lambda delete-alias --function-name my-function --name alias-name

The Amazon CLI commands in the preceding steps correspond to the following Lambda API
operations:

• CreateAlias

• UpdateAlias

• DeleteAlias

Managing aliases with Amazon SAM and Amazon CloudFormation

You can create and manage function aliases using the Amazon Serverless Application Model
(Amazon SAM) and Amazon CloudFormation.

To see how to declare a function alias in an Amazon SAM template, refer to the
Amazon::Serverless::Function page in the Amazon SAM Developer Guide. For information on
creating and configuring aliases using Amazon CloudFormation, see Amazon::Lambda::Alias in the
Amazon CloudFormation User Guide.

Using aliases

Each alias has a unique ARN. An alias can point only to a function version, not to another alias. You
can update an alias to point to a new version of the function.

Managing aliases with the Lambda API 177

https://docs.amazonaws.cn/cli/latest/reference/lambda/create-alias.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-alias.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/update-alias.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/delete-alias.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteAlias.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-alias.html

Amazon Lambda Developer Guide

Event sources such as Amazon Simple Storage Service (Amazon S3) invoke your Lambda function.
These event sources maintain a mapping that identifies the function to invoke when events occur.
If you specify a Lambda function alias in the mapping configuration, you don't need to update
the mapping when the function version changes. For more information, see Lambda event source
mappings.

In a resource policy, you can grant permissions for event sources to use your Lambda function.
If you specify an alias ARN in the policy, you don't need to update the policy when the function
version changes.

Resource policies

You can use a resource-based policy to give a service, resource, or account access to your function.
The scope of that permission depends on whether you apply it to an alias, a version, or the entire
function. For example, if you use an alias name (such as helloworld:PROD), the permission allows
you to invoke the helloworld function using the alias ARN (helloworld:PROD).

If you attempt to invoke the function without an alias or a specific version, then you get a
permission error. This permission error still occurs even if you attempt to directly invoke the
function version associated with the alias.

For example, the following Amazon CLI command grants Amazon S3 permissions to invoke the
PROD alias of the helloworld function when Amazon S3 is acting on behalf of examplebucket.

aws lambda add-permission --function-name helloworld \
--qualifier PROD --statement-id 1 --principal s3.amazonaws.com.cn --action
 lambda:InvokeFunction \
--source-arn arn:aws-cn:s3:::examplebucket --source-account 123456789012

For more information about using resource names in policies, see Resources and conditions for
Lambda actions.

Alias routing configuration

Use routing configuration on an alias to send a portion of traffic to a second function version. For
example, you can reduce the risk of deploying a new version by configuring the alias to send most
of the traffic to the existing version, and only a small percentage of traffic to the new version.

Note that Lambda uses a simple probabilistic model to distribute the traffic between the two
function versions. At low traffic levels, you might see a high variance between the configured and

Resource policies 178

Amazon Lambda Developer Guide

actual percentage of traffic on each version. If your function uses provisioned concurrency, you can
avoid spillover invocations by configuring a higher number of provisioned concurrency instances
during the time that alias routing is active.

You can point an alias to a maximum of two Lambda function versions. The versions must meet the
following criteria:

• Both versions must have the same execution role.

• Both versions must have the same dead-letter queue configuration, or no dead-letter queue
configuration.

• Both versions must be published. The alias cannot point to $LATEST.

To configure routing on an alias

Note

Verify that the function has at least two published versions. To create additional versions,
follow the instructions in Lambda function versions.

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Aliases and then choose Create alias.

4. On the Create alias page, do the following:

a. Enter a Name for the alias.

b. (Optional) Enter a Description for the alias.

c. For Version, choose the first function version that you want the alias to point to.

d. Expand Weighted alias.

e. For Additional version, choose the second function version that you want the alias to
point to.

f. For Weight (%), enter a weight value for the function. Weight is the percentage of traffic
that is assigned to that version when the alias is invoked. The first version receives the
residual weight. For example, if you specify 10 percent to Additional version, the first
version is assigned 90 percent automatically.

g. Choose Save.

Alias routing configuration 179

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Configuring alias routing using CLI

Use the create-alias and update-alias Amazon CLI commands to configure the traffic
weights between two function versions. When you create or update the alias, you specify the traffic
weight in the routing-config parameter.

The following example creates a Lambda function alias named routing-alias that points to version
1 of the function. Version 2 of the function receives 3 percent of the traffic. The remaining 97
percent of traffic is routed to version 1.

aws lambda create-alias --name routing-alias --function-name my-function --function-
version 1 \
--routing-config AdditionalVersionWeights={"2"=0.03}

Use the update-alias command to increase the percentage of incoming traffic to version 2. In
the following example, you increase the traffic to 5 percent.

aws lambda update-alias --name routing-alias --function-name my-function \
--routing-config AdditionalVersionWeights={"2"=0.05}

To route all traffic to version 2, use the update-alias command to change the function-
version property to point the alias to version 2. The command also resets the routing
configuration.

aws lambda update-alias --name routing-alias --function-name my-function \
--function-version 2 --routing-config AdditionalVersionWeights={}

The Amazon CLI commands in the preceding steps correspond to the following Lambda API
operations:

• CreateAlias

• UpdateAlias

Determining which version has been invoked

When you configure traffic weights between two function versions, there are two ways to
determine the Lambda function version that has been invoked:

Alias routing configuration 180

https://docs.amazonaws.cn/lambda/latest/api/API_CreateAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateAlias.html

Amazon Lambda Developer Guide

• CloudWatch Logs – Lambda automatically emits a START log entry that contains the invoked
version ID to Amazon CloudWatch Logs for every function invocation. The following is an
example:

19:44:37 START RequestId: request id Version: $version

For alias invocations, Lambda uses the Executed Version dimension to filter the metric data
by the invoked version. For more information, see Working with Lambda function metrics.

• Response payload (synchronous invocations) – Responses to synchronous function invocations
include an x-amz-executed-version header to indicate which function version has been
invoked.

Alias routing configuration 181

Amazon Lambda Developer Guide

Lambda function versions

You can use versions to manage the deployment of your functions. For example, you can publish a
new version of a function for beta testing without affecting users of the stable production version.
Lambda creates a new version of your function each time that you publish the function. The new
version is a copy of the unpublished version of the function. The unpublished version is named
$LATEST.

Note

To create a new version of your function, you must first make changes to the unpublished
version ($LATEST). These changes can include updating the code or modifying the
configuration settings. If $LATEST is identical to a previously published version, you won't
be able to create a new version until you deploy changes to $LATEST.

After you publish a function version, its code, runtime, architecture, memory, layers, and most
other configuration settings are immutable. This means that you can't change these settings
without publishing a new version from $LATEST. You can configure the following items for a
published function version:

• Triggers

• Destinations

• Provisioned concurrency

• Asynchronous invocation

• Database connections and proxies

Note

When using runtime management controls with Auto mode, the runtime version used by
the function version is updated automatically. When using Function update or Manual
mode, the runtime version is not updated. For more information, see the section called
“Runtime updates”.

Sections

Versions 182

Amazon Lambda Developer Guide

• Creating function versions

• Using versions

• Granting permissions

Creating function versions

You can change the function code and settings only on the unpublished version of a function.
When you publish a version, Lambda locks the code and most of the settings to maintain a
consistent experience for users of that version.

You can create a function version using the Lambda console.

To create a new function version

1. Open the Functions page of the Lambda console.

2. Choose a function and then choose Versions.

3. On the versions configuration page, choose Publish new version.

4. (Optional) Enter a version description.

5. Choose Publish.

Alternatively, you can publish a version of a function using the PublishVersion API operation.

The following Amazon CLI command publishes a new version of a function. The response returns
configuration information about the new version, including the version number and the function
ARN with the version suffix.

aws lambda publish-version --function-name my-function

You should see the following output:

{
 "FunctionName": "my-function",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function:1",
 "Version": "1",
 "Role": "arn:aws-cn:iam::123456789012:role/lambda-role",
 "Handler": "function.handler",
 "Runtime": "nodejs20.x",
 ...

Creating function versions 183

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/lambda/latest/api/API_PublishVersion.html

Amazon Lambda Developer Guide

}

Note

Lambda assigns monotonically increasing sequence numbers for versioning. Lambda never
reuses version numbers, even after you delete and recreate a function.

Using versions

You can reference your Lambda function using either a qualified ARN or an unqualified ARN.

• Qualified ARN – The function ARN with a version suffix. The following example refers to version
42 of the helloworld function.

arn:aws-cn:lambda:aws-region:acct-id:function:helloworld:42

• Unqualified ARN – The function ARN without a version suffix.

arn:aws-cn:lambda:aws-region:acct-id:function:helloworld

You can use a qualified or an unqualified ARN in all relevant API operations. However, you can't use
an unqualified ARN to create an alias.

If you decide not to publish function versions, you can invoke the function using either the
qualified or unqualified ARN in your event source mapping. When you invoke a function using an
unqualified ARN, Lambda implicitly invokes $LATEST.

Lambda publishes a new function version only if the code has never been published, or if the code
has changed from the last published version. If there is no change, the function version remains at
the last published version.

The qualified ARN for each Lambda function version is unique. After you publish a version, you
can't change the ARN or the function code.

Granting permissions

You can use a resource-based policy or an identity-based policy to grant access to your function.
The scope of the permission depends on whether you apply the policy to a function or to one

Using versions 184

Amazon Lambda Developer Guide

version of a function. For more information about function resource names in policies, see
Resources and conditions for Lambda actions.

You can simplify the management of event sources and Amazon Identity and Access Management
(IAM) policies by using function aliases. For more information, see Lambda function aliases.

Granting permissions 185

Amazon Lambda Developer Guide

Configuring a Lambda function to stream responses

You can configure your Lambda function URLs to stream response payloads back to clients.
Response streaming can benefit latency sensitive applications by improving time to first byte
(TTFB) performance. This is because you can send partial responses back to the client as they
become available. Additionally, you can use response streaming to build functions that return
larger payloads. Response stream payloads have a soft limit of 20 MB as compared to the 6 MB
limit for buffered responses. Streaming a response also means that your function doesn’t need to
fit the entire response in memory. For very large responses, this can reduce the amount of memory
you need to configure for your function.

The speed at which Lambda streams your responses depends on the response size. The streaming
rate for the first 6MB of your function’s response is uncapped. For responses larger than 6MB,
the remainder of the response is subject to a bandwidth cap. For more information on streaming
bandwidth, see Bandwidth limits for response streaming.

Streaming responses incurs a cost. For more information, see Amazon Lambda Pricing.

Lambda supports response streaming on Node.js managed runtimes. For other languages, you
can use a custom runtime with a custom Runtime API integration to stream responses or use the
Lambda Web Adapter. You can stream responses through Lambda Function URLs, the Amazon SDK,
or using the Lambda InvokeWithResponseStream API.

Note

When testing your function through the Lambda console, you'll always see responses as
buffered.

Writing response streaming-enabled functions

Writing the handler for response streaming functions is different than typical handler patterns.
When writing streaming functions, be sure to do the following:

• Wrap your function with the awslambda.streamifyResponse() decorator that the native
Node.js runtimes provide.

• End the stream gracefully to ensure that all data processing is complete.

Response streaming 186

https://www.amazonaws.cn/lambda/pricing/
https://github.com/awslabs/aws-lambda-web-adapter
https://docs.amazonaws.cn/lambda/latest/dg/lambda-urls.html
https://docs.amazonaws.cn/lambda/latest/dg/API_InvokeWithResponseStream.html

Amazon Lambda Developer Guide

Configuring a handler function to stream responses

To indicate to the runtime that Lambda should stream your function's responses, you must wrap
your function with the streamifyResponse() decorator. This tells the runtime to use the proper
logic path for streaming responses and enables the function to stream responses.

The streamifyResponse() decorator accepts a function that accepts the following parameters:

• event – Provides information about the function URL's invocation event, such as the HTTP
method, query parameters, and the request body.

• responseStream – Provides a writable stream.

• context – Provides methods and properties with information about the invocation, function,
and execution environment.

The responseStream object is a Node.js writableStream. As with any such stream, you should
use the pipeline() method.

Example response streaming-enabled handler

const pipeline = require("util").promisify(require("stream").pipeline);
const { Readable } = require('stream');

exports.echo = awslambda.streamifyResponse(async (event, responseStream, _context) => {
 // As an example, convert event to a readable stream.
 const requestStream = Readable.from(Buffer.from(JSON.stringify(event)));

 await pipeline(requestStream, responseStream);
});

While responseStream offers the write() method to write to the stream, we recommend that
you use pipeline() wherever possible. Using pipeline() ensures that the writable stream is
not overwhelmed by a faster readable stream.

Ending the stream

Make sure that you properly end the stream before the handler returns. The pipeline() method
handles this automatically.

Writing response streaming-enabled functions 187

https://nodesource.com/blog/understanding-streams-in-nodejs/
https://nodejs.org/api/stream.html#streampipelinesource-transforms-destination-callback

Amazon Lambda Developer Guide

For other use cases, call the responseStream.end() method to properly end a stream. This
method signals that no more data should be written to the stream. This method isn't required if
you write to the stream with pipeline() or pipe().

Example Example ending a stream with pipeline()

const pipeline = require("util").promisify(require("stream").pipeline);

exports.handler = awslambda.streamifyResponse(async (event, responseStream, _context)
 => {
 await pipeline(requestStream, responseStream);
});

Example Example ending a stream without pipeline()

exports.handler = awslambda.streamifyResponse(async (event, responseStream, _context)
 => {
 responseStream.write("Hello ");
 responseStream.write("world ");
 responseStream.write("from ");
 responseStream.write("Lambda!");
 responseStream.end();
});

Invoking a response streaming enabled function using Lambda
function URLs

Note

You must invoke your function using a function URL to stream the responses.

You can invoke response streaming enabled functions by changing the invoke mode of your
function's URL. The invoke mode determines which API operation Lambda uses to invoke your
function. The available invoke modes are:

• BUFFERED – This is the default option. Lambda invokes your function using the Invoke API
operation. Invocation results are available when the payload is complete. The maximum payload
size is 6 MB.

Invoking a response streaming enabled function using Lambda function URLs 188

Amazon Lambda Developer Guide

• RESPONSE_STREAM – Enables your function to stream payload results as they become available.
Lambda invokes your function using the InvokeWithResponseStream API operation. The
maximum response payload size is 20 MB. However, you can request a quota increase.

You can still invoke your function without response streaming by directly calling the Invoke API
operation. However, Lambda streams all response payloads for invocations that come through the
function's URL until you change the invoke mode to BUFFERED.

To set the invoke mode of a function URL (console)

1.
Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to set the invoke mode for.

3. Choose the Configuration tab, and then choose Function URL.

4. Choose Edit, then choose Additional settings.

5. Under Invoke mode, choose your desired invoke mode.

6. Choose Save.

To set the invoke mode of a function's URL (Amazon CLI)

aws lambda update-function-url-config --function-name my-function --invoke-mode
 RESPONSE_STREAM

To set the invoke mode of a function's URL (Amazon CloudFormation)

MyFunctionUrl:
 Type: AWS::Lambda::Url
 Properties:
 AuthType: AWS_IAM
 InvokeMode: RESPONSE_STREAM

For more information about configuring function URLs, see Lambda function URLs.

Bandwidth limits for response streaming

The first 6MB of your function’s response payload has uncapped bandwidth. After this initial burst,
Lambda streams your response at a maximum rate of 2MBps. If your function responses never
exceed 6MB, then this bandwidth limit never applies.

Bandwidth limits for response streaming 189

https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Note

Bandwidth limits only apply to your function’s response payload, and not to network access
by your function.

The rate of uncapped bandwidth varies depending on a number of factors, including your
function’s processing speed. You can normally expect a rate higher than 2MBps for the first 6MB
of your function’s response. If your function is streaming a response to a destination outside of
Amazon, the streaming rate also depends on the speed of the external internet connection.

Tutorial: Creating a response streaming Lambda function with a
function URL

In this tutorial, you create a Lambda function defined as a .zip file archive with a function URL
endpoint that returns a response stream. For more information about configuring function URLs,
see Creating and managing function URLs.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the Amazon Command Line Interface (Amazon CLI)
version 2. Commands and the expected output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

Tutorial: Creating a response streaming function with a function URL 190

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html

Amazon Lambda Developer Guide

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

Create an execution role

Create the execution role that gives your Lambda function permission to access Amazon resources.

To create an execution role

1. Open the Roles page of the Amazon Identity and Access Management (IAM) console.

2. Choose Create role.

3. Create a role with the following properties:

• Trusted entity type – Amazon service

• Use case – Lambda

• Permissions – AWSLambdaBasicExecutionRole

• Role name – response-streaming-role

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to write
logs to Amazon CloudWatch Logs. After you create the role, note down the its Amazon Resource
Name (ARN). You'll need it in the next step.

Create a response streaming function (Amazon CLI)

Create a response streaming Lambda function with a function URL endpoint using the Amazon
Command Line Interface (Amazon CLI).

To create a function that can stream responses

1. Copy the following code example into a file named index.mjs.

import util from 'util';

Tutorial: Creating a response streaming function with a function URL 191

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

import stream from 'stream';
const { Readable } = stream;
const pipeline = util.promisify(stream.pipeline);

/* global awslambda */
export const handler = awslambda.streamifyResponse(async (event, responseStream,
 _context) => {
 const requestStream = Readable.from(Buffer.from(JSON.stringify(event)));
 await pipeline(requestStream, responseStream);
});

2. Create a deployment package.

zip function.zip index.mjs

3. Create a Lambda function with the create-function command. Replace the value of --
role with the role ARN from the previous step.

aws lambda create-function \
 --function-name my-streaming-function \
 --runtime nodejs16.x \
 --zip-file fileb://function.zip \
 --handler index.handler \
 --role arn:aws:iam::123456789012:role/response-streaming-role

To create a function URL

1. Add a resource-based policy to your function to allow access to your function URL. Replace the
value of --principal with your Amazon Web Services account ID.

aws lambda add-permission \
 --function-name my-streaming-function \
 --action lambda:InvokeFunctionUrl \
 --statement-id 12345 \
 --principal 123456789012 \
 --function-url-auth-type AWS_IAM \
 --statement-id url

2. Create a URL endpoint for the function with the create-function-url-config command.

aws lambda create-function-url-config \

Tutorial: Creating a response streaming function with a function URL 192

Amazon Lambda Developer Guide

 --function-name my-streaming-function \
 --auth-type AWS_IAM \
 --invoke-mode RESPONSE_STREAM

Test the function URL endpoint

Test your integration by invoking your function. You can open your function's URL in a browser, or
you can use curl.

curl --request GET "<function_url>" --user "<key:token>" --aws-sigv4 "aws:amz:us-
east-1:lambda" --no-buffer

Our function URL uses the IAM_AUTH authentication type. This means that you need to sign
requests with both your Amazon access key and secret key. In the previous command, replace
<key:token> with the Amazon access key ID. Enter your Amazon secret key when prompted. If
you don't have your Amazon secret key, you can use temporary Amazon credentials instead.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

Tutorial: Creating a response streaming function with a function URL 193

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_request.html
https://console.amazonaws.cn/iam/home#/roles
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Deploying Lambda functions

You can deploy code to your Lambda function by uploading a zip file archive, or by creating and
uploading a container image.

Topics

• .zip file archives

• Container images

• Deploying Lambda functions as .zip file archives

• Working with Lambda container images

• Testing Lambda container images locally

.zip file archives

A .zip file archive includes your application code and its dependencies. When you author functions
using the Lambda console or a toolkit, Lambda automatically creates a .zip file archive of your
code.

When you create functions with the Lambda API, command line tools, or the Amazon SDKs, you
must create a deployment package. You also must create a deployment package if your function
uses a compiled language, or to add dependencies to your function. To deploy your function's code,
you upload the deployment package from Amazon Simple Storage Service (Amazon S3) or your
local machine.

You can upload a .zip file as your deployment package using the Lambda console, Amazon
Command Line Interface (Amazon CLI), or to an Amazon Simple Storage Service (Amazon S3)
bucket.

Deployment package file permissions

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give an executable file the correct permissions, run the
following command.

.zip file archives 194

Amazon Lambda Developer Guide

chmod 755 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object
in the Microsoft Windows documentation.

Container images

You can package your code and dependencies as a container image using tools such as the Docker
command line interface (CLI). You can then upload the image to your container registry hosted on
Amazon Elastic Container Registry (Amazon ECR).

When you invoke the function, Lambda deploys the container image to an execution environment.
Lambda initializes any extensions and then runs the function’s initialization code (the code outside
the main handler). Note that function initialization duration is included in billed execution time.

Lambda then runs the function by calling the code entry point specified in the function
configuration (the ENTRYPOINT and CMD container image settings).

Amazon provides a set of open-source base images that you can use to build the container image
for your function code. You can also use alternative base images from other container registries.
Amazon also provides an open-source runtime client that you add to your alternative base image
to make it compatible with the Lambda service.

Additionally, Amazon provides a runtime interface emulator for you to test your functions locally
using tools such as the Docker CLI.

Note

You create each container image to be compatible with one of the instruction set
architectures that Lambda supports. Lambda provides base images for each of the
instruction set architectures and Lambda also provides base images that support both
architectures.
The image that you build for your function must target only one of the architectures.

There is no additional charge for packaging and deploying functions as container images. When a
function deployed as a container image is invoked, you pay for invocation requests and execution
duration. You do incur charges related to storing your container images in Amazon ECR. For more
information, see Amazon ECR pricing.

Container images 195

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)
https://www.amazonaws.cn/ecr/pricing/

Amazon Lambda Developer Guide

Image security

When Lambda first downloads the container image from its original source (Amazon ECR), the
container image is optimized, encrypted, and stored using authenticated convergent encryption
methods. All keys that are required to decrypt customer data are protected using Amazon KMS
customer managed keys. To track and audit Lambda's usage of customer managed keys, you can
view the Amazon CloudTrail logs.

Image security 196

Amazon Lambda Developer Guide

Deploying Lambda functions as .zip file archives

When you create a Lambda function, you package your function code into a deployment package.
Lambda supports two types of deployment packages: container images and .zip file archives. The
workflow to create a function depends on the deployment package type. To configure a function
defined as a container image, see the section called “Container images”.

You can use the Lambda console and the Lambda API to create a function defined with a .zip file
archive. You can also upload an updated .zip file to change the function code.

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

Topics

• Creating the function

• Using the console code editor

• Updating function code

• Changing the runtime

• Changing the architecture

• Using the Lambda API

• Amazon CloudFormation

Creating the function

When you create a function defined with a .zip file archive, you choose a code template, the
language version, and the execution role for the function. You add your function code after
Lambda creates the function.

To create the function

1. Open the Functions page of the Lambda console.

2. Choose Create function.

.zip file archives 197

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

3. Choose Author from scratch or Use a blueprint to create your function.

4. Under Basic information, do the following:

a. For Function name, enter the function name. Function names are limited to 64 characters
in length.

b. For Runtime, choose the language version to use for your function.

c. (Optional) For Architecture, choose the instruction set architecture to use for your
function. The default architecture is x86_64. When you build the deployment package for
your function, make sure that it is compatible with this instruction set architecture.

5. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing role.

6. (Optional) Expand Advanced settings. You can choose a Code signing configuration for the
function. You can also configure an (Amazon VPC) for the function to access.

7. Choose Create function.

Lambda creates the new function. You can now use the console to add the function code and
configure other function parameters and features. For code deployment instructions, see the
handler page for the runtime your function uses.

Node.js

Deploy Node.js Lambda functions with .zip file archives

Python

Working with .zip file archives for Python Lambda functions

Ruby

Working with .zip file archives for Ruby Lambda functions

Java

Deploy Java Lambda functions with .zip or JAR file archives

Go

Deploy Go Lambda functions with .zip file archives

C#

Build and deploy C# Lambda functions with .zip file archives

Creating the function 198

Amazon Lambda Developer Guide

PowerShell

Deploy PowerShell Lambda functions with .zip file archives

Using the console code editor

The console creates a Lambda function with a single source file. For scripting languages, you can
edit this file and add more files using the built-in code editor. To save your changes, choose Save.
Then, to run your code, choose Test.

Note

The Lambda console uses Amazon Cloud9 to provide an integrated development
environment in the browser. You can also use Amazon Cloud9 to develop Lambda functions
in your own environment. For more information, see Working with Amazon Lambda
functions using the Amazon Toolkit in the Amazon Cloud9 user guide.

When you save your function code, the Lambda console creates a .zip file archive deployment
package. When you develop your function code outside of the console (using an IDE) you need to
create a deployment package to upload your code to the Lambda function.

Updating function code

For scripting languages (Node.js, Python, and Ruby), you can edit your function code in the
embedded code editor. If the code is larger than 3MB, or if you need to add libraries, or for
languages that the editor doesn't support (Java, Go, C#), you must upload your function code as
a .zip archive. If the .zip file archive is smaller than 50 MB, you can upload the .zip file archive from
your local machine. If the file is larger than 50 MB, upload the file to the function from an Amazon
S3 bucket.

To upload function code as a .zip archive

1. Open the Functions page of the Lambda console.

2. Choose the function to update and choose the Code tab.

3. Under Code source, choose Upload from.

4. Choose .zip file, and then choose Upload.

Using the console code editor 199

https://docs.amazonaws.cn/cloud9/latest/user-guide/lambda-toolkit.html
https://docs.amazonaws.cn/cloud9/latest/user-guide/lambda-toolkit.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

• In the file chooser, select the new image version, choose Open, and then choose Save.

5. (Alternative to step 4) Choose Amazon S3 location.

• In the text box, enter the S3 link URL of the .zip file archive, then choose Save.

Changing the runtime

If you update the function configuration to use a new runtime, you may need to update the
function code to be compatible with the new runtime. If you update the function configuration to
use a different runtime, you must provide new function code that is compatible with the runtime
and architecture. For instructions on how to create a deployment package for the function code,
see the handler page for the runtime that the function uses.

To change the runtime

1. Open the Functions page of the Lambda console.

2. Choose the function to update and choose the Code tab.

3. Scroll down to the Runtime settings section, which is under the code editor.

4. Choose Edit.

a. For Runtime, select the runtime identifier.

b. For Handler, specify file name and handler for your function.

c. For Architecture, choose the instruction set architecture to use for your function.

5. Choose Save.

Changing the architecture

Before you can change the instruction set architecture, you need to ensure that your function's
code is compatible with the target architecture.

If you use Node.js, Python, or Ruby and you edit your function code in the embedded editor, the
existing code may run without modification.

However, if you provide your function code using a .zip file archive deployment package, you
must prepare a new .zip file archive that is compiled and built correctly for the target runtime and
instruction-set architecture. For instructions, see the handler page for your function runtime.

Changing the runtime 200

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

To change the instruction set architecture

1. Open the Functions page of the Lambda console.

2. Choose the function to update and choose the Code tab.

3. Under Runtime settings, choose Edit.

4. For Architecture, choose the instruction set architecture to use for your function.

5. Choose Save.

Using the Lambda API

To create and configure a function that uses a .zip file archive, use the following API operations:

• CreateFunction

• UpdateFunctionCode

• UpdateFunctionConfiguration

Amazon CloudFormation

You can use Amazon CloudFormation to create a Lambda function that uses a .zip file archive. In
your Amazon CloudFormation template, the AWS::Lambda::Function resource specifies the
Lambda function. For descriptions of the properties in the AWS::Lambda::Function resource,
see AWS::Lambda::Function in the Amazon CloudFormation User Guide.

In the AWS::Lambda::Function resource, set the following properties to create a function
defined as a .zip file archive:

• AWS::Lambda::Function

• PackageType – Set to Zip.

• Code – Enter the Amazon S3 bucket name and .zip file name in the S3Bucket and
S3Keyfields. For Node.js or Python, you can provide inline source code of your Lambda
function.

• Runtime – Set the runtime value.

• Architecture – Set the architecture value to arm64 to use the Amazon Graviton2 processor. By
default, the architecture value is x86_64.

Using the Lambda API 201

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

Amazon Lambda Developer Guide

Working with Lambda container images

Your Amazon Lambda function's code consists of scripts or compiled programs and their
dependencies. You use a deployment package to deploy your function code to Lambda. Lambda
supports two types of deployment packages: container images and .zip file archives.

There are three ways to build a container image for a Lambda function:

• Using an Amazon base image for Lambda

The Amazon base images are preloaded with a language runtime, a runtime interface client
to manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an Amazon OS-only base image

Amazon OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include a runtime interface
client for your language in the image.

• Using a non-Amazon base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include a runtime interface client for your language in the
image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

To create a Lambda function from a container image, build your image locally and upload it to an
Amazon Elastic Container Registry (Amazon ECR) repository. Then, specify the repository URI when
you create the function. The Amazon ECR repository must be in the same Amazon Web Services

Container images 202

https://gallery.ecr.aws/lambda/provided
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Amazon Lambda Developer Guide

Region as the Lambda function. You can create a function using an image in a different Amazon
account, as long as the image is in the same Region as the Lambda function. For more information,
see Amazon ECR cross-account permissions.

This page explains the base image types and requirements for creating Lambda-compatible
container images.

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

Topics

• Requirements

• Using an Amazon base image for Lambda

• Using an Amazon OS-only base image

• Using a non-Amazon base image

• Runtime interface clients

• Amazon ECR permissions

• Container image settings

Requirements

Install the Amazon Command Line Interface (Amazon CLI) version 2 and the Docker CLI.
Additionally, note the following requirements:

• The container image must implement the Lambda runtime API. The Amazon open-source
runtime interface clients implement the API. You can add a runtime interface client to your
preferred base image to make it compatible with Lambda.

• The container image must be able to run on a read-only file system. Your function code can
access a writable /tmp directory with between 512 MB and 10,240 MB, in 1-MB increments, of
storage.

• The default Lambda user must be able to read all the files required to run your function code.
Lambda follows security best practices by defining a default Linux user with least-privileged

Requirements 203

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker

Amazon Lambda Developer Guide

permissions. Verify that your application code does not rely on files that other Linux users are
restricted from running.

• Lambda supports only Linux-based container images.

• Lambda provides multi-architecture base images. However, the image you build for your function
must target only one of the architectures. Lambda does not support functions that use multi-
architecture container images.

Using an Amazon base image for Lambda

You can use one of the Amazon base images for Lambda to build the container image for your
function code. The base images are preloaded with a language runtime and other components
required to run a container image on Lambda. You add your function code and dependencies to the
base image and then package it as a container image.

Amazon periodically provides updates to the Amazon base images for Lambda. If your Dockerfile
includes the image name in the FROM property, your Docker client pulls the latest version of the
image from the Amazon ECR repository. To use the updated base image, you must rebuild your
container image and update the function code.

The Node.js 20, Python 3.12, Java 21, AL2023, and later base images are based on the Amazon
Linux 2023 minimal container image. Earlier base images use Amazon Linux 2. AL2023 provides
several advantages over Amazon Linux 2, including a smaller deployment footprint and updated
versions of libraries such as glibc.

AL2023-based images use microdnf (symlinked as dnf) as the package manager instead
of yum, which is the default package manager in Amazon Linux 2. microdnf is a standalone
implementation of dnf. For a list of packages that are included in AL2023-based images, refer to
the Minimal Container columns in Comparing packages installed on Amazon Linux 2023 Container
Images. For more information about the differences between AL2023 and Amazon Linux 2, see
Introducing the Amazon Linux 2023 runtime for Amazon Lambda on the Amazon Compute Blog.

Note

To run AL2023-based images locally, including with Amazon Serverless Application Model
(Amazon SAM), you must use Docker version 20.10.10 or later.

Using an Amazon base image 204

https://gallery.ecr.aws/lambda/
https://gallery.ecr.aws/lambda/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://docs.amazonaws.cn/linux/al2023/ug/minimal-container.html
https://docs.amazonaws.cn/linux/al2023/ug/minimal-container.html
https://docs.amazonaws.cn/linux/al2023/ug/al2023-container-image-types.html
https://docs.amazonaws.cn/linux/al2023/ug/al2023-container-image-types.html
https://amazonaws-china.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

Amazon Lambda Developer Guide

To build a container image using an Amazon base image, choose the instructions for your preferred
language:

• Node.js

• TypeScript (uses a Node.js base image)

• Python

• Java

• Go

• .NET

• Ruby

Using an Amazon OS-only base image

Amazon OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include a runtime interface client
for your language in the image.

Tags Runtime Operating
system

Dockerfile Deprecation

al2023 OS-only
Runtime

Amazon
Linux 2023

Dockerfile for OS-only
Runtime on GitHub

al2 OS-only
Runtime

Amazon
Linux 2

Dockerfile for OS-only
Runtime on GitHub

Amazon Elastic Container Registry Public Gallery: gallery.ecr.aws/lambda/provided

Using a non-Amazon base image

Lambda supports any image that conforms to one of the following image manifest formats:

• Docker image manifest V2, schema 2 (used with Docker version 1.10 and newer)

Using an Amazon OS-only base image 205

https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023
https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://gallery.ecr.aws/lambda/provided

Amazon Lambda Developer Guide

• Open Container Initiative (OCI) Specifications (v1.0.0 and up)

Lambda supports a maximum uncompressed image size of 10 GB, including all layers.

Note

To make the image compatible with Lambda, you must include a runtime interface client
for your language in the image.

Runtime interface clients

If you use an OS-only base image or an alternative base image, you must include a runtime
interface client in your image. The runtime interface client must extend the Lambda runtime API,
which manages the interaction between Lambda and your function code. Amazon provides open-
source runtime interface clients for the following languages:

• Node.js

• Python

• Java

• .NET

• Go

• Ruby

• Rust – The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

If you're using a language that doesn't have an Amazon-provided runtime interface client, you
must create your own.

Amazon ECR permissions

Before you create a Lambda function from a container image, you must build the image locally and
upload it to an Amazon ECR repository. When you create the function, specify the Amazon ECR
repository URI.

Make sure that the permissions for the user or role that creates the function contain the Amazon
managed policies GetRepositoryPolicy and SetRepositoryPolicy.

Runtime interface clients 206

https://github.com/awslabs/aws-lambda-rust-runtime

Amazon Lambda Developer Guide

For example, use the IAM console to create a role with the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "ecr:SetRepositoryPolicy",
 "ecr:GetRepositoryPolicy"
],
 "Resource": "arn:aws:ecr:us-east-1:111122223333:repository/hello-world"
 }
]
}

Amazon ECR repository policies

For a function in the same account as the container image in Amazon ECR, you can add
ecr:BatchGetImage and ecr:GetDownloadUrlForLayer permissions to your Amazon ECR
repository policy. The following example shows the minimum policy:

{
 "Sid": "LambdaECRImageRetrievalPolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
]
 }

For more information about Amazon ECR repository permissions, see Private repository policies in
the Amazon Elastic Container Registry User Guide.

If the Amazon ECR repository does not include these permissions, Lambda adds
ecr:BatchGetImage and ecr:GetDownloadUrlForLayer to the container image repository
permissions. Lambda can add these permissions only if the principal calling Lambda has
ecr:getRepositoryPolicy and ecr:setRepositoryPolicy permissions.

Amazon ECR permissions 207

https://docs.amazonaws.cn/AmazonECR/latest/userguide/repository-policies.html

Amazon Lambda Developer Guide

To view or edit your Amazon ECR repository permissions, follow the directions in Setting a private
repository policy statement in the Amazon Elastic Container Registry User Guide.

Amazon ECR cross-account permissions

A different account in the same region can create a function that uses a container image owned by
your account. In the following example, your Amazon ECR repository permissions policy needs the
following statements to grant access to account number 123456789012.

• CrossAccountPermission – Allows account 123456789012 to create and update Lambda
functions that use images from this ECR repository.

• LambdaECRImageCrossAccountRetrievalPolicy – Lambda will eventually set a function's state
to inactive if it is not invoked for an extended period. This statement is required so that Lambda
can retrieve the container image for optimization and caching on behalf of the function owned
by 123456789012.

Example — Add cross-account permission to your repository

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CrossAccountPermission",
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
],
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root"
 }
 },
 {
 "Sid": "LambdaECRImageCrossAccountRetrievalPolicy",
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
],
 "Principal": {
 "Service": "lambda.amazonaws.com"

Amazon ECR permissions 208

https://docs.amazonaws.cn/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.amazonaws.cn/AmazonECR/latest/userguide/set-repository-policy.html
https://docs.amazonaws.cn/AmazonECR/latest/userguide/set-repository-policy.html

Amazon Lambda Developer Guide

 },
 "Condition": {
 "StringLike": {
 "aws:sourceARN": "arn:aws:lambda:us-east-1:123456789012:function:*"
 }
 }
 }
]
}

To give access to multiple accounts, you add the account IDs to the Principal list in
the CrossAccountPermission policy and to the Condition evaluation list in the
LambdaECRImageCrossAccountRetrievalPolicy.

If you are working with multiple accounts in an Amazon Organization, we recommend that you
enumerate each account ID in the ECR permissions policy. This approach aligns with the Amazon
security best practice of setting narrow permissions in IAM policies.

Container image settings

The following are common container image settings. If you use these settings in your Dockerfile,
note how Lambda interprets and processes these settings:

• ENTRYPOINT – Specifies the absolute path to the entry point of the application.

• CMD – Specifies parameters that you want to pass in with ENTRYPOINT.

• WORKDIR – Specifies the absolute path to the working directory.

• ENV – Specifies an environment variable for the Lambda function.

For more information about how Docker uses the container image settings, see ENTRYPOINT in the
Dockerfile reference on the Docker Docs website. For more information about using ENTRYPOINT
and CMD, see Demystifying ENTRYPOINT and CMD in Docker on the Amazon Open Source Blog.

You can specify the container image settings in the Dockerfile when you build your image. You
can also override these configurations using the Lambda console or Lambda API. This allows you
to deploy multiple functions that deploy the same container image but with different runtime
configurations.

Container image settings 209

https://docs.docker.com/engine/reference/builder/#entrypoint
https://amazonaws-china.com/blogs/opensource/demystifying-entrypoint-cmd-docker/

Amazon Lambda Developer Guide

Warning

When you specify ENTRYPOINT or CMD in the Dockerfile or as an override, make sure that
you enter the absolute path. Also, do not use symlinks as the entry point to the container.

To override the configuration values in the container image

1. Open the Functions page of the Lambda console.

2. Choose the function to update.

3. Under Image configuration, choose Edit.

4. Enter new values for any of the override settings, and then choose Save.

5. (Optional) To add or override environment variables, under Environment variables, choose
Edit.

For more information, see the section called “Environment variables”.

Container image settings 210

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Testing Lambda container images locally

You can use the Lambda runtime interface emulator to locally test a container image function
before uploading it to Amazon Elastic Container Registry (Amazon ECR) and deploying it to
Lambda. The emulator is a proxy for the Lambda runtime API. It's a lightweight web server that
converts HTTP requests into JSON events to pass to the Lambda function in the container image.

The Amazon base images and OS-only base images include the runtime interface emulator. If you
use an alternative base image, such as an Alpine Linux or Debian image, you can build the emulator
into your image or install it on your local machine.

The runtime interface emulator is available on the Amazon GitHub repository. There are separate
packages for the x86-64 and arm64 architectures.

Topics

• Guidelines for using the runtime interface emulator

• Environment variables

• Testing images built from Amazon base images

• Testing images built from alternative base images

Guidelines for using the runtime interface emulator

Note the following guidelines when using the runtime interface emulator:

• The RIE does not emulate Lambda security and authentication configurations, or Lambda
orchestration.

• Lambda provides an emulator for each of the instruction set architectures.

• The emulator does not support Amazon X-Ray tracing or other Lambda integrations.

Environment variables

The runtime interface emulator supports a subset of environment variables for the Lambda
function in the local running image.

If your function uses security credentials, you can configure the credentials by setting the following
environment variables:

Testing images 211

https://github.com/aws/aws-lambda-runtime-interface-emulator/

Amazon Lambda Developer Guide

• AWS_ACCESS_KEY_ID

• AWS_SECRET_ACCESS_KEY

• AWS_SESSION_TOKEN

• AWS_DEFAULT_REGION

To set the function timeout, configure AWS_LAMBDA_FUNCTION_TIMEOUT. Enter the maximum
number of seconds that you want to allow the function to run.

The emulator does not populate the following Lambda environment variables. However, you can
set them to match the values that you expect when the function runs in the Lambda service:

• AWS_LAMBDA_FUNCTION_VERSION

• AWS_LAMBDA_FUNCTION_NAME

• AWS_LAMBDA_FUNCTION_MEMORY_SIZE

Testing images built from Amazon base images

The Amazon base images for Lambda include the runtime interface emulator. After building your
Docker image, follow these steps to test it locally.

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Testing Amazon base images 212

Amazon Lambda Developer Guide

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

3. Get the container ID.

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Testing Amazon base images 213

https://docs.docker.com/engine/reference/commandline/kill/

Amazon Lambda Developer Guide

Testing images built from alternative base images

If you use an alternative base image, such as an Alpine Linux or Debian image, you can build the
emulator into your image or install it on your local machine.

Building the runtime interface emulator into an image

To build the emulator into your image

1. Create a script and save it in your project directory. Set execution permissions for the script
file.

The script checks for the presence of the AWS_LAMBDA_RUNTIME_API environment variable,
which indicates the presence of the runtime API. If the runtime API is present, the script runs
the runtime interface client. Otherwise, the script runs the runtime interface emulator.

Choose your language to see an example script:

Node.js

In the following example, /usr/local/bin/npx aws-lambda-ric is the npx command
to start the Node.js runtime interface client.

Example entry_script.sh

#!/bin/sh
if [-z "${AWS_LAMBDA_RUNTIME_API}"]; then
 exec /usr/local/bin/aws-lambda-rie /usr/local/bin/npx aws-lambda-ric $@
else
 exec /usr/local/bin/npx aws-lambda-ric $@
fi

Note

If you're using Windows, make sure to save the script with LF line endings. If the
script uses CRLF, you'll get an error like this when you try to run the Docker image:

exec /entry_script.sh: no such file or directory

Testing non-Amazon images 214

Amazon Lambda Developer Guide

Python

In the following example, /usr/local/bin/python -m awslambdaric is the Python
interpreter command to run the Python runtime interface client as a script.

Example entry_script.sh

#!/bin/sh
if [-z "${AWS_LAMBDA_RUNTIME_API}"]; then
 exec /usr/local/bin/aws-lambda-rie /usr/local/bin/python -m awslambdaric $@
else
 exec /usr/local/bin/python -m awslambdaric $@
fi

Note

If you're using Windows, make sure to save the script with LF line endings. If the
script uses CRLF, you'll get an error like this when you try to run the Docker image:

exec /entry_script.sh: no such file or directory

Java

In the following example, /usr/bin/java -cp './*'
com.amazonaws.services.lambda.runtime.api.client.AWSLambda sets the
classpath to the Java runtime interface client.

Example entry_script.sh

#!/bin/sh
if [-z "${AWS_LAMBDA_RUNTIME_API}"]; then
 exec /usr/local/bin/aws-lambda-rie /usr/bin/java -cp './*'
 com.amazonaws.services.lambda.runtime.api.client.AWSLambda $@
else
 exec /usr/bin/java -cp './*'
 com.amazonaws.services.lambda.runtime.api.client.AWSLambda $@
fi

Testing non-Amazon images 215

Amazon Lambda Developer Guide

Note

If you're using Windows, make sure to save the script with LF line endings. If the
script uses CRLF, you'll get an error like this when you try to run the Docker image:

exec /entry_script.sh: no such file or directory

Go

In the following example, /main is the binary that is compiled during the Docker build.

Example entry_script.sh

#!/bin/sh
if [-z "${AWS_LAMBDA_RUNTIME_API}"]; then
 exec /usr/local/bin/aws-lambda-rie /main $@
else
 exec /main $@
fi

Note

If you're using Windows, make sure to save the script with LF line endings. If the
script uses CRLF, you'll get an error like this when you try to run the Docker image:

exec /entry_script.sh: no such file or directory

Ruby

In the following example, aws_lambda_ric is the Ruby runtime interface client.

Example entry_script.sh

#!/bin/sh
if [-z "${AWS_LAMBDA_RUNTIME_API}"]; then
 exec /usr/local/bin/aws-lambda-rie aws_lambda_ric $@

Testing non-Amazon images 216

Amazon Lambda Developer Guide

else
 exec aws_lambda_ric $@
fi

Note

If you're using Windows, make sure to save the script with LF line endings. If the
script uses CRLF, you'll get an error like this when you try to run the Docker image:

exec /entry_script.sh: no such file or directory

2. Download the runtime interface emulator for your target architecture from GitHub into your
project directory. Lambda provides an emulator for each of the instruction set architectures.

Linux/macOS

curl -Lo aws-lambda-rie https://github.com/aws/aws-lambda-runtime-interface-
emulator/releases/latest/download/aws-lambda-rie \
&& chmod +x aws-lambda-rie

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

PowerShell

Invoke-WebRequest -Uri https://github.com/aws/aws-lambda-runtime-interface-
emulator/releases/latest/download/aws-lambda-rie -OutFile aws-lambda-rie

To install the arm64 emulator, replace the Uri with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

3. Add the following lines to your Dockerfile. The ENTRYPOINT includes the script that you
created in step 1 and your function handler.

Testing non-Amazon images 217

Amazon Lambda Developer Guide

Example lines to add to Dockerfile

In the following example, replace lambda_function.handler with your function handler.

COPY ./entry_script.sh /entry_script.sh
RUN chmod +x /entry_script.sh
ADD aws-lambda-rie /usr/local/bin/aws-lambda-rie
ENTRYPOINT ["/entry_script.sh","lambda_function.handler"]

4. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

5. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

6. From a new terminal window, post an event to the local endpoint.

Testing non-Amazon images 218

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

7. Get the container ID.

docker ps

8. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Testing non-Amazon images 219

https://docs.docker.com/engine/reference/commandline/kill/

Amazon Lambda Developer Guide

Install the runtime interface emulator locally

To install the runtime interface emulator on your local machine, download the package for your
preferred architecture from GitHub. Then, use the docker run command to start the container
image and set the --entrypoint to the emulator. For more information, choose the instructions
for your preferred language:

• Node.js

• Python

• Java

• Go

• Ruby

Testing non-Amazon images 220

Amazon Lambda Developer Guide

Invoking Lambda functions

You can invoke Lambda functions directly using the Lambda console, a function URL HTTP(S)
endpoint, the Lambda API, an Amazon SDK, the Amazon Command Line Interface (Amazon CLI),
and Amazon toolkits. You can also configure other Amazon services to invoke your function in
response to events or external requests, or on a schedule. For example, Amazon Simple Storage
Service (Amazon S3) can invoke your function when an object is created in an S3 bucket, or
Amazon EventBridge (CloudWatch Events) can invoke your function on a schedule. You can also
configure Lambda to read items from a stream or a queue and invoke your function to process
them.

When you invoke a function, you can choose to invoke it synchronously or asynchronously. With
synchronous invocation, you wait for the function to process the event and return a response.
With asynchronous invocation, Lambda queues the event for processing and returns a response
immediately. For asynchronous invocation, Lambda handles retries and can send invocation records
to a destination.

Invoking Lambda functions from another Amazon Web Service

For another Amazon service to invoke your function directly, you need to create a trigger. A trigger
is a resource you configure to allow another Amazon service to invoke your function when certain
events or conditions occur. Your function can have multiple triggers. Each trigger acts as a client
invoking your function independently, and each event that Lambda passes to your function has
data from only one trigger.

You can create a trigger for your function using the Lambda console. You can also configure
another service to invoke your function by using the Events property in the Amazon Serverless
Application Model (Amazon SAM). To learn more see AWS::Serverless::Function in the Amazon
Serverless Application Model Developer Guide.

To create a trigger using the Lambda console

1. Open the Functions page of the Lambda console.

2. Select the function you want to create a trigger for.

3. In the Function overview pane, choose Add trigger.

4. Select the Amazon service you want to invoke your function.

5. Fill out the options in the Trigger configuration pane and choose Add.

Invoking Lambda functions from another Amazon Web Service 221

https://docs.amazonaws.cn/lambda/latest/dg/API_Reference.html
https://www.amazonaws.cn/developer/tools/
https://docs.amazonaws.cn/cli/latest/reference/lambda/index.html
https://www.amazonaws.cn/developer/tools/
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Depending on the Amazon Web Service you choose to invoke your function, the trigger
configuration options will be different.

For a full list of the Amazon services that can invoke your Lambda function by using a trigger, and
for more information about configuring triggers for different services, see Using Lambda with
other services.

Invoking Lambda functions from a stream or queue

For your Lambda function to process items from a stream or a queue, such as an Amazon Kinesis
stream or an Amazon Simple Queue Service (Amazon SQS) queue, you need to create an event
source mapping. An event source mapping is a resource in Lambda that reads items from a stream
or a queue and creates events containing batches of items to send to your Lambda function. Each
event that your function processes can contain hundreds or thousands of items.

You can create an event source mapping for your Lambda function using the Lambda console,
the Amazon CLI, the Lambda API, or an Amazon SDK. You can also add an event source mapping
using Amazon SAM or Amazon CloudFormation. To create an event source mapping in the Lambda
console, follow the instructions to create a trigger in the section called “Invoking Lambda functions
from another Amazon Web Service”, and select one of the Amazon services that support event
source mappings as your source.

To create an event source mapping using the Amazon CLI, Lambda API, or an Amazon SDK, and to
see a list of the Amazon services which event source mappings can be used with, refer to Lambda
event source mappings. For more information about creating an event source mapping using
the Events property in Amazon SAM, see AWS::Serverless::Function in the Amazon Serverless
Application Model Developer Guide.

Errors and retries

Depending on how your function is invoked, scaling behavior and the types of errors that occur
can vary. When you invoke a function synchronously, you receive errors in the response and can
retry. When you invoke asynchronously, use an event source mapping, or configure another service
to invoke your function, the retry requirements and the way that your function scales to handle
large numbers of events will vary. For more information, see Error handling and automatic retries
in Amazon Lambda.

Invoking Lambda functions from a stream or queue 222

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

Testing Lambda functions in the console

You can test your Lambda function in the console by invoking your function with a test event. A
test event is a JSON input to your function. If your function doesn't require input, the event can be
an empty document ({}).

When you run a test in the console, Lambda synchronously invokes your function with the test
event. The function runtime converts the event JSON into an object and passes it to your code's
handler method for processing.

Create a test event

Before you can test in the console, you need to create a private or shareable test event.

Invoking functions with test events

To test a function

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to test.

3. Choose the Test tab.

4. Under Test event, choose Create new event or Edit saved event and then choose the saved
event that you want to use.

5. Optionally - choose a Template for the event JSON.

6. Choose Test.

7. To review the test results, under Execution result, expand Details.

To invoke your function without saving your test event, choose Test before saving. This creates an
unsaved test event that Lambda preserves only for the duration of the session.

You can also access your saved and unsaved test events on the Code tab. From there, choose Test,
and then choose your test event.

Testing in console 223

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Creating private test events

Private test events are available only to the event creator, and they require no additional
permissions to use. You can create and save up to 10 private test events per function.

To create a private test event

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to test.

3. Choose the Test tab.

4. Under Test event, do the following:

a. Choose a Template.

b. Enter a Name for the test.

c. In the text entry box, enter the JSON test event.

d. Under Event sharing settings, choose Private.

5. Choose Save changes.

You can also create new test events on the Code tab. From there, choose Test, Configure test
event.

Creating shareable test events

Shareable test events are test events that you can share with other users in the same Amazon
account. You can edit other users' shareable test events and invoke your function with them.

Lambda saves shareable test events as schemas in an Amazon EventBridge (CloudWatch Events)
schema registry named lambda-testevent-schemas. As Lambda utilizes this registry to store
and call shareable test events you create, we recommend that you do not edit this registry or
create a registry using the lambda-testevent-schemas name.

To see, share, and edit shareable test events, you must have permissions for all of the following
EventBridge (CloudWatch Events) schema registry API operations:

• schemas.CreateRegistry

• schemas.CreateSchema

• schemas.DeleteSchema

Creating private test events 224

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-schema-registry.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-schema-registry.html
https://docs.amazonaws.cn/eventbridge/latest/schema-reference/operations.html
https://docs.amazonaws.cn/eventbridge/latest/schema-reference/v1-registries-name-registryname.html#CreateRegistry
https://docs.amazonaws.cn/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#CreateSchema
https://docs.amazonaws.cn/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#DeleteSchema

Amazon Lambda Developer Guide

• schemas.DeleteSchemaVersion

• schemas.DescribeRegistry

• schemas.DescribeSchema

• schemas.GetDiscoveredSchema

• schemas.ListSchemaVersions

• schemas.UpdateSchema

Note that saving edits made to a shareable test event overwrites that event.

If you cannot create, edit, or see shareable test events, check that your account has the required
permissions for these operations. If you have the required permissions but still cannot access
shareable test events, check for any resource-based policies that might limit access to the
EventBridge (CloudWatch Events) registry.

To create a shareable test event

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to test.

3. Choose the Test tab.

4. Under Test event, do the following:

a. Choose a Template.

b. Enter a Name for the test.

c. In the text entry box, enter the JSON test event.

d. Under Event sharing settings, choose Shareable.

5. Choose Save changes.

Use shareable test events with Amazon Serverless Application Model.

You can use Amazon SAM to invoke shareable test events. See sam remote test-event
in the Amazon Serverless Application Model Developer Guide

Creating shareable test events 225

https://docs.amazonaws.cn/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname-version-schemaversion.html#DeleteSchemaVersion
https://docs.amazonaws.cn/eventbridge/latest/schema-reference/v1-registries-name-registryname.html#DescribeRegistry
https://docs.amazonaws.cn/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#DescribeSchema
https://docs.amazonaws.cn/eventbridge/latest/schema-reference/v1-discover.html#GetDiscoveredSchema
https://docs.amazonaws.cn/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname-versions.html#ListSchemaVersions
https://docs.amazonaws.cn/eventbridge/latest/schema-reference/v1-registries-name-registryname-schemas-name-schemaname.html#UpdateSchema
https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/using-sam-cli-remote-test-event.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/using-sam-cli-remote-test-event.html

Amazon Lambda Developer Guide

Deleting shareable test event schemas

When you delete shareable test events, Lambda removes them from the lambda-testevent-
schemas registry. If you remove the last shareable test event from the registry, Lambda deletes
the registry.

If you delete the function, Lambda does not delete any associated shareable test event schemas.
You must clean up these resources manually from the EventBridge (CloudWatch Events) console.

Deleting shareable test event schemas 226

https://console.amazonaws.cn/events

Amazon Lambda Developer Guide

Synchronous invocation

When you invoke a function synchronously, Lambda runs the function and waits for a response.
When the function completes, Lambda returns the response from the function's code with
additional data, such as the version of the function that was invoked. To invoke a function
synchronously with the Amazon CLI, use the invoke command.

aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{ "key": "value" }' response.json

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the following output:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

The following diagram shows clients invoking a Lambda function synchronously. Lambda sends the
events directly to the function and sends the function's response back to the invoker.

The payload is a string that contains an event in JSON format. The name of the file where the
Amazon CLI writes the response from the function is response.json. If the function returns

Synchronous invocation 227

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

an object or error, the response body is the object or error in JSON format. If the function exits
without error, the response body is null.

Note

Lambda does not wait for external extensions to complete before sending the response.
External extensions run as independent processes in the execution environment and
continue to run after the function invocation is complete. For more information, see
Lambda extensions.

The output from the command, which is displayed in the terminal, includes information from
headers in the response from Lambda. This includes the version that processed the event (useful
when you use aliases), and the status code returned by Lambda. If Lambda was able to run the
function, the status code is 200, even if the function returned an error.

Note

For functions with a long timeout, your client might be disconnected during synchronous
invocation while it waits for a response. Configure your HTTP client, SDK, firewall, proxy, or
operating system to allow for long connections with timeout or keep-alive settings.

If Lambda isn't able to run the function, the error is displayed in the output.

aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload value response.json

You should see the following output:

An error occurred (InvalidRequestContentException) when calling the Invoke operation:
 Could not parse request body into json: Unrecognized token 'value': was expecting
 ('true', 'false' or 'null')
 at [Source: (byte[])"value"; line: 1, column: 11]

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

Synchronous invocation 228

Amazon Lambda Developer Guide

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

You can use the Amazon CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the following output:

Synchronous invocation 229

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

For more information about the Invoke API, including a full list of parameters, headers, and
errors, see Invoke.

When you invoke a function directly, you can check the response for errors and retry. The Amazon
CLI and Amazon SDK also automatically retry on client timeouts, throttling, and service errors. For
more information, see Error handling and automatic retries in Amazon Lambda.

Synchronous invocation 230

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html

Amazon Lambda Developer Guide

Asynchronous invocation

Several Amazon Web Services, such as Amazon Simple Storage Service (Amazon S3) and Amazon
Simple Notification Service (Amazon SNS), invoke functions asynchronously to process events.
When you invoke a function asynchronously, you don't wait for a response from the function code.
You hand off the event to Lambda and Lambda handles the rest. You can configure how Lambda
handles errors, and can send invocation records to a downstream resource such as Amazon Simple
Queue Service (Amazon SQS) or Amazon EventBridge (EventBridge) to chain together components
of your application.

Sections

• How Lambda handles asynchronous invocations

• Configuring error handling for asynchronous invocation

• Configuring destinations for asynchronous invocation

• Asynchronous invocation configuration API

• Dead-letter queues

How Lambda handles asynchronous invocations

The following diagram shows clients invoking a Lambda function asynchronously. Lambda queues
the events before sending them to the function.

Asynchronous invocation 231

Amazon Lambda Developer Guide

For asynchronous invocation, Lambda places the event in a queue and returns a success response
without additional information. A separate process reads events from the queue and sends them to
your function. To invoke a function asynchronously, set the invocation type parameter to Event.

aws lambda invoke \
 --function-name my-function \
 --invocation-type Event \
 --cli-binary-format raw-in-base64-out \
 --payload '{ "key": "value" }' response.json

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

{
 "StatusCode": 202
}

The output file (response.json) doesn't contain any information, but is still created when you
run this command. If Lambda isn't able to add the event to the queue, the error message appears
in the command output.

Lambda manages the function's asynchronous event queue and attempts to retry on errors. If
the function returns an error, Lambda attempts to run it two more times, with a one-minute wait
between the first two attempts, and two minutes between the second and third attempts. Function
errors include errors returned by the function's code and errors returned by the function's runtime,
such as timeouts.

If the function doesn't have enough concurrency available to process all events, additional requests
are throttled. For throttling errors (429) and system errors (500-series), Lambda returns the event
to the queue and attempts to run the function again for up to 6 hours. The retry interval increases
exponentially from 1 second after the first attempt to a maximum of 5 minutes. If the queue
contains many entries, Lambda increases the retry interval and reduces the rate at which it reads
events from the queue.

Even if your function doesn't return an error, it's possible for it to receive the same event from
Lambda multiple times because the queue itself is eventually consistent. If the function can't keep
up with incoming events, events might also be deleted from the queue without being sent to the

How Lambda handles asynchronous invocations 232

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

function. Ensure that your function code gracefully handles duplicate events, and that you have
enough concurrency available to handle all invocations.

When the queue is very long, new events might age out before Lambda has a chance to send them
to your function. When an event expires or fails all processing attempts, Lambda discards it. You
can configure error handling for a function to reduce the number of retries that Lambda performs,
or to discard unprocessed events more quickly.

You can also configure Lambda to send an invocation record to another service. Lambda supports
the following destinations for asynchronous invocation. Note that SQS FIFO queues and SNS FIFO
topics are not supported.

• Amazon SQS – A standard SQS queue.

• Amazon SNS – A standard SNS topic.

• Amazon Lambda – A Lambda function.

• Amazon EventBridge – An EventBridge event bus.

The invocation record contains details about the request and response in JSON format. You can
configure separate destinations for events that are processed successfully, and events that fail all
processing attempts. Alternatively, you can configure a standard Amazon SQS queue or standard
Amazon SNS topic as a dead-letter queue for discarded events. For dead-letter queues, Lambda
only sends the content of the event, without details about the response.

If Lambda can't send a record to a destination you have configured, it sends a
DestinationDeliveryFailures metric to Amazon CloudWatch. This can happen if your
configuration includes an unsupported destination type, such as an Amazon SQS FIFO queue or an
Amazon SNS FIFO topic. Delivery errors can also occur due to permissions errors and size limits. For
more information on Lambda invocation metrics, see Invocation metrics.

Note

To prevent a function from triggering, you can set the function's reserved concurrency to
zero. When you set reserved concurrency to zero for an asynchronously invoked function,
Lambda begins sending new events to the configured dead-letter queue or the on-failure
event destination, without any retries. To process events that were sent while reserved
concurrency was set to zero, you must consume the events from the dead-letter queue or
the on-failure event destination.

How Lambda handles asynchronous invocations 233

Amazon Lambda Developer Guide

Configuring error handling for asynchronous invocation

Use the Lambda console to configure error handling settings on a function, a version, or an alias.

To configure error handling

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Asynchronous invocation.

4. Under Asynchronous invocation, choose Edit.

5. Configure the following settings.

• Maximum age of event – The maximum amount of time Lambda retains an event in the
asynchronous event queue, up to 6 hours.

• Retry attempts – The number of times Lambda retries when the function returns an error,
between 0 and 2.

6. Choose Save.

When an invocation event exceeds the maximum age or fails all retry attempts, Lambda discards it.
To retain a copy of discarded events, configure a failed-event destination.

Configuring destinations for asynchronous invocation

To retain records of asynchronous invocations, add a destination to your function. You can choose
to send either successful or failed invocations to a destination. Each function can have multiple
destinations, so you can configure separate destinations for successful and failed events. Each
record sent to the destination is a JSON document with details about the invocation. Like error
handling settings, you can configure destinations on a function, function version, or alias.

Note

You can also retain records of failed invocations for certain event source mapping types.
For more information, see the section called “Configuring destinations for event source
mapping invocations”

Configuring error handling for asynchronous invocation 234

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

The following table lists supported destinations for asynchronous invocation records. For Lambda
to successfully send records to your chosen destination, ensure that your function's execution role
also contains the relevant permissions. The table also describes how each destination type receives
the JSON invocation record.

Destination type Required permission Destination-specific JSON
format

Amazon SQS queue sqs:SendMessage Lambda passes the invocation
record as the Message to the
destination.

Amazon SNS topic sns:Publish Lambda passes the invocation
record as the Message to the
destination.

Lambda function InvokeFunction Lambda passes the invocatio
n record as the payload to the
function.

EventBridge events:PutEvents • Lambda passes the
invocation record as the
detail in the PutEvents
call.

• The value for the source
event field is lambda.

• The value for the detail-
type event field is either
"Lambda Function Invocatio
n Result - Success" or
"Lambda Function Invocatio
n Result - Failure".

• The resource event field
contains the function
and destination Amazon
Resource Names (ARNs).

Configuring destinations for asynchronous invocation 235

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/sns/latest/api/API_Publish.html
https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html
https://docs.amazonaws.cn/eventbridge/latest/APIReference/API_PutEvents.html

Amazon Lambda Developer Guide

Destination type Required permission Destination-specific JSON
format

• For other event fields,
see Amazon EventBridge
events.

The following example shows an invocation record for an event that failed three processing
attempts due to a function error. The invocation record contains details about the event, the
response, and the reason that the record was sent.

{
 "version": "1.0",
 "timestamp": "2019-11-14T18:16:05.568Z",
 "requestContext": {
 "requestId": "e4b46cbf-b738-xmpl-8880-a18cdf61200e",
 "functionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-function:
$LATEST",
 "condition": "RetriesExhausted",
 "approximateInvokeCount": 3
 },
 "requestPayload": {
 "ORDER_IDS": [
 "9e07af03-ce31-4ff3-xmpl-36dce652cb4f",
 "637de236-e7b2-464e-xmpl-baf57f86bb53",
 "a81ddca6-2c35-45c7-xmpl-c3a03a31ed15"
]
 },
 "responseContext": {
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "responsePayload": {
 "errorMessage": "RequestId: e4b46cbf-b738-xmpl-8880-a18cdf61200e Process exited
 before completing request"
 }
}

The following steps describe how to configure a destination for a function using the Lambda
console.

Configuring destinations for asynchronous invocation 236

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-events.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-events.html

Amazon Lambda Developer Guide

Configuring a destination for asynchronous invocation records

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add destination.

4. For Source, choose Asynchronous invocation.

5. For Condition, choose from the following options:

• On failure – Send a record when the event fails all processing attempts or exceeds the
maximum age.

• On success – Send a record when the function successfully processes an asynchronous
invocation.

6. For Destination type, choose the type of resource that receives the invocation record.

7. For Destination, choose a resource.

8. Choose Save.

When an invocation matches the condition, Lambda sends a JSON document with details about the
invocation to the destination.

Destination-specific JSON format

• For Amazon SQS and Amazon SNS (SnsDestination and SqsDestination), the invocation
record is passed as the Message to the destination.

• For Lambda (LambdaDestination), the invocation record is passed as the payload to the
function.

• For EventBridge (EventBridgeDestination), the invocation record is passed as the detail in
the PutEvents call. The value for the source event field is lambda. The value for the detail-
type event field is either Lambda Function Invocation Result – Success or Lambda Function
Invocation Result – Failure. The resource event field contains the function and destination
Amazon Resource Names (ARNs). For other event fields, see Amazon EventBridge events.

The following example shows an invocation record for an event that failed three processing
attempts due to a function error.

Configuring destinations for asynchronous invocation 237

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/aws-events.html

Amazon Lambda Developer Guide

Example invocation record

{
 "version": "1.0",
 "timestamp": "2019-11-14T18:16:05.568Z",
 "requestContext": {
 "requestId": "e4b46cbf-b738-xmpl-8880-a18cdf61200e",
 "functionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function:
$LATEST",
 "condition": "RetriesExhausted",
 "approximateInvokeCount": 3
 },
 "requestPayload": {
 "ORDER_IDS": [
 "9e07af03-ce31-4ff3-xmpl-36dce652cb4f",
 "637de236-e7b2-464e-xmpl-baf57f86bb53",
 "a81ddca6-2c35-45c7-xmpl-c3a03a31ed15"
]
 },
 "responseContext": {
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "responsePayload": {
 "errorMessage": "RequestId: e4b46cbf-b738-xmpl-8880-a18cdf61200e Process exited
 before completing request"
 }
}

The invocation record contains details about the event, the response, and the reason that the
record was sent.

Tracing requests to destinations

You can use Amazon X-Ray to see a connected view of each request as it's queued, processed by
a Lambda function, and passed to the destination service. When you activate X-Ray tracing for a
function or a service that invokes a function, Lambda adds an X-Ray header to the request and
passes the header to the destination service. Traces from upstream services are automatically
linked to traces from downstream Lambda functions and destination services, creating an end-to-
end view of the entire application. For more information about tracing, see Using Amazon Lambda
with Amazon X-Ray.

Configuring destinations for asynchronous invocation 238

Amazon Lambda Developer Guide

Asynchronous invocation configuration API

To manage asynchronous invocation settings with the Amazon CLI or Amazon SDK, use the
following API operations.

• PutFunctionEventInvokeConfig

• GetFunctionEventInvokeConfig

• UpdateFunctionEventInvokeConfig

• ListFunctionEventInvokeConfigs

• DeleteFunctionEventInvokeConfig

To configure asynchronous invocation with the Amazon CLI, use the put-function-event-
invoke-config command. The following example configures a function with a maximum event
age of 1 hour and no retries.

aws lambda put-function-event-invoke-config --function-name error \
--maximum-event-age-in-seconds 3600 --maximum-retry-attempts 0

You should see the following output:

{
 "LastModified": 1573686021.479,
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:error:$LATEST",
 "MaximumRetryAttempts": 0,
 "MaximumEventAgeInSeconds": 3600,
 "DestinationConfig": {
 "OnSuccess": {},
 "OnFailure": {}
 }
}

The put-function-event-invoke-config command overwrites any existing configuration
on the function, version, or alias. To configure an option without resetting others, use update-
function-event-invoke-config. The following example configures Lambda to send a record
to a standard SQS queue named destination when an event can't be processed.

aws lambda update-function-event-invoke-config --function-name error \

Asynchronous invocation configuration API 239

https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListFunctionEventInvokeConfigs.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionEventInvokeConfig.html

Amazon Lambda Developer Guide

--destination-config '{"OnFailure":{"Destination": "arn:aws-cn:sqs:us-
east-2:123456789012:destination"}}'

You should see the following output:

{
 "LastModified": 1573687896.493,
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:error:$LATEST",
 "MaximumRetryAttempts": 0,
 "MaximumEventAgeInSeconds": 3600,
 "DestinationConfig": {
 "OnSuccess": {},
 "OnFailure": {
 "Destination": "arn:aws-cn:sqs:us-east-2:123456789012:destination"
 }
 }
}

Dead-letter queues

As an alternative to an on-failure destination, you can configure your function with a dead-letter
queue to save discarded events for further processing. A dead-letter queue acts the same as an on-
failure destination in that it is used when an event fails all processing attempts or expires without
being processed. However, a dead-letter queue is part of a function's version-specific configuration,
so it is locked in when you publish a version. On-failure destinations also support additional targets
and include details about the function's response in the invocation record.

To reprocess events in a dead-letter queue, you can set it as an event source for your Lambda
function. Alternatively, you can manually retrieve the events.

You can choose an Amazon SQS standard queue or Amazon SNS standard topic for your dead-
letter queue. FIFO queues and Amazon SNS FIFO topics are not supported. If you don't have a
queue or topic, create one. Choose the target type that matches your use case.

• Amazon SQS queue – A queue holds failed events until they're retrieved. Choose an Amazon SQS
standard queue if you expect a single entity, such as a Lambda function or CloudWatch alarm, to
process the failed event. For more information, see Using Lambda with Amazon SQS.

Create a queue in the Amazon SQS console.

Dead-letter queues 240

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-create-queue.html
https://console.amazonaws.cn/sqs

Amazon Lambda Developer Guide

• Amazon SNS topic – A topic relays failed events to one or more destinations. Choose an Amazon
SNS standard topic if you expect multiple entities to act on a failed event. For example, you
can configure a topic to send events to an email address, a Lambda function, and/or an HTTP
endpoint. For more information, see Using Amazon Lambda with Amazon SNS.

Create a topic in the Amazon SNS console.

To send events to a queue or topic, your function needs additional permissions. Add a policy with
the required permissions to your function's execution role.

• Amazon SQS – sqs:SendMessage

• Amazon SNS – sns:Publish

If the target queue or topic is encrypted with a customer managed key, the execution role must
also be a user in the key's resource-based policy.

After creating the target and updating your function's execution role, add the dead-letter queue to
your function. You can configure multiple functions to send events to the same target.

To configure a dead-letter queue

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Asynchronous invocation.

4. Under Asynchronous invocation, choose Edit.

5. Set DLQ resource to Amazon SQS or Amazon SNS.

6. Choose the target queue or topic.

7. Choose Save.

To configure a dead-letter queue with the Amazon CLI, use the update-function-
configuration command.

aws lambda update-function-configuration --function-name my-function \
--dead-letter-config TargetArn=arn:aws-cn:sns:us-east-2:123456789012:my-topic

Dead-letter queues 241

https://docs.amazonaws.cn/sns/latest/gsg/CreateTopic.html
https://console.amazonaws.cn/sns/home
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/sns/latest/api/API_Publish.html
https://docs.amazonaws.cn/kms/latest/developerguide/key-policies.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Lambda sends the event to the dead-letter queue as-is, with additional information in attributes.
You can use this information to identify the error that the function returned, or to correlate the
event with logs or an Amazon X-Ray trace.

Dead-letter queue message attributes

• RequestID (String) – The ID of the invocation request. Request IDs appear in function logs. You
can also use the X-Ray SDK to record the request ID on an attribute in the trace. You can then
search for traces by request ID in the X-Ray console. For an example, see the error processor
sample.

• ErrorCode (Number) – The HTTP status code.

• ErrorMessage (String) – The first 1 KB of the error message.

If Lambda can't send a message to the dead-letter queue, it deletes the event and emits the
DeadLetterErrors metric. This can happen because of lack of permissions, or if the total size of the
message exceeds the limit for the target queue or topic. For example, say that an Amazon SNS
notification with a body close to 256 KB in size triggers a function that results in an error. In that
case, the event data that Amazon SNS adds, combined with the attributes that Lambda adds, can
cause the message to exceed the maximum size allowed in the dead-letter queue.

Dead-letter queues 242

Amazon Lambda Developer Guide

If you're using Amazon SQS as an event source, configure a dead-letter queue on the Amazon
SQS queue itself and not on the Lambda function. For more information, see Using Lambda with
Amazon SQS.

Dead-letter queues 243

Amazon Lambda Developer Guide

Lambda event source mappings

Note

If you want to send data to a target other than a Lambda function or enrich the data before
sending it, see Amazon EventBridge Pipes.

An event source mapping is a Lambda resource that reads from an event source and invokes a
Lambda function. You can use event source mappings to process items from a stream or queue in
services that don't invoke Lambda functions directly. This page describes the services that Lambda
provides event source mappings and how-to fine tune batching behavior.

Services that Lambda reads events from

• Amazon DynamoDB

• Amazon Kinesis

• Amazon MQ

• Amazon Managed Streaming for Apache Kafka (Amazon MSK)

• Self-managed Apache Kafka

• Amazon Simple Queue Service (Amazon SQS)

• Amazon DocumentDB (with MongoDB compatibility) (Amazon DocumentDB)

An event source mapping uses permissions in the function's execution role to read and manage
items in the event source. Permissions, event structure, settings, and polling behavior vary by event
source. For more information, see the linked topic for the service that you use as an event source.

To manage an event source with the Amazon Command Line Interface (Amazon CLI) or an Amazon
SDK, you can use the following API operations:

• CreateEventSourceMapping

• ListEventSourceMappings

• GetEventSourceMapping

• UpdateEventSourceMapping

• DeleteEventSourceMapping

Event source mapping 244

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://www.amazonaws.cn/getting-started/tools-sdks/
https://www.amazonaws.cn/getting-started/tools-sdks/
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteEventSourceMapping.html

Amazon Lambda Developer Guide

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of batches can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the Amazon Knowledge Center.

Creating an event source mapping

To create a mapping between an event source and a Lambda function, create a trigger in the
console or use the create-event-source-mapping command.

To add permissions and create a trigger

1. Add the required permissions to your execution role. Some services, such as Amazon SQS, have
an Amazon managed policy that includes the permissions that Lambda needs to read from
your event source.

2. Open the Functions page of the Lambda console.

3. Choose the name of a function.

4. Under Function overview, choose Add trigger.

5. Choose a trigger type.

6. Configure the required options, and then choose Add.

To create an event source mapping (Amazon CLI)

The following example uses the Amazon CLI to map a function named my-function to a
DynamoDB stream that its Amazon Resource Name (ARN) specifies, with a batch size of 500.

Creating an event source mapping 245

https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

aws lambda create-event-source-mapping --function-name my-function --batch-size 500 --
maximum-batching-window-in-seconds 5 --starting-position LATEST \
--event-source-arn arn:aws-cn:dynamodb:us-west-2:123456789012:table/my-table/
stream/2023-06-10T19:26:16.525

You should see the following output:

{
 "UUID": "14e0db71-5d35-4eb5-b481-8945cf9d10c2",
 "BatchSize": 500,
 "MaximumBatchingWindowInSeconds": 5,
 "ParallelizationFactor": 1,
 "EventSourceArn": "arn:aws-cn:dynamodb:us-east-2:123456789012:table/my-table/
stream/2019-06-10T19:26:16.525",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "LastModified": 1560209851.963,
 "LastProcessingResult": "No records processed",
 "State": "Creating",
 "StateTransitionReason": "User action",
 "DestinationConfig": {},
 "MaximumRecordAgeInSeconds": 604800,
 "BisectBatchOnFunctionError": false,
 "MaximumRetryAttempts": 10000
}

Updating an event source mapping

To update an event source mapping (console)

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration, then choose Triggers.

4. Select the trigger and then choose Edit.

To update an event source mapping (Amazon CLI)

Use the update-event-source-mapping command. The following example configures maximum
concurrency for an Amazon SQS event source.

Updating an event source mapping 246

https://console.amazonaws.cn/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html

Amazon Lambda Developer Guide

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --scaling-config '{"MaximumConcurrency":5}'

Deleting an event source mapping

When you delete a function, Lambda doesn't delete associated event source mappings. You can
delete event source mappings in the console or using the DeleteEventSourceMapping API action.

To delete event source mappings (console)

1. Open the Event source mappings page of the Lambda console.

2. Select the event source mappings that you want to delete.

3. In the Delete event source mappings dialog box, enter delete, and then choose Delete.

To delete an event source mapping (Amazon CLI)

Use the delete-event-source-mapping command.

aws lambda delete-event-source-mapping \
 --uuid a1b2c3d4-5678-90ab-cdef-11111EXAMPLE

Batching behavior

Event source mappings read items from a target event source. By default, an event source mapping
batches records together into a single payload that Lambda sends to your function. To fine-tune
batching behavior, you can configure a batching window (MaximumBatchingWindowInSeconds)
and a batch size (BatchSize). A batching window is the maximum amount of time to gather
records into a single payload. A batch size is the maximum number of records in a single batch.
Lambda invokes your function when one of the following three criteria is met:

• The batching window reaches its maximum value. Default batching window behavior varies
depending on the specific event source.

• For Kinesis, DynamoDB, and Amazon SQS event sources: The default batching window
is 0 seconds. This means that Lambda sends batches to your function only when either the
batch size is met or the payload size limit is reached. To set a batching window, configure
MaximumBatchingWindowInSeconds. You can set this parameter to any value from 0 to

Deleting an event source mapping 247

https://docs.amazonaws.cn/lambda/latest/api/API_DeleteEventSourceMapping.html
https://console.amazonaws.cn/lambda/home#/event-source-mappings
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-event-source-mapping.html

Amazon Lambda Developer Guide

300 seconds in increments of 1 second. If you configure a batching window, the next window
begins as soon as the previous function invocation completes.

• For Amazon MSK, self-managed Apache Kafka, Amazon MQ, and Amazon
DocumentDB event sources: The default batching window is 500 ms. You can configure
MaximumBatchingWindowInSeconds to any value from 0 seconds to 300 seconds in
increments of seconds. A batching window begins as soon as the first record arrives.

Note

Because you can only change MaximumBatchingWindowInSeconds in increments
of seconds, you cannot revert back to the 500 ms default batching window after you
have changed it. To restore the default batching window, you must create a new event
source mapping.

• The batch size is met. The minimum batch size is 1. The default and maximum batch size
depend on the event source. For details about these values, see the BatchSize specification for
the CreateEventSourceMapping API operation.

• The payload size reaches 6 MB. You cannot modify this limit.

The following diagram illustrates these three conditions. Suppose a batching window begins at t
= 7 seconds. In the first scenario, the batching window reaches its 40 second maximum at t = 47
seconds after accumulating 5 records. In the second scenario, the batch size reaches 10 before the
batching window expires, so the batching window ends early. In the third scenario, the maximum
payload size is reached before the batching window expires, so the batching window ends early.

Batching behavior 248

https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-BatchSize
https://docs.amazonaws.cn/lambda/latest/dg/gettingstarted-limits.html

Amazon Lambda Developer Guide

Batching behavior 249

Amazon Lambda Developer Guide

The following example shows an event source mapping that reads from a Kinesis stream. If a batch
of events fails all processing attempts, the event source mapping sends details about the batch to
an SQS queue.

The event batch is the event that Lambda sends to the function. It is a batch of records or
messages compiled from the items that the event source mapping reads up until the current
batching window expires.

For Kinesis and DynamoDB streams, an event source mapping creates an iterator for each shard in
the stream and processes items in each shard in order. You can configure the event source mapping
to read only new items that appear in the stream, or to start with older items. Processed items
aren't removed from the stream, and other functions or consumers can process them.

Lambda doesn't wait for any configured Lambda extensions to complete before sending the next
batch for processing. In other words, your extensions may continue to run as Lambda processes
the next batch of records. This can cause throttling issues if you breach any of your account's

Batching behavior 250

Amazon Lambda Developer Guide

concurrency settings or limits. To detect whether this is a potential issue, monitor your functions
and check whether you're seeing higher concurrency metrics than expected for your event source
mapping. Due to short times in between invokes, Lambda may briefly report higher concurrency
usage than the number of shards. This can be true even for Lambda functions without extensions.

By default, if your function returns an error, the event source mapping reprocesses the entire batch
until the function succeeds, or the items in the batch expire. To ensure in-order processing, the
event source mapping pauses processing for the affected shard until the error is resolved. You can
configure the event source mapping to discard old events or process multiple batches in parallel.
If you process multiple batches in parallel, in-order processing is still guaranteed for each partition
key, but the event source mapping simultaneously processes multiple partition keys in the same
shard.

For stream sources (DynamoDB and Kinesis), you can configure the maximum number of times that
Lambda retries when your function returns an error. Service errors or throttles where the batch
does not reach your function do not count toward retry attempts.

You can also configure the event source mapping to send an invocation record to another service
when it discards an event batch. Lambda supports the following destinations for event source
mappings.

• Amazon SQS – An SQS queue.

• Amazon SNS – An SNS topic.

The invocation record contains details about the failed event batch in JSON format.

The following example shows an invocation record for a Kinesis stream.

Example invocation record

{
 "requestContext": {
 "requestId": "c9b8fa9f-5a7f-xmpl-af9c-0c604cde93a5",
 "functionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted",
 "approximateInvokeCount": 1
 },
 "responseContext": {
 "statusCode": 200,
 "executedVersion": "$LATEST",

Batching behavior 251

Amazon Lambda Developer Guide

 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KinesisBatchInfo": {
 "shardId": "shardId-000000000001",
 "startSequenceNumber":
 "49601189658422359378836298521827638475320189012309704722",
 "endSequenceNumber":
 "49601189658422359378836298522902373528957594348623495186",
 "approximateArrivalOfFirstRecord": "2019-11-14T00:38:04.835Z",
 "approximateArrivalOfLastRecord": "2019-11-14T00:38:05.580Z",
 "batchSize": 500,
 "streamArn": "arn:aws-cn:kinesis:us-east-2:123456789012:stream/mystream"
 }
}

Lambda also supports in-order processing for FIFO (first-in, first-out) queues, scaling up to the
number of active message groups. For standard queues, items aren't necessarily processed in
order. Lambda scales up to process a standard queue as quickly as possible. When an error occurs,
Lambda returns batches to the queue as individual items and might process them in a different
grouping than the original batch. Occasionally, the event source mapping might receive the same
item from the queue twice, even if no function error occurred. Lambda deletes items from the
queue after they're processed successfully. You can configure the source queue to send items to a
dead-letter queue or a destination if Lambda can't process them.

For information about services that invoke Lambda functions directly, see Using Amazon Lambda
with other services.

Configuring destinations for event source mapping invocations

To retain records of failed event source mapping invocations, add a destination to your function's
event source mapping. Configuring destinations for event source mapping invocations is supported
for Kinesis, DynamoDB, and Kafka-based event sources only. Each record sent to the destination is
a JSON document with details about the invocation. Like error handling settings, you can configure
destinations on a function, function version, or alias.

Note

For event source mapping invocations, you can retain records for failed invocations only.
For other asynchronous invocations, you can retain records for both successful and failed

Configuring destinations for event source mapping invocations 252

Amazon Lambda Developer Guide

invocations. For more information, see the section called “Configuring destinations for
asynchronous invocation”.

You can configure any Amazon SNS topic or any Amazon SQS queue as a destination. For these
destination types, Lambda sends the record metadata to the destination. For Kafka-based event
sources only, you can also choose an Amazon S3 bucket as the destination. If you specify an S3
bucket, Lambda sends the entire invocation record along with the metadata to the destination.

The following table summarizes the types of supported destinations for event source mapping
invocations. For Lambda to successfully send records to your chosen destination, ensure that your
function's execution role also contains the relevant permissions. The table also describes how each
destination type receives the JSON invocation record.

Destination type Supported for the
following event
sources

Required permissio
ns

Destination-specific
JSON format

Amazon SQS queue • Kinesis

• DynamoDB

• Self-managed
Apache Kafka and
Managed Apache
Kafka

• sqs:SendMessage Lambda passes the
invocation record
metadata as the
Message to the
destination.

Amazon SNS topic • Kinesis

• DynamoDB

• Self-managed
Apache Kafka and
Managed Apache
Kafka

• sns:Publish Lambda passes the
invocation record
metadata as the
Message to the
destination.

Amazon S3 bucket • Self-managed
Apache Kafka and
Managed Apache
Kafka

• s3:PutObject

• s3:ListBuckets

Lambda stores
the invocation
record along with
its metadata at the
destination.

Configuring destinations for event source mapping invocations 253

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/sns/latest/api/API_Publish.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_PutObject.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_ListBuckets.html

Amazon Lambda Developer Guide

The following example shows what Lambda sends to an SQS queue or SNS topic for a failed Kinesis
event source invocation. Since Lambda sends only the metadata for these destination types, use
the streamArn, shardId, startSequenceNumber, and endSequenceNumber fields to obtain
the full original record.

{
 "requestContext": {
 "requestId": "c9b8fa9f-5a7f-xmpl-af9c-0c604cde93a5",
 "functionArn": "arn:aws:lambda:us-east-2:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted",
 "approximateInvokeCount": 1
 },
 "responseContext": {
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KinesisBatchInfo": {
 "shardId": "shardId-000000000001",
 "startSequenceNumber":
 "49601189658422359378836298521827638475320189012309704722",
 "endSequenceNumber":
 "49601189658422359378836298522902373528957594348623495186",
 "approximateArrivalOfFirstRecord": "2019-11-14T00:38:04.835Z",
 "approximateArrivalOfLastRecord": "2019-11-14T00:38:05.580Z",
 "batchSize": 500,
 "streamArn": "arn:aws:kinesis:us-east-2:123456789012:stream/mystream"
 }
}

For an example for DynamoDB event sources, see Error handling. For an example for Kafka event
sources, see on-failure destinations for self-managed Apache Kafka, or on-failure destinations for
Amazon MSK.

Configuring destinations for event source mapping invocations 254

Amazon Lambda Developer Guide

Lambda event filtering

You can use event filtering to control which records from a stream or queue Lambda sends to
your function. For example, you can add a filter so that your function only processes Amazon SQS
messages containing certain data parameters. Event filtering works with event source mappings.
You can add filters to event source mappings for the following Amazon services:

• Amazon DynamoDB

• Amazon Kinesis Data Streams

• Amazon MQ

• Amazon Managed Streaming for Apache Kafka (Amazon MSK)

• Self-managed Apache Kafka

• Amazon Simple Queue Service (Amazon SQS)

Lambda doesn't support event filtering for Amazon DocumentDB.

By default, you can define up to five different filters for a single event source mapping. Your filters
are logically ORed together. If a record from your event source satisfies one or more of your filters,
Lambda includes the record in the next event it sends to your function. If none of your filters are
satisfied, Lambda discards the record.

Note

If you need to define more than five filters for an event source, you can request a quota
increase up to 10 filters for each event source. If you attempt to add more filters than
your current quota permits, Lambda will return an error when you try and create the event
source.

Topics

• Event filtering basics

• Handling records that don't meet filter criteria

• Filter rule syntax

• Attaching filter criteria to an event source mapping (console)

Event filtering 255

Amazon Lambda Developer Guide

• Attaching filter criteria to an event source mapping (Amazon CLI)

• Attaching filter criteria to an event source mapping (Amazon SAM)

• Using filters with different Amazon Web Services

• Filtering with DynamoDB

• Filtering with Kinesis

• Filtering with Amazon MQ

• Filtering with Amazon MSK and self-managed Apache Kafka

• Filtering with Amazon SQS

Event filtering basics

A filter criteria (FilterCriteria) object is a structure that consists of a list of filters (Filters).
Each filter is a structure that defines an event filtering pattern (Pattern). A pattern is a string
representation of a JSON filter rule. The structure of a FilterCriteria object is as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"Metadata1\": [rule1], \"data\": { \"Data1\":
 [rule2] }}"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "Metadata1": [rule1],
 "data": {
 "Data1": [rule2]
 }
}

Your filter pattern can include metadata properties, data properties, or both. The available
metadata parameters and the format of the data parameters vary according to the Amazon Web
Service which is acting as the event source. For example, suppose your event source mapping
receives the following record from an Amazon SQS queue:

Event filtering basics 256

Amazon Lambda Developer Guide

{
 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",
 "body": "{\n "City": "Seattle",\n "State": "WA",\n "Temperature": "46"\n}",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws:sqs:us-east-2:123456789012:my-queue",
 "awsRegion": "us-east-2"
}

• Metadata properties are the fields containing information about the event that created the
record. In the example Amazon SQS record, the metadata properties include fields such as
messageID, eventSourceArn, and awsRegion.

• Data properties are the fields of the record containing the data from your stream or queue. In
the Amazon SQS event example, the key for the data field is body, and the data properties are
the fields City State, and Temperature.

Different types of event source use different key values for their data fields. To filter on data
properties, make sure that you use the correct key in your filter’s pattern. For a list of data filtering
keys, and to see examples of filter patterns for each supported Amazon Web Service, refer to Using
filters with different Amazon Web Services.

Event filtering can handle multi-level JSON filtering. For example, consider the following fragment
of a record from a DynamoDB stream:

"dynamodb": {
 "Keys": {
 "ID": {
 "S": "ABCD"
 }
 "Number": {
 "N": "1234"
 },

Event filtering basics 257

Amazon Lambda Developer Guide

 ...
}

Suppose you want to process only those records where the value of the sort key Number is 4567. In
this case, your FilterCriteria object would look like this:

{
 "Filters": [
 {
 "Pattern": "{ \"dynamodb\": { \"Keys\": { \"Number\": { \"N\":
 ["4567"] } } } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "dynamodb": {
 "Keys": {
 "Number": {
 "N": ["4567"]
 }
 }
 }
}

Handling records that don't meet filter criteria

The way in which records that don’t meet your filter are handled depends on the event source.

• For Amazon SQS, if a message doesn't satisfy your filter criteria, Lambda automatically removes
the message from the queue. You don't have to manually delete these messages in Amazon SQS.

• For Kinesis and DynamoDB, once your filter criteria processes a record, the streams iterator
advances past this record. If the record doesn't satisfy your filter criteria, you don't have to
manually delete the record from your event source. After the retention period, Kinesis and
DynamoDB automatically delete these old records. If you want records to be deleted sooner, see
Changing the Data Retention Period.

• For Amazon MSK, self-managed Apache Kafka, and Amazon MQ messages, Lambda drops
messages that don't match all fields included in the filter. For self-managed Apache Kafka,

Handling records that don't meet filter criteria 258

https://docs.amazonaws.cn/streams/latest/dev/kinesis-extended-retention.html

Amazon Lambda Developer Guide

Lambda commits offsets for matched and unmatched messages after successfully invoking the
function. For Amazon MQ, Lambda acknowledges matched messages after successfully invoking
the function and acknowledges unmatched messages when filtering them.

Filter rule syntax

For filter rules, Lambda supports the Amazon EventBridge rules and uses the same syntax as
EventBridge. For more information, see Amazon EventBridge event patterns in the Amazon
EventBridge User Guide.

The following is a summary of all the comparison operators available for Lambda event filtering.

Comparison operator Example Rule syntax

Null UserID is null "UserID": [null]

Empty LastName is empty "LastName": [""]

Equals Name is "Alice" "Name": ["Alice"]

Equals (ignore case) Name is "Alice" "Name": [{ "equals-ignore-cas
e": "alice" }]

And Location is "New York" and
Day is "Monday"

"Location": ["New York"],
"Day": ["Monday"]

Or PaymentType is "Credit" or
"Debit"

"PaymentType": ["Credit",
"Debit"]

Or (multiple fields) Location is "New York", or Day
is "Monday".

"$or": [{ "Location":
["New York"] }, { "Day":
["Monday"] }]

Not Weather is anything but
"Raining"

"Weather": [{ "anything-but":
["Raining"] }]

Numeric (equals) Price is 100 "Price": [{ "numeric": ["=",
100] }]

Filter rule syntax 259

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-event-patterns.html

Amazon Lambda Developer Guide

Comparison operator Example Rule syntax

Numeric (range) Price is more than 10, and
less than or equal to 20

"Price": [{ "numeric": [">", 10,
"<=", 20] }]

Exists ProductName exists "ProductName": [{ "exists":
true }]

Does not exist ProductName does not exist "ProductName": [{ "exists":
false }]

Begins with Region is in the US "Region": [{"prefix": "us-" }]

Ends with FileName ends with a .png
extension.

"FileName": [{ "suffix":
".png" }]

Note

Like EventBridge, for strings, Lambda uses exact character-by-character matching without
case-folding or any other string normalization. For numbers, Lambda also uses string
representation. For example, 300, 300.0, and 3.0e2 are not considered equal.

Attaching filter criteria to an event source mapping (console)

Follow these steps to create a new event source mapping with filter criteria using the Lambda
console.

To create a new event source mapping with filter criteria (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of a function to create an event source mapping for.

3. Under Function overview, choose Add trigger.

4. For Trigger configuration, choose a trigger type that supports event filtering. For a list of
supported services, refer to the list at the beginning of this page.

5. Expand Additional settings.

Attaching filter criteria to an event source mapping (console) 260

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

6. Under Filter criteria, choose Add, and then define and enter your filters. For example, you can
enter the following.

{ "Metadata" : [1, 2] }

This instructs Lambda to process only the records where field Metadata is equal to 1 or 2. You
can continue to select Add to add more filters up to the maximum allowed number.

7. When you have finished adding your filters, choose Save.

When you enter filter criteria using the console, you enter only the filter pattern and don't
need to provide the Pattern key or escape quotes. In step 6 of the preceding instructions,
{ "Metadata" : [1, 2] } corresponds to the following FilterCriteria.

{
 "Filters": [
 {
 "Pattern": "{ \"Metadata\" : [1, 2] }"
 }
]
}

After creating your event source mapping in the console, you can see the formatted
FilterCriteria in the trigger details. For more examples of creating event filters using the
console, see Using filters with different Amazon Web Services.

Attaching filter criteria to an event source mapping (Amazon CLI)

Suppose you want an event source mapping to have the following FilterCriteria:

{
 "Filters": [
 {
 "Pattern": "{ \"Metadata\" : [1, 2] }"
 }
]
}

To create a new event source mapping with these filter criteria using the Amazon Command Line
Interface (Amazon CLI), run the following command.

Attaching filter criteria to an event source mapping (Amazon CLI) 261

Amazon Lambda Developer Guide

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:sqs:us-east-2:123456789012:my-queue \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"Metadata\" : [1, 2]}"}]}'

This create-event-source-mapping command creates a new Amazon SQS event source mapping for
function my-function with the specified FilterCriteria.

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"Metadata\" : [1, 2]}"}]}'

Note that to update an event source mapping, you need its UUID. You can get the UUID from a list-
event-source-mappings call. Lambda also returns the UUID in the create-event-source-mapping CLI
response.

To remove filter criteria from an event source, you can run the following update-event-source-
mapping command with an empty FilterCriteria object.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria "{}"

For more examples of creating event filters using the Amazon CLI, see Using filters with different
Amazon Web Services.

Attaching filter criteria to an event source mapping (Amazon SAM)

Suppose you want to configure an event source in Amazon SAM to use the following filter criteria:

{
 "Filters": [
 {
 "Pattern": "{ \"Metadata\" : [1, 2] }"
 }
]
}

Attaching filter criteria to an event source mapping (Amazon SAM) 262

https://docs.amazonaws.cn/cli/latest/reference/lambda/create-event-source-mapping.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/list-event-source-mappings.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/list-event-source-mappings.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-event-source-mapping.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/update-event-source-mapping.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/update-event-source-mapping.html

Amazon Lambda Developer Guide

To add these filter criteria to your event source mapping, insert the following snippet into the
YAML template for your event source.

FilterCriteria:
 Filters:
 - Pattern: '{"Metadata": [1, 2]}'

For more information on creating and configuring an Amazon SAM template for an event source
mapping, see the EventSource section of the Amazon SAM Developer Guide. Fore more examples
of creating event filters using Amazon SAM templates, see Using filters with different Amazon Web
Services.

Using filters with different Amazon Web Services

Different types of event source use different key values for their data fields. To filter on data
properties, make sure that you use the correct key in your filter’s pattern. The following table gives
the filtering keys for each supported Amazon Web Service.

Amazon Web Service Filtering key

DynamoDB dynamodb

Kinesis data

Amazon MQ data

Amazon MSK value

Self-managed Apache Kafka value

Amazon SQS body

The following sections give examples of filter patterns for different types of event source. They
also provide definitions of supported incoming data formats and filter pattern body formats for
each supported service.

Using filters with different Amazon Web Services 263

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-property-function-eventsource.html

Amazon Lambda Developer Guide

Filtering with DynamoDB

Suppose you have a DynamoDB table with the primary key CustomerName and attributes
AccountManager and PaymentTerms. The following shows an example record from your
DynamoDB table’s stream.

{
 "eventID": "1",
 "eventVersion": "1.0",
 "dynamodb": {
 "ApproximateCreationDateTime": "1678831218.0",
 "Keys": {
 "CustomerName": {
 "S": "AnyCompany Industries"
 },
 "NewImage": {
 "AccountManager": {
 "S": "Pat Candella"
 },
 "PaymentTerms": {
 "S": "60 days"
 },
 "CustomerName": {
 "S": "AnyCompany Industries"
 }
 },
 "SequenceNumber": "111",
 "SizeBytes": 26,
 "StreamViewType": "NEW_IMAGE"
 }
 }
 }

To filter based on the key and attribute values in your DynamoDB table, use the dynamodb key in
the record. Suppose you want your function to process only those records where the primary key
CustomerName is “AnyCompany Industries.” The FilterCriteria object would be as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"dynamodb\" : { \"Keys\" : { \"CustomerName\" : { \"S\" :
 [\"AnyCompany Industries\"] } } } }"

Filtering with DynamoDB 264

Amazon Lambda Developer Guide

 }
]
 }

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "dynamodb": {
 "Keys": {
 "CustomerName": {
 "S": ["AnyCompany Industries"]
 }
 }
 }
 }

You can add your filter using the console, Amazon CLI or an Amazon SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "dynamodb" : { "Keys" : { "CustomerName" : { "S" : ["AnyCompany
 Industries"] } } } }

Amazon CLI

To create a new event source mapping with these filter criteria using the Amazon Command
Line Interface (Amazon CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:dynamodb:us-east-2:123456789012:table/my-table \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"Keys\" :
 { \"CustomerName\" : { \"S\" : [\"AnyCompany Industries\"] } } } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \

Filtering with DynamoDB 265

Amazon Lambda Developer Guide

 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"Keys\" :
 { \"CustomerName\" : { \"S\" : [\"AnyCompany Industries\"] } } } }"}]}'

Amazon SAM

To add this filter using Amazon SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "dynamodb" : { "Keys" : { "CustomerName" : { "S" : ["AnyCompany
 Industries"] } } } }'

With DynamoDB, you can also use the NewImage and OldImage keys to filter for attribute values.
Suppose you want to filter records where the AccountManager attribute in the latest table image
is “Pat Candella” or "Shirley Rodriguez." The FilterCriteria object would be as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"dynamodb\" : { \"NewImage\" : { \"AccountManager\" : { \"S
\" : [\"Pat Candella\", \"Shirley Rodriguez\"] } } } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "dynamodb": {
 "NewImage": {
 "AccountManager": {
 "S": ["Pat Candella", "Shirley Rodriguez"]
 }
 }
 }
}

You can add your filter using the console, Amazon CLI or an Amazon SAM template.

Filtering with DynamoDB 266

Amazon Lambda Developer Guide

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "dynamodb" : { "NewImage" : { "AccountManager" : { "S" : ["Pat Candella",
 "Shirley Rodriguez"] } } } }

Amazon CLI

To create a new event source mapping with these filter criteria using the Amazon Command
Line Interface (Amazon CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:dynamodb:us-east-2:123456789012:table/my-table \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"NewImage
\" : { \"AccountManager\" : { \"S\" : [\"Pat Candella\", \"Shirley Rodriguez
\"] } } } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"NewImage
\" : { \"AccountManager\" : { \"S\" : [\"Pat Candella\", \"Shirley Rodriguez
\"] } } } }"}]}'

Amazon SAM

To add this filter using Amazon SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "dynamodb" : { "NewImage" : { "AccountManager" : { "S" : ["Pat
 Candella", "Shirley Rodriguez"] } } } }'

You can also create filters using Boolean AND expressions. These expressions can include both
your table's key and attribute parameters. Suppose you want to filter records where the NewImage

Filtering with DynamoDB 267

Amazon Lambda Developer Guide

value of AccountManager is "Pat Candella" and the OldImage value is "Terry Whitlock". The
FilterCriteria object would be as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"dynamodb\" : { \"NewImage\" : { \"AccountManager\" : { \"S
\" : [\"Pat Candella\"] } } } , \"dynamodb\" : { \"OldImage\" : { \"AccountManager
\" : { \"S\" : [\"Terry Whitlock\"] } } } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "dynamodb" : {
 "NewImage" : {
 "AccountManager" : {
 "S" : [
 "Pat Candella"
]
 }
 }
 },
 "dynamodb": {
 "OldImage": {
 "AccountManager": {
 "S": [
 "Terry Whitlock"
]
 }
 }
 }
}

You can add your filter using the console, Amazon CLI or an Amazon SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

Filtering with DynamoDB 268

Amazon Lambda Developer Guide

{ "dynamodb" : { "NewImage" : { "AccountManager" : { "S" : ["Pat
 Candella"] } } } , "dynamodb" : { "OldImage" : { "AccountManager" : { "S" :
 ["Terry Whitlock"] } } } }

Amazon CLI

To create a new event source mapping with these filter criteria using the Amazon Command
Line Interface (Amazon CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:dynamodb:us-east-2:123456789012:table/my-table \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"NewImage
\" : { \"AccountManager\" : { \"S\" : [\"Pat Candella\"] } } } , \"dynamodb\" :
 { \"OldImage\" : { \"AccountManager\" : { \"S\" : [\"Terry Whitlock\"] } } } }
 "}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"dynamodb\" : { \"NewImage
\" : { \"AccountManager\" : { \"S\" : [\"Pat Candella\"] } } } , \"dynamodb\" :
 { \"OldImage\" : { \"AccountManager\" : { \"S\" : [\"Terry Whitlock\"] } } } }
 "}]}'

Amazon SAM

To add this filter using Amazon SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "dynamodb" : { "NewImage" : { "AccountManager" : { "S" : ["Pat
 Candella"] } } } , "dynamodb" : { "OldImage" : { "AccountManager" : { "S" :
 ["Terry Whitlock"] } } } }'

Filtering with DynamoDB 269

Amazon Lambda Developer Guide

Note

DynamoDB event filtering doesn’t support the use of numeric operators (numeric equals
and numeric range). Even if items in your table are stored as numbers, these parameters are
converted to strings in the JSON record object.

To properly filter events from DynamoDB sources, both the data field and your filter criteria for
the data field (dynamodb) must be in valid JSON format. If either field isn't in a valid JSON format,
Lambda drops the message or throws an exception. The following table summarizes the specific
behavior:

Incoming data format Filter pattern format for
data properties

Resulting action

Valid JSON Valid JSON Lambda filters based on your
filter criteria.

Valid JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Non-JSON Lambda throws an exception
at the time of the event
source mapping creation or
update. The filter pattern for
data properties must be in a
valid JSON format.

Non-JSON Valid JSON Lambda drops the record.

Non-JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Non-JSON Non-JSON Lambda throws an exception
at the time of the event
source mapping creation or

Filtering with DynamoDB 270

Amazon Lambda Developer Guide

Incoming data format Filter pattern format for
data properties

Resulting action

update. The filter pattern for
data properties must be in a
valid JSON format.

Filtering with Kinesis

Suppose a producer is putting JSON formatted data into your Kinesis data stream. An example
record would look like the following, with the JSON data converted to a Base64 encoded string in
the data field.

{
 "kinesis": {
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber": "49590338271490256608559692538361571095921575989136588898",
 "data":
 "eyJSZWNvcmROdW1iZXIiOiAiMDAwMSIsICJUaW1lU3RhbXAiOiAieXl5eS1tbS1kZFRoaDptbTpzcyIsICJSZXF1ZXN0Q29kZSI6ICJBQUFBIn0=",
 "approximateArrivalTimestamp": 1545084650.987
 },
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692538361571095921575989136588898",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws:iam::123456789012:role/lambda-role",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws:kinesis:us-east-2:123456789012:stream/lambda-stream"
}

As long as the data the producer puts into the stream is valid JSON, you can use event filtering to
filter records using the data key. Suppose a producer is putting records into your Kinesis stream in
the following JSON format.

{
 "record": 12345,
 "order": {
 "type": "buy",

Filtering with Kinesis 271

Amazon Lambda Developer Guide

 "stock": "ANYCO",
 "quantity": 1000
 }
}

To filter only those records where the order type is “buy,” the FilterCriteria object would be as
follows.

{
 "Filters": [
 {
 "Pattern": "{ \"data\" : { \"order\" : { \"type\" : [\"buy\"] } } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "data": {
 "order": {
 "type": ["buy"]
 }
 }
}

You can add your filter using the console, Amazon CLI or an Amazon SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "data" : { "order" : { "type" : ["buy"] } } }

Amazon CLI

To create a new event source mapping with these filter criteria using the Amazon Command
Line Interface (Amazon CLI), run the following command.

aws lambda create-event-source-mapping \

Filtering with Kinesis 272

Amazon Lambda Developer Guide

 --function-name my-function \
 --event-source-arn arn:aws:kinesis:us-east-2:123456789012:stream/my-stream \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : { \"order\" : { \"type
\" : [\"buy\"] } } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : { \"order\" : { \"type
\" : [\"buy\"] } } }"}]}'

Amazon SAM

To add this filter using Amazon SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "data" : { "order" : { "type" : ["buy"] } } }'

To properly filter events from Kinesis sources, both the data field and your filter criteria for the
data field must be in valid JSON format. If either field isn't in a valid JSON format, Lambda drops
the message or throws an exception. The following table summarizes the specific behavior:

Incoming data format Filter pattern format for
data properties

Resulting action

Valid JSON Valid JSON Lambda filters based on your
filter criteria.

Valid JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Non-JSON Lambda throws an exception
at the time of the event
source mapping creation or
update. The filter pattern for

Filtering with Kinesis 273

Amazon Lambda Developer Guide

Incoming data format Filter pattern format for
data properties

Resulting action

data properties must be in a
valid JSON format.

Non-JSON Valid JSON Lambda drops the record.

Non-JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Non-JSON Non-JSON Lambda throws an exception
at the time of the event
source mapping creation or
update. The filter pattern for
data properties must be in a
valid JSON format.

Filtering Kinesis aggregated records

With Kinesis, you can aggregate multiple records into a single Kinesis Data Streams record to
increase your data throughput. Lambda can only apply filter criteria to aggregated records
when you use Kinesis enhanced fan-out. Filtering aggregated records with standard Kinesis isn't
supported. When using enhanced fan-out, you configure a Kinesis dedicated-throughput consumer
to act as the trigger for your Lambda function. Lambda then filters the aggregated records and
passes only those records that meet your filter criteria.

To learn more about Kinesis record aggregation, refer to the Aggregation section on the Kinesis
Producer Library (KPL) Key Concepts page. To Learn more about using Lambda with Kinesis
enhanced fan-out, see Increasing real-time stream processing performance with Amazon Kinesis
Data Streams enhanced fan-out and Amazon Lambda on the Amazon compute blog.

Filtering with Amazon MQ

Suppose your Amazon MQ message queue contains messages either in valid JSON format or as
plain strings. An example record would look like the following, with the data converted to a Base64
encoded string in the data field.

Filtering with Amazon MQ 274

https://docs.amazonaws.cn/streams/latest/dev/enhanced-consumers.html
https://docs.amazonaws.cn/streams/latest/dev/kinesis-kpl-concepts.html#kinesis-kpl-concepts-aggretation
https://amazonaws-china.com/blogs/compute/increasing-real-time-stream-processing-performance-with-amazon-kinesis-data-streams-enhanced-fan-out-and-aws-lambda/
https://amazonaws-china.com/blogs/compute/increasing-real-time-stream-processing-performance-with-amazon-kinesis-data-streams-enhanced-fan-out-and-aws-lambda/

Amazon Lambda Developer Guide

ActiveMQ

{
 "messageID": "ID:b-9bcfa592-423a-4942-879d-eb284b418fc8-1.mq.us-
west-2.amazonaws.com-37557-1234520418293-4:1:1:1:1",
 "messageType": "jms/text-message",
 "deliveryMode": 1,
 "replyTo": null,
 "type": null,
 "expiration": "60000",
 "priority": 1,
 "correlationId": "myJMSCoID",
 "redelivered": false,
 "destination": {
 "physicalName": "testQueue"
 },
 "data":"QUJDOkFBQUE=",
 "timestamp": 1598827811958,
 "brokerInTime": 1598827811958,
 "brokerOutTime": 1598827811959,
 "properties": {
 "index": "1",
 "doAlarm": "false",
 "myCustomProperty": "value"
 }
}

RabbitMQ

{
 "basicProperties": {
 "contentType": "text/plain",
 "contentEncoding": null,
 "headers": {
 "header1": {
 "bytes": [
 118,
 97,
 108,
 117,
 101,
 49

Filtering with Amazon MQ 275

Amazon Lambda Developer Guide

]
 },
 "header2": {
 "bytes": [
 118,
 97,
 108,
 117,
 101,
 50
]
 },
 "numberInHeader": 10
 },
 "deliveryMode": 1,
 "priority": 34,
 "correlationId": null,
 "replyTo": null,
 "expiration": "60000",
 "messageId": null,
 "timestamp": "Jan 1, 1970, 12:33:41 AM",
 "type": null,
 "userId": "AIDACKCEVSQ6C2EXAMPLE",
 "appId": null,
 "clusterId": null,
 "bodySize": 80
 },
 "redelivered": false,
 "data": "eyJ0aW1lb3V0IjowLCJkYXRhIjoiQ1pybWYwR3c4T3Y0YnFMUXhENEUifQ=="
}

For both Active MQ and Rabbit MQ brokers, you can use event filtering to filter records using the
data key. Suppose your Amazon MQ queue contains messages in the following JSON format.

{
 "timeout": 0,
 "IPAddress": "203.0.113.254"
}

To filter only those records where the timeout field is greater than 0, the FilterCriteria
object would be as follows.

Filtering with Amazon MQ 276

Amazon Lambda Developer Guide

{
 "Filters": [
 {
 "Pattern": "{ \"data\" : { \"timeout\" : [{ \"numeric\": [\">\",
 0] } }] } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "data": {
 "timeout": [{ "numeric": [">", 0] }]
 }
}

You can add your filter using the console, Amazon CLI or an Amazon SAM template.

Console

to add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "data" : { "timeout" : [{ "numeric": [">", 0] }] } }

Amazon CLI

To create a new event source mapping with these filter criteria using the Amazon Command
Line Interface (Amazon CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:mq:us-east-2:123456789012:broker:my-
broker:b-8ac7cc01-5898-482d-be2f-a6b596050ea8 \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : { \"timeout\" :
 [{ \"numeric\": [\">\", 0] }] } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \

Filtering with Amazon MQ 277

Amazon Lambda Developer Guide

 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : { \"timeout\" :
 [{ \"numeric\": [\">\", 0] }] } }"}]}'

Amazon SAM

To add this filter using Amazon SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "data" : { "timeout" : [{ "numeric": [">", 0] }] } }'

With Amazon MQ, you can also filter records where the message is a plain string. Suppose you
want to process only records where the message begins with "Result: ". The FilterCriteria
object would look as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"data\" : [{ \"prefix\": \"Result: \" }] }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "data": [
 {
 "prefix": "Result: "
 }
]
}

You can add your filter using the console, Amazon CLI or an Amazon SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

Filtering with Amazon MQ 278

Amazon Lambda Developer Guide

{ "data" : [{ "prefix": "Result: " }] }

Amazon CLI

To create a new event source mapping with these filter criteria using the Amazon Command
Line Interface (Amazon CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:mq:us-east-2:123456789012:broker:my-
broker:b-8ac7cc01-5898-482d-be2f-a6b596050ea8 \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : [{ \"prefix\":
 \"Result: \" }] }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"data\" : [{ \"prefix\":
 \"Result: \" }] }"}]}'

Amazon SAM

To add this filter using Amazon SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "data" : [{ "prefix": "Result " }] }'

Amazon MQ messages must be UTF-8 encoded strings, either plain strings or in JSON format.
That's because Lambda decodes Amazon MQ byte arrays into UTF-8 before applying filter criteria.
If your messages use another encoding, such as UTF-16 or ASCII, or if the message format doesn't
match the FilterCriteria format, Lambda processes metadata filters only. The following table
summarizes the specific behavior:

Filtering with Amazon MQ 279

Amazon Lambda Developer Guide

Incoming message format Filter pattern format for
message properties

Resulting action

Plain string Plain string Lambda filters based on your
filter criteria.

Plain string No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Plain string Valid JSON Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Plain string Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Valid JSON Lambda filters based on your
filter criteria.

Non-UTF-8 encoded string JSON, plain string, or no
pattern

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Filtering with Amazon MSK and self-managed Apache Kafka

Suppose a producer is writing messages to a topic in your Amazon MSK or self-managed Apache
Kafka cluster, either in valid JSON format or as plain strings. An example record would look like the
following, with the message converted to a Base64 encoded string in the value field.

{
 "mytopic-0":[
 {

Filtering with Amazon MSK and self-managed Apache Kafka 280

Amazon Lambda Developer Guide

 "topic":"mytopic",
 "partition":0,
 "offset":15,
 "timestamp":1545084650987,
 "timestampType":"CREATE_TIME",
 "value":"SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "headers":[]
 }
]
}

Suppose your Apache Kafka producer is writing messages to your topic in the following JSON
format.

{
 "device_ID": "AB1234",
 "session":{
 "start_time": "yyyy-mm-ddThh:mm:ss",
 "duration": 162
 }
}

You can use the value key to filter records. Suppose you wanted to filter only those records where
device_ID begins with the letters AB. The FilterCriteria object would be as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"value\" : { \"device_ID\" : [{ \"prefix\": \"AB\" }] } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "value": {
 "device_ID": [{ "prefix": "AB" }]
 }
}

You can add your filter using the console, Amazon CLI or an Amazon SAM template.

Filtering with Amazon MSK and self-managed Apache Kafka 281

Amazon Lambda Developer Guide

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "value" : { "device_ID" : [{ "prefix": "AB" }] } }

Amazon CLI

To create a new event source mapping with these filter criteria using the Amazon Command
Line Interface (Amazon CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:kafka:us-east-2:123456789012:cluster/my-cluster/
b-8ac7cc01-5898-482d-be2f-a6b596050ea8 \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : { \"device_ID\" :
 [{ \"prefix\": \"AB\" }] } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : { \"device_ID\" :
 [{ \"prefix\": \"AB\" }] } }"}]}'

Amazon SAM

To add this filter using Amazon SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "value" : { "device_ID" : [{ "prefix": "AB" }] } }'

With Amazon MSK and self-managed Apache Kafka, you can also filter records where the message
is a plain string. Suppose you want to ignore those messages where the string is "error". The
FilterCriteria object would look as follows.

{

Filtering with Amazon MSK and self-managed Apache Kafka 282

Amazon Lambda Developer Guide

 "Filters": [
 {
 "Pattern": "{ \"value\" : [{ \"anything-but\": [\"error\"] }] }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "value": [
 {
 "anything-but": ["error"]
 }
]
}

You can add your filter using the console, Amazon CLI or an Amazon SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "value" : [{ "anything-but": ["error"] }] }

Amazon CLI

To create a new event source mapping with these filter criteria using the Amazon Command
Line Interface (Amazon CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:kafka:us-east-2:123456789012:cluster/my-cluster/
b-8ac7cc01-5898-482d-be2f-a6b596050ea8 \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : [{ \"anything-but\":
 [\"error\"] }] }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \

Filtering with Amazon MSK and self-managed Apache Kafka 283

Amazon Lambda Developer Guide

 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"value\" : [{ \"anything-but\":
 [\"error\"] }] }"}]}'

Amazon SAM

To add this filter using Amazon SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "value" : [{ "anything-but": ["error"] }] }'

Amazon MSK and self-managed Apache Kafka messages must be UTF-8 encoded strings, either
plain strings or in JSON format. That's because Lambda decodes Amazon MSK byte arrays into
UTF-8 before applying filter criteria. If your messages use another encoding, such as UTF-16 or
ASCII, or if the message format doesn't match the FilterCriteria format, Lambda processes
metadata filters only. The following table summarizes the specific behavior:

Incoming message format Filter pattern format for
message properties

Resulting action

Plain string Plain string Lambda filters based on your
filter criteria.

Plain string No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Plain string Valid JSON Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Plain string Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Filtering with Amazon MSK and self-managed Apache Kafka 284

Amazon Lambda Developer Guide

Incoming message format Filter pattern format for
message properties

Resulting action

Valid JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Valid JSON Lambda filters based on your
filter criteria.

Non-UTF-8 encoded string JSON, plain string, or no
pattern

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Filtering with Amazon SQS

Suppose your Amazon SQS queue contains messages in the following JSON format.

{
 "RecordNumber": 0000,
 "TimeStamp": "yyyy-mm-ddThh:mm:ss",
 "RequestCode": "AAAA"
}

An example record for this queue would look as follows.

{
 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",
 "body": "{\n "RecordNumber": 0000,\n "TimeStamp": "yyyy-mm-ddThh:mm:ss",\n
 "RequestCode": "AAAA"\n}",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",

Filtering with Amazon SQS 285

Amazon Lambda Developer Guide

 "eventSourceARN": "arn:aws:sqs:us-west-2:123456789012:my-queue",
 "awsRegion": "us-west-2"
}

To filter based on the contents of your Amazon SQS messages, use the body key in the Amazon
SQS message record. Suppose you want to process only those records where the RequestCode in
your Amazon SQS message is “BBBB.” The FilterCriteria object would be as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"body\" : { \"RequestCode\" : [\"BBBB\"] } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "body": {
 "RequestCode": ["BBBB"]
 }
}

You can add your filter using the console, Amazon CLI or an Amazon SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "body" : { "RequestCode" : ["BBBB"] } }

Amazon CLI

To create a new event source mapping with these filter criteria using the Amazon Command
Line Interface (Amazon CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:sqs:us-east-2:123456789012:my-queue \

Filtering with Amazon SQS 286

Amazon Lambda Developer Guide

 --filter-criteria '{"Filters": [{"Pattern": "{ \"body\" : { \"RequestCode\" :
 [\"BBBB\"] } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"body\" : { \"RequestCode\" :
 [\"BBBB\"] } }"}]}'

Amazon SAM

To add this filter using Amazon SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "body" : { "RequestCode" : ["BBBB"] } }'

Suppose you want your function to process only those records where RecordNumber is greater
than 9999. The FilterCriteria object would be as follows.

{
 "Filters": [
 {
 "Pattern": "{ \"body\" : { \"RecordNumber\" : [{ \"numeric\": [\">\",
 9999] }] } }"
 }
]
}

For added clarity, here is the value of the filter's Pattern expanded in plain JSON.

{
 "body": {
 "RecordNumber": [
 {
 "numeric": [">", 9999]
 }
]
 }

Filtering with Amazon SQS 287

Amazon Lambda Developer Guide

}

You can add your filter using the console, Amazon CLI or an Amazon SAM template.

Console

To add this filter using the console, follow the instructions in Attaching filter criteria to an event
source mapping (console) and enter the following string for the Filter criteria.

{ "body" : { "RecordNumber" : [{ "numeric": [">", 9999] }] } }

Amazon CLI

To create a new event source mapping with these filter criteria using the Amazon Command
Line Interface (Amazon CLI), run the following command.

aws lambda create-event-source-mapping \
 --function-name my-function \
 --event-source-arn arn:aws:sqs:us-east-2:123456789012:my-queue \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"body\" : { \"RecordNumber\" :
 [{ \"numeric\": [\">\", 9999] }] } }"}]}'

To add these filter criteria to an existing event source mapping, run the following command.

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --filter-criteria '{"Filters": [{"Pattern": "{ \"body\" : { \"RecordNumber\" :
 [{ \"numeric\": [\">\", 9999] }] } }"}]}'

Amazon SAM

To add this filter using Amazon SAM, add the following snippet to the YAML template for your
event source.

FilterCriteria:
 Filters:
 - Pattern: '{ "body" : { "RecordNumber" : [{ "numeric": [">", 9999] }] } }'

For Amazon SQS, the message body can be any string. However, this can be problematic if your
FilterCriteria expect body to be in a valid JSON format. The reverse scenario is also true—

Filtering with Amazon SQS 288

Amazon Lambda Developer Guide

if the incoming message body is in JSON format but your filter criteria expects body to be a plain
string, this can lead to unintended behavior.

To avoid this issue, ensure that the format of body in your FilterCriteria matches the
expected format of body in messages that you receive from your queue. Before filtering your
messages, Lambda automatically evaluates the format of the incoming message body and of your
filter pattern for body. If there is a mismatch, Lambda drops the message. The following table
summarizes this evaluation:

Incoming message body
format

Filter pattern body format Resulting action

Plain string Plain string Lambda filters based on your
filter criteria.

Plain string No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Plain string Valid JSON Lambda drops the message.

Valid JSON Plain string Lambda drops the message.

Valid JSON No filter pattern for data
properties

Lambda filters (on the other
metadata properties only)
based on your filter criteria.

Valid JSON Valid JSON Lambda filters based on your
filter criteria.

Filtering with Amazon SQS 289

Amazon Lambda Developer Guide

Lambda function states

Lambda includes a state field in the function configuration for all functions to indicate when your
function is ready to invoke. State provides information about the current status of the function,
including whether you can successfully invoke the function. Function states do not change the
behavior of function invocations or how your function runs the code. Function states include:

• Pending – After Lambda creates the function, it sets the state to pending. While in pending
state, Lambda attempts to create or configure resources for the function, such as VPC or EFS
resources. Lambda does not invoke a function during pending state. Any invocations or other API
actions that operate on the function will fail.

• Active – Your function transitions to active state after Lambda completes resource
configuration and provisioning. Functions can only be successfully invoked while active.

• Failed – Indicates that resource configuration or provisioning encountered an error.

• Inactive – A function becomes inactive when it has been idle long enough for Lambda to
reclaim the external resources that were configured for it. When you try to invoke a function that
is inactive, the invocation fails and Lambda sets the function to pending state until the function
resources are recreated. If Lambda fails to recreate the resources, the function returns to the
inactive state. If your function is stuck in the inactive state, refer to the function's StatusCode
and StatusCodeReason attributes for further troubleshooting. You may need to resolve any
errors and redeploy your function to restore it to the active state.

If you are using SDK-based automation workflows or calling Lambda’s service APIs directly, ensure
that you check a function's state before invocation to verify that it is active. You can do this with
the Lambda API action GetFunction, or by configuring a waiter using the Amazon SDK for Java 2.0.

aws lambda get-function --function-name my-function --query 'Configuration.[State,
 LastUpdateStatus]'

You should see the following output:

[
 "Active",
 "Successful"
]

The following operations fail while function creation is pending:

Function states 290

https://docs.amazonaws.cn/lambda/latest/api/API_GetFunction.html
https://github.com/aws/aws-sdk-java-v2

Amazon Lambda Developer Guide

• Invoke

• UpdateFunctionCode

• UpdateFunctionConfiguration

• PublishVersion

Function states while updating

Lambda provides additional context for functions undergoing updates with the
LastUpdateStatus attribute, which can have the following statuses:

• InProgress – An update is happening on an existing function. While a function update is in
progress, invocations go to the function’s previous code and configuration.

• Successful – The update has completed. Once Lambda finishes the update, this stays set until
a further update.

• Failed – The function update has failed. Lambda aborts the update and the function’s previous
code and configuration remain available.

Example

The following is the result of get-function-configuration on a function undergoing an
update.

{
 "FunctionName": "my-function",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "Runtime": "nodejs20.x",
 "VpcConfig": {
 "SubnetIds": [
 "subnet-071f712345678e7c8",
 "subnet-07fd123456788a036",
 "subnet-0804f77612345cacf"
],
 "SecurityGroupIds": [
 "sg-085912345678492fb"
],
 "VpcId": "vpc-08e1234569e011e83"
 },
 "State": "Active",

Function states while updating 291

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_PublishVersion.html

Amazon Lambda Developer Guide

 "LastUpdateStatus": "InProgress",
 ...
}

FunctionConfiguration has two other attributes, LastUpdateStatusReason and
LastUpdateStatusReasonCode, to help troubleshoot issues with updating.

The following operations fail while an asynchronous update is in progress:

• UpdateFunctionCode

• UpdateFunctionConfiguration

• PublishVersion

• TagResource

Function states while updating 292

https://docs.amazonaws.cn/lambda/latest/api/API_FunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_PublishVersion.html
https://docs.amazonaws.cn/lambda/latest/api/API_TagResource.html

Amazon Lambda Developer Guide

Error handling and automatic retries in Amazon Lambda

When you invoke a function, two types of error can occur. Invocation errors occur when the
invocation request is rejected before your function receives it. Function errors occur when your
function's code or runtime returns an error. Depending on the type of error, the type of invocation,
and the client or service that invokes the function, the retry behavior and the strategy for
managing errors varies.

Issues with the request, caller, or account can cause invocation errors. Invocation errors include an
error type and status code in the response that indicate the cause of the error.

Common invocation errors

• Request – The request event is too large or isn't valid JSON, the function doesn't exist, or a
parameter value is the wrong type.

• Caller – The user or service doesn't have permission to invoke the function.

• Account – The maximum number of function instances are already running, or requests are being
made too quickly.

Clients such as the Amazon CLI and the Amazon SDK retry on client timeouts, throttling errors
(429), and other errors that aren't caused by a bad request. For a full list of invocation errors, see
Invoke.

Function errors occur when your function code or the runtime that it uses return an error.

Common function errors

• Function – Your function's code throws an exception or returns an error object.

• Runtime – The runtime terminated your function because it ran out of time, detected a syntax
error, or failed to marshal the response object into JSON. The function exited with an error code.

Unlike invocation errors, function errors don't cause Lambda to return a 400-series or 500-series
status code. If the function returns an error, Lambda indicates this by including a header named X-
Amz-Function-Error, and a JSON-formatted response with the error message and other details.
For examples of function errors in each language, see the following topics.

• Amazon Lambda function errors in Node.js

Error handling 293

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html

Amazon Lambda Developer Guide

• Amazon Lambda function errors in Python

• Amazon Lambda function errors in Ruby

• Amazon Lambda function errors in Java

• Amazon Lambda function errors in Go

• Amazon Lambda function errors in C#

• Amazon Lambda function errors in PowerShell

When you invoke a function directly, you determine the strategy for handling errors related to
your function code. Lambda does not automatically retry these types of errors on your behalf. To
retry, you can manually re-invoke your function, send the failed event to a queue for debugging,
or ignore the error. Your function's code might have run completely, partially, or not at all. If you
retry, ensure that your function's code can handle the same event multiple times without causing
duplicate transactions or other unwanted side effects.

When you invoke a function indirectly, you need to be aware of the retry behavior of the invoker
and any service that the request encounters along the way. This includes the following scenarios.

• Asynchronous invocation – Lambda retries function errors twice. If the function doesn't have
enough capacity to handle all incoming requests, events might wait in the queue for hours or
days to be sent to the function. You can configure a dead-letter queue on the function to capture
events that weren't successfully processed. For more information, see Asynchronous invocation.

• Event source mappings – Event source mappings that read from streams retry the entire batch
of items. Repeated errors block processing of the affected shard until the error is resolved or the
items expire. To detect stalled shards, you can monitor the Iterator Age metric.

For event source mappings that read from a queue, you determine the length of time between
retries and destination for failed events by configuring the visibility timeout and redrive policy
on the source queue. For more information, see Lambda event source mappings and the service-
specific topics under Using Amazon Lambda with other services.

• Amazon services – Amazon services can invoke your function synchronously or asynchronously.
For synchronous invocation, the service decides whether to retry. For example, Amazon S3 batch
operations retries the operation if the Lambda function returns a TemporaryFailure response
code. Services that proxy requests from an upstream user or client may have a retry strategy or
may relay the error response back to the requestor. For example, API Gateway always relays the
error response back to the requestor.

Error handling 294

Amazon Lambda Developer Guide

For asynchronous invocation, the behavior is the same as when you invoke the function
synchronously. For more information, see the service-specific topics under Using Amazon
Lambda with other services and the invoking service's documentation.

• Other accounts and clients – When you grant access to other accounts, you can use resource-
based policies to restrict the services or resources they can configure to invoke your function.
To protect your function from being overloaded, consider putting an API layer in front of your
function with Amazon API Gateway.

To help you deal with errors in Lambda applications, Lambda integrates with services like Amazon
CloudWatch and Amazon X-Ray. You can use a combination of logs, metrics, alarms, and tracing to
quickly detect and identify issues in your function code, API, or other resources that support your
application. For more information, see Monitoring and troubleshooting Lambda functions.

For a sample application that uses a CloudWatch Logs subscription, X-Ray tracing, and a Lambda
function to detect and process errors, see Error processor sample application for Amazon Lambda.

Error handling 295

Amazon Lambda Developer Guide

Lambda recursive loop detection

When you configure a Lambda function to output to the same service or resource that invokes the
function, it's possible to create an infinite recursive loop. For example, a Lambda function might
write a message to an Amazon Simple Queue Service (Amazon SQS) queue, which then invokes the
same function. This invocation causes the function to write another message to the queue, which in
turn invokes the function again.

Unintentional recursive loops can result in unexpected charges being billed to your Amazon Web
Services account. Loops can also cause Lambda to scale and use all of your account's available
concurrency. To help reduce the impact of unintentional loops, Lambda can detect certain types
of recursive loops shortly after they occur. When Lambda detects a recursive loop, it stops your
function being invoked and notifies you.

If your design intentionally uses recursive patterns, then you can request to turn off Lambda
recursive loop detection. To request this change, contact Amazon Web Services Support.

Important

If your design intentionally uses a Lambda function to write data back to the same Amazon
resource that invokes the function, then use caution and implement suitable guard rails to
prevent unexpected charges being billed to your Amazon Web Services account. To learn
more about best practices for using recursive invocation patterns, see Recursive patterns
that cause run-away Lambda functions in Serverless Land.

Sections

• Understanding recursive loop detection

• Supported Amazon Web Services and SDKs

• Recursive loop notifications

• Responding to recursive loop detection notifications

Understanding recursive loop detection

Recursive loop detection in Lambda works by tracking events. Lambda is an event-driven compute
service that runs your function code when certain events occur. For example, when an item is

Recursive loop detection 296

https://repost.aws/knowledge-center/aws-phone-support
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway

Amazon Lambda Developer Guide

added to an Amazon SQS queue or Amazon Simple Notification Service (Amazon SNS) topic.
Lambda passes events to your function as JSON objects, which contain information about the
change in the system state. When an event causes your function to run, this is called an invocation.

To detect recursive loops, Lambda uses Amazon X-Ray tracing headers. When Amazon Web
Services that support recursive loop detection send events to Lambda, those events are
automatically annotated with metadata. When your Lambda function writes one of these events to
another supported Amazon Web Service using a supported version of an Amazon SDK, it updates
this metadata. The updated metadata includes a count of the number of times that the event has
invoked the function.

Note

You don't need to enable X-Ray active tracing for this feature to work. Recursive loop
detection is turned on by default for all Amazon customers. There is no charge to use the
feature.

A chain of requests is a sequence of Lambda invocations caused by the same triggering event.
For example, imagine that an Amazon SQS queue invokes your Lambda function. Your Lambda
function then sends the processed event back to the same Amazon SQS queue, which invokes
your function again. In this example, each invocation of your function falls in the same chain of
requests.

If your function is invoked more than 16 times in the same chain of requests, then Lambda
automatically stops the next function invocation in that request chain and notifies you. If your
function is configured with multiple triggers, then invocations from other triggers aren't affected.

Note

When the maxReceiveCount setting on the source queue's redrive policy is higher than
16, Lambda recursion protection does not prevent Amazon SQS from retrying the message
after a recursive loop is detected and terminated. When Lambda detects a recursive loop
and drops subsequent invocations, it returns a RecursiveInvocationException to the
event source mapping. This increments the receiveCount value on the message. Lambda
continues to retry the message, and continues to block function invocations, until Amazon
SQS determines that the maxReceiveCount is exceeded and sends the message to the
configured dead-letter queue.

Understanding recursive loop detection 297

https://docs.amazonaws.cn/xray/latest/devguide/aws-xray.html

Amazon Lambda Developer Guide

If you have an on-failure destination or dead-letter queue configured for your function, then
Lambda also sends the event from the stopped invocation to your destination or dead-letter
queue. When configuring a destination or dead-letter queue for your function, be sure not to use
an Amazon SNS topic or Amazon SQS queue that your function also uses as an event trigger or
event source mapping. If you send events to the same resource that invokes your function, then
you can create another recursive loop.

Supported Amazon Web Services and SDKs

Lambda can detect only recursive loops that include certain supported Amazon Web Services. For
recursive loops to be detected, your function must also use one of the supported Amazon SDKs.

Supported Amazon Web Services

Lambda currently detects recursive loops between your functions, Amazon SQS, and Amazon SNS.
Lambda also detects loops comprised only of Lambda functions, which may invoke each other
synchronously or asynchronously. The following diagrams show some examples of loops that
Lambda can detect:

Supported Amazon Web Services and SDKs 298

Amazon Lambda Developer Guide

When another Amazon Web Service such as Amazon DynamoDB or Amazon Simple Storage Service
(Amazon S3) forms part of the loop, Lambda can't currently detect and stop it.

Because Lambda currently detects only recursive loops involving Amazon SQS and Amazon SNS,
it's still possible that loops involving other Amazon Web Services can result in unintended usage of
your Lambda functions.

To guard against unexpected charges being billed to your Amazon Web Services account, we
recommend that you configure Amazon CloudWatch alarms to alert you to unusual usage patterns.
For example, you can configure CloudWatch to notify you about spikes in Lambda function
concurrency or invocations. You can also configure a billing alarm to notify you when spending
in your account exceeds a threshold that you specify. Or, you can use Amazon Cost Anomaly
Detection to alert you to unusual billing patterns.

Supported Amazon SDKs

For Lambda to detect recursive loops, your function must use one of the following SDK versions or
higher:

Runtime Minimum required Amazon SDK version

Node.js 2.1147.0 (SDK version 2)

3.105.0 (SDK version 3)

Python 1.24.46 (boto3)

1.27.46 (botocore)

Java 8 and Java 11 1.12.200 (SDK version 1)

2.17.135 (SDK version 2)

Java 17 2.20.81

Java 21 2.21.24

.NET 3.7.293.0

Ruby 3.134.0

Supported Amazon Web Services and SDKs 299

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.amazonaws.cn/cost-management/latest/userguide/manage-ad.html
https://docs.amazonaws.cn/cost-management/latest/userguide/manage-ad.html

Amazon Lambda Developer Guide

Runtime Minimum required Amazon SDK version

PHP 3.232.0

Some Lambda runtimes such as Python and Node.js include a version of the Amazon SDK. If the
SDK version included in your function's runtime is lower than the minimum required, then you can
add a supported version of the SDK to your function's deployment package. You can also add a
supported SDK version to your function using a Lambda layer. For a list of the SDKs included with
each Lambda runtime, see Lambda runtimes.

Lambda recursion detection is not supported for the Lambda Go runtime.

Recursive loop notifications

When Lambda stops a recursive loop, you receive notifications through the Amazon Health
Dashboard and through email. You can also use CloudWatch metrics to monitor the number of
recursive invocations that Lambda has stopped.

Amazon Health Dashboard notifications

When Lambda stops a recursive invocation, the Amazon Health Dashboard displays a notification
on the Your account health page, under Open and recent issues. Note that it can take up to three
hours after Lambda stops a recursive invocation before this notification is displayed. For more
information about viewing account events in the Amazon Health Dashboard, see Getting started
with your Amazon Health Dashboard – Your account health in the Amazon Health User Guide.

Email alerts

When Lambda first stops a recursive invocation of your function, it sends you an email alert.
Lambda sends a maximum of one email every 24 hours for each function in your Amazon Web
Services account. After Lambda sends an email notification, you won't receive any more emails
for that function for another 24 hours, even if Lambda stops further recursive invocations of the
function. Note that it can take up to three hours after Lambda stops a recursive invocation before
you receive this email alert.

Lambda sends recursive loop email alerts to your Amazon Web Services account's primary account
contact and alternate operations contact. For information about viewing or updating the email
addresses in your account, see Updating contact information in the Amazon General Reference.

Recursive loop notifications 300

https://www.amazonaws.cn/premiumsupport/technology/aws-health-dashboard/
https://www.amazonaws.cn/premiumsupport/technology/aws-health-dashboard/
https://health.aws.amazon.com/health/home#/account/dashboard/open-issues
https://docs.amazonaws.cn/health/latest/ug/getting-started-health-dashboard.html
https://docs.amazonaws.cn/health/latest/ug/getting-started-health-dashboard.html
https://docs.amazonaws.cn/accounts/latest/reference/manage-acct-update-contact.html

Amazon Lambda Developer Guide

Amazon CloudWatch metrics

The CloudWatch metric RecursiveInvocationsDropped records the number of function
invocations that Lambda has stopped because your function has been invoked more than 16 times
in a single chain of requests. Lambda emits this metric as soon as it stops a recursive invocation. To
view this metric, follow the instructions for Viewing metrics on the CloudWatch console and choose
the metric RecursiveInvocationsDropped.

Responding to recursive loop detection notifications

When your function is invoked more than 16 times by the same triggering event, Lambda stops the
next function invocation for that event to break the recursive loop. To prevent a reoccurrence of a
recursive loop that Lambda has broken, do the following:

• Reduce your function's available concurrency to zero, which throttles all future invocations.

• Remove or disable the trigger or event source mapping that's invoking your function.

• Identify and fix code defects that write events back to the Amazon resource that's invoking your
function. A common source of defects occurs when you use variables to define a function's event
source and target. Check that you're not using the same value for both variables.

Additionally, if the event source for your Lambda function is an Amazon SQS queue, then consider
configuring a dead-letter queue on the source queue.

Note

Make sure that you configure the dead-letter queue on the source queue, not on the
Lambda function. The dead-letter queue that you configure on a function is used for the
function's asynchronous invocation queue, not for event source queues.

If the event source is an Amazon SNS topic, then consider adding an on-failure destination for your
function.

To reduce your function's available concurrency to zero (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your function.

3. Choose Throttle.

Responding to recursive loop detection notifications 301

https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html#monitoring-metrics-console
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-dead-letter-queue.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

4. In the Throttle your function dialog box, choose Confirm.

To remove a trigger or event source mapping for your function (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your function.

3. Choose the Configuration tab, then choose Triggers.

4. Under Triggers, select the trigger or event source mapping that you want to delete, then
choose Delete.

5. In the Delete triggers dialog box, choose Delete.

To disable an event source mapping for your function (Amazon CLI)

1. To find the UUID for the event source mapping that you want to disable, run the Amazon
Command Line Interface (Amazon CLI) list-event-source-mappings command.

aws lambda list-event-source-mappings

2. To disable the event source mapping, run the following Amazon CLI update-event-source-
mapping command.

aws lambda update-event-source-mapping --function-name MyFunction \
--uuid a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 --no-enabled

Responding to recursive loop detection notifications 302

https://console.amazonaws.cn/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-event-source-mappings.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html

Amazon Lambda Developer Guide

Lambda function URLs

A function URL is a dedicated HTTP(S) endpoint for your Lambda function. You can create and
configure a function URL through the Lambda console or the Lambda API. When you create a
function URL, Lambda automatically generates a unique URL endpoint for you. Once you create a
function URL, its URL endpoint never changes. Function URL endpoints have the following format:

https://<url-id>.lambda-url.<region>.on.aws

Note

Function URLs are not supported in the following regions: Asia Pacific (Hyderabad) (ap-
south-2), Asia Pacific (Melbourne) (ap-southeast-4), Canada West (Calgary) (ca-
west-1), Europe (Spain) (eu-south-2), Europe (Zurich) (eu-central-2), Israel (Tel Aviv)
(il-central-1), and Middle East (UAE) (me-central-1).

Function URLs are dual stack-enabled, supporting IPv4 and IPv6. After you configure a function
URL for your function, you can invoke your function through its HTTP(S) endpoint via a web
browser, curl, Postman, or any HTTP client.

Note

You can access your function URL through the public Internet only. While Lambda functions
do support Amazon PrivateLink, function URLs do not.

Lambda function URLs use resource-based policies for security and access control. Function URLs
also support cross-origin resource sharing (CORS) configuration options.

You can apply function URLs to any function alias, or to the $LATEST unpublished function version.
You can't add a function URL to any other function version.

Topics

• Creating and managing Lambda function URLs

• Security and auth model for Lambda function URLs

• Invoking Lambda function URLs

Function URLs 303

Amazon Lambda Developer Guide

• Monitoring Lambda function URLs

• Tutorial: Creating a Lambda function with a function URL

Function URLs 304

Amazon Lambda Developer Guide

Creating and managing Lambda function URLs

A function URL is a dedicated HTTP(S) endpoint for your Lambda function. You can create and
configure a function URL through the Lambda console or the Lambda API. When you create a
function URL, Lambda automatically generates a unique URL endpoint for you. Once you create a
function URL, its URL endpoint never changes. Function URL endpoints have the following format:

https://<url-id>.lambda-url.<region>.on.aws

Note

Function URLs are not supported in the following regions: Asia Pacific (Hyderabad) (ap-
south-2), Asia Pacific (Melbourne) (ap-southeast-4), Canada West (Calgary) (ca-
west-1), Europe (Spain) (eu-south-2), Europe (Zurich) (eu-central-2), Israel (Tel Aviv)
(il-central-1), and Middle East (UAE) (me-central-1).

The following section show how to create and manage a function URL using the Lambda console,
Amazon CLI, and Amazon CloudFormation template

Topics

• Creating a function URL (console)

• Creating a function URL (Amazon CLI)

• Adding a function URL to a CloudFormation template

• Cross-origin resource sharing (CORS)

• Throttling function URLs

• Deactivating function URLs

• Deleting function URLs

Creating a function URL (console)

Follow these steps to create a function URL using the console.

To create a function URL for an existing function (console)

1. Open the Functions page of the Lambda console.

Creating and managing function URLs 305

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

2. Choose the name of the function that you want to create the function URL for.

3. Choose the Configuration tab, and then choose Function URL.

4. Choose Create function URL.

5. For Auth type, choose AWS_IAM or NONE. For more information about function URL
authentication, see Security and auth model.

6. (Optional) Select Configure cross-origin resource sharing (CORS), and then configure the
CORS settings for your function URL. For more information about CORS, see Cross-origin
resource sharing (CORS).

7. Choose Save.

This creates a function URL for the $LATEST unpublished version of your function. The function
URL appears in the Function overview section of the console.

To create a function URL for an existing alias (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of the function with the alias that you want to create the function URL for.

3. Choose the Aliases tab, and then choose the name of the alias that you want to create the
function URL for.

4. Choose the Configuration tab, and then choose Function URL.

5. Choose Create function URL.

6. For Auth type, choose AWS_IAM or NONE. For more information about function URL
authentication, see Security and auth model.

7. (Optional) Select Configure cross-origin resource sharing (CORS), and then configure the
CORS settings for your function URL. For more information about CORS, see Cross-origin
resource sharing (CORS).

8. Choose Save.

This creates a function URL for your function alias. The function URL appears in the console's
Function overview section for your alias.

Creating and managing function URLs 306

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

To create a new function with a function URL (console)

To create a new function with a function URL (console)

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Under Basic information, do the following:

a. For Function name, enter a name for your function, such as my-function.

b. For Runtime, choose the language runtime that you prefer, such as Node.js 18.x.

c. For Architecture, choose either x86_64 or arm64.

d. Expand Permissions, then choose whether to create a new execution role or use an
existing one.

4. Expand Advanced settings, and then select Function URL.

5. For Auth type, choose AWS_IAM or NONE. For more information about function URL
authentication, see Security and auth model.

6. (Optional) Select Configure cross-origin resource sharing (CORS). By selecting this option
during function creation, your function URL allows requests from all origins by default.
You can edit the CORS settings for your function URL after creating the function. For more
information about CORS, see Cross-origin resource sharing (CORS).

7. Choose Create function.

This creates a new function with a function URL for the $LATEST unpublished version of the
function. The function URL appears in the Function overview section of the console.

Creating a function URL (Amazon CLI)

To create a function URL for an existing Lambda function using the Amazon Command Line
Interface (Amazon CLI), run the following command:

aws lambda create-function-url-config \
 --function-name my-function \
 --qualifier prod \ // optional
 --auth-type AWS_IAM
 --cors-config {AllowOrigins="https://example.com"} // optional

Creating and managing function URLs 307

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

This adds a function URL to the prod qualifier for the function my-function. For more
information about these configuration parameters, see CreateFunctionUrlConfig in the API
reference.

Note

To create a function URL via the Amazon CLI, the function must already exist.

Adding a function URL to a CloudFormation template

To add an Amazon::Lambda::Url resource to your Amazon CloudFormation template, use the
following syntax:

JSON

{
 "Type" : "AWS::Lambda::Url",
 "Properties" : {
 "AuthType" : String,
 "Cors" : Cors,
 "Qualifier" : String,
 "TargetFunctionArn" : String
 }
}

YAML

Type: AWS::Lambda::Url
Properties:
 AuthType: String
 Cors:
 Cors
 Qualifier: String
 TargetFunctionArn: String

Parameters

• (Required) AuthType – Defines the type of authentication for your function URL. Possible values
are either AWS_IAM or NONE. To restrict access to authenticated users only, set to AWS_IAM. To
bypass IAM authentication and allow any user to make requests to your function, set to NONE.

Creating and managing function URLs 308

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunctionUrlConfig.html

Amazon Lambda Developer Guide

• (Optional) Cors – Defines the CORS settings for your function URL. To add Cors to your
Amazon::Lambda::Url resource in CloudFormation, use the following syntax.

Example Amazon::Lambda::Url.Cors (JSON)

{
 "AllowCredentials" : Boolean,
 "AllowHeaders" : [String, ...],
 "AllowMethods" : [String, ...],
 "AllowOrigins" : [String, ...],
 "ExposeHeaders" : [String, ...],
 "MaxAge" : Integer
}

Example Amazon::Lambda::Url.Cors (YAML)

 AllowCredentials: Boolean
 AllowHeaders:
 - String
 AllowMethods:
 - String
 AllowOrigins:
 - String
 ExposeHeaders:
 - String
 MaxAge: Integer

• (Optional) Qualifier – The alias name.

• (Required) TargetFunctionArn – The name or Amazon Resource Name (ARN) of the Lambda
function. Valid name formats include the following:

• Function name – my-function

• Function ARN – arn:aws:lambda:us-west-2:123456789012:function:my-function

• Partial ARN – 123456789012:function:my-function

Creating and managing function URLs 309

Amazon Lambda Developer Guide

Cross-origin resource sharing (CORS)

To define how different origins can access your function URL, use cross-origin resource sharing
(CORS). We recommend configuring CORS if you intend to call your function URL from a different
domain. Lambda supports the following CORS headers for function URLs.

CORS header CORS configuration property Example values

Access-Control-Allow-Origin AllowOrigins * (allow all origins)

https://www.exampl
e.com

http://localhost:6
0905

Access-Control-Allow-Method
s

AllowMethods GET, POST, DELETE, *

Access-Control-Allow-Header
s

AllowHeaders Date, Keep-Alive , X-
Custom-Header

Access-Control-Expose-Heade
rs

ExposeHeaders Date, Keep-Alive , X-
Custom-Header

Access-Control-Allow-Creden
tials

AllowCredentials TRUE

Access-Control-Max-Age MaxAge 5 (default), 300

When you configure CORS for a function URL using the Lambda console or the Amazon CLI,
Lambda automatically adds the CORS headers to all responses through the function URL.
Alternatively, you can manually add CORS headers to your function response. If there are
conflicting headers, the configured CORS headers on the function URL take precedence.

Creating and managing function URLs 310

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Expose-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Expose-Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Max-Age

Amazon Lambda Developer Guide

Throttling function URLs

Throttling limits the rate at which your function processes requests. This is useful in many
situations, such as preventing your function from overloading downstream resources, or handling a
sudden surge in requests.

You can throttle the rate of requests that your Lambda function processes through a function
URL by configuring reserved concurrency. Reserved concurrency limits the number of maximum
concurrent invocations for your function. Your function's maximum request rate per second (RPS)
is equivalent to 10 times the configured reserved concurrency. For example, if you configure your
function with a reserved concurrency of 100, then the maximum RPS is 1,000.

Whenever your function concurrency exceeds the reserved concurrency, your function URL returns
an HTTP 429 status code. If your function receives a request that exceeds the 10x RPS maximum
based on your configured reserved concurrency, you also receive an HTTP 429 error. For more
information about reserved concurrency, see Configuring reserved concurrency.

Deactivating function URLs

In an emergency, you might want to reject all traffic to your function URL. To deactivate your
function URL, set the reserved concurrency to zero. This throttles all requests to your function
URL, resulting in HTTP 429 status responses. To reactivate your function URL, delete the reserved
concurrency configuration, or set the configuration to an amount greater than zero.

Deleting function URLs

When you delete a function URL, you can’t recover it. Creating a new function URL will result in a
different URL address.

Note

If you delete a function URL with auth type NONE, Lambda doesn't automatically delete the
associated resource-based policy. If you want to delete this policy, you must manually do
so.

1. Open the Functions page of the Lambda console.

2. Choose the name of the function.

3. Choose the Configuration tab, and then choose Function URL.

Creating and managing function URLs 311

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

4. Choose Delete.

5. Enter the word delete into the field to confirm the deletion.

6. Choose Delete.

Note

When you delete a function that has a function URL, Lambda asynchronously deletes the
function URL. If you immediately create a new function with the same name in the same
account, it is possible that the original function URL will be mapped to the new function
instead of deleted.

Creating and managing function URLs 312

Amazon Lambda Developer Guide

Security and auth model for Lambda function URLs

You can control access to your Lambda function URLs using the AuthType parameter combined
with resource-based policies attached to your specific function. The configuration of these two
components determines who can invoke or perform other administrative actions on your function
URL.

The AuthType parameter determines how Lambda authenticates or authorizes requests to your
function URL. When you configure your function URL, you must specify one of the following
AuthType options:

• AWS_IAM – Lambda uses Amazon Identity and Access Management (IAM) to authenticate and
authorize requests based on the IAM principal's identity policy and the function's resource-based
policy. Choose this option if you want only authenticated users and roles to invoke your function
via the function URL.

• NONE – Lambda doesn't perform any authentication before invoking your function. However,
your function's resource-based policy is always in effect and must grant public access before your
function URL can receive requests. Choose this option to allow public, unauthenticated access to
your function URL.

In addition to AuthType, you can also use resource-based policies to grant permissions to other
Amazon Web Services accounts to invoke your function. For more information, see Using resource-
based policies for Lambda.

For additional insights into security, you can use Amazon Identity and Access Management Access
Analyzer to get a comprehensive analysis of external access to your function URL. IAM Access
Analyzer also monitors for new or updated permissions on your Lambda functions to help you
identify permissions that grant public and cross-account access. IAM Access Analyzer is free to use
for any Amazon customer. To get started with IAM Access Analyzer, see Using Amazon IAM Access
Analyzer.

This page contains examples of resource-based policies for both auth types, and also how to create
these policies using the AddPermission API operation or the Lambda console. For information on
how to invoke your function URL after you've set up permissions, see Invoking Lambda function
URLs.

Topics

Security and auth model 313

https://docs.amazonaws.cn/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.amazonaws.cn/lambda/latest/api/API_AddPermission.html

Amazon Lambda Developer Guide

• Using the AWS_IAM auth type

• Using the NONE auth type

• Governance and access control

Using the AWS_IAM auth type

If you choose the AWS_IAM auth type, users who need to invoke your Lambda function URL must
have the lambda:InvokeFunctionUrl permission. Depending on who makes the invocation
request, you may have to grant this permission using a resource-based policy.

If the principal making the request is in the same Amazon Web Services account as the function
URL, then the principal must either have lambda:InvokeFunctionUrl permissions in
their identity-based policy, or have permissions granted to them in the function's resource-
based policy. In other words, a resource-based policy is optional if the user already has
lambda:InvokeFunctionUrl permissions in their identity-based policy. Policy evaluation
follows the rules outlined in Determining whether a request is allowed or denied within an account.

If the principal making the request is in a different account, then the principal must have both an
identity-based policy that gives them lambda:InvokeFunctionUrl permissions and permissions
granted to them in a resource-based policy on the function that they are trying to invoke. In these
cross-account cases, policy evaluation follows the rules outlined in Determining whether a cross-
account request is allowed.

For an example cross-account interaction, the following resource-based policy allows the example
role in Amazon Web Services account 444455556666 to invoke the function URL associated with
function my-function:

Example function URL cross-account invoke policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:role/example"
 },
 "Action": "lambda:InvokeFunctionUrl",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:my-function",

Security and auth model 314

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html#policy-eval-cross-account
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html#policy-eval-cross-account

Amazon Lambda Developer Guide

 "Condition": {
 "StringEquals": {
 "lambda:FunctionUrlAuthType": "AWS_IAM"
 }
 }
 }
]
}

You can create this policy statement through the console by following these steps:

To grant URL invocation permissions to another account (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of the function that you want to grant URL invocation permissions for.

3. Choose the Configuration tab, and then choose Permissions.

4. Under Resource-based policy, choose Add permissions.

5. Choose Function URL.

6. For Auth type, choose AWS_IAM.

7. (Optional) For Statement ID, enter a statement ID for your policy statement.

8. For Principal, enter account ID or the Amazon Resource Name (ARN) of the user or role that
you want to grant permissions to. For example: 444455556666.

9. Choose Save.

Alternatively, you can create this policy statement using the following add-permission Amazon
Command Line Interface (Amazon CLI) command:

aws lambda add-permission --function-name my-function \
 --statement-id example0-cross-account-statement \
 --action lambda:InvokeFunctionUrl \
 --principal 444455556666 \
 --function-url-auth-type AWS_IAM

In the previous example, the lambda:FunctionUrlAuthType condition key value is AWS_IAM.
This policy only allows access when your function URL's auth type is also AWS_IAM.

Security and auth model 315

https://console.amazonaws.cn/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-permission.html

Amazon Lambda Developer Guide

Using the NONE auth type

Important

When your function URL auth type is NONE and you have a resource-based policy that
grants public access, any unauthenticated user with your function URL can invoke your
function.

In some cases, you may want your function URL to be public. For example, you might want to serve
requests made directly from a web browser. To allow public access to your function URL, choose
the NONE auth type.

If you choose the NONE auth type, Lambda doesn't use IAM to authenticate requests to your
function URL. However, users must still have lambda:InvokeFunctionUrl permissions in
order to successfully invoke your function URL. You can grant lambda:InvokeFunctionUrl
permissions using the following resource-based policy:

Example function URL invoke policy for all unauthenticated principals

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "lambda:InvokeFunctionUrl",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:my-function",
 "Condition": {
 "StringEquals": {
 "lambda:FunctionUrlAuthType": "NONE"
 }
 }
 }
]
}

Note

When you create a function URL with auth type NONE via the console or Amazon Serverless
Application Model (Amazon SAM), Lambda automatically creates the preceding resource-

Security and auth model 316

Amazon Lambda Developer Guide

based policy statement for you. If the policy already exists, or the user or role creating the
application doesn't have the appropriate permissions, then Lambda won't create it for you.
If you're using the Amazon CLI, Amazon CloudFormation, or the Lambda API directly, you
must add lambda:InvokeFunctionUrl permissions yourself. This makes your function
public.
In addition, if you delete your function URL with auth type NONE, Lambda doesn't
automatically delete the associated resource-based policy. If you want to delete this policy,
you must manually do so.

In this statement, the lambda:FunctionUrlAuthType condition key value is NONE. This policy
statement allows access only when your function URL's auth type is also NONE.

If a function's resource-based policy doesn't grant lambda:invokeFunctionUrl permissions,
then users will get a 403 Forbidden error code when they try to invoke your function URL, even if
the function URL uses the NONE auth type.

Governance and access control

In addition to function URL invocation permissions, you can also control access on actions used to
configure function URLs. Lambda supports the following IAM policy actions for function URLs:

• lambda:InvokeFunctionUrl – Invoke a Lambda function using the function URL.

• lambda:CreateFunctionUrlConfig – Create a function URL and set its AuthType.

• lambda:UpdateFunctionUrlConfig – Update a function URL configuration and its
AuthType.

• lambda:GetFunctionUrlConfig – View the details of a function URL.

• lambda:ListFunctionUrlConfigs – List function URL configurations.

• lambda:DeleteFunctionUrlConfig – Delete a function URL.

Note

The Lambda console supports adding permissions only for lambda:InvokeFunctionUrl.
For all other actions, you must add permissions using the Lambda API or Amazon CLI.

Security and auth model 317

Amazon Lambda Developer Guide

To allow or deny function URL access to other Amazon entities, include these actions in IAM
policies. For example, the following policy grants the example role in Amazon Web Services
account 444455556666 permissions to update the function URL for function my-function in
account 123456789012.

Example cross-account function URL policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:role/example"
 },
 "Action": "lambda:UpdateFunctionUrlConfig",
 "Resource": "arn:aws:lambda:us-east-2:123456789012:function:my-function"
 }
]
}

Condition keys

For fine-grained access control over your function URLs, use a condition key. Lambda supports one
additional condition key for function URLs: FunctionUrlAuthType. The FunctionUrlAuthType
key defines an enum value describing the auth type that your function URL uses. The value can be
either AWS_IAM or NONE.

You can use this condition key in policies associated with your function. For example, you
might want to restrict who can make configuration changes to your function URLs. To deny all
UpdateFunctionUrlConfig requests to any function with URL auth type NONE, you can define
the following policy:

Example function URL policy with explicit deny

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": "*",
 "Action":[

Security and auth model 318

Amazon Lambda Developer Guide

 "lambda:UpdateFunctionUrlConfig"
],
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:*",
 "Condition": {
 "StringEquals": {
 "lambda:FunctionUrlAuthType": "NONE"
 }
 }
 }
]
}

To grant the example role in Amazon Web Services account 444455556666 permissions to make
CreateFunctionUrlConfig and UpdateFunctionUrlConfig requests on functions with URL
auth type AWS_IAM, you can define the following policy:

Example function URL policy with explicit allow

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:role/example"
 },
 "Action":[
 "lambda:CreateFunctionUrlConfig",
 "lambda:UpdateFunctionUrlConfig"
],
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:*",
 "Condition": {
 "StringEquals": {
 "lambda:FunctionUrlAuthType": "AWS_IAM"
 }
 }
 }
]
}

You can also use this condition key in a service control policy (SCP). Use SCPs to manage
permissions across an entire organization in Amazon Organizations. For example, to deny users

Security and auth model 319

https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html

Amazon Lambda Developer Guide

from creating or updating function URLs that use anything other than the AWS_IAM auth type, use
the following service control policy:

Example function URL SCP with explicit deny

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action":[
 "lambda:CreateFunctionUrlConfig",
 "lambda:UpdateFunctionUrlConfig"
],
 "Resource": "arn:aws:lambda:*:123456789012:function:*",
 "Condition": {
 "StringNotEquals": {
 "lambda:FunctionUrlAuthType": "AWS_IAM"
 }
 }
 }
]
}

Security and auth model 320

Amazon Lambda Developer Guide

Invoking Lambda function URLs

A function URL is a dedicated HTTP(S) endpoint for your Lambda function. You can create and
configure a function URL through the Lambda console or the Lambda API. When you create a
function URL, Lambda automatically generates a unique URL endpoint for you. Once you create a
function URL, its URL endpoint never changes. Function URL endpoints have the following format:

https://<url-id>.lambda-url.<region>.on.aws

Note

Function URLs are not supported in the following regions: Asia Pacific (Hyderabad) (ap-
south-2), Asia Pacific (Melbourne) (ap-southeast-4), Canada West (Calgary) (ca-
west-1), Europe (Spain) (eu-south-2), Europe (Zurich) (eu-central-2), Israel (Tel Aviv)
(il-central-1), and Middle East (UAE) (me-central-1).

Function URLs are dual stack-enabled, supporting IPv4 and IPv6. After configuring your function
URL, you can invoke your function through its HTTP(S) endpoint via a web browser, curl, Postman,
or any HTTP client. To invoke a function URL, you must have lambda:InvokeFunctionUrl
permissions. For more information, see Security and auth model.

Topics

• Function URL invocation basics

• Request and response payloads

Function URL invocation basics

If your function URL uses the AWS_IAM auth type, you must sign each HTTP request using Amazon
Signature Version 4 (SigV4). Tools such as awscurl, Postman, and Amazon SigV4 Proxy offer built-in
ways to sign your requests with SigV4.

If you don't use a tool to sign HTTP requests to your function URL, you must manually sign each
request using SigV4. When your function URL receives a request, Lambda also calculates the SigV4
signature. Lambda processes the request only if the signatures match. For instructions on how to
manually sign your requests with SigV4, see Signing Amazon requests with Signature Version 4 in
the Amazon Web Services General Reference Guide.

Invoking function URLs 321

https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html
https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html
https://github.com/okigan/awscurl
http://www.postman.com/
https://github.com/awslabs/aws-sigv4-proxy
https://docs.amazonaws.cn/general/latest/gr/sigv4_signing.html

Amazon Lambda Developer Guide

If your function URL uses the NONE auth type, you don't have to sign your requests using SigV4.
You can invoke your function using a web browser, curl, Postman, or any HTTP client.

To test simple GET requests to your function, use a web browser. For example, if your function
URL is https://abcdefg.lambda-url.us-east-1.on.aws, and it takes in a string parameter
message, your request URL could look like this:

https://abcdefg.lambda-url.us-east-1.on.aws/?message=HelloWorld

To test other HTTP requests, such as a POST request, you can use a tool such as curl. For example,
if you want to include some JSON data in a POST request to your function URL, you could use the
following curl command:

curl -v 'https://abcdefg.lambda-url.us-east-1.on.aws/?message=HelloWorld' \
-H 'content-type: application/json' \
-d '{ "example": "test" }'

Request and response payloads

When a client calls your function URL, Lambda maps the request to an event object before passing
it to your function. Your function's response is then mapped to an HTTP response that Lambda
sends back to the client through the function URL.

The request and response event formats follow the same schema as the Amazon API Gateway
payload format version 2.0.

Request payload format

A request payload has the following structure:

{
 "version": "2.0",
 "routeKey": "$default",
 "rawPath": "/my/path",
 "rawQueryString": "parameter1=value1¶meter1=value2¶meter2=value",
 "cookies": [
 "cookie1",
 "cookie2"
],
 "headers": {
 "header1": "value1",
 "header2": "value1,value2"

Invoking function URLs 322

https://docs.amazonaws.cn/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format
https://docs.amazonaws.cn/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format

Amazon Lambda Developer Guide

 },
 "queryStringParameters": {
 "parameter1": "value1,value2",
 "parameter2": "value"
 },
 "requestContext": {
 "accountId": "123456789012",
 "apiId": "<urlid>",
 "authentication": null,
 "authorizer": {
 "iam": {
 "accessKey": "AKIA...",
 "accountId": "111122223333",
 "callerId": "AIDA...",
 "cognitoIdentity": null,
 "principalOrgId": null,
 "userArn": "arn:aws:iam::111122223333:user/example-user",
 "userId": "AIDA..."
 }
 },
 "domainName": "<url-id>.lambda-url.us-west-2.on.aws",
 "domainPrefix": "<url-id>",
 "http": {
 "method": "POST",
 "path": "/my/path",
 "protocol": "HTTP/1.1",
 "sourceIp": "123.123.123.123",
 "userAgent": "agent"
 },
 "requestId": "id",
 "routeKey": "$default",
 "stage": "$default",
 "time": "12/Mar/2020:19:03:58 +0000",
 "timeEpoch": 1583348638390
 },
 "body": "Hello from client!",
 "pathParameters": null,
 "isBase64Encoded": false,
 "stageVariables": null
}

Invoking function URLs 323

Amazon Lambda Developer Guide

Parameter Description Example

version The payload format version
for this event. Lambda
function URLs currently
support payload format
version 2.0.

2.0

routeKey Function URLs don't use this
parameter. Lambda sets this
to $default as a placehold
er.

$default

rawPath The request path. For
example, if the request URL
is https://{url-id}.l
ambda-url.{region}
.on.aws/example/te
st/demo , then the raw path
value is /example/test/
demo .

/example/test/demo

rawQueryString The raw string containing
the request's query string
parameters. Supported
characters include a-z, A-Z,
0-9, ., _, -, %, &, =, and +.

"?parameter1=value
1¶meter2=value
2"

cookies An array containing all
cookies sent as part of the
request.

["Cookie_1=Value_1",
"Cookie_2=Value_2"]

headers The list of request headers,
presented as key-value pairs.

{"header1": "value1",
"header2": "value2"}

queryStringParamet
ers

The query parameters for the
request. For example, if the
request URL is https://{

{"name": "Jane"}

Invoking function URLs 324

https://docs.amazonaws.cn/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format
https://docs.amazonaws.cn/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html#http-api-develop-integrations-lambda.proxy-format

Amazon Lambda Developer Guide

Parameter Description Example

url-id}.lambda-url
.{region}.on.aws/e
xample?name=Jane , then
the queryStringParamet
ers value is a JSON object
with a key of name and a
value of Jane.

requestContext An object that contains
additional information about
the request, such as the
requestId , the time of the
request, and the identity of
the caller if authorized via
Amazon Identity and Access
Management (IAM).

requestContext.acc
ountId

The Amazon Web Services
account ID of the function
owner.

"123456789012"

requestContext.apiId The ID of the function URL. "33anwqw8fj"

requestContext.aut
hentication

Function URLs don't use this
parameter. Lambda sets this
to null.

null

requestContext.aut
horizer

An object that contains
information about the caller
identity, if the function URL
uses the AWS_IAM auth type.
Otherwise, Lambda sets this
to null.

Invoking function URLs 325

Amazon Lambda Developer Guide

Parameter Description Example

requestContext.aut
horizer.iam.access
Key

The access key of the caller
identity.

"AKIAIOSFODNN7EXAM
PLE"

requestContext.aut
horizer.iam.accoun
tId

The Amazon Web Services
account ID of the caller
identity.

"111122223333"

requestContext.aut
horizer.iam.caller
Id

The ID (user ID) of the caller. "AIDACKCEVSQ6C2EXA
MPLE"

requestContext.aut
horizer.iam.cognit
oIdentity

Function URLs don't use this
parameter. Lambda sets this
to null or excludes this from
the JSON.

null

requestContext.aut
horizer.iam.princi
palOrgId

The principal org ID associate
d with the caller identity.

"AIDACKCEVSQORGEXA
MPLE"

requestContext.aut
horizer.iam.userArn

The user Amazon Resource
Name (ARN) of the caller
identity.

"arn:aws:iam::1111
22223333:user/exam
ple-user"

requestContext.aut
horizer.iam.userId

The user ID of the caller
identity.

"AIDACOSFODNN7EXAM
PLE2"

requestContext.dom
ainName

The domain name of the
function URL.

"<url-id>.lambda-u
rl.us-west-2.on.aw
s"

requestContext.dom
ainPrefix

The domain prefix of the
function URL.

"<url-id>"

Invoking function URLs 326

Amazon Lambda Developer Guide

Parameter Description Example

requestContext.http An object that contains
details about the HTTP
request.

requestContext.htt
p.method

The HTTP method used in
this request. Valid values
include GET, POST, PUT,
HEAD, OPTIONS, PATCH, and
DELETE.

GET

requestContext.htt
p.path

The request path. For
example, if the request URL
is https://{url-id}.l
ambda-url.{region}
.on.aws/example/te
st/demo , then the path
value is /example/test/
demo .

/example/test/demo

requestContext.htt
p.protocol

The protocol of the request. HTTP/1.1

requestContext.htt
p.sourceIp

The source IP address of the
immediate TCP connection
making the request.

123.123.123.123

requestContext.htt
p.userAgent

The User-Agent request
header value.

Mozilla/5.0 (Macintos
h; Intel Mac OS X
10_15_7) Gecko/201
00101 Firefox/42.0

requestContext.req
uestId

The ID of the invocation
request. You can use this ID to
trace invocation logs related
to your function.

e1506fd5-9e7b-434f-
bd42-4f8fa224b599

Invoking function URLs 327

Amazon Lambda Developer Guide

Parameter Description Example

requestContext.rou
teKey

Function URLs don't use this
parameter. Lambda sets this
to $default as a placehold
er.

$default

requestContext.stage Function URLs don't use this
parameter. Lambda sets this
to $default as a placehold
er.

$default

requestContext.time The timestamp of the
request.

"07/Sep/2021:22:50
:22 +0000"

requestContext.tim
eEpoch

The timestamp of the
request, in Unix epoch time.

"1631055022677"

body The body of the request.
If the content type of the
request is binary, the body is
base64-encoded.

{"key1": "value1",
"key2": "value2"}

pathParameters Function URLs don't use this
parameter. Lambda sets this
to null or excludes this from
the JSON.

null

isBase64Encoded TRUE if the body is a binary
payload and base64-encoded.
FALSE otherwise.

FALSE

stageVariables Function URLs don't use this
parameter. Lambda sets this
to null or excludes this from
the JSON.

null

Invoking function URLs 328

Amazon Lambda Developer Guide

Response payload format

When your function returns a response, Lambda parses the response and converts it into an HTTP
response. Function response payloads have the following format:

{
 "statusCode": 201,
 "headers": {
 "Content-Type": "application/json",
 "My-Custom-Header": "Custom Value"
 },
 "body": "{ \"message\": \"Hello, world!\" }",
 "cookies": [
 "Cookie_1=Value1; Expires=21 Oct 2021 07:48 GMT",
 "Cookie_2=Value2; Max-Age=78000"
],
 "isBase64Encoded": false
}

Lambda infers the response format for you. If your function returns valid JSON and doesn't return
a statusCode, Lambda assumes the following:

• statusCode is 200.

• content-type is application/json.

• body is the function response.

• isBase64Encoded is false.

The following examples show how the output of your Lambda function maps to the response
payload, and how the response payload maps to the final HTTP response. When the client invokes
your function URL, they see the HTTP response.

Example output for a string response

Lambda function output Interpreted response output HTTP response (what the
client sees)

"Hello, world!" {
 "statusCode": 200,

HTTP/2 200
date: Wed, 08 Sep 2021
 18:02:24 GMT

Invoking function URLs 329

Amazon Lambda Developer Guide

Lambda function output Interpreted response output HTTP response (what the
client sees)

 "body": "Hello,
 world!",
 "headers": {
 "content-type":
 "application/json"
 },
 "isBase64Encoded":
 false
}

content-type: applicati
on/json
content-length: 15

"Hello, world!"

Example output for a JSON response

Lambda function output Interpreted response output HTTP response (what the
client sees)

{
 "message": "Hello,
 world!"
}

{
 "statusCode": 200,
 "body": {
 "message": "Hello,
 world!"
 },
 "headers": {
 "content-type":
 "application/json"
 },
 "isBase64Encoded":
 false
}

HTTP/2 200
date: Wed, 08 Sep 2021
 18:02:24 GMT
content-type: applicati
on/json
content-length: 34

{
 "message": "Hello,
 world!"
}

Example output for a custom response

Lambda function output Interpreted response output HTTP response (what the
client sees)

{
 "statusCode": 201,

{
 "statusCode": 201,

HTTP/2 201

Invoking function URLs 330

Amazon Lambda Developer Guide

Lambda function output Interpreted response output HTTP response (what the
client sees)

 "headers": {
 "Content-Type":
 "application/json",
 "My-Custom-
Header": "Custom Value"
 },
 "body": JSON.stri
ngify({
 "message":
 "Hello, world!"
 }),
 "isBase64Encoded":
 false
}

 "headers": {
 "Content-Type":
 "application/json",
 "My-Custom-
Header": "Custom Value"
 },
 "body": JSON.stri
ngify({
 "message":
 "Hello, world!"
 }),
 "isBase64Encoded":
 false
}

date: Wed, 08 Sep 2021
 18:02:24 GMT
content-type: applicati
on/json
content-length: 27
my-custom-header:
 Custom Value

{
 "message": "Hello,
 world!"
}

Cookies

To return cookies from your function, don't manually add set-cookie headers. Instead, include
the cookies in your response payload object. Lambda automatically interprets this and adds them
as set-cookie headers in your HTTP response, as in the following example.

Example output for a response returning cookies

Lambda function output HTTP response (what the client sees)

{
 "statusCode": 201,
 "headers": {
 "Content-Type": "application/
json",
 "My-Custom-Header": "Custom
 Value"
 },
 "body": JSON.stringify({
 "message": "Hello, world!"
 }),
 "cookies": [

HTTP/2 201
date: Wed, 08 Sep 2021 18:02:24 GMT
content-type: application/json
content-length: 27
my-custom-header: Custom Value
set-cookie: Cookie_1=Value2;
 Expires=21 Oct 2021 07:48 GMT
set-cookie: Cookie_2=Value2; Max-
Age=78000

{
 "message": "Hello, world!"
}

Invoking function URLs 331

Amazon Lambda Developer Guide

Lambda function output HTTP response (what the client sees)

 "Cookie_1=Value1; Expires=21
 Oct 2021 07:48 GMT",
 "Cookie_2=Value2; Max-Age=7
8000"
],
 "isBase64Encoded": false
}

Invoking function URLs 332

Amazon Lambda Developer Guide

Monitoring Lambda function URLs

You can use Amazon CloudTrail and Amazon CloudWatch to monitor your function URLs.

Topics

• Monitoring function URLs with CloudTrail

• CloudWatch metrics for function URLs

Monitoring function URLs with CloudTrail

For function URLs, Lambda automatically supports logging the following API operations as events
in CloudTrail log files:

• CreateFunctionUrlConfig

• UpdateFunctionUrlConfig

• DeleteFunctionUrlConfig

• GetFunctionUrlConfig

• ListFunctionUrlConfigs

Each log entry contains information about the caller identity, when the request was made, and
other details. You can see all events within the last 90 days by viewing your CloudTrail Event
history. To retain records past 90 days, you can create a trail. For more information, see Using
Amazon Lambda with Amazon CloudTrail.

By default, CloudTrail doesn't log InvokeFunctionUrl requests, which are considered data
events. However, you can turn on data event logging in CloudTrail. For more information, see
Logging data events for trails in the Amazon CloudTrail User Guide.

CloudWatch metrics for function URLs

Lambda sends aggregated metrics about function URL requests to CloudWatch. With these metrics,
you can monitor your function URLs, build dashboards, and configure alarms in the CloudWatch
console.

Function URLs support the following invocation metrics. We recommend viewing these metrics
with the Sum statistic.

Monitoring function URLs 333

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListFunctionUrlConfigs.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html

Amazon Lambda Developer Guide

• UrlRequestCount – The number of requests made to this function URL.

• Url4xxCount – The number of requests that returned a 4XX HTTP status code. 4XX series codes
indicate client-side errors, such as bad requests.

• Url5xxCount – The number of requests that returned a 5XX HTTP status code. 5XX series codes
indicate server-side errors, such as function errors and timeouts.

Function URLs also support the following performance metric. We recommend viewing this metric
with the Average or Max statistics.

• UrlRequestLatency – The time between when the function URL receives a request and when
the function URL returns a response.

Each of these invocation and performance metrics supports the following dimensions:

• FunctionName – View aggregate metrics for function URLs assigned to a function's $LATEST
unpublished version, or to any of the function's aliases. For example, hello-world-function.

• Resource – View metrics for a specific function URL. This is defined by a function name, along
with either the function's $LATEST unpublished version or one of the function's aliases. For
example, hello-world-function:$LATEST.

• ExecutedVersion – View metrics for a specific function URL based on the executed version.
You can use this dimension primarily to track the function URL assigned to the $LATEST
unpublished version.

Monitoring function URLs 334

Amazon Lambda Developer Guide

Tutorial: Creating a Lambda function with a function URL

In this tutorial, you create a Lambda function defined as a .zip file archive with a public function
URL endpoint that returns the product of two numbers. For more information about configuring
function URLs, see Creating and managing function URLs.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the Amazon Command Line Interface (Amazon CLI)
version 2. Commands and the expected output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

Create an execution role

Create the execution role that gives your Lambda function permission to access Amazon resources.

Tutorial: Creating a function with a function URL 335

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Lambda Developer Guide

To create an execution role

1. Open the Roles page of the Amazon Identity and Access Management (IAM) console.

2. Choose Create role.

3. For Trusted entity type select Amazon service, then for Use case, select Lambda.

4. Choose Next.

5. In the Permissions policies pane, enter AWSLambdaBasicExecutionRole in the search box.

6. Select the checkbox next to the the AWSLambdaBasicExecutionRole Amazon managed
policy, then choose Next.

7. Enter lambda-url-role for the Role name, then choose Create role.

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to
write logs to Amazon CloudWatch Logs. Later in the tutorial, you'll need the Amazon Resource
Name (ARN) of the role to create your Lambda function.

To find the ARN of your execution role

1. Open the Roles page of the Amazon Identity and Access Management (IAM) console.

2. Select the role you just created (lambda-url-role).

3. In the Summary pane, copy the ARN.

Create a Lambda function with a function URL (.zip file archive)

Create a Lambda function with a function URL endpoint using a .zip file archive.

To create the function

1. Copy the following code example into a file named index.js.

Example index.js

exports.handler = async (event) => {
 let body = JSON.parse(event.body);
 const product = body.num1 * body.num2;
 const response = {
 statusCode: 200,
 body: "The product of " + body.num1 + " and " + body.num2 + " is " +
 product,

Tutorial: Creating a function with a function URL 336

https://console.amazonaws.cn/iam/home#/roles
https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

 };
 return response;
};

2. Create a deployment package.

zip function.zip index.js

3. Create a Lambda function with the create-function command. Be sure to replace the role
ARN with the ARN of your own execution role you copied earlier in the tutorial.

aws lambda create-function \
 --function-name my-url-function \
 --runtime nodejs18.x \
 --zip-file fileb://function.zip \
 --handler index.handler \
 --role arn:aws:iam::123456789012:role/lambda-url-role

4. Add a resource-based policy to your function granting permissions to allow public access to
your function URL.

aws lambda add-permission \
 --function-name my-url-function \
 --action lambda:InvokeFunctionUrl \
 --principal "*" \
 --function-url-auth-type "NONE" \
 --statement-id url

5. Create a URL endpoint for the function with the create-function-url-config command.

aws lambda create-function-url-config \
 --function-name my-url-function \
 --auth-type NONE

Test the function URL endpoint

Invoke your Lambda function by calling your function URL endpoint using an HTTP client such as
curl or Postman.

curl 'https://abcdefg.lambda-url.us-east-1.on.aws/' \
-H 'Content-Type: application/json' \

Tutorial: Creating a function with a function URL 337

Amazon Lambda Developer Guide

-d '{"num1": "10", "num2": "10"}'

You should see the following output:

The product of 10 and 10 is 100

Create a Lambda function with a function URL (CloudFormation)

You can also create a Lambda function with a function URL endpoint using the Amazon
CloudFormation type AWS::Lambda::Url.

Resources:
 MyUrlFunction:
 Type: AWS::Lambda::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs18.x
 Role: arn:aws:iam::123456789012:role/lambda-url-role
 Code:
 ZipFile: |
 exports.handler = async (event) => {
 let body = JSON.parse(event.body);
 const product = body.num1 * body.num2;
 const response = {
 statusCode: 200,
 body: "The product of " + body.num1 + " and " + body.num2 + " is " +
 product,
 };
 return response;
 };
 Description: Create a function with a URL.
 MyUrlFunctionPermissions:
 Type: AWS::Lambda::Permission
 Properties:
 FunctionName: !Ref MyUrlFunction
 Action: lambda:InvokeFunctionUrl
 Principal: "*"
 FunctionUrlAuthType: NONE
 MyFunctionUrl:
 Type: AWS::Lambda::Url
 Properties:
 TargetFunctionArn: !Ref MyUrlFunction

Tutorial: Creating a function with a function URL 338

Amazon Lambda Developer Guide

 AuthType: NONE

Create a Lambda function with a function URL (Amazon SAM)

You can also create a Lambda function configured with a function URL using Amazon Serverless
Application Model (Amazon SAM).

ProductFunction:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: function/.
 Handler: index.handler
 Runtime: nodejs18.x
 AutoPublishAlias: live
 FunctionUrlConfig:
 AuthType: NONE

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

Tutorial: Creating a function with a function URL 339

https://console.amazonaws.cn/iam/home#/roles
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Managing Amazon Lambda functions

Learn how to adjust and secure the resources associated with your Lambda function using the
Lambda API or console.

Using Lambda with the Amazon CLI

You can use the Amazon Command Line Interface to manage functions and other Amazon
Lambda resources. The Amazon CLI uses the Amazon SDK for Python (Boto) to interact with the
Lambda API. In this tutorial, you manage and invoke Lambda functions with the Amazon CLI.

Function Scaling

You can configure two function-level concurrency controls: reserved concurrency and
provisioned concurrency. Concurrency is the number of instances of your function that are
active and can be configured to ensure critical functions avoid throttling.

Code signing

Code signing for Lambda provides trust and integrity controls that let you verify that only
unaltered code that approved developers have published is deployed in your Lambda functions.

Organize with tags

You can tag Lambda functions to activate attribute-based access control (ABAC) and to organize
them by owner, project, or department.

Using layers

You can apply previously created layers to reduce deployment package size and promote code
sharing and separation of responsibilities so that you can iterate faster on writing business
logic.

340

Amazon Lambda Developer Guide

Using Lambda with the Amazon CLI

You can use the Amazon Command Line Interface to manage functions and other Amazon Lambda
resources. The Amazon CLI uses the Amazon SDK for Python (Boto) to interact with the Lambda
API. You can use it to learn about the API, and apply that knowledge in building applications that
use Lambda with the Amazon SDK.

In this tutorial, you manage and invoke Lambda functions with the Amazon CLI. For more
information, see What is the Amazon CLI? in the Amazon Command Line Interface User Guide.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in the section called “Create a Lambda
function with the console”.

To complete the following steps, you need the Amazon Command Line Interface (Amazon CLI)
version 2. Commands and the expected output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

Tutorial - Lambda with CLI 341

https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Lambda Developer Guide

Create the execution role

Create the execution role that gives your function permission to access Amazon resources. To
create an execution role with the Amazon CLI, use the create-role command.

In the following example, you specify the trust policy inline. Requirements for escaping quotes in
the JSON string vary depending on your shell.

aws iam create-role --role-name lambda-ex --assume-role-policy-document '{"Version":
 "2012-10-17","Statement": [{ "Effect": "Allow", "Principal": {"Service":
 "lambda.amazonaws.com"}, "Action": "sts:AssumeRole"}]}'

You can also define the trust policy for the role using a JSON file. In the following example,
trust-policy.json is a file in the current directory. This trust policy allows Lambda to use the
role's permissions by giving the service principal lambda.amazonaws.com permission to call the
Amazon Security Token Service (Amazon STS) AssumeRole action.

Example trust-policy.json

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

aws iam create-role --role-name lambda-ex --assume-role-policy-document file://trust-
policy.json

You should see the following output:

{
 "Role": {
 "Path": "/",
 "RoleName": "lambda-ex",

Create the execution role 342

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#delegation

Amazon Lambda Developer Guide

 "RoleId": "AROAQFOXMPL6TZ6ITKWND",
 "Arn": "arn:aws-cn:iam::123456789012:role/lambda-ex",
 "CreateDate": "2020-01-17T23:19:12Z",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }
}

To add permissions to the role, use the attach-policy-to-role command. Start by adding the
AWSLambdaBasicExecutionRole managed policy.

aws iam attach-role-policy --role-name lambda-ex --policy-arn arn:aws-
cn:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to write
logs to CloudWatch Logs.

Create the function

The following example logs the values of environment variables and the event object.

Example index.js

exports.handler = async function(event, context) {
 console.log("ENVIRONMENT VARIABLES\n" + JSON.stringify(process.env, null, 2))
 console.log("EVENT\n" + JSON.stringify(event, null, 2))
 return context.logStreamName
}

To create the function

1. Copy the sample code into a file named index.js.

Create the function 343

Amazon Lambda Developer Guide

2. Create a deployment package.

zip function.zip index.js

3. Create a Lambda function with the create-function command. Replace the highlighted
text in the role ARN with your account ID.

aws lambda create-function --function-name my-function \
--zip-file fileb://function.zip --handler index.handler --runtime nodejs20.x \
--role arn:aws-cn:iam::123456789012:role/lambda-ex

You should see the following output:

{
 "FunctionName": "my-function",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "Runtime": "nodejs20.x",
 "Role": "arn:aws-cn:iam::123456789012:role/lambda-ex",
 "Handler": "index.handler",
 "CodeSha256": "FpFMvUhayLkOoVBpNuNiIVML/tuGv2iJQ7t0yWVTU8c=",
 "Version": "$LATEST",
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "RevisionId": "88ebe1e1-bfdf-4dc3-84de-3017268fa1ff",
 ...
}

To get logs for an invocation from the command line, use the --log-type option. The response
includes a LogResult field that contains up to 4 KB of base64-encoded logs from the invocation.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"

Create the function 344

Amazon Lambda Developer Guide

}

You can use the base64 utility to decode the logs.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text | base64 -d

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
 "AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. For macOS, the
command is base64 -D.

To get full log events from the command line, you can include the log stream name in the output
of your function, as shown in the preceding example. The following example script invokes a
function named my-function and downloads the last five log events.

Example get-logs.sh Script

This example requires that my-function returns a log stream ID.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-name
 $(cat out) --limit 5

The script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time
for the logs to be available. The output includes the response from Lambda and the output from
the get-log-events command.

./get-logs.sh

Create the function 345

https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Lambda Developer Guide

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Create the function 346

Amazon Lambda Developer Guide

Update the function

After you create a function, you can configure additional capabilities for the function, such as
triggers, network access, and file system access. You can also adjust resources associated with the
function, such as memory and concurrency. These configurations apply to functions defined as .zip
file archives and to functions defined as container images.

Use the update-function-configuration command to configure functions. The following example
sets the function memory to 256 MB.

Example update-function-configuration command

aws lambda update-function-configuration \
--function-name my-function \
--memory-size 256

List the Lambda functions in your account

Run the following Amazon CLI list-functions command to retrieve a list of functions that you
have created.

aws lambda list-functions --max-items 10

You should see the following output:

{
 "Functions": [
 {
 "FunctionName": "cli",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-
function",
 "Runtime": "nodejs20.x",
 "Role": "arn:aws-cn:iam::123456789012:role/lambda-ex",
 "Handler": "index.handler",
 ...
 },
 {
 "FunctionName": "random-error",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:random-
error",
 "Runtime": "nodejs20.x",

Update the function 347

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html

Amazon Lambda Developer Guide

 "Role": "arn:aws-cn:iam::123456789012:role/lambda-role",
 "Handler": "index.handler",
 ...
 },
 ...
],
 "NextToken": "eyJNYXJrZXIiOiBudWxsLCAiYm90b190cnVuY2F0ZV9hbW91bnQiOiAxMH0="
}

In response, Lambda returns a list of up to 10 functions. If there are more functions you can
retrieve, NextToken provides a marker you can use in the next list-functions request. The
following list-functions Amazon CLI command is an example that shows the --starting-
token parameter.

aws lambda list-functions --max-items 10 --starting-
token eyJNYXJrZXIiOiBudWxsLCAiYm90b190cnVuY2F0ZV9hbW91bnQiOiAxMH0=

Retrieve a Lambda function

The Lambda CLI get-function command returns Lambda function metadata and a presigned
URL that you can use to download the function's deployment package.

aws lambda get-function --function-name my-function

You should see the following output:

{
 "Configuration": {
 "FunctionName": "my-function",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "Runtime": "nodejs20.x",
 "Role": "arn:aws-cn:iam::123456789012:role/lambda-ex",
 "CodeSha256": "FpFMvUhayLkOoVBpNuNiIVML/tuGv2iJQ7t0yWVTU8c=",
 "Version": "$LATEST",
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "RevisionId": "88ebe1e1-bfdf-4dc3-84de-3017268fa1ff",
 ...
 },
 "Code": {

Retrieve a Lambda function 348

Amazon Lambda Developer Guide

 "RepositoryType": "S3",
 "Location": "https://awslambda-us-east-2-tasks.s3.us-east-2.amazonaws.com/
snapshots/123456789012/my-function-4203078a-b7c9-4f35-..."
 }
}

For more information, see GetFunction.

Clean up

Run the following delete-function command to delete the my-function function.

aws lambda delete-function --function-name my-function

Delete the IAM role you created in the IAM console. For information about deleting a role, see
Deleting roles or instance profiles in the IAM User Guide.

Clean up 349

https://docs.amazonaws.cn/lambda/latest/api/API_GetFunction.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage_delete.html

Amazon Lambda Developer Guide

Lambda function scaling

Concurrency is the number of in-flight requests that your Amazon Lambda function is handling
at the same time. For each concurrent request, Lambda provisions a separate instance of your
execution environment. As your functions receive more requests, Lambda automatically handles
scaling the number of execution environments until you reach your account's concurrency limit.
By default, Lambda provides your account with a total concurrency limit of 1,000 concurrent
executions across all functions in an Amazon Web Services Region. To support your specific account
needs, you can request a quota increase and configure function-level concurrency controls so that
your critical functions don't experience throttling.

This topic explains concurrency and function scaling in Lambda. By the end of this topic, you'll
be able to understand how to calculate concurrency, visualize the two main concurrency control
options (reserved and provisioned), estimate appropriate concurrency control settings, and view
metrics for further optimization.

Sections

• Understanding and visualizing concurrency

• How to calculate concurrency

• Concurrency vs. requests per second

• Reserved concurrency and provisioned concurrency

• Concurrency quotas

• Configuring reserved concurrency

• Configuring provisioned concurrency

• Lambda scaling behavior

• Monitoring concurrency

Understanding and visualizing concurrency

Lambda invokes your function in a secure and isolated execution environment. To handle a request,
Lambda must first initialize an execution environment (the Init phase), before using it to invoke
your function (the Invoke phase):

Function scaling 350

https://aws.amazon.com/premiumsupport/knowledge-center/lambda-concurrency-limit-increase/

Amazon Lambda Developer Guide

Note

Actual Init and Invoke durations can vary depending on many factors, such as the runtime
you choose and the Lambda function code. The previous diagram isn't meant to represent
the exact proportions of Init and Invoke phase durations.

The previous diagram uses a rectangle to represent a single execution environment. When your
function receives its very first request (represented by the yellow circle with label 1), Lambda
creates a new execution environment and runs the code outside your main handler during the Init
phase. Then, Lambda runs your function's main handler code during the Invoke phase. During this
entire process, this execution environment is busy and cannot process other requests.

When Lambda finishes processing the first request, this execution environment can then process
additional requests for the same function. For subsequent requests, Lambda doesn't need to re-
initialize the environment.

In the previous diagram, Lambda reuses the execution environment to handle the second request
(represented by the yellow circle with label 2).

Understanding and visualizing concurrency 351

Amazon Lambda Developer Guide

So far, we've focused on just a single instance of your execution environment (that is, a concurrency
of 1). In practice, Lambda may need to provision multiple execution environment instances in
parallel to handle all incoming requests. When your function receives a new request, one of two
things can happen:

• If a pre-initialized execution environment instance is available, Lambda uses it to process the
request.

• Otherwise, Lambda creates a new execution environment instance to process the request.

For example, let's explore what happens when your function receives 10 requests:

In the previous diagram, each horizontal plane represents a single execution environment instance
(labeled from A through F). Here's how Lambda handles each request:

Lambda behavior for requests 1 through 10

Request Lambda behavior Reasoning

1 Provisions new environment
A

This is the first request;
no execution environment
instances are available.

2 Provisions new environment B Existing execution environme
nt instance A is busy.

Understanding and visualizing concurrency 352

Amazon Lambda Developer Guide

Request Lambda behavior Reasoning

3 Provisions new environment C Existing execution environme
nt instances A and B are both
busy.

4 Provisions new environment
D

Existing execution environme
nt instances A, B, and C are all
busy.

5 Provisions new environment E Existing execution environme
nt instances A, B, C, and D are
all busy.

6 Reuses environment A Execution environment
instance A has finished
processing request 1 and is
now available.

7 Reuses environment B Execution environment
instance B has finished
processing request 2 and is
now available.

8 Reuses environment C Execution environment
instance C has finished
processing request 3 and is
now available.

9 Provisions new environment F Existing execution environme
nt instances A, B, C, D, and E
are all busy.

10 Reuses environment D Execution environment
instance D has finished
processing request 4 and is
now available.

Understanding and visualizing concurrency 353

Amazon Lambda Developer Guide

As your function receives more concurrent requests, Lambda scales up the number of execution
environment instances in response. The following animation tracks the number of concurrent
requests over time:

By freezing the previous animation at six distinct points in time, we get the following diagram:

Understanding and visualizing concurrency 354

Amazon Lambda Developer Guide

In the previous diagram, we can draw a vertical line at any point in time and count the number of
environments that intersect this line. This gives us the number of concurrent requests at that point
in time. For example, at time t1, there are three active environments serving three concurrent
requests. The maximum number of concurrent requests in this simulation occurs at time t4, when
there are six active environments serving six concurrent requests.

To summarize, your function's concurrency is the number of concurrent requests that it's handling
at the same time. In response to an increase in your function's concurrency, Lambda provisions
more execution environment instances to meet request demand.

How to calculate concurrency

In general, concurrency of a system is the ability to process more than one task simultaneously.
In Lambda, concurrency is the number of in-flight requests that your function is handling at the
same time. A quick and practical way of measuring concurrency of a Lambda function is to use the
following formula:

Concurrency = (average requests per second) * (average request duration in seconds)

Concurrency differs from requests per second. For example, suppose your function receives 100
requests per second on average. If the average request duration is one second, then it's true that
the concurrency is also 100:

Concurrency = (100 requests/second) * (1 second/request) = 100

However, if the average request duration is 500 ms, then the concurrency is 50:

Concurrency = (100 requests/second) * (0.5 second/request) = 50

What does a concurrency of 50 mean in practice? If the average request duration is 500 ms,
then you can think of an instance of your function as being able to handle two requests per
second. Then, it takes 50 instances of your function to handle a load of 100 requests per second.
A concurrency of 50 means that Lambda must provision 50 execution environment instances to
efficiently handle this workload without any throttling. Here's how to express this in equation form:

Concurrency = (100 requests/second) / (2 requests/second) = 50

If your function receives double the number of requests (200 requests per second), but only
requires half the time to process each request (250 ms), then the concurrency is still 50:

How to calculate concurrency 355

Amazon Lambda Developer Guide

Concurrency = (200 requests/second) * (0.25 second/request) = 50

Test your understanding of concurrency

Suppose you have a function that takes, on average, 200 ms to run. During peak load, you observe
5,000 requests per second. What is the concurrency of your function during peak load?

Answer

The average function duration is 200 ms, or 0.2 seconds. Using the concurrency formula, you can
plug in the numbers to get a concurrency of 1,000:

Concurrency = (5,000 requests/second) * (0.2 seconds/request) = 1,000

Alternatively, an average function duration of 200 ms means that your function can process 5
requests per second. To handle the 5,000 request per second workload, you need 1,000 execution
environment instances. Thus, the concurrency is 1,000:

Concurrency = (5,000 requests/second) / (5 requests/second) = 1,000

Concurrency vs. requests per second

As mentioned in the previous section, concurrency differs from requests per second. This is an
especially important distinction to make when working with functions that have an average
request duration of less than 100 ms.

In general, each instance of your execution environment can handle at most 10 requests per
second. This limit applies to synchronous on-demand functions, as well as to functions that use
provisioned concurrency. If you're unfamiliar with this limit, then you may not know why such
functions could experience throttling in certain scenarios.

For example, consider a function with an average request duration of 50 ms. At 200 requests per
second, here's the concurrency of this function:

Concurrency = (200 requests/second) * (0.05 second/request) = 10

Based on this result, you might expect that you need only 10 execution environment instances to
handle this load. However, each execution environment can handle only 10 executions per second.

Concurrency vs. requests per second 356

Amazon Lambda Developer Guide

This means that with 10 execution environments, your function can handle only 100 requests per
second out of the 200 total requests. This function experiences throttling.

The lesson is that you must consider both concurrency and requests per second when configuring
concurrency settings for your functions. In this case, you need 20 execution environments for your
function, even though it has a concurrency of only 10.

Test your understanding of concurrency (sub-100 ms functions)

Suppose that you have a function that takes, on average, 20 ms to run. During peak load, you
observe 3,000 requests per second. What is the concurrency of your function during peak load?

Answer

The average function duration is 20 ms, or 0.02 seconds. Using the concurrency formula, you can
plug in the numbers to get a concurrency of 60:

Concurrency = (3,000 requests/second) * (0.02 seconds/request) = 60

However, each execution environment can handle only 10 requests per second. With 60 execution
environments, your function can handle a maximum of 600 requests per second. To fully
accommodate the 3,000 requests, your function needs at least 300 execution environment
instances.

Reserved concurrency and provisioned concurrency

By default, your account has a concurrency limit of 1,000 concurrent executions across all functions
in a Region. Your functions share this pool of 1,000 concurrency on an on-demand basis. Your
functions experiences throttling (that is, they start to drop requests) if you run out of available
concurrency.

Some of your functions might be more critical than others. As a result, you might want to configure
concurrency settings to ensure that critical functions get the concurrency that they need. There are
two types of concurrency controls available: reserved concurrency and provisioned concurrency.

• Use reserved concurrency to reserve a portion of your account's concurrency for a function. This
is useful if you don't want other functions taking up all the available unreserved concurrency.

• Use provisioned concurrency to pre-initialize a number of environment instances for a function.
This is useful for reducing cold start latencies.

Reserved concurrency and provisioned concurrency 357

Amazon Lambda Developer Guide

Reserved concurrency

If you want to guarantee that a certain amount of concurrency is available for your function at any
time, use reserved concurrency.

Reserved concurrency is the maximum number of concurrent instances that you want to allocate
to your function. When you dedicate reserved concurrency to a function, no other function can
use that concurrency. In other words, setting reserved concurrency can impact the concurrency
pool that's available to other functions. Functions that don't have reserved concurrency share the
remaining pool of unreserved concurrency.

Configuring reserved concurrency counts towards your overall account concurrency limit. There is
no charge for configuring reserved concurrency for a function.

To better understand reserved concurrency, consider the following diagram:

In this diagram, your account concurrency limit for all the functions in this Region is at the default
limit of 1,000. Suppose you have two critical functions, function-blue and function-orange,
that routinely expect to get high invocation volumes. You decide to give 400 units of reserved
concurrency to function-blue, and 400 units of reserved concurrency to function-orange. In

Reserved concurrency and provisioned concurrency 358

Amazon Lambda Developer Guide

this example, all other functions in your account must share the remaining 200 units of unreserved
concurrency.

The diagram has five points of interest:

• At t1, both function-orange and function-blue begin receiving requests. Each function
begins to use up its allocated portion of reserved concurrency units.

• At t2, function-orange and function-blue steadily receive more requests. At the same
time, you deploy some other Lambda functions, which begin receiving requests. You don't
allocate reserved concurrency to these other functions. They begin using the remaining 200 units
of unreserved concurrency.

• At t3, function-orange hits the max concurrency of 400. Although there is unused
concurrency elsewhere in your account, function-orange cannot access it. The red line
indicates that function-orange is experiencing throttling, and Lambda may drop requests.

• At t4, function-orange starts to receive fewer requests and is no longer throttling. However,
your other functions experience a spike in traffic and begin throttling. Although there is unused
concurrency elsewhere in your account, these other functions cannot access it. The red line
indicates that your other functions are experiencing throttling.

• At t5, other functions start to receive fewer requests and are no longer throttling.

From this example, notice that reserving concurrency has the following effects:

• Your function can scale independently of other functions in your account. All of your account's
functions in the same Region that don't have reserved concurrency share the pool of unreserved
concurrency. Without reserved concurrency, other functions can potentially use up all of your
available concurrency. This prevents critical functions from scaling up if needed.

• Your function can't scale out of control. Reserved concurrency caps your function's maximum
concurrency. This means that your function can't use concurrency reserved for other functions,
or concurrency from the unreserved pool. You can reserve concurrency to prevent your function
from using all the available concurrency in your account, or from overloading downstream
resources.

• You may not be able to use all of your account's available concurrency. Reserving concurrency
counts towards your account concurrency limit, but this also means that other functions cannot
use that chunk of reserved concurrency. If your function doesn't use up all of the concurrency
that you reserve for it, you're effectively wasting that concurrency. This isn't an issue unless other
functions in your account could benefit from the wasted concurrency.

Reserved concurrency and provisioned concurrency 359

Amazon Lambda Developer Guide

To learn how to manage reserved concurrency settings for your functions, see Configuring reserved
concurrency.

Provisioned concurrency

You use reserved concurrency to define the maximum number of execution environments
reserved for a Lambda function. However, none of these environments come pre-initialized. As
a result, your function invocations may take longer because Lambda must first initialize the new
environment before being able to use it to invoke your function. When Lambda has to initialize a
new environment in order to carry out an invocation, this is known as a cold start. To mitigate cold
starts, you can use provisioned concurrency.

Provisioned concurrency is the number of pre-initialized execution environments that you want to
allocate to your function. If you set provisioned concurrency on a function, Lambda initializes that
number of execution environments so that they are prepared to respond immediately to function
requests.

Note

Using provisioned concurrency incurs additional charges to your account. If you're working
with the Java 11 or Java 17 runtimes, you can also use Lambda SnapStart to mitigate
cold start issues at no additional cost. SnapStart uses cached snapshots of your execution
environment to significantly improve startup performance. You cannot use both SnapStart
and provisioned concurrency on the same function version. For more information about
SnapStart features, limitations, and supported Regions, see Improving startup performance
with Lambda SnapStart.

When using provisioned concurrency, Lambda still recycles execution environments in the
background. However, at any given time, Lambda always ensures that the number of pre-
initialized environments is equal to the value of your function's provisioned concurrency setting.
This behavior differs from reserved concurrency, where Lambda may completely terminate an
environment after a period of inactivity. The following diagram illustrates this by comparing the
lifecycle of a single execution environment when you configure your function using reserved
concurrency compared to provisioned concurrency.

Reserved concurrency and provisioned concurrency 360

Amazon Lambda Developer Guide

The diagram has four points of interest:

Time Reserved concurrency Provisioned concurrency

t1 Nothing happens. Lambda pre-initializes an
execution environment
instance.

t2 Request 1 comes in. Lambda
must initialize a new
execution environment
instance.

Request 1 comes in. Lambda
uses the pre-initialized
environment instance.

t3 After some inactivity,
Lambda terminates the active
environment instance.

Nothing happens.

t4 Request 2 comes in. Lambda
must initialize a new
execution environment
instance.

Request 2 comes in. Lambda
uses the pre-initialized
environment instance.

To better understand provisioned concurrency, consider the following diagram:

Reserved concurrency and provisioned concurrency 361

Amazon Lambda Developer Guide

In this diagram, you have an account concurrency limit of 1,000. You decide to give 400 units
of provisioned concurrency to function-orange. All functions in your account, including
function-orange, can use the remaining 600 units of unreserved concurrency.

The diagram has five points of interest:

• At t1, function-orange begins receiving requests. Since Lambda has pre-initialized 400
execution environment instances, function-orange is ready for immediate invocation.

• At t2, function-orange reaches 400 concurrent requests. As a result, function-orange runs
out of provisioned concurrency. However, since there's still unreserved concurrency available,
Lambda can use this to handle additional requests to function-orange (there's no throttling).
Lambda must create new instances to serve these requests, and your function may experience
cold start latencies.

• At t3, function-orange returns to 400 concurrent requests after a brief spike in traffic.
Lambda is again able to handle all requests without cold start latencies.

• At t4, functions in your account experience a burst in traffic. This burst can come from
function-orange or any other function in your account. Lambda uses unreserved concurrency
to handle these requests.

Reserved concurrency and provisioned concurrency 362

Amazon Lambda Developer Guide

• At t5, functions in your account reach the maximum concurrency limit of 1,000, and experience
throttling.

The previous example considered only provisioned concurrency. In practice, you can set both
provisioned concurrency and reserved concurrency on a function. You might do this if you had a
function that handles a consistent load of invocations on weekdays, but routinely sees spikes of
traffic on weekends. In this case, you could use provisioned concurrency to set a baseline amount
of environments to handle request during weekdays, and use reserved concurrency to handle the
weekend spikes. Consider the following diagram:

In this diagram, suppose that you configure 200 units of provisioned concurrency and 400 units
of reserved concurrency for function-orange. Because you configured reserved concurrency,
function-orange cannot use any of the 600 units of unreserved concurrency.

This diagram has five points of interest:

• At t1, function-orange begins receiving requests. Since Lambda has pre-initialized 200
execution environment instances, function-orange is ready for immediate invocation.

• At t2, function-orange uses up all its provisioned concurrency. function-orange can
continue serving requests using reserved concurrency, but these requests may experience cold
start latencies.

Reserved concurrency and provisioned concurrency 363

Amazon Lambda Developer Guide

• At t3, function-orange reaches 400 concurrent requests. As a result, function-orange uses
up all its reserved concurrency. Since function-orange cannot use unreserved concurrency,
requests begin to throttle.

• At t4, function-orange starts to receive fewer requests, and no longer throttles.

• At t5, function-orange drops down to 200 concurrent requests, so all requests are again able
to use provisioned concurrency (that is, no cold start latencies).

Both reserved concurrency and provisioned concurrency count towards your account concurrency
limit and Regional quotas. In other words, allocating reserved and provisioned concurrency
can impact the concurrency pool that's available to other functions. Configuring provisioned
concurrency incurs charges to your Amazon Web Services account.

Note

If the amount of provisioned concurrency on a function's versions and aliases adds up to
the function's reserved concurrency, then all invocations run on provisioned concurrency.
This configuration also has the effect of throttling the unpublished version of the function
($LATEST), which prevents it from executing. You can't allocate more provisioned
concurrency than reserved concurrency for a function.

To manage provisioned concurrency settings for your functions, see Configuring provisioned
concurrency. To automate provisioned concurrency scaling based on a schedule or application
utilization, see Managing provisioned concurrency with Application Auto Scaling.

How Lambda allocates provisioned concurrency

Provisioned concurrency doesn't come online immediately after you configure it. Lambda starts
allocating provisioned concurrency after a minute or two of preparation. For each function,
Lambda can provision up to 6,000 execution environments every minute, regardless of Amazon
Web Services Region. This is exactly the same as the concurrency scaling rate for functions.

When you submit a request to allocate provisioned concurrency, you can't access any of those
environments until Lambda completely finishes allocating them. For example, if you request 5,000
provisioned concurrency, none of your requests can use provisioned concurrency until Lambda
completely finishes allocating the 5,000 execution environments.

Reserved concurrency and provisioned concurrency 364

Amazon Lambda Developer Guide

Comparing reserved concurrency and provisioned concurrency

The following table summarizes and compares reserved and provisioned concurrency.

Topic Reserved concurrency Provisioned concurrency

Definition Maximum number of
execution environment
instances for your function.

Set number of pre-provi
sioned execution environment
instances for your function.

Provisioning behavior Lambda provisions new
instances on an on-demand
basis.

Lambda pre-provisions
instances (that is, before
your function starts receiving
requests).

Cold start behavior Cold start latency possible,
since Lambda must create
new instances on-demand.

Cold start latency not
possible, since Lambda
doesn't have to create
instances on-demand.

Throttling behavior Function throttled when
reserved concurrency limit
reached.

If reserved concurrency not
set: function uses unreserved
concurrency when provision
ed concurrency limit reached.

If reserved concurrency set:
function throttled when
reserved concurrency limit
reached.

Default behavior if not set Function uses unreserved
concurrency available in your
account.

Lambda doesn't pre-provi
sion any instances. Instead,
if reserved concurrency not
set: function uses unreserved
concurrency available in your
account.

Reserved concurrency and provisioned concurrency 365

Amazon Lambda Developer Guide

Topic Reserved concurrency Provisioned concurrency

If reserved concurrency
set: function uses reserved
concurrency.

Pricing No additional charge. Incurs additional charges.

Concurrency quotas

Lambda sets quotas for the total amount of concurrency that you can use across all functions in a
Region. These quotas exist on two levels:

• At the account level, your functions can have up to 1,000 units of concurrency by default. To
increase this limit, see Requesting a quota increase in the Service Quotas User Guide.

• At the function level, you can reserve up to 900 units of concurrency across all your functions
by default. Regardless of your total account concurrency limit, Lambda always reserves 100 units
of concurrency for your functions that don't explicitly reserve concurrency. For example, if you
increased your account concurrency limit to 2,000, then you can reserve up to 1,900 units of
concurrency at the function level.

To check your current account level concurrency quota, use the Amazon Command Line Interface
(Amazon CLI) to run the following command:

aws lambda get-account-settings

You should see output that looks like the following:

{
 "AccountLimit": {
 "TotalCodeSize": 80530636800,
 "CodeSizeUnzipped": 262144000,
 "CodeSizeZipped": 52428800,
 "ConcurrentExecutions": 1000,
 "UnreservedConcurrentExecutions": 900
 },
 "AccountUsage": {
 "TotalCodeSize": 410759889,

Concurrency quotas 366

https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html

Amazon Lambda Developer Guide

 "FunctionCount": 8
 }
}

ConcurrentExecutions is your total account-level concurrency quota.
UnreservedConcurrentExecutions is the amount of reserved concurrency that you can still
allocate to your functions.

As your function receives more requests, Lambda automatically scales up the number of execution
environments to handle these requests until your account reaches its concurrency quota. However,
to protect against over-scaling in response to sudden bursts of traffic, Lambda limits how fast your
functions can scale. This concurrency scaling rate is the maximum rate at which functions in your
account can scale in response to increased requests. (That is, how quickly Lambda can create new
execution environments.) The concurrency scaling rate differs from the account-level concurrency
limit, which is the total amount of concurrency available to your functions.

In each Amazon Web Services Region, and for each function, your concurrency scaling rate
is 1,000 execution environment instances every 10 seconds. In other words, every 10 seconds,
Lambda can allocate at most 1,000 additional execution environment instances to each of your
functions.

Usually, you don't need to worry about this limitation. Lambda's scaling rate is sufficient for most
use cases.

Importantly, the concurrency scaling rate is a function-level limit. This means that each function in
your account can scale independently of other functions.

For more information about scaling behavior, see Lambda scaling behavior.

Concurrency quotas 367

Amazon Lambda Developer Guide

Configuring reserved concurrency

In Lambda, concurrency is the number of in-flight requests that your function is currently handling.
There are two types of concurrency controls available:

• Reserved concurrency – This represents the maximum number of concurrent instances allocated
to your function. When a function has reserved concurrency, no other function can use that
concurrency. Configuring reserved concurrency for a function incurs no additional charges.

• Provisioned concurrency – This is the number of pre-initialized execution environments allocated
to your function. These execution environments are ready to respond immediately to incoming
function requests. Configuring provisioned concurrency incurs additional charges to your
Amazon Web Services account.

This topic details how to manage and configure reserved concurrency. For a conceptual overview of
these two types of concurrency controls, see Reserved concurrency and provisioned concurrency.
For information on configuring provisioned concurrency, see the section called “Configuring
provisioned concurrency”.

Note

Lambda functions linked to an Amazon MQ event source mapping have a default maximum
concurrency. For Apache Active MQ, the maximum number of concurrent instances is
5. For Rabbit MQ, the maximum number of concurrent instances is 1. Setting reserved
or provisioned concurrency for your function doesn't change these limits. To request an
increase in the default maximum concurrency when using Amazon MQ, contact Amazon
Web Services Support.

Sections

• Configuring reserved concurrency

• Configuring concurrency with the Lambda API

Configuring reserved concurrency

You can configure reserved concurrency settings for a function using the Lambda console or the
Lambda API.

Configuring reserved concurrency 368

https://docs.amazonaws.cn/lambda/latest/dg/lambda-concurrency.html#reserved-and-provisioned

Amazon Lambda Developer Guide

To reserve concurrency for a function (console)

1. Open the Functions page of the Lambda console.

2. Choose the function you want to reserve concurrency for.

3. Choose Configuration and then choose Concurrency.

4. Under Concurrency, choose Edit.

5. Choose Reserve concurrency. Enter the amount of concurrency to reserve for the function.

6. Choose Save.

You can reserve up to the Unreserved account concurrency value minus 100. The remaining 100
units of concurrency are for functions that aren't using reserved concurrency. For example, if your
account has a concurrency limit of 1,000, you cannot reserve all 1,000 units of concurrency to a
single function.

Reserving concurrency for a function impacts the concurrency pool that's available to other
functions. For example, if you reserve 100 units of concurrency for function-a, other functions in
your account must share the remaining 900 units of concurrency, even if function-a doesn't use
all 100 reserved concurrency units.

To intentionally throttle a function, set its reserved concurrency to 0. This stops your function from
processing any events until you remove the limit.

Configuring reserved concurrency 369

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

To configure reserved concurrency with the Lambda API, use the following API operations.

• PutFunctionConcurrency

• GetFunctionConcurrency

• DeleteFunctionConcurrency

For example, to configure reserved concurrency with the Amazon Command Line Interface
(CLI), use the put-function-concurrency command. The following command reserves 100
concurrency units for a function named my-function:

aws lambda put-function-concurrency --function-name my-function \
 --reserved-concurrent-executions 100

You should see output that looks like the following:

{
 "ReservedConcurrentExecutions": 100
}

Configuring concurrency with the Lambda API

If your function is currently serving traffic, you can easily view its concurrency metrics using
CloudWatch metrics. Specifically, the ConcurrentExecutions metric shows you the number of
concurrent invocations for each function in your account.

The previous graph suggests that this function serves an average of 5 to 10 concurrent requests
at any given time, and peaks at 20 requests on a typical day. Suppose that there are many other
functions in your account. If this function is critical to your application and you don't want to
drop any requests, use a number greater than or equal to 20 as your reserved concurrency setting.

Configuring reserved concurrency 370

https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionConcurrency.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConcurrency.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionConcurrency.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Amazon Lambda Developer Guide

Alternatively, recall that you can also calculate concurrency using the following formula:

Concurrency = (average requests per second) * (average request duration in seconds)

Multiplying average requests per second with the average request duration in seconds gives you a
rough estimate of how much concurrency you need to reserve. You can estimate average requests
per second using the Invocation metric, and the average request duration in seconds using the
Duration metric. See Working with Lambda function metrics for more details.

Configuring reserved concurrency 371

https://docs.amazonaws.cn/lambda/latest/dg/lambda-concurrency.html#calculating-concurrency

Amazon Lambda Developer Guide

Configuring provisioned concurrency

In Lambda, concurrency is the number of in-flight requests that your function is currently handling.
There are two types of concurrency controls available:

• Reserved concurrency – This represents the maximum number of concurrent instances allocated
to your function. When a function has reserved concurrency, no other function can use that
concurrency. Configuring reserved concurrency for a function incurs no additional charges.

• Provisioned concurrency – This is the number of pre-initialized execution environments allocated
to your function. These execution environments are ready to respond immediately to incoming
function requests. Configuring provisioned concurrency incurs additional charges to your
Amazon Web Services account.

This topic details how to manage and configure provisioned concurrency. For a conceptual
overview of these two types of concurrency controls, see Reserved concurrency and provisioned
concurrency. For more information on configuring reserved concurrency, see the section called
“Configuring reserved concurrency”.

Note

Lambda functions linked to an Amazon MQ event source mapping have a default maximum
concurrency. For Apache Active MQ, the maximum number of concurrent instances is
5. For Rabbit MQ, the maximum number of concurrent instances is 1. Setting reserved
or provisioned concurrency for your function doesn't change these limits. To request an
increase in the default maximum concurrency when using Amazon MQ, contact Amazon
Web Services Support.

Sections

• Configuring provisioned concurrency

• Accurately estimating required provisioned concurrency

• Optimizing latency with provisioned concurrency

• Managing provisioned concurrency with Application Auto Scaling

Configuring provisioned concurrency 372

https://docs.amazonaws.cn/lambda/latest/dg/lambda-concurrency.html#reserved-and-provisioned
https://docs.amazonaws.cn/lambda/latest/dg/lambda-concurrency.html#reserved-and-provisioned

Amazon Lambda Developer Guide

Configuring provisioned concurrency

You can configure provisioned concurrency settings for a function using the Lambda console or the
Lambda API.

To allocate provisioned concurrency for a function (console)

1. Open the Functions page of the Lambda console.

2. Choose the function you want to allocate provisioned concurrency for.

3. Choose Configuration and then choose Concurrency.

4. Under Provisioned concurrency configurations, choose Add configuration.

5. Choose Reserve concurrency. Enter the amount of concurrency to reserve for the function.

6. Choose the qualifier type, and alias or version.

Note

You cannot use provisioned concurrency with the $LATEST version of any function.
If your function has an event source, make sure that event source points to the correct
function alias or version. Otherwise, your function won't use provisioned concurrency
environments.

7. Enter a number under Provisioned concurrency. Lambda provides an estimate of monthly
costs.

8. Choose Save.

You can configure up to the Unreserved account concurrency in your account, minus 100. The
remaining 100 units of concurrency are for functions that aren't using reserved concurrency. For
example, if your account has a concurrency limit of 1,000, and you haven't assigned any reserved
or provisioned concurrency to any of your other functions, you can configure a maximum of 900
provisioned concurrency units for a single function.

Configuring provisioned concurrency 373

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Configuring provisioned concurrency for a function has an impact on the concurrency pool
available to other functions. For instance, if you configure 100 units of provisioned concurrency for
function-a, other functions in your account must share the remaining 900 units of concurrency.
This is true even if function-a doesn't use all 100 units.

It's possible to allocate both reserved concurrency and provisioned concurrency for the same
function. In such cases, the provisioned concurrency cannot exceed the reserved concurrency.

This limitation extends to function versions. The maximum provisioned concurrency you can
assign to a specific function version is the function's reserved concurrency minus the provisioned
concurrency on other function versions.

To configure provisioned concurrency with the Lambda API, use the following API operations.

• PutProvisionedConcurrencyConfig

• GetProvisionedConcurrencyConfig

• ListProvisionedConcurrencyConfigs

• DeleteProvisionedConcurrencyConfig

For example, to configure provisioned concurrency with the Amazon Command Line Interface (CLI),
use the put-provisioned-concurrency-config command. The following command allocates
100 units of provisioned concurrency for the BLUE alias of a function named my-function:

aws lambda put-provisioned-concurrency-config --function-name my-function \
 --qualifier BLUE \

Configuring provisioned concurrency 374

https://docs.amazonaws.cn/lambda/latest/api/API_PutProvisionedConcurrencyConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetProvisionedConcurrencyConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListProvisionedConcurrencyConfigs.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteProvisionedConcurrencyConfig.html

Amazon Lambda Developer Guide

 --provisioned-concurrent-executions 100

You should see output that looks like the following:

{
 "Requested ProvisionedConcurrentExecutions": 100,
 "Allocated ProvisionedConcurrentExecutions": 0,
 "Status": "IN_PROGRESS",
 "LastModified": "2023-01-21T11:30:00+0000"
}

Accurately estimating required provisioned concurrency

You can view any active function's concurrency metrics using CloudWatch metrics. Specifically, the
ConcurrentExecutions metric shows you the number of concurrent invocations for functions in
your account.

The previous graph suggests that this function serves an average of 5 to 10 concurrent requests
at any given time, and peaks at 20 requests. Suppose that there are many other functions in your
account. If this function is critical to your application and you need a low-latency response on
every invocation, configure at least 20 units of provisioned concurrency.

Recall that you can also calculate concurrency using the following formula:

Concurrency = (average requests per second) * (average request duration in seconds)

To estimate how much concurrency you need, multiply average requests per second with the
average request duration in seconds. You can estimate average requests per second using the
Invocation metric, and the average request duration in seconds using the Duration metric.

Configuring provisioned concurrency 375

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-concurrency.html#calculating-concurrency

Amazon Lambda Developer Guide

When configuring provisioned concurrency, Lambda suggests adding a 10% buffer on top of the
amount of concurrency your function typically needs. For example, if your function usually peaks at
200 concurrent requests, set the provisioned concurrency to 220 (200 concurrent requests + 10% =
220 provisioned concurrency).

Optimizing latency with provisioned concurrency

To optimize for latency, the structure of your function code can vary based on whether you use
provisioned concurrency or on-demand environments. For functions running on provisioned
concurrency, Lambda runs any initialization code, such as loading libraries and instantiating clients,
during allocation time. Therefore, it's advisable to move as much initialization outside of the
main function handler to avoid impacting latency during actual function invocations. In contrast,
initializing libraries or instantiating clients within your main handler code means your function
must run this each time it's invoked, regardless of whether you're using provisioned concurrency.

For on-demand invocations, Lambda may need to rerun your initialization code every time your
function experiences a cold start. For such functions, you may choose to defer initialization of a
specific capability until your function needs it. For example, consider the following control flow for
a Lambda handler:

def handler(event, context):
 ...
 if (some_condition):
 // Initialize CLIENT_A to perform a task
 else:
 // Do nothing

In the previous example, instead of initializing CLIENT_A outside of the main handler, the
developer initialized it within the if statement. By doing this, Lambda runs this code only if
some_condition is met. If you initialize CLIENT_A outside the main handler, Lambda runs that
code on every cold start. This can increase overall latency.

It's possible for your function to use up all of its provisioned concurrency. Lambda uses on-demand
instances to handle any excess traffic. To determine the type of initialization Lambda used for a
specific environment, check the value of the AWS_LAMBDA_INITIALIZATION_TYPE environment
variable. This variable has two possible values: provisioned-concurrency or on-demand. The
value of AWS_LAMBDA_INITIALIZATION_TYPE is immutable and remains constant throughout
the lifetime of the environment.

Configuring provisioned concurrency 376

Amazon Lambda Developer Guide

If you're using the .NET 6 or .NET 7 runtimes, you can configure the AWS_LAMBDA_DOTNET_PREJIT
environment variable to improve the latency for functions, even if they don't use provisioned
concurrency. The .NET runtime employs lazy compilation and initialization for each library that
your code calls for the first time. As a result, the first invocation of a Lambda function may
take longer than subsequent ones. To mitigate this, you can choose one of three values for
AWS_LAMBDA_DOTNET_PREJIT:

• ProvisionedConcurrency: Lambda performs ahead-of-time JIT compilation for all
environments using provisioned concurrency. This is the default value.

• Always: Lambda performs ahead-of-time JIT compilation for every environment, even if the
function doesn't use provisioned concurrency.

• Never: Lambda disables ahead-of-time JIT compilation for all environments.

For provisioned concurrency environments, your function's initialization code runs during
allocation, and periodically as Lambda recycles instances of your environment. You can see
the initialization time in logs and traces after an environment instance processes a request. It's
important to note that Lambda bills you for initialization even if the environment instance never
processes a request. Provisioned concurrency runs continually and incurs separate billing from
initialization and invocation costs. For more details, see Amazon Lambda Pricing.

Also, when you configure a Lambda function with provisioned concurrency, Lambda pre-initializes
that execution environment so that it's available in advance of function invocation requests.
However, your function publishes invocation logs to CloudWatch only when the function is actually
invoked. Therefore, the Init Duration field appears in the REPORT log line of the first function
invocation, even though the initialization happened ahead of time. This does not mean the
function experienced a cold start.

For additional guidance on optimizing functions using provisioned concurrency, see Lambda
execution environments in Serverless Land.

Managing provisioned concurrency with Application Auto Scaling

You can use Application Auto Scaling to manage provisioned concurrency on a schedule or based
on utilization. If your function receives predictable traffic patterns, use scheduled scaling. If you
want your function to maintain a specific utilization percentage, use a target tracking scaling
policy.

Configuring provisioned concurrency 377

https://aws.amazon.com/lambda/pricing/
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/execution-environments
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/execution-environments

Amazon Lambda Developer Guide

Scheduled scaling

With Application Auto Scaling, you can set your own scaling schedule according to predictable
load changes. For more information and examples, see Scheduled scaling for Application Auto
Scaling in the Application Auto Scaling User Guide, and Scheduling Amazon Lambda Provisioned
Concurrency for recurring peak usage on the Amazon Compute Blog.

Target tracking

With target tracking, Application Auto Scaling creates and manages a set of CloudWatch alarms
based on how you define your scaling policy. When these alarms activate, Application Auto Scaling
automatically adjusts the amount of environments allocated using provisioned concurrency. Use
target tracking for applications that don't have predictable traffic patterns.

To scale provisioned concurrency using target tracking, use the RegisterScalableTarget and
PutScalingPolicy Application Auto Scaling API operations. For example, if you're using the
Amazon Command Line Interface (CLI), follow these steps:

1. Register a function's alias as a scaling target. The following example registers the BLUE alias of
a function named my-function:

aws application-autoscaling register-scalable-target --service-namespace lambda \
 --resource-id function:my-function:BLUE --min-capacity 1 --max-capacity 100 \
 --scalable-dimension lambda:function:ProvisionedConcurrency

2. Apply a scaling policy to the target. The following example configures Application Auto Scaling
to adjust the provisioned concurrency configuration for an alias to keep utilization near 70
percent, but you can apply any value between 10% and 90%.

aws application-autoscaling put-scaling-policy \
 --service-namespace lambda \
 --scalable-dimension lambda:function:ProvisionedConcurrency \
 --resource-id function:my-function:BLUE \
 --policy-name my-policy \
 --policy-type TargetTrackingScaling \
 --target-tracking-scaling-policy-configuration '{ "TargetValue":
 0.7, "PredefinedMetricSpecification": { "PredefinedMetricType":
 "LambdaProvisionedConcurrencyUtilization" }}'

You should see output that looks like this:

Configuring provisioned concurrency 378

https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://aws.amazon.com/blogs/compute/scheduling-aws-lambda-provisioned-concurrency-for-recurring-peak-usage/
https://aws.amazon.com/blogs/compute/scheduling-aws-lambda-provisioned-concurrency-for-recurring-peak-usage/

Amazon Lambda Developer Guide

{
 "PolicyARN": "arn:aws:autoscaling:us-
east-2:123456789012:scalingPolicy:12266dbb-1524-xmpl-a64e-9a0a34b996fa:resource/lambda/
function:my-function:BLUE:policyName/my-policy",
 "Alarms": [
 {
 "AlarmName": "TargetTracking-function:my-function:BLUE-AlarmHigh-aed0e274-
xmpl-40fe-8cba-2e78f000c0a7",
 "AlarmARN": "arn:aws:cloudwatch:us-
east-2:123456789012:alarm:TargetTracking-function:my-function:BLUE-AlarmHigh-aed0e274-
xmpl-40fe-8cba-2e78f000c0a7"
 },
 {
 "AlarmName": "TargetTracking-function:my-function:BLUE-AlarmLow-7e1a928e-
xmpl-4d2b-8c01-782321bc6f66",
 "AlarmARN": "arn:aws:cloudwatch:us-
east-2:123456789012:alarm:TargetTracking-function:my-function:BLUE-AlarmLow-7e1a928e-
xmpl-4d2b-8c01-782321bc6f66"
 }
]
}

Application Auto Scaling creates two alarms in CloudWatch. The first alarm triggers when the
utilization of provisioned concurrency consistently exceeds 70%. When this happens, Application
Auto Scaling allocates more provisioned concurrency to reduce utilization. The second alarm
triggers when utilization is consistently less than 63% (90 percent of the 70% target). When this
happens, Application Auto Scaling reduces the alias's provisioned concurrency.

In the following example, a function scales between a minimum and maximum amount of
provisioned concurrency based on utilization.

Configuring provisioned concurrency 379

Amazon Lambda Developer Guide

Legend

•

Function instances

•

Open requests

•

Provisioned concurrency

•

Standard concurrency

When the number of open requests increase, Application Auto Scaling increases provisioned
concurrency in large steps until it reaches the configured maximum. After this, the function
can continue to scale on standard, unreserved concurrency if you haven't reached your account
concurrency limit. When utilization drops and stays low, Application Auto Scaling decreases
provisioned concurrency in smaller periodic steps.

Configuring provisioned concurrency 380

Amazon Lambda Developer Guide

Both of the Application Auto Scaling alarms use the average statistic by default. Functions that
experience quick bursts of traffic may not trigger these alarms. For example, suppose your Lambda
function executes quickly (i.e. 20-100 ms) and your traffic comes in quick bursts. In this case, the
number of requests exceeds the allocated provisioned concurrency during the burst. However,
Application Auto Scaling requires the burst load to sustain for at least 3 minutes in order to
provision additional environments. Additionally, both CloudWatch alarms require 3 data points that
hit the target average to activate the auto scaling policy. If your function experiences quick bursts
of traffic, using the Maximum statistic instead of the Average statistic can be more effective at
scaling provisioned concurrency to minimize cold starts.

For more information on target tracking scaling policies, see Target tracking scaling policies for
Application Auto Scaling.

Configuring provisioned concurrency 381

https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking.html

Amazon Lambda Developer Guide

Lambda scaling behavior

As your function receives more requests, Lambda automatically scales up the number of execution
environments to handle these requests until your account reaches its concurrency quota. However,
to protect against over-scaling in response to sudden bursts of traffic, Lambda limits how fast your
functions can scale. This concurrency scaling rate is the maximum rate at which functions in your
account can scale in response to increased requests. (That is, how quickly Lambda can create new
execution environments.) The concurrency scaling rate differs from the account-level concurrency
limit, which is the total amount of concurrency available to your functions.

Concurrency scaling rate

In each Amazon Web Services Region, and for each function, your concurrency scaling rate
is 1,000 execution environment instances every 10 seconds. In other words, every 10 seconds,
Lambda can allocate at most 1,000 additional execution environment instances to each of your
functions.

Usually, you don't need to worry about this limitation. Lambda's scaling rate is sufficient for most
use cases.

Importantly, the concurrency scaling rate is a function-level limit. This means that each function in
your account can scale independently of other functions.

Note

In practice, Lambda makes a best attempt to refill your concurrency scaling rate
continuously over time, rather than in one single refill of 1,000 units every 10 seconds.

Lambda doesn't accrue unused portions of your concurrency scaling rate. This means that at any
instant in time, your scaling rate is always 1,000 concurrency units at maximum. For example, if you
don't use any of your available 1,000 concurrency units in a 10-second interval, you won't accrue
1,000 additional units in the next 10-second interval. Your concurrency scaling rate is still 1,000 in
the next 10-second interval.

As long as your function continues to receive increasing numbers of requests, then Lambda scales
at the fastest rate available to you, up to your account's concurrency limit. You can limit the
amount of concurrency that individual functions can use by configuring reserved concurrency.

Scaling behavior 382

Amazon Lambda Developer Guide

If requests come in faster than your function can scale, or if your function is at maximum
concurrency, then additional requests fail with a throttling error (429 status code).

Scaling behavior 383

Amazon Lambda Developer Guide

Monitoring concurrency

Lambda emits Amazon CloudWatch metrics to help you monitor concurrency for your functions.
This topic explains these metrics and how to interpret them.

Sections

• General concurrency metrics

• Provisioned concurrency metrics

• Working with the ClaimedAccountConcurrency metric

General concurrency metrics

Use the following metrics to monitor concurrency for your Lambda functions. The granularity for
each metric is 1 minute.

• ConcurrentExecutions – The number of active concurrent invocations at a given point in
time. Lambda emits this metric for all functions, versions, and aliases. For any function in the
Lambda console, Lambda displays the graph for ConcurrentExecutions natively in the
Monitoring tab, under Metrics. View this metric using MAX.

• UnreservedConcurrentExecutions – The number of active concurrent invocations that are
using unreserved concurrency. Lambda emits this metric across all functions in a region. View
this metric using MAX.

• ClaimedAccountConcurrency – The amount of concurrency that is unavailable
for on-demand invocations. ClaimedAccountConcurrency is equal to
UnreservedConcurrentExecutions plus the amount of allocated concurrency (i.e. the total
reserved concurrency plus total provisioned concurrency). If ClaimedAccountConcurrency
exceeds your account concurrency limit, you can request a higher account concurrency
limit. View this metric using MAX. For more information, see Working with the
ClaimedAccountConcurrency metric.

Provisioned concurrency metrics

Use the following metrics to monitor Lambda functions using provisioned concurrency. The
granularity for each metric is 1 minute.

Monitoring concurrency 384

https://aws.amazon.com/premiumsupport/knowledge-center/lambda-concurrency-limit-increase/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-concurrency-limit-increase/

Amazon Lambda Developer Guide

• ProvisionedConcurrentExecutions – The number of execution environment instances that
are actively processing an invocation on provisioned concurrency. Lambda emits this metric for
each function version and alias with provisioned concurrency configured. View this metric using
MAX.

ProvisionedConcurrentExecutions is not the same as the total number of provisioned
concurrency that you allocate. For example, suppose you allocate 100 units of provisioned
concurrency to a function version. During any given minute, if at most 50 out of those
100 execution environments were handling invocations simultaneously, then the value of
MAX(ProvisionedConcurrentExecutions) is 50.

• ProvisionedConcurrentInvocations – The number of times Lambda invokes your function
code using provisioned concurrency. Lambda emits this metric for each function version and alias
with provisioned concurrency configured. View this metric using SUM.

ProvisionedConcurrentInvocations differs from ProvisionedConcurrentExecutions
in that ProvisionedConcurrentInvocations counts total number of invocations, while
ProvisionedConcurrentExecutions counts number of active environments. To understand
this distinction, consider the following scenario:

In this example, suppose that you receive 1 invocation per minute, and each invocation takes 2
minutes to complete. Each orange horizontal bar represents a single request. Suppose that you
allocate 10 units of provisioned concurrency to this function, such that each request runs on
provisioned concurrency.

Monitoring concurrency 385

Amazon Lambda Developer Guide

In between minutes 0 and 1, Request 1 comes in. At minute 1, the value for
MAX(ProvisionedConcurrentExecutions) is 1, since at most 1 execution environment was
active during the past minute. The value for SUM(ProvisionedConcurrentInvocations) is
also 1, since 1 new request came in during the past minute.

In between minutes 1 and 2, Request 2 comes in, and Request 1 continues to run. At
minute 2, the value for MAX(ProvisionedConcurrentExecutions) is 2, since at most
2 execution environments were active during the past minute. However, the value for
SUM(ProvisionedConcurrentInvocations) is 1, since only 1 new request came in during the
past minute. This metric behavior continues until the end of the example.

• ProvisionedConcurrencySpilloverInvocations – The number of times
Lambda invokes your function on standard (reserved or unreserved) concurrency
when all provisioned concurrency is in use. Lambda emits this metric for each
function version and alias with provisioned concurrency configured. View this
metric using SUM. The value of ProvisionedConcurrentInvocations +
ProvisionedConcurrencySpilloverInvocations should be equal to the total number of
function invocations (i.e. the Invocations metric).

ProvisionedConcurrencyUtilization – The percentage of provisioned concurrency in
use (i.e. the value of ProvisionedConcurrentExecutions divided by the total amount of
provisioned concurrency allocated). Lambda emits this metric for each function version and alias
with provisioned concurrency configured. View this metric using MAX.

For example, suppose you provision 100 units of provisioned concurrency to a function version.
During any given minute, if at most 60 out of those 100 execution environments were handling
invocations simultaneously, then the value of MAX(ProvisionedConcurrentExecutions) is 60,
and the value of MAX(ProvisionedConcurrentUtilization) is 0.6.

A high value for ProvisionedConcurrencySpilloverInvocations may indicate that you
need to allocate additional provisioned concurrency for your function. Alternatively, you can
configure Application Auto Scaling to handle automatic scaling of provisioned concurrency based
on pre-defined thresholds.

Conversely, consistently low values for ProvisionedConcurrencyUtilization may indicate
that you over-allocated provisioned concurrency for your function.

Monitoring concurrency 386

https://docs.amazonaws.cn/lambda/latest/dg/provisioned-concurrency.html#managing-provisioned-concurency
https://docs.amazonaws.cn/lambda/latest/dg/provisioned-concurrency.html#managing-provisioned-concurency

Amazon Lambda Developer Guide

Working with the ClaimedAccountConcurrency metric

Lambda uses the ClaimedAccountConcurrency metric to determine how much
concurrency your account is available for on-demand invocations. Lambda calculates
ClaimedAccountConcurrency using the following formula:

ClaimedAccountConcurrency = UnreservedConcurrentExecutions + (allocated concurrency)

UnreservedConcurrentExecutions is the number of active concurrent invocations that
are using unreserved concurrency. Allocated concurrency is the sum of the following two parts
(substituting RC as "reserved concurrency" and PC as "provisioned concurrency"):

• The total RC across all functions in a Region.

• The total PC across all functions in a Region that use PC, excluding functions that use RC.

Note

You can’t allocate more PC than RC for a function. Thus, a function’s RC is always greater
than or equal to its PC. To calculate the contribution to allocated concurrency for such
functions with both PC and RC, Lambda considers only RC, which is the maximum of the
two.

Lambda uses the ClaimedAccountConcurrency metric, rather than ConcurrentExecutions,
to determine how much concurrency is available for on-demand invocations. While the
ConcurrentExecutions metric is useful for tracking the number of active concurrent
invocations, it doesn't always reflect your true concurrency availability. This is because Lambda also
considers reserved concurrency and provisioned concurrency to determine availability.

To illustrate ClaimedAccountConcurrency, consider a scenario where you configure a lot of
reserved concurrency and provisioned concurrency across your functions that go largely unused.
In the following example, assume that your account concurrency limit is 1,000, and you have two
main functions in your account: function-orange and function-blue. You allocate 600 units
of reserved concurrency for function-orange. You allocate 200 units of provisioned concurrency
for function-blue. Suppose that over time, you deploy additional functions and observe the
following traffic pattern:

Monitoring concurrency 387

Amazon Lambda Developer Guide

In the previous diagram, the black lines indicate the actual concurrency use over time, and the red
line indicates the value of ClaimedAccountConcurrency over time. Throughout this scenario,
ClaimedAccountConcurrency is 800 at minimum, despite low actual concurrency utilization
across your functions. This is because you allocated 800 total units of concurrency for function-
orange and function-blue. From Lambda's perspective, you have "claimed" this concurrency for
use, so you effectively have only 200 units of concurrency remaining for other functions.

For this scenario, allocated concurrency is 800 in the ClaimedAccountConcurrency formula. We
can then derive the value of ClaimedAccountConcurrency at various points in the diagram:

• At t1, ClaimedAccountConcurrency is 800 (800 + 0 UnreservedConcurrentExecutions).

• At t2, ClaimedAccountConcurrency is 900 (800 + 100
UnreservedConcurrentExecutions).

• At t3, ClaimedAccountConcurrency is again 900 (800 + 100
UnreservedConcurrentExecutions).

Monitoring concurrency 388

Amazon Lambda Developer Guide

Setting up the ClaimedAccountConcurrency metric in CloudWatch

Lambda emits the ClaimedAccountConcurrency metric in CloudWatch. Use this metric along
with the value of SERVICE_QUOTA(ConcurrentExecutions) to get the percent utilization of
concurrency in your account, as shown in the following formula:

Utilization = (ClaimedAccountConcurrency/SERVICE_QUOTA(ConcurrentExecutions)) * 100%

The following screenshot illustrates how you can graph this formula in CloudWatch. The green
claim_utilization line represents the concurrency utilization in this account, which is at
around 40%:

The previous screenshot also includes a CloudWatch alarm that goes into ALARM state when the
concurrency utilization exceeds 70%. You can use the ClaimedAccountConcurrency metric
along with similar alarms to proactively determine when you might need to request a higher
account concurrency limit.

Monitoring concurrency 389

Amazon Lambda Developer Guide

Configuring code signing for Amazon Lambda

Code signing for Amazon Lambda helps to ensure that only trusted code runs in your Lambda
functions. When you enable code signing for a function, Lambda checks every code deployment
and verifies that the code package is signed by a trusted source.

Note

Functions defined as container images do not support code signing.

To verify code integrity, use Amazon Signer to create digitally signed code packages for functions
and layers. When a user attempts to deploy a code package, Lambda performs validation checks on
the code package before accepting the deployment. Because code signing validation checks run at
deployment time, there is no performance impact on function execution.

You also use Amazon Signer to create signing profiles. You use a signing profile to create the signed
code package. Use Amazon Identity and Access Management (IAM) to control who can sign code
packages and create signing profiles. For more information, see Authentication and Access Control
in the Amazon Signer Developer Guide.

To enable code signing for a function, you create a code signing configuration and attach it to the
function. A code signing configuration defines a list of allowed signing profiles and the policy
action to take if any of the validation checks fail.

Lambda layers follow the same signed code package format as function code packages. When you
add a layer to a function that has code signing enabled, Lambda checks that the layer is signed by
an allowed signing profile. When you enable code signing for a function, all layers that are added
to the function must also be signed by one of the allowed signing profiles.

Use IAM to control who can create code signing configurations. Typically, you allow only specific
administrative users to have this ability. Additionally, you can set up IAM policies to enforce that
developers only create functions that have code signing enabled.

You can configure code signing to log changes to Amazon CloudTrail. Successful and blocked
deployments to functions are logged to CloudTrail with information about the signature and
validation checks.

Code signing 390

https://docs.amazonaws.cn/signer/latest/developerguide/Welcome.html
https://docs.amazonaws.cn/signer/latest/developerguide/accessctrl-toplevel.html

Amazon Lambda Developer Guide

You can configure code signing for your functions using the Lambda console, the Amazon
Command Line Interface (Amazon CLI), Amazon CloudFormation, and the Amazon Serverless
Application Model (Amazon SAM).

There is no additional charge for using Amazon Signer or code signing for Amazon Lambda.

Sections

• Signature validation

• Configuration prerequisites

• Creating code signing configurations

• Updating a code signing configuration

• Deleting a code signing configuration

• Enabling code signing for a function

• Configuring IAM policies

• Configuring code signing with the Lambda API

Signature validation

Lambda performs the following validation checks when you deploy a signed code package to your
function:

1. Integrity – Validates that the code package has not been modified since it was signed. Lambda
compares the hash of the package with the hash from the signature.

2. Expiry – Validates that the signature of the code package has not expired.

3. Mismatch – Validates that the code package is signed with one of the allowed signing profiles
for the Lambda function. A mismatch also occurs if a signature is not present.

4. Revocation – Validates that the signature of the code package has not been revoked.

The signature validation policy defined in the code signing configuration determines which of the
following actions Lambda takes if any of the validation checks fail:

• Warn – Lambda allows the deployment of the code package, but issues a warning. Lambda issues
a new Amazon CloudWatch metric and also stores the warning in the CloudTrail log.

• Enforce – Lambda issues a warning (the same as for the Warn action) and blocks the deployment
of the code package.

Signature validation 391

Amazon Lambda Developer Guide

You can configure the policy for the expiry, mismatch, and revocation validation checks. Note that
you cannot configure a policy for the integrity check. If the integrity check fails, Lambda blocks
deployment.

Configuration prerequisites

Before you can configure code signing for a Lambda function, use Amazon Signer to do the
following:

• Create one or more signing profiles.

• Use a signing profile to create a signed code package for your function.

For more information, see Creating Signing Profiles (Console) in the Amazon Signer Developer
Guide.

Creating code signing configurations

A code signing configuration defines a list of allowed signing profiles and the signature validation
policy.

To create a code signing configuration (console)

1. Open the Code signing configurations page of the Lambda console.

2. Choose Create configuration.

3. For Description, enter a descriptive name for the configuration.

4. Under Signing profiles, add up to 20 signing profiles to the configuration.

a. For Signing profile version ARN, choose a profile version's Amazon Resource Name (ARN),
or enter the ARN.

b. To add an additional signing profile, choose Add signing profiles.

5. Under Signature validation policy, choose Warn or Enforce.

6. Choose Create configuration.

Updating a code signing configuration

When you update a code signing configuration, the changes impact the future deployments of
functions that have the code signing configuration attached.

Configuration prerequisites 392

https://docs.amazonaws.cn/signer/latest/developerguide/ConsoleLambda.html
https://console.amazonaws.cn/lambda/home#/code-signing-configurations

Amazon Lambda Developer Guide

To update a code signing configuration (console)

1. Open the Code signing configurations page of the Lambda console.

2. Select a code signing configuration to update, and then choose Edit.

3. For Description, enter a descriptive name for the configuration.

4. Under Signing profiles, add up to 20 signing profiles to the configuration.

a. For Signing profile version ARN, choose a profile version's Amazon Resource Name (ARN),
or enter the ARN.

b. To add an additional signing profile, choose Add signing profiles.

5. Under Signature validation policy, choose Warn or Enforce.

6. Choose Save changes.

Deleting a code signing configuration

You can delete a code signing configuration only if no functions are using it.

To delete a code signing configuration (console)

1. Open the Code signing configurations page of the Lambda console.

2. Select a code signing configuration to delete, and then choose Delete.

3. To confirm, choose Delete again.

Enabling code signing for a function

To enable code signing for a function, you associate a code signing configuration with the function.

To associate a code signing configuration with a function (console)

1. Open the Functions page of the Lambda console.

2. Choose the function for which you want to enable code signing.

3. Open the Configuration tab.

4. Scroll down and choose Code signing.

5. Choose Edit.

6. In Edit code signing, choose a code signing configuration for this function.

Deleting a code signing configuration 393

https://console.amazonaws.cn/lambda/home#/code-signing-configurations
https://console.amazonaws.cn/lambda/home#/code-signing-configurations
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

7. Choose Save.

Configuring IAM policies

To grant permission for a user to access the code signing API operations, attach one or more policy
statements to the user policy. For more information about user policies, see Identity-based IAM
policies for Lambda.

The following example policy statement grants permission to create, update, and retrieve code
signing configurations.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:CreateCodeSigningConfig",
 "lambda:UpdateCodeSigningConfig",
 "lambda:GetCodeSigningConfig"
],
 "Resource": "*"
 }
]
}

Administrators can use the CodeSigningConfigArn condition key to specify the code signing
configurations that developers must use to create or update your functions.

The following example policy statement grants permission to create a function. The
policy statement includes a lambda:CodeSigningConfigArn condition to specify the
allowed code signing configuration. Lambda blocks any CreateFunction API request if its
CodeSigningConfigArn parameter is missing or does not match the value in the condition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowReferencingCodeSigningConfig",
 "Effect": "Allow",
 "Action": [

Configuring IAM policies 394

Amazon Lambda Developer Guide

 "lambda:CreateFunction",
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "lambda:CodeSigningConfigArn":
 “arn:aws-cn:lambda:us-west-2:123456789012:code-signing-
config:csc-0d4518bd353a0a7c6”
 }
 }
 }
]
}

Configuring code signing with the Lambda API

To manage code signing configurations with the Amazon CLI or Amazon SDK, use the following API
operations:

• ListCodeSigningConfigs

• CreateCodeSigningConfig

• GetCodeSigningConfig

• UpdateCodeSigningConfig

• DeleteCodeSigningConfig

To manage the code signing configuration for a function, use the following API operations:

• CreateFunction

• GetFunctionCodeSigningConfig

• PutFunctionCodeSigningConfig

• DeleteFunctionCodeSigningConfig

• ListFunctionsByCodeSigningConfig

Configuring code signing with the Lambda API 395

https://docs.amazonaws.cn/lambda/latest/api/API_ListCodeSigningConfigs.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListFunctionsByCodeSigningConfig.html

Amazon Lambda Developer Guide

Using tags on Lambda functions

You can tag Amazon Lambda functions to activate attribute-based access control (ABAC) and
to organize them by owner, project, or department. Tags are free-form key-value pairs that are
supported across Amazon services for use in ABAC, filtering resources, and adding detail to billing
reports.

Tags apply at the function level, not to versions or aliases. Tags are not part of the version-specific
configuration that Lambda creates a snapshot of when you publish a version.

Sections

• Permissions required for working with tags

• Using tags with the Lambda console

• Using tags with the Amazon CLI

• Requirements for tags

Permissions required for working with tags

Grant appropriate permissions to the Amazon Identity and Access Management (IAM) identity (user,
group, or role) for the person working with the function:

• lambda:ListTags – When a function has tags, grant this permission to anyone who needs to call
GetFunction or ListTags on it.

• lambda:TagResource – Grant this permission to anyone who needs to call CreateFunction or
TagResource.

For more information, see Identity-based IAM policies for Lambda.

Using tags with the Lambda console

You can use the Lambda console to create functions that have tags, add tags to existing functions,
and filter functions by tags that you add.

To add tags when you create a function

1. Open the Functions page of the Lambda console.

Tags 396

https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

2. Choose Create function.

3. Choose Author from scratch or Container image.

4. Under Basic information, do the following:

a. For Function name, enter the function name. Function names are limited to 64 characters
in length.

b. For Runtime, choose the language version to use for your function.

c. (Optional) For Architecture, choose the instruction set architecture to use for your
function. The default architecture is x86_64. When you build the deployment package for
your function, make sure that it is compatible with the instruction set architecture that
you choose.

5. Expand Advanced settings, and then select Enable tags.

6. Choose Add new tag, and then enter a Key and an optional Value. To add more tags, repeat
this step.

7. Choose Create function.

To add tags to an existing function

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose Configuration, and then choose Tags.

4. Under Tags, choose Manage tags.

5. Choose Add new tag, and then enter a Key and an optional Value. To add more tags, repeat
this step.

6. Choose Save.

Using tags with the console 397

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

To filter functions with tags

1. Open the Functions page of the Lambda console.

2. Choose the search bar to see a list of function attributes and tag keys.

3. Choose a tag key to see a list of values that are in use in the current Amazon Region.

4. Choose a value to see functions with that value, or choose (all values) to see all functions that
have a tag with that key.

The search bar also supports searching for tag keys. Enter tag to see only a list of tag keys, or
enter the name of a key to find it in the list.

Using tags with the console 398

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Using tags with the Amazon CLI

Adding and removing tags

To create a new Lambda function with tags, use the create-function command with the --tags
option.

aws lambda create-function --function-name my-function
--handler index.js --runtime nodejs20.x \
--role arn:aws-cn:iam::123456789012:role/lambda-role \
--tags Department=Marketing,CostCenter=1234ABCD

To add tags to an existing function, use the tag-resource command.

aws lambda tag-resource \
--resource arn:aws-cn:lambda:us-east-2:123456789012:function:my-function \
--tags Department=Marketing,CostCenter=1234ABCD

To remove tags, use the untag-resource command.

aws lambda untag-resource --resource arn:aws:lambda:us-east-1:123456789012:function:my-
function \
--tag-keys Department

Viewing tags on a function

If you want to view the tags that are applied to a specific Lambda function, you can use either of
the following Amazon CLI commands:

• ListTags – To view a list of the tags associated with this function, include your Lambda function
ARN (Amazon Resource Name):

aws lambda list-tags --resource arn:aws:lambda:us-east-1:123456789012:function:my-
function

• GetFunction – To view a list of the tags associated with this function, include your Lambda
function name:

aws lambda get-function --function-name my-function

Using tags with the Amazon CLI 399

https://docs.amazonaws.cn/lambda/latest/api/API_ListTags.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunction.html

Amazon Lambda Developer Guide

Filtering functions by tag

You can use the Amazon Resource Groups Tagging API GetResources API operation to filter
your resources by tags. The GetResources operation receives up to 10 filters, with each filter
containing a tag key and up to 10 tag values. You provide GetResources with a ResourceType
to filter by specific resource types.

For more information about Amazon Resource Groups, see What are resource groups? in the
Amazon Resource Groups and Tags User Guide.

Requirements for tags

The following requirements apply to tags:

• Maximum number of tags per resource: 50

• Maximum key length: 128 Unicode characters in UTF-8

• Maximum value length: 256 Unicode characters in UTF-8

• Tag keys and values are case sensitive.

• Do not use the aws: prefix in your tag names or values because it is reserved for Amazon use.
You can't edit or delete tag names or values with this prefix. Tags with this prefix do not count
against your tags per resource limit.

• If you plan to use your tagging schema across multiple services and resources, remember that
other services may have restrictions on allowed characters. Generally allowed characters are:
letters, spaces, and numbers representable in UTF-8, plus the following special characters: + - = .
_ : / @.

Requirements for tags 400

https://docs.amazonaws.cn/resourcegroupstagging/latest/APIReference/API_GetResources.html
https://docs.amazonaws.cn/ARG/latest/userguide/resource-groups.html

Amazon Lambda Developer Guide

Testing serverless functions and applications

Testing serverless functions uses traditional test types and techniques, but you must also consider
testing serverless applications as a whole. Cloud-based tests will provide the most accurate
measure of quality of both your functions and serverless applications.

A serverless application architecture includes managed services that provide critical application
functionality through API calls. For this reason, your development cycle should include automated
tests that verify functionality when your function and services interact.

If you do not create cloud-based tests, you could encounter issues due to differences between your
local environment and the deployed environment. Your continuous integration process should run
tests against a suite of resources provisioned in the cloud before promoting your code to the next
deployment environment, such as QA, Staging, or Production.

Continue reading this short guide to learn about testing strategies for serverless applications, or
visit the Serverless Test Samples repository to dive in with practical examples, specific to your
chosen language and runtime.

For serverless testing, you will still write unit, integration and end-to-end tests.

• Unit tests - Tests that run against an isolated block of code. For example, verifying the business
logic to calculate the delivery charge given a particular item and destination.

• Integration tests - Tests involving two or more components or services that interact, typically in
a cloud environment. For example, verifying a function processes events from a queue.

401

https://github.com/aws-samples/serverless-test-samples

Amazon Lambda Developer Guide

• End-to-end tests - Tests that verify behavior across an entire application. For example, ensuring
infrastructure is set up correctly and that events flow between services as expected to record a
customer's order.

Targeted business outcomes

Testing serverless solutions may require slightly more time to set up tests that verify event-driven
interactions between services. Keep the following practical business reasons in mind as you read
this guide:

• Increase the quality of your application

• Decrease time to build features and fix bugs

The quality of an application depends on testing a variety of scenarios to verify functionality.
Carefully considering the business scenarios and automating those tests to run against cloud
services will raise the quality of your application.

Software bugs and configuration problems have the least impact on cost and schedule when
caught during an iterative development cycle. If issues remain undetected during development,
finding and fixing in production requires more effort by more people.

A well planned serverless testing strategy will increase software quality and improve iteration time
by verifying your Lambda functions and applications perform as expected in a cloud environment.

What to test

We recommend adopting a testing strategy that tests managed service behaviors, cloud
configuration, security policies, and the integration with your code to improve software quality.
Behavior testing, also known as black box testing, verifies a system works as expected without
knowing all the internals.

• Run unit tests to check business logic inside Lambda functions.

• Verify integrated services are actually invoked, and input parameters are correct.

• Check that an event goes through all expected services end-to-end in a workflow.

Targeted business outcomes 402

Amazon Lambda Developer Guide

In traditional server-based architecture, teams often define a scope for testing to only include
code that runs on the application server. Other components, services, or dependencies are often
considered external and out of scope for testing.

Serverless applications often consist of small units of work, such as Lambda functions that retrieve
products from a database, or process items from a queue, or resize an image in storage. Each
component runs in their own environment. Teams will likely be responsible for many of these small
units within a single application.

Some application functionality can be delegated entirely to managed services such as Amazon S3,
or created without using any internally developed code. There is no need to test these managed
services, but you do need to test the integration with these services.

How to test serverless

You are probably familiar with how to test applications deployed locally: You write tests that run
against code running entirely on your desktop operating system, or inside containers. For example,
you might invoke a local web service component with a request and then make assertions about
the response.

Serverless solutions are built from your function code and cloud-based managed services, such
as queues, databases, event buses, and messaging systems. These components are all connected
through an event-driven architecture, where messages, called events, flow from one resource
to another. These interactions can be synchronous, such as when a web service returns results
immediately, or an asynchronous action which complete at a later time, such as placing items in a
queue or starting a workflow step. Your testing strategy must include both scenarios and test the
interactions between services. For asynchronous interactions, you may need detect side effects in
downstream components that may not be immediately observable.

Replicating an entire cloud environment, including queues, database tables, event buses, security
policies, and more, is not practical. You will inevitably encounter issues due to differences between
your local environment and your deployed environments in the cloud. The variations between your
environments will increase the time to reproduce and fix bugs.

In serverless applications, architecture components commonly exist entirely in the cloud, so testing
against code and services in the cloud is necessary to develop features and fix bugs.

How to test serverless 403

Amazon Lambda Developer Guide

Testing techniques

In reality, your testing strategy will likely include a mix of techniques to increase quality of your
solutions. You will use quick interactive tests to debug functions in the console, automated unit
tests to check isolated business logic, verification of calls to external services with mocks, and
occasional testing against emulators that mimic a service.

• Testing in the cloud - you deploy infrastructure and code to test with actual services, security
policies, configurations and infrastructure specific parameters. Cloud-based tests provide the
most accurate measure of quality of your code.

Debugging a function in the console is a quick way to test in the cloud. You can choose from a
library of sample test events or create a custom event to test a function in isolation. You can also
share test events through the console with your team.

To automate testing in the development and build lifecycle, you will need to test outside of the
console. See the language specific testing sections in this guide for automation strategies and
resources.

• Testing with mocks (also called fakes) - Mocks are objects within your code that simulate and
stand-in for an external service. Mocks provide pre-defined behavior to verify service calls
and parameters. A fake is a mock implementation that takes shortcuts to simplify or improve
performance. For example, a fake data access object might return data from an in-memory
datastore. Mocks can mimic and simplify complex dependencies, but can also lead to more
mocks in order to replace nested dependencies.

• Testing with emulators - You can setup applications (sometimes from a third party) to mimic
a cloud service in your local environment. Speed is their strength, but setup and parity with
production services is their weakness. Use emulators sparingly.

Testing in the cloud

Testing in the cloud is valuable for all phases of testing, including unit tests, integration tests, and
end-to-end tests. When you run tests against cloud-based code that also interacts with cloud-
based services, you get the most accurate measure of quality of your code.

A convenient way to run a Lambda function in the cloud is with a test event in the Amazon Web
Services Management Console. A test event is a JSON input to your function. If your function does
not require input, the event can be an empty JSON document ({}). The console provides sample

Testing techniques 404

Amazon Lambda Developer Guide

events for a variety of service integrations. After creating an event in the console, you can also
share it with your team to make testing easier and consistent.

Learn how to debug a sample function in the console.

Note

Although running functions in the console is a quick way to debug, automating your test
cycles is essential to increase application quality and development speed.

Test automation samples are available in the Serverless Test Samples repository. The following
command line runs an automated Python integration test example:

python -m pytest -s tests/integration -v

Although the test runs locally, it interacts with cloud-based resources. These resources have been
deployed using the Amazon Serverless Application Model and Amazon SAM command line tool.
The test code first retrieves the deployed stack outputs, which includes the API endpoint, function
ARN, and security role. Next, the test sends a request to the API endpoint, which responds with
a list of Amazon S3 buckets. This test runs entirely against cloud-based resources to verify those
resources are deployed, secured, and work as expected.

========================= test session starts =========================
 platform darwin -- Python 3.10.10, pytest-7.3.1, pluggy-1.0.0
 -- /Users/t/code/aws/serverless-test-samples/python-test-samples/apigw-lambda/
venv/bin/python
 cachedir: .pytest_cache
 rootdir: /Users/t/code/aws/serverless-test-samples/python-test-samples/apigw-
lambda
 plugins: mock-3.10.0
 collected 1 item

 tests/integration/test_api_gateway.py::TestApiGateway::test_api_gateway

 --> Stack outputs:

 HelloWorldApi
 = https://p7teqs3162.execute-api.us-west-2.amazonaws.com/Prod/hello/
 > API Gateway endpoint URL for Prod stage for Hello World function

Testing in the cloud 405

https://github.com/aws-samples/serverless-test-samples
https://github.com/aws-samples/serverless-test-samples/blob/main/python-test-samples/apigw-lambda/tests/integration/test_api_gateway.py

Amazon Lambda Developer Guide

 PythonTestDemo
 = arn:aws:lambda:us-west-2:1234567890:function:testing-apigw-lambda-
PythonTestDemo-iSij8evaTdxl
 > Hello World Lambda Function ARN

 PythonTestDemoIamRole
 = arn:aws:iam::1234567890:role/testing-apigw-lambda-PythonTestDemoRole-
IZELQQ9MG4HQ
 > Implicit IAM Role created for Hello World function

 --> Found API endpoint for "testing-apigw-lambda" stack...
 --> https://p7teqs3162.execute-api.us-west-2.amazonaws.com/Prod/hello/
 API Gateway response:
 amplify-dev-123456789-deployment|myapp-prod-p-loggingbucket-123456|s3-java-
bucket-123456789
 PASSED

 ========================= 1 passed in 1.53s =========================

For cloud-native application development, testing in the cloud provides the following benefits:

• You can test every available service.

• You are always using the most recent service APIs and return values.

• A cloud test environment closely resembles your production environment.

• Tests can cover security policies, service quotas, configurations and infrastructure specific
parameters.

• Every developer can quickly create one or more testing environments in the cloud.

• Cloud tests increase confidence your code will run correctly in production.

Testing in the cloud does have some disadvantages. The most obvious negative of testing in the
cloud is that deployments to cloud environments typically take longer than deployments to a local
desktop environments.

Fortunately, tools such as Amazon Serverless Application Model (Amazon SAM) Accelerate, Amazon
Cloud Development Kit (Amazon CDK) watch mode, and SST (3rd party) reduce the latency
involved with cloud deployment iterations. These tools can monitor your infrastructure and code
and automatically deploy incremental updates into your cloud environment.

Testing in the cloud 406

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/accelerate.html
https://docs.amazonaws.cn/cdk/v2/guide/cli.html#cli-deploy-watch
https://docs.amazonaws.cn/cdk/v2/guide/cli.html#cli-deploy-watch
https://sst.dev/

Amazon Lambda Developer Guide

Note

See how to create infrastructure as code in the Serverless Developer Guide to learn more
about Amazon Serverless Application Model, Amazon CloudFormation, and Amazon Cloud
Development Kit (Amazon CDK).

Unlike local testing, testing in the cloud requires additional resources which may incur service
costs. Creating isolated testing environments may increase the burden on your DevOps teams,
especially in organizations with strict controls around accounts and infrastructure. Even so, when
working with complex infrastructure scenarios, the cost in developer time to set up and maintain
an intricate local environment could be similar (or more costly) than using disposable testing
environments created with Infrastructure as Code automation tools.

Testing in the cloud, even with these considerations, is still the best way to guarantee the quality
of your serverless solutions.

Testing with mocks

Testing with mocks is a technique where you create replacement objects in your code to simulate
the behavior of a cloud service.

For example, you could write a test that uses a mock of the Amazon S3 service that returns a
specific response whenever the CreateObject method is called. When a test runs, the mock returns
that programmed response without calling Amazon S3, or any other service endpoints.

Mock objects are often generated by a mock framework to reduce development effort. Some mock
frameworks are generic and others are designed specifically for Amazon SDKs, such as Moto, a
Python library for mocking Amazon services and resources.

Note that mock objects differ from emulators in that mocks are typically created or configured by
a developer as part of the test code, whereas emulators are standalone applications that expose
functionality in the same manner as the systems they emulate.

The advantages of using mocks include the following:

• Mocks can simulate third-party services that are beyond the control of your application, such as
APIs and software as a service (SaaS) providers, without needing direct access to those services.

• Mocks are useful for testing failure conditions, especially when such conditions are hard to
simulate, like a service outage.

Testing with mocks 407

https://docs.amazonaws.cn/serverless/latest/devguide/serverless-dev-workflow.html#dev_create-infrastructure-with-code
https://pypi.org/project/moto/

Amazon Lambda Developer Guide

• Mock can provide fast local testing once configured.
• Mocks can provide substitute behavior for virtually any kind of object, so mocking strategies can

create coverage for a wider variety of services than emulators.
• When new features or behaviors become available, mock testing can react more quickly. By using

a generic mock framework, you can simulate new features as soon as the updated Amazon SDK
become available.

Mock testing has these disadvantages:

• Mocks generally require a non-trivial amount of setup and configuration effort, specifically when
trying to determine return values from different services in order to properly mock responses.

• Mocks are written, configured, and must be maintained by developers, increasing their
responsibilities.

• You might need to have access to the cloud in order to understand the APIs and return values of
services.

• Mocks can be difficult to maintain. When mocked cloud API signatures change, or return value
schemas evolve, you need to update your mocks. Mocks also require updates if you extend your
application logic to make calls to new APIs.

• Tests that use mocks might pass in desktop environments but fail in the cloud. Results may not
match the current API. Service configuration and quotas cannot be tested.

• Mock frameworks are limited in testing or detecting Amazon Identity and Access Management
(IAM) policy or quota limitations. Although mocks are better at simulating when authorization
fails or a quota is exceeded, testing cannot determine which outcome will actually occur in a
production environment.

Testing with emulation

Emulators are typically a locally running application which mimics a production Amazon service.

Emulators have APIs that are similar to their cloud counterparts and provide similar return values.
They can also simulate state changes that are initiated by API calls. For example, you might use
Amazon SAM to run a function with Amazon SAM local to emulate the Lambda service so that you
can quickly invoke a function. See Amazon SAM local in the Amazon Serverless Application Model
Developer Guide for details.

The advantages of test with emulators include the following:

• Emulators can facilitate fast local development iterations and testing.

Testing with emulation 408

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/using-sam-cli-local.html

Amazon Lambda Developer Guide

• Emulators provide a familiar environment for developers used to developing code in a local
environment. For example, if you’re familiar with the development of an n-tier application, you
might have a database engine and web server, similar to those running in production, running on
your local machine to provide quick, local, isolated test capability.

• Emulators do not require any changes to cloud infrastructure (such as developer cloud accounts),
so it’s easy to implement with existing testing patterns.

Testing with emulators has these disadvantages:

• Emulators can be difficult to set up and replicate, especially when used in CI/CD pipelines. This
can increase the workload of IT staff or developers who manage their own software.

• Emulated features and APIs typically lag behind service updates. This can lead to errors because
tested code does not match the actual API, and impede the adoption of new features.

• Emulators require support, updates, bug fixes, and feature parity enhancements. These are the
responsibility of the emulator author, which could be a third-party company.

• Tests that rely on emulators may provide successful results locally, but fail in the cloud due to
production security policies, inter-service configurations, or exceeding Lambda quotas.

• Many Amazon services do not have emulators available. If you rely on emulation, you may not
have a satisfactory testing option for portions of your application.

Best practices

The following sections provide recommendations for successful serverless application testing.

You can find practical examples of tests and test automation in the Serverless Test Samples
repository.

Prioritize testing in the cloud

Testing in the cloud provides the most reliable, accurate, and complete test coverage. Performing
tests in the context of the cloud will comprehensively test not only business logic but also security
policies, service configurations, quotas, and the most up to date API signatures and return values.

Structure your code for testability

Simplify your tests and Lambda functions by separating Lambda-specific code from your core
business logic.

Best practices 409

https://github.com/aws-samples/serverless-test-samples
https://github.com/aws-samples/serverless-test-samples

Amazon Lambda Developer Guide

Your Lambda function handler should be a slim adapter that takes in event data and passes
only the details that matter to your business logic method(s). With this strategy, you can wrap
comprehensive tests around your business logic without worrying about Lambda-specific details.
Your Amazon Lambda functions should not require setting up a complex environment or large
amount of dependencies to create and initialize the component under test.

Generally speaking, you should write a handler that extracts and validates data from the incoming
event and context objects, then sends that input to methods that perform your business logic.

Accelerate development feedback loops

There are tools and techniques to accelerate development feedback loops. For example, Amazon
SAM Accelerate and Amazon CDK watch mode both decrease the time required to update cloud
environments.

The samples in the GitHub Serverless Test Samples repository explore some of these techniques.

We also recommend that you create and test cloud resources as early as possible during
development—not only after a check-in to source control. This practice enables quicker exploration
and experimentation when developing solutions. In addition, automating deployment from a
development machine helps you discover cloud configuration problems more quickly and reduces
wasted effort for updates and code review processes.

Focus on integration tests

When building applications with Lambda, testing components together is a best practice.

Tests that run against two or more architectural components are called integration tests. The goal
of integration tests is to understand not only how your code will execute across components,
but how the environment hosting your code will behave. End-to-end tests are special types of
integration tests that verify behaviors across an entire application.

To build integration tests, deploy your application to a cloud environment. This can be done from a
local environment or through a CI/CD pipeline. Then, write tests to exercise the system under test
(SUT) and validate expected behavior.

For example, the system under test could be an application that uses API Gateway, Lambda and
DynamoDB. A test could make a synthetic HTTP call to an API Gateway endpoint and validate that
the response included the expected payload. This test validates that the Amazon Lambda code

Accelerate development feedback loops 410

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/accelerate.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/accelerate.html
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch
https://github.com/aws-samples/serverless-test-samples

Amazon Lambda Developer Guide

is correct, and that each service is correctly configured to handle the request, including the IAM
permissions between them. Further, you could design the test to write records of various sizes to
verify your service quotas, such as max record size in DynamoDB, are set up correctly.

Create isolated test environments

Testing in the cloud typically requires isolated developer environments, so that tests, data, and
events do not overlap.

One approach is to provide each developer a dedicated Amazon account. This will avoid conflicts
with resource naming that can occur when multiple developers working in a shared code base,
attempt to deploy resources or invoke an API.

Automated test processes should create uniquely named resources for each stack. For example,
you can set up scripts or TOML configuration files so that Amazon SAM CLI sam deploy or sam sync
commands will automatically specify a stack with a unique prefix.

In some cases, developers share an Amazon account. This may be due to having resources in your
stack that are expensive to operate, or to provision and configure. For example, a database may be
shared to make it easier to set up and seed the data properly

If developers share an account, you should set boundaries to identify ownership and eliminate
overlap. One way to do this is by prefixing stack names with developer user IDs. Another popular
approach is to set up stacks based on code branches. With branch boundaries, environments are
isolated, but developers can still share resources, such as a relational database. This approach is a
best practice when developers work on more than one branch at a time.

Testing in the cloud is valuable for all phases of testing, including unit tests, integration tests, and
end-to-end tests. Maintaining proper isolation is essential; but you still want your QA environment
to resemble your production environment as closely as possible. For this reason, teams add change
control processes for QA environments.

Create isolated test environments 411

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-sync.html

Amazon Lambda Developer Guide

For pre-production and production environments, boundaries are typically drawn at the account
level to insulate workloads from noisy neighbor problems and implement least privilege security
controls to protect sensitive data. Workloads have quotas. You don't want your testing to consume
quotas allocated for production (noisy neighbor) or have access to customer data. Load testing is
another activity you should isolate from your production stack.

In all cases, environments should be configured with alerts and controls to avoid unnecessary
spending. For example, you can limit the type, tier, or size of resources that can be created, and set
up email alerts when estimated costs exceed a given threshold.

Use mocks for isolated business logic

Mock frameworks are a valuable tool for writing fast unit tests. They are especially beneficial
when tests cover complex internal business logic, such as mathematical or financial calculations or
simulations. Look for unit tests that have a large number of test cases or input variations, where
those inputs do not change the pattern or the content of calls to other cloud services.

Code that is covered by unit tests with mocks should also be covered by testing in the cloud. This
is recommended because a developer laptop or build machine environment could be configured
differently than a production environment in the cloud. For example, your Lambda functions could
use more memory or time than allocated when run with certain input parameters. Or your code
might include environment variables that are not configured in the same way (or at all), and the
differences could cause the code to behave differently or fail.

The benefit of mocks is less for integration tests, because the level of effort to implement the
necessary mocks increases with the number of connection points. End-to-end testing should not
use mocks, because these tests generally deal with states and complex logic that cannot be easily
simulated with mock frameworks.

Lastly, avoid using mocked cloud services to validate the proper implementation of service calls.
Instead, make cloud service calls in the cloud to validate behavior, configuration, and functional
implementation.

Use emulators sparingly

Emulators can be convenient for some use cases, for example, for a development team with
limited, unreliable, or slow internet access. But, in most circumstances, choose to use emulators
sparingly.

Use mocks for isolated business logic 412

Amazon Lambda Developer Guide

By avoiding emulators, you will be able to build and innovate with the latest service features and
up to date APIs. You will not be stuck waiting on vendor releases to achieve feature parity. You
will reduce your upfront and ongoing expenses for purchasing and configuration on multiple
development systems and build machines. Moreover, you will avoid the problem that many cloud
services simply do not have emulators available. A testing strategy that depends on emulation will
make it impossible to use those services (leading to potentially more expensive workarounds) or
produce code and configurations that aren’t well tested.

When you do use emulation for testing, you must still test in the cloud to verify configuration
and to test interactions with cloud services that can only be simulated or mocked in an emulated
environment.

Challenges testing locally

When you use emulators and mocked calls to test on your local desktop you might experience
testing inconsistencies as your code progresses from environment to environment in your CI/CD
pipeline. Unit tests to validate your application’s business logic on your desktop may not accurately
test critical aspects of the cloud services.

The following examples provide cases to watch out for when testing locally with mocks and
emulators:

Example: Lambda function creates an S3 bucket

If a Lambda function’s logic depends on creating an S3 bucket, a complete test should confirm that
Amazon S3 was called and the bucket was successfully created.

• In a mock testing setup, you might mock a success response and potentially add a test case to
handle a failure response.

• In an emulation testing scenario, the CreateBucket API might be called, but you need to be
aware that the identity making the local call will not originate from the Lambda service.
The calling identity will not assume a security role as it would in the cloud, so a placeholder
authentication will be used instead, possibly with a more permissive role or user identity that will
be different when run in the cloud.

The mock and emulation setups will test what the Lambda function will do if it calls Amazon
S3; however, those tests will not verify that the Lambda function, as configured, is capable of
successfully creating the Amazon S3 bucket. You must make sure the role assigned to the function

Challenges testing locally 413

Amazon Lambda Developer Guide

has an attached security policy that allows the function to perform the s3:CreateBucket action.
If not, the function will likely fail when deployed to a cloud environment.

Example: Lambda function processes messages from an Amazon SQS
queue

If an Amazon SQS queue is the source of a Lambda function, a complete test should verify that the
Lambda function is successfully invoked when a message is put in a queue.

Emulation testing and mock testing are generally set up to run the Lambda function code directly,
and to simulate the Amazon SQS integration by passing a JSON event payload (or a deserialized
object) as the function handler’s input.

Local testing that simulates the Amazon SQS integration will test what the Lambda function will
do when it’s called by Amazon SQS with a given payload, but the test will not verify that Amazon
SQS will successfully invoke the Lambda function when it is deployed to a cloud environment.

Some examples of configuration problems you might encounter with Amazon SQS and Lambda
include the following:

• Amazon SQS visibility timeout is too low, resulting in multiple invocations when only one was
intended.

• The Lambda function’s execution role doesn’t allow reading messages from the queue (through
sqs:ReceiveMessage, sqs:DeleteMessage, orsqs:GetQueueAttributes).

• The sample event that is passed to the Lambda function exceeds the Amazon SQS message size
quota. Therefore, the test is invalid because Amazon SQS would never be able to send a message
of that size.

As these examples show, tests that cover business logic but not the configurations between cloud
services are likely to provide unreliable results.

FAQ

I have a Lambda function that performs calculations and returns a result without calling any
other services. Do I really need to test it in the cloud?

Yes. Lambda functions have configuration parameters that could change the outcome of the test.
All Lambda function code has a dependency on timeout and memory settings, which could cause
the function to fail if those settings are not set properly. Lambda policies also enable standard

Example: Lambda function processes messages from an Amazon SQS queue 414

Amazon Lambda Developer Guide

output logging to Amazon CloudWatch. Even if your code does not call CloudWatch directly,
permission is needed to enable logging. This required permission cannot be accurately mocked or
emulated.

How can testing in the cloud help with unit testing? If it’s in the cloud and connects to other
resources, isn’t that an integration test?

We define unit tests as tests that operate on architectural components in isolation, but this does
not prevent tests from including components that may call other services or use some network
communication.

Many serverless applications have architectural components that can be tested in isolation, even
in the cloud. One example is a Lambda function that takes input, processes the data, and sends
a message to an Amazon SQS queue. A unit test of this function would likely test whether input
values result in certain values being present in the queued message.

Consider a test that is written by using the Arrange, Act, Assert pattern:

• Arrange: Allocate resources (a queue to receive messages, and the function under test).
• Act: Call the function under test.
• Assert: Retrieve the message sent by the function, and validate the output.

A mock testing approach would involve mocking the queue with an in-process mock object, and
creating an in-process instance of the class or module that contains the Lambda function code.
During the Assert phase, the queued message would be retrieved from the mocked object.

In a cloud-based approach, the test would create an Amazon SQS queue for the purposes of the
test, and would deploy the Lambda function with environment variables that are configured to use
the isolated Amazon SQS queue as the output destination. After running the Lambda function, the
test would retrieve the message from the Amazon SQS queue.

The cloud-based test would run the same code, assert the same behavior, and validate the
application’s functional correctness. However, it would have the added advantage of being able to
validate the settings of the Lambda function: the IAM role, IAM policies, and the function’s timeout
and memory settings.

Next steps and resources

Use the following resources to learn more and explore practical examples of testing.

Next steps and resources 415

http://aws.amazon.com/cloudwatch/

Amazon Lambda Developer Guide

Sample implementations

The Serverless Test Samples repository on GitHub contains concrete examples of tests that follow
the patterns and best practices described in this guide. The repository contains sample code and
guided walkthroughs of the mock, emulation, and cloud testing processes described in previous
sections. Use this repository to get up to speed on the latest serverless testing guidance from
Amazon.

Further reading

Visit Serverless Land to access the latest blogs, videos, and training for Amazon serverless
technologies.

The following Amazon blog posts are also recommended reading:

• Accelerating serverless development with Amazon SAM Accelerate (Amazon blog post)

• Increasing development speed with CDK Watch (Amazon blog post)

• Mocking service integrations with Amazon Step Functions Local (Amazon blog post)

• Getting started with testing serverless applications (Amazon blog post)

Tools

• Amazon SAM – Testing and debugging serverless applications
• Amazon SAM – Integrating with automated tests
• Lambda – Testing Lambda functions in the Lambda console

Next steps and resources 416

https://github.com/aws-samples/serverless-test-samples
https://serverlessland.com/
https://amazonaws-china.com/blogs/compute/accelerating-serverless-development-with-aws-sam-accelerate/
https://amazonaws-china.com/blogs/developer/increasing-development-speed-with-cdk-watch/
https://amazonaws-china.com/blogs/compute/mocking-service-integrations-with-aws-step-functions-local/
https://amazonaws-china.com/blogs/compute/getting-started-with-testing-serverless-applications/
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-using-automated-tests.html

Amazon Lambda Developer Guide

Building Lambda functions with Node.js

You can run JavaScript code with Node.js in Amazon Lambda. Lambda provides runtimes for
Node.js that run your code to process events. Your code runs in an environment that includes the
Amazon SDK for JavaScript, with credentials from an Amazon Identity and Access Management
(IAM) role that you manage. To learn more about the SDK versions included with the Node.js
runtimes, see the section called “Runtime-included SDK versions”.

Lambda supports the following Node.js runtimes.

Node.js

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Node.js 20 nodejs20.
x

Amazon
Linux 2023

Node.js 18 nodejs18.
x

Amazon
Linux 2

Node.js 16 nodejs16.
x

Amazon
Linux 2

Jun 12, 2024 Jul 15, 2024 Aug 15, 2024

Note

Node.js 18 and later runtimes use Amazon SDK for JavaScript v3. To migrate a function
from an earlier runtime, follow the migration workshop on GitHub. For more information
about Amazon SDK for JavaScript version 3, see the Modular Amazon SDK for JavaScript is
now generally available blog post.

To create a Node.js function

1. Open the Lambda console.

2. Choose Create function.

417

https://github.com/aws-samples/aws-sdk-js-v3-workshop
https://amazonaws-china.com/blogs/developer/modular-aws-sdk-for-javascript-is-now-generally-available/
https://amazonaws-china.com/blogs/developer/modular-aws-sdk-for-javascript-is-now-generally-available/
https://console.amazonaws.cn/lambda

Amazon Lambda Developer Guide

3. Configure the following settings:

• Function name: Enter a name for the function.

• Runtime: Choose Node.js 20.x.

4. Choose Create function.

5. To configure a test event, choose Test.

6. For Event name, enter test.

7. Choose Save changes.

8. To invoke the function, choose Test.

The console creates a Lambda function with a single source file named index.js or index.mjs.
You can edit this file and add more files in the built-in code editor. To save your changes, choose
Save. Then, to run your code, choose Test.

Note

The Lambda console uses Amazon Cloud9 to provide an integrated development
environment in the browser. You can also use Amazon Cloud9 to develop Lambda functions
in your own environment. For more information, see Working with Amazon Lambda
functions using the Amazon Toolkit in the Amazon Cloud9 user guide.

The index.js or index.mjs file exports a function named handler that takes an event object
and a context object. This is the handler function that Lambda calls when the function is invoked.
The Node.js function runtime gets invocation events from Lambda and passes them to the handler.
In the function configuration, the handler value is index.handler.

When you save your function code, the Lambda console creates a .zip file archive deployment
package. When you develop your function code outside of the console (using an IDE) you need to
create a deployment package to upload your code to the Lambda function.

Note

To get started with application development in your local environment, deploy one of the
sample applications available in this guide's GitHub repository.

418

https://docs.amazonaws.cn/cloud9/latest/user-guide/lambda-toolkit.html
https://docs.amazonaws.cn/cloud9/latest/user-guide/lambda-toolkit.html

Amazon Lambda Developer Guide

Sample Lambda applications in Node.js

• blank-nodejs – A Node.js function that shows the use of logging, environment variables,
Amazon X-Ray tracing, layers, unit tests and the Amazon SDK.

• nodejs-apig – A function with a public API endpoint that processes an event from API
Gateway and returns an HTTP response.

• rds-mysql – A function that relays queries to a MySQL for RDS Database. This sample
includes a private VPC and database instance configured with a password in Amazon
Secrets Manager.

• efs-nodejs – A function that uses an Amazon EFS file system in a Amazon VPC. This
sample includes a VPC, file system, mount targets, and access point configured for use
with Lambda.

• list-manager – A function processes events from an Amazon Kinesis data stream and
update aggregate lists in Amazon DynamoDB. The function stores a record of each event
in a MySQL for RDS Database in a private VPC. This sample includes a private VPC with a
VPC endpoint for DynamoDB and a database instance.

• error-processor – A Node.js function generates errors for a specified percentage of
requests. A CloudWatch Logs subscription invokes a second function when an error
is recorded. The processor function uses the Amazon SDK to gather details about the
request and stores them in an Amazon S3 bucket.

The function runtime passes a context object to the handler, in addition to the invocation event.
The context object contains additional information about the invocation, the function, and the
execution environment. More information is available from environment variables.

Your Lambda function comes with a CloudWatch Logs log group. The function runtime sends
details about each invocation to CloudWatch Logs. It relays any logs that your function outputs
during invocation. If your function returns an error, Lambda formats the error and returns it to the
invoker.

Topics

• Node.js initialization

• Runtime-included SDK versions

• Using keep-alive for TCP connections

419

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/nodejs-apig
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/rds-mysql
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/efs-nodejs
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/list-manager
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/error-processor

Amazon Lambda Developer Guide

• CA certificate loading

• Amazon Lambda function handler in Node.js

• Deploy Node.js Lambda functions with .zip file archives

• Deploy Node.js Lambda functions with container images

• Amazon Lambda context object in Node.js

• Amazon Lambda function logging in Node.js

• Amazon Lambda function errors in Node.js

• Instrumenting Node.js code in Amazon Lambda

Node.js initialization

Node.js has a unique event loop model that causes its initialization behavior to be different from
other runtimes. Specifically, Node.js uses a non-blocking I/O model that supports asynchronous
operations. This model allows Node.js to perform efficiently for most workloads. For example,
if a Node.js function makes a network call, that request may be designated as an asynchronous
operation and placed into a callback queue. The function may continue to process other operations
within the main call stack without getting blocked by waiting for the network call to return. Once
the network call is completed, its callback is executed and then removed from the callback queue.

Some initialization tasks may run asynchronously. These asynchronous tasks are not guaranteed to
complete execution prior to an invocation. For example, code that makes a network call to fetch a
parameter from Amazon Parameter Store may not be complete by the time Lambda executes the
handler function. As a result, the variable may be null during an invocation. To avoid this, ensure
that variables and other asynchronous code are fully initialized before continuing with the rest of
the function's core business logic.

Alternatively, you can designate your function code as an ES module, allowing you to use await
at the top level of the file, outside the scope of your function handler. When you await every
Promise, the asynchronous initialization code completes before handler invocations, maximizing
the effectiveness of provisioned concurrency in reducing cold start latency. For more information
and an example, see Using Node.js ES modules and top-level await in Amazon Lambda.

Designating a function handler as an ES module

By default, Lambda treats files with the .js suffix as CommonJS modules. Optionally, you
can designate your code as an ES module. You can do this in two ways: specifying the type as

Node.js initialization 420

https://aws.amazon.com/blogs/compute/using-node-js-es-modules-and-top-level-await-in-aws-lambda

Amazon Lambda Developer Guide

module in the function's package.json file, or by using the .mjs file name extension. In the first
approach, your function code treats all .js files as ES modules, while in the second scenario, only
the file you specify with .mjs is an ES module. You can mix ES modules and CommonJS modules
by naming them .mjs and .cjs respectively, as .mjs files are always ES modules and .cjs files
are always CommonJS modules.

For Node.js runtime versions up to Node.js 16, the Lambda runtime loads ES modules from the
same folder as your function handler, or a subfolder. Starting with Node.js 18, Lambda searches
folders in the NODE_PATH environment variable when loading ES modules. Also, starting with
Node.js 18, you can load the Amazon SDK that's included in the runtime using ES module import
statements. You can also load ES modules from layers.

Runtime-included SDK versions

The version of the Amazon SDK included in the Node.js runtime depends on the runtime version
and your Amazon Web Services Region. To find the version of the SDK included in the runtime
you're using, create a Lambda function with the following code.

Note

The example code shown below for Node.js versions 18 and above uses CommonJS format.
If you create the function in the Lambda console, be sure to rename the file containing the
code to index.js.

Example Node.js 18 and above

const { version } = require("@aws-sdk/client-s3/package.json");

exports.handler = async () => ({ version });

This returns a response in the following format:

{
 "version": "3.462.0"
}

Runtime-included SDK versions 421

Amazon Lambda Developer Guide

Example Node.js 16

const { version } = require("aws-sdk/package.json");

exports.handler = async () => ({ version });

This returns a response in the following format:

{
 "version": "2.1374.0"
}

Using keep-alive for TCP connections

The default Node.js HTTP/HTTPS agent creates a new TCP connection for every new request.
To avoid the cost of establishing new connections, you can use keepAlive: true to reuse
connections that your function makes using the Amazon SDK for JavaScript. Keep-alive can
reduce request times for Lambda functions that make multiple API calls using the SDK. Keep-alive
behavior differs depending on which version of the SDK you're using:

• In the Amazon SDK for JavaScript 3.x, which is included in nodejs18.x and later Lambda
runtimes, keep-alive is enabled by default. To disable keep-alive, see Reusing connections with
keep-alive in Node.js in the Amazon SDK for JavaScript 3.x Developer Guide.

• In the Amazon SDK for JavaScript 2.x, which is included in the nodejs16.x Lambda runtime,
keep-alive is disabled by default. To enable keep-alive, see Reusing Connections with Keep-Alive
in Node.js in the Amazon SDK for JavaScript 2.x Developer Guide.

For more information about using keep-alive, see HTTP keep-alive is on by default in modular
Amazon SDK for JavaScript on the Amazon Developer Tools Blog.

CA certificate loading

For Node.js runtime versions up to Node.js 18, Lambda automatically loads Amazon-specific CA
(certificate authority) certificates to make it easier for you to create functions that interact with
other Amazon services. For example, Lambda includes the Amazon RDS certificates necessary for
validating the server identity certificate installed on your Amazon RDS database. This behavior can
have a performance impact during cold starts.

Using keep-alive 422

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/node-reusing-connections.html
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/node-reusing-connections.html
https://amazonaws-china.com/blogs/developer/http-keep-alive-is-on-by-default-in-modular-aws-sdk-for-javascript/
https://amazonaws-china.com/blogs/developer/http-keep-alive-is-on-by-default-in-modular-aws-sdk-for-javascript/
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html

Amazon Lambda Developer Guide

Starting with Node.js 20, Lambda no longer loads additional CA certificates by default. The
Node.js 20 runtime contains a certificate file with all Amazon CA certificates located at /var/
runtime/ca-cert.pem. To restore the same behavior from Node.js 18 and earlier runtimes, set
the NODE_EXTRA_CA_CERTS environment variable to /var/runtime/ca-cert.pem.

For optimal performance, we recommend bundling only the certificates that you need with your
deployment package and loading them via the NODE_EXTRA_CA_CERTS environment variable.
The certificates file should consist of one or more trusted root or intermediate CA certificates
in PEM format. For example, for RDS, include the required certificates alongside your code as
certificates/rds.pem. Then, load the certificates by setting NODE_EXTRA_CA_CERTS to /
var/task/certificates/rds.pem.

CA certificate loading 423

Amazon Lambda Developer Guide

Amazon Lambda function handler in Node.js

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

The following example function logs the contents of the event object and returns the location of
the logs.

Note

This page shows examples of both CommonJS and ES module handlers. To learn about the
difference between these two handler types, see Designating a function handler as an ES
module.

ES module handler

Example

export const handler = async (event, context) => {
 console.log("EVENT: \n" + JSON.stringify(event, null, 2));
 return context.logStreamName;
};

CommonJS module handler

Example

exports.handler = async function (event, context) {
 console.log("EVENT: \n" + JSON.stringify(event, null, 2));
 return context.logStreamName;
};

When you configure a function, the value of the handler setting is the file name and the name of
the exported handler method, separated by a dot. The default in the console and for examples
in this guide is index.handler. This indicates the handler method that's exported from the
index.js file.

Handler 424

Amazon Lambda Developer Guide

The runtime passes arguments to the handler method. The first argument is the event object,
which contains information from the invoker. The invoker passes this information as a JSON-
formatted string when it calls Invoke, and the runtime converts it to an object. When an Amazon
service invokes your function, the event structure varies by service.

The second argument is the context object, which contains information about the invocation,
function, and execution environment. In the preceding example, the function gets the name of the
log stream from the context object and returns it to the invoker.

You can also use a callback argument, which is a function that you can call in non-async handlers
to send a response. We recommend that you use async/await instead of callbacks. Async/await
provides improved readability, error handling, and efficiency. For more information about the
differences between async/await and callbacks, see Using callbacks.

Naming

When you configure a function, the value of the handler setting is the file name and the name of
the exported handler method, separated by a dot. The default for functions created in the console
and for examples in this guide is index.handler. This indicates the handler method that's
exported from the index.js or index.mjs file.

If you create a function in the console using a different file name or function handler name, you
must edit the default handler name.

To change the function handler name (console)

1. Open the Functions page of the Lambda console and choose your function.

2. Choose the Code tab.

3. Scroll down to the Runtime settings pane and choose Edit.

4. In Handler, enter the new name for your function handler.

5. Choose Save.

Using async/await

If your code performs an asynchronous task, use the async/await pattern to make sure that the
handler finishes running. Async/await is a concise and readable way to write asynchronous code
in Node.js, without the need for nested callbacks or chaining promises. With async/await, you can
write code that reads like synchronous code, while still being asynchronous and non-blocking.

Naming 425

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

The async keyword marks a function as asynchronous, and the await keyword pauses the
execution of the function until a Promise is resolved.

Note

Make sure to wait for asynchronous events to complete. If the function returns before
async events are complete, the function might fail or cause unexpected behavior in your
application. This can happen when a forEach loop contains an async event. forEach
loops expect a synchronous call. For more information, see Array.prototype.forEach() in the
Mozilla documentation.

ES module handler

Example – HTTP request with async/await

This example uses fetch, which is available in the nodejs18.x runtime.

const url = "https://aws.amazon.com/";

export const handler = async(event) => {
 try {
 // fetch is available with Node.js 18
 const res = await fetch(url);
 console.info("status", res.status);
 return res.status;
 }
 catch (e) {
 console.error(e);
 return 500;
 }
};

CommonJS module handler

Example – HTTP request with async/await

const https = require("https");
let url = "https://aws.amazon.com/";

exports.handler = async function (event) {
 let statusCode;

Using async/await 426

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach

Amazon Lambda Developer Guide

 await new Promise(function (resolve, reject) {
 https.get(url, (res) => {
 statusCode = res.statusCode;
 resolve(statusCode);
 }).on("error", (e) => {
 reject(Error(e));
 });
 });
 console.log(statusCode);
 return statusCode;
};

The next example uses async/await to list your Amazon Simple Storage Service buckets.

Note

Before using this example, make sure that your function's execution role has Amazon S3
read permissions.

ES module handler

Example – Amazon SDK v3 with async/await

This example uses the Amazon SDK for JavaScript v3, which is available in the nodejs18.x
runtime.

import {S3Client, ListBucketsCommand} from '@aws-sdk/client-s3';
const s3 = new S3Client({region: 'us-east-1'});

export const handler = async(event) => {
 const data = await s3.send(new ListBucketsCommand({}));
 return data.Buckets;

};

CommonJS module handler

Example – Amazon SDK v2 with async/await

This example uses the Amazon SDK for JavaScript v2, which is included in the nodejs16.x
Lambda runtime.

Using async/await 427

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/welcome.html
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/welcome.html

Amazon Lambda Developer Guide

const AWS = require('aws-sdk')
const s3 = new AWS.S3()

exports.handler = async function(event) {
 const buckets = await s3.listBuckets().promise()
 return buckets
}

Using callbacks

We recommend that you use async/await to declare the function handler instead of using
callbacks. Async/await is a better choice for several reasons:

• Readability: Async/await code is easier to read and understand than callback code, which can
quickly become difficult to follow and result in callback hell.

• Debugging and error handling: Debugging callback-based code can be difficult. The call stack
can become hard to follow and errors can easily be swallowed. With async/await, you can use
try/catch blocks to handle errors.

• Efficiency: Callbacks often require switching between different parts of the code. Async/await
can reduce the number of context switches, resulting in more efficient code.

When you use callbacks in your handler, the function continues to execute until the event loop is
empty or the function times out. The response isn't sent to the invoker until all event loop tasks are
finished. If the function times out, an error is returned instead. You can configure the runtime to
send the response immediately by setting context.callbackWaitsForEmptyEventLoop to false.

The callback function takes two arguments: an Error and a response. The response object must be
compatible with JSON.stringify.

The following example function checks a URL and returns the status code to the invoker.

ES module handler

Example – HTTP request with callback

import https from "https";
let url = "https://aws.amazon.com/";

Using callbacks 428

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

Amazon Lambda Developer Guide

export function handler(event, context, callback) {
 https.get(url, (res) => {
 callback(null, res.statusCode);
 }).on("error", (e) => {
 callback(Error(e));
 });
}

CommonJS module handler

Example – HTTP request with callback

const https = require("https");
let url = "https://aws.amazon.com/";

exports.handler = function (event, context, callback) {
 https.get(url, (res) => {
 callback(null, res.statusCode);
 }).on("error", (e) => {
 callback(Error(e));
 });
};

In the next example, the response from Amazon S3 is returned to the invoker as soon as it's
available. The timeout running on the event loop is frozen, and it continues running the next time
the function is invoked.

Note

Before using this example, make sure that your function's execution role has Amazon S3
read permissions.

ES module handler

Example – Amazon SDK v3 with callbackWaitsForEmptyEventLoop

This example uses the Amazon SDK for JavaScript v3, which is available in the nodejs18.x
runtime.

import AWS from "@aws-sdk/client-s3";

Using callbacks 429

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/welcome.html

Amazon Lambda Developer Guide

const s3 = new AWS.S3({});

export const handler = function (event, context, callback) {
 context.callbackWaitsForEmptyEventLoop = false;
 s3.listBuckets({}, callback);
 setTimeout(function () {
 console.log("Timeout complete.");
 }, 5000);
};

CommonJS module handler

Example – Amazon SDK v2 with callbackWaitsForEmptyEventLoop

This example uses the Amazon SDK for JavaScript v2, which is included in the nodejs16.x
Lambda runtime.

const AWS = require("aws-sdk");
const s3 = new AWS.S3();

exports.handler = function (event, context, callback) {
 context.callbackWaitsForEmptyEventLoop = false;
 s3.listBuckets(null, callback);
 setTimeout(function () {
 console.log("Timeout complete.");
 }, 5000);
};

Using callbacks 430

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/welcome.html

Amazon Lambda Developer Guide

Deploy Node.js Lambda functions with .zip file archives

Your Amazon Lambda function’s code comprises a .js or .mjs file containing your function’s handler
code, together with any additional packages and modules your code depends on. To deploy this
function code to Lambda, you use a deployment package. This package may either be a .zip file
archive or a container image. For more information about using container images with Node.js, see
Deploy Node.js Lambda functions with container images.

To create your deployment package as .zip file archive, you can use your command-line tool’s
built-in .zip file archive utility, or any other .zip file utility such as 7zip. The examples shown in the
following sections assume you’re using a command-line zip tool in a Linux or MacOS environment.
To use the same commands in Windows, you can install the Windows Subsystem for Linux to get a
Windows-integrated version of Ubuntu and Bash.

Note that Lambda uses POSIX file permissions, so you may need to set permissions for the
deployment package folder before you create the .zip file archive.

Topics

• Runtime dependencies in Node.js

• Creating a .zip deployment package with no dependencies

• Creating a .zip deployment package with dependencies

• Creating a Node.js layer for your dependencies

• Dependency search path and runtime-included libraries

• Creating and updating Node.js Lambda functions using .zip files

Runtime dependencies in Node.js

For Lambda functions that use the Node.js runtime, a dependency can be any Node.js module. The
Node.js runtime includes a number of common libraries, as well as a version of the Amazon SDK for
JavaScript. The nodejs16.x Lambda runtime includes version 2.x of the SDK. Runtime versions
nodejs18.x and later include version 3 of the SDK. To use version 2 of the SDK with runtime
versions nodejs18.x and later, add the SDK to your .zip file deployment package. If your chosen
runtime includes the version of the SDK you are using, you don't need to include the SDK library in
your .zip file. To find out which version of the SDK is included in the runtime you're using, see the
section called “Runtime-included SDK versions”.

Deploy .zip file archives 431

https://docs.amazonaws.cn/lambda/latest/dg/nodejs-image.html
https://www.7-zip.org/download.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/

Amazon Lambda Developer Guide

Lambda periodically updates the SDK libraries in the Node.js runtime to include the latest features
and security upgrades. Lambda also applies security patches and updates to the other libraries
included in the runtime. To have full control of the dependencies in your package, you can add your
preferred version of any runtime-included dependency to your deployment package. For example,
if you want to use a particular version of the SDK for JavaScript, you can include it in your .zip file
as a dependency. For more information on adding runtime-included dependencies to your .zip file,
see Dependency search path and runtime-included libraries.

Under the Amazon shared responsibility model, you are responsible for the management of any
dependencies in your functions' deployment packages. This includes applying updates and security
patches. To update dependencies in your function's deployment package, first create a new .zip
file and then upload it to Lambda. See Creating a .zip deployment package with dependencies and
Creating and updating Node.js Lambda functions using .zip files for more information.

Creating a .zip deployment package with no dependencies

If your function code has no dependencies except for libraries included in the Lambda runtime,
your .zip file contains only the index.js or index.mjs file with your function’s handler code. Use
your preferred zip utility to create a .zip file with your index.js or index.mjs file at the root. If
the file containing your handler code isn't at the root of your .zip file, Lambda won’t be able to run
your code.

To learn how to deploy your .zip file to create a new Lambda function or update an existing one,
see Creating and updating Node.js Lambda functions using .zip files.

Creating a .zip deployment package with dependencies

If your function code depends on packages or modules that aren't included in the Lambda Node.js
runtime, you can either add these dependencies to your .zip file with your function code or use
a Lambda layer. The instructions in this section show you how to include your dependencies in
your .zip deployment package. For instructions on how to include your dependencies in a layer, see
the section called “Creating a Node.js layer for your dependencies”.

The following example CLI commands create a .zip file named my_deployment_package.zip
containing the index.js or index.mjs file with your function's handler code and its
dependencies. In the example, you install dependencies using the npm package manager.

Creating a .zip deployment package with no dependencies 432

Amazon Lambda Developer Guide

To create the deployment package

1. Navigate to the project directory containing your index.js or index.mjs source code file. In
this example, the directory is named my_function.

cd my_function

2. Install your function's required libraries in the node_modules directory using the npm
install command. In this example you install the Amazon X-Ray SDK for Node.js.

npm install aws-xray-sdk

This creates a folder structure similar to the following:

~/my_function
index.mjs
node_modules
 ### async
 ### async-listener
 ### atomic-batcher
 ### aws-sdk
 ### aws-xray-sdk
 ### aws-xray-sdk-core

You can also add custom modules that you create yourself to your deployment package.
Create a directory under node_modules with the name of your module and save your custom
written packages there.

3. Create a .zip file that contains the contents of your project folder at the root. Use the r
(recursive) option to ensure that zip compresses the subfolders.

zip -r my_deployment_package.zip .

Creating a Node.js layer for your dependencies

The instructions in this section show you how to include your dependencies in a layer. For
instructions on how to include your dependencies in your deployment package, see the section
called “Creating a .zip deployment package with dependencies”.

Creating a Node.js layer for your dependencies 433

Amazon Lambda Developer Guide

When you add a layer to a function, Lambda loads the layer content into the /opt directory of
that execution environment. For each Lambda runtime, the PATH variable already includes specific
folder paths within the /opt directory. To ensure that the PATH variable picks up your layer
content, your layer .zip file should have its dependencies in the following folder paths:

• nodejs/node_modules

• nodejs/node16/node_modules (NODE_PATH)

• nodejs/node18/node_modules (NODE_PATH)

• nodejs/node20/node_modules (NODE_PATH)

For example, your layer .zip file structure might look like the following:

xray-sdk.zip
nodejs/node_modules/aws-xray-sdk

In addition, Lambda automatically detects any libraries in the /opt/lib directory, and any binaries
in the /opt/bin directory. To ensure that Lambda properly finds your layer content, you can also
create a layer with the following structure:

custom-layer.zip
lib
 | lib_1
 | lib_2
bin
 | bin_1
 | bin_2

After you package your layer, see the section called “Creating and deleting layers” and the section
called “Adding layers” to complete your layer setup.

Dependency search path and runtime-included libraries

The Node.js runtime includes a number of common libraries, as well as a version of the Amazon
SDK for JavaScript. If you want to use a different version of a runtime-included library, you can do
this by bundling it with your function or by adding it as a dependency in your deployment package.
For example, you can use a different version of the SDK by adding it to your .zip deployment
package. You can also include it in a Lambda layer for your function.

Dependency search path and runtime-included libraries 434

Amazon Lambda Developer Guide

When you use an import or require statement in your code, the Node.js runtime searches the
directories in the NODE_PATH path until it finds the module. By default, the first location the
runtime searches is the directory into which your .zip deployment package is decompressed and
mounted (/var/task). If you include a version of a runtime-included library in your deployment
package, this version will take precedence over the version included in the runtime. Dependencies
in your deployment package also have precedence over dependencies in layers.

When you add a dependency to a layer, Lambda extracts this to /opt/nodejs/nodexx/
node_modules where nodexx represents the version of the runtime you are using. In the search
path, this directory has precedence over the directory containing the runtime-included libraries
(/var/lang/lib/node_modules). Libraries in function layers therefore have precedence over
versions included in the runtime.

You can see the full search path for your Lambda function by adding the following line of code.

console.log(process.env.NODE_PATH)

You can also add dependencies in a separate folder inside your .zip package. For example, you
might add a custom module to a folder in your .zip package called common. When your .zip
package is decompressed and mounted, this folder is placed inside the /var/task directory. To
use a dependency from a folder in your .zip deployment package in your code, use an import { }
from or const { } = require() statement, depending on whether you are using CJS or ESM
module resolution. For example:

import { myModule } from './common'

If you bundle your code with esbuild, rollup, or similar, the dependencies used by your function
are bundled together in one or more files. We recommend using this method to vend dependencies
whenever possible. Compared to adding dependencies to your deployment package, bundling your
code results in improved performance due to the reduction in I/O operations.

Creating and updating Node.js Lambda functions using .zip files

Once you have created your .zip deployment package, you can use it to create a new Lambda
function or update an existing one. You can deploy your .zip package using the Lambda console,
the Amazon Command Line Interface, and the Lambda API. You can also create and update
Lambda functions using Amazon Serverless Application Model (Amazon SAM) and Amazon
CloudFormation.

Creating and updating Node.js Lambda functions using .zip files 435

Amazon Lambda Developer Guide

The maximum size for a .zip deployment package for Lambda is 250 MB (unzipped). Note that this
limit applies to the combined size of all the files you upload, including any Lambda layers.

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give an executable file the correct permissions, run the
following command.

chmod 755 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object
in the Microsoft Windows documentation.

Creating and updating functions with .zip files using the console

To create a new function, you must first create the function in the console, then upload your .zip
archive. To update an existing function, open the page for your function, then follow the same
procedure to add your updated .zip file.

If your .zip file is less than 50MB, you can create or update a function by uploading the file directly
from your local machine. For .zip files greater than 50MB, you must upload your package to an
Amazon S3 bucket first. For instructions on how to upload a file to an Amazon S3 bucket using the
Amazon Web Services Management Console, see Getting started with Amazon S3. To upload files
using the Amazon CLI, see Move objects in the Amazon CLI User Guide.

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

To create a new function (console)

1. Open the Functions page of the Lambda console and choose Create Function.

Creating and updating Node.js Lambda functions using .zip files 436

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

2. Choose Author from scratch.

3. Under Basic information, do the following:

a. For Function name, enter the name for your function.

b. For Runtime, select the runtime you want to use.

c. (Optional) For Architecture, choose the instruction set architecture for your function. The
default architecture is x86_64. Ensure that the .zip deployment package for your function
is compatible with the instruction set architecture you select.

4. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing one.

5. Choose Create function. Lambda creates a basic 'Hello world' function using your chosen
runtime.

To upload a .zip archive from your local machine (console)

1. In the Functions page of the Lambda console, choose the function you want to upload the .zip
file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose .zip file.

5. To upload the .zip file, do the following:

a. Select Upload, then select your .zip file in the file chooser.

b. Choose Open.

c. Choose Save.

To upload a .zip archive from an Amazon S3 bucket (console)

1. In the Functions page of the Lambda console, choose the function you want to upload a
new .zip file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose Amazon S3 location.

5. Paste the Amazon S3 link URL of your .zip file and choose Save.

Creating and updating Node.js Lambda functions using .zip files 437

https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Updating .zip file functions using the console code editor

For some functions with .zip deployment packages, you can use the Lambda console’s built-in
code editor to update your function code directly. To use this feature, your function must meet the
following criteria:

• Your function must use one of the interpreted language runtimes (Python, Node.js, or Ruby)
• Your function’s deployment package must be smaller than 3MB.

Function code for functions with container image deployment packages cannot be edited directly
in the console.

To update function code using the console code editor

1. Open the Functions page of the Lambda console and select your function.

2. Select the Code tab.

3. In the Code source pane, select your source code file and edit it in the integrated code editor.

4. When you have finished editing your code, choose Deploy to save your changes and update
your function.

Creating and updating functions with .zip files using the Amazon CLI

You can can use the Amazon CLI to create a new function or to update an existing one using a .zip
file. Use the create-function and update-function-code commands to deploy your .zip package.
If your .zip file is smaller than 50MB, you can upload the .zip package from a file location on your
local build machine. For larger files, you must upload your .zip package from an Amazon S3 bucket.
For instructions on how to upload a file to an Amazon S3 bucket using the Amazon CLI, see Move
objects in the Amazon CLI User Guide.

Note

If you upload your .zip file from an Amazon S3 bucket using the Amazon CLI, the bucket
must be located in the same Amazon Web Services Region as your function.

To create a new function using a .zip file with the Amazon CLI, you must specify the following:

• The name of your function (--function-name)

Creating and updating Node.js Lambda functions using .zip files 438

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-function.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-function.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

Amazon Lambda Developer Guide

• Your function’s runtime (--runtime)

• The Amazon Resource Name (ARN) of your function’s execution role (--role)

• The name of the handler method in your function code (--handler)

You must also specify the location of your .zip file. If your .zip file is located in a folder on your
local build machine, use the --zip-file option to specify the file path, as shown in the following
example command.

aws lambda create-function --function-name myFunction \
--runtime nodejs20.x --handler index.handler \
--role arn:aws-cn:iam::111122223333:role/service-role/my-lambda-role \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --code option as shown in
the following example command. You only need to use the S3ObjectVersion parameter for
versioned objects.

aws lambda create-function --function-name myFunction \
--runtime nodejs20.x --handler index.handler \
--role arn:aws-cn:iam::111122223333:role/service-role/my-lambda-role \
--code S3Bucket=myBucketName,S3Key=myFileName.zip,S3ObjectVersion=myObjectVersion

To update an existing function using the CLI, you specify the the name of your function using the
--function-name parameter. You must also specify the location of the .zip file you want to use
to update your function code. If your .zip file is located in a folder on your local build machine, use
the --zip-file option to specify the file path, as shown in the following example command.

aws lambda update-function-code --function-name myFunction \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --s3-bucket and --s3-key
options as shown in the following example command. You only need to use the --s3-object-
version parameter for versioned objects.

aws lambda update-function-code --function-name myFunction \
--s3-bucket myBucketName --s3-key myFileName.zip --s3-object-version myObject Version

Creating and updating Node.js Lambda functions using .zip files 439

https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html

Amazon Lambda Developer Guide

Creating and updating functions with .zip files using the Lambda API

To create and update functions using a .zip file archive, use the following API operations:

• CreateFunction

• UpdateFunctionCode

Creating and updating functions with .zip files using Amazon SAM

The Amazon Serverless Application Model (Amazon SAM) is a toolkit that helps streamline the
process of building and running serverless applications on Amazon. You define the resources for
your application in a YAML or JSON template and use the Amazon SAM command line interface
(Amazon SAM CLI) to build, package, and deploy your applications. When you build a Lambda
function from an Amazon SAM template, Amazon SAM automatically creates a .zip deployment
package or container image with your function code and any dependencies you specify. To learn
more about using Amazon SAM to build and deploy Lambda functions, see Getting started with
Amazon SAM in the Amazon Serverless Application Model Developer Guide.

You can also use Amazon SAM to create a Lambda function using an existing .zip file archive. To
create a Lambda function using Amazon SAM, you can save your .zip file in an Amazon S3 bucket
or in a local folder on your build machine. For instructions on how to upload a file to an Amazon S3
bucket using the Amazon CLI, see Move objects in the Amazon CLI User Guide.

In your Amazon SAM template, the AWS::Serverless::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - set to Zip

• CodeUri - set to the function code's Amazon S3 URI, path to local folder, or FunctionCode object

• Runtime - Set to your chosen runtime

With Amazon SAM, if your .zip file is larger than 50MB, you don’t need to upload it to an Amazon
S3 bucket first. Amazon SAM can upload .zip packages up to the maximum allowed size of 250MB
(unzipped) from a location on your local build machine.

To learn more about deploying functions using .zip file in Amazon SAM, see
AWS::Serverless::Function in the Amazon SAM Developer Guide.

Creating and updating Node.js Lambda functions using .zip files 440

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-functioncode.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

Creating and updating functions with .zip files using Amazon CloudFormation

You can use Amazon CloudFormation to create a Lambda function using a .zip file archive. To
create a Lambda function from a .zip file, you must first upload your file to an Amazon S3 bucket.
For instructions on how to upload a file to an Amazon S3 bucket using the Amazon CLI, see Move
objects in the Amazon CLI User Guide.

In your Amazon CloudFormation template, the AWS::Lambda::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - Set to Zip
• Code - Enter the Amazon S3 bucket name and the .zip file name in the S3Bucket and S3Key

fields
• Runtime - Set to your chosen runtime

The .zip file that Amazon CloudFormation generates cannot exceed 4MB. To learn more about
deploying functions using .zip file in Amazon CloudFormation, see AWS::Lambda::Function in the
Amazon CloudFormation User Guide.

Creating and updating Node.js Lambda functions using .zip files 441

https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

Amazon Lambda Developer Guide

Deploy Node.js Lambda functions with container images

There are three ways to build a container image for a Node.js Lambda function:

• Using an Amazon base image for Node.js

The Amazon base images are preloaded with a language runtime, a runtime interface client
to manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an Amazon OS-only base image

Amazon OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include the runtime interface
client for Node.js in the image.

• Using a non-Amazon base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the runtime interface client for Node.js in the image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

Topics

• Amazon base images for Node.js

• Using an Amazon base image for Node.js

• Using an alternative base image with the runtime interface client

Deploy container images 442

https://gallery.ecr.aws/lambda/provided
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Amazon Lambda Developer Guide

Amazon base images for Node.js

Amazon provides the following base images for Node.js:

Tags Runtime Operating
system

Dockerfile Deprecation

20 Node.js 20 Amazon
Linux 2023

Dockerfile for Node.js 20
on GitHub

18 Node.js 18 Amazon
Linux 2

Dockerfile for Node.js 18
on GitHub

16 Node.js 16 Amazon
Linux 2

Dockerfile for Node.js 16
on GitHub

Jun 12, 2024

Amazon ECR repository: gallery.ecr.aws/lambda/nodejs

The Node.js 20 and later base images are based on the Amazon Linux 2023 minimal container
image. Earlier base images use Amazon Linux 2. AL2023 provides several advantages over Amazon
Linux 2, including a smaller deployment footprint and updated versions of libraries such as glibc.

AL2023-based images use microdnf (symlinked as dnf) as the package manager instead
of yum, which is the default package manager in Amazon Linux 2. microdnf is a standalone
implementation of dnf. For a list of packages that are included in AL2023-based images, refer to
the Minimal Container columns in Comparing packages installed on Amazon Linux 2023 Container
Images. For more information about the differences between AL2023 and Amazon Linux 2, see
Introducing the Amazon Linux 2023 runtime for Amazon Lambda on the Amazon Compute Blog.

Note

To run AL2023-based images locally, including with Amazon Serverless Application Model
(Amazon SAM), you must use Docker version 20.10.10 or later.

Amazon base images for Node.js 443

https://github.com/aws/aws-lambda-base-images/blob/nodejs20.x/Dockerfile.nodejs20.x
https://github.com/aws/aws-lambda-base-images/blob/nodejs20.x/Dockerfile.nodejs20.x
https://github.com/aws/aws-lambda-base-images/blob/nodejs18.x/Dockerfile.nodejs18.x
https://github.com/aws/aws-lambda-base-images/blob/nodejs18.x/Dockerfile.nodejs18.x
https://github.com/aws/aws-lambda-base-images/blob/nodejs16.x/Dockerfile.nodejs16.x
https://github.com/aws/aws-lambda-base-images/blob/nodejs16.x/Dockerfile.nodejs16.x
https://gallery.ecr.aws/lambda/nodejs
https://docs.amazonaws.cn/linux/al2023/ug/minimal-container.html
https://docs.amazonaws.cn/linux/al2023/ug/minimal-container.html
https://docs.amazonaws.cn/linux/al2023/ug/al2023-container-image-types.html
https://docs.amazonaws.cn/linux/al2023/ug/al2023-container-image-types.html
https://amazonaws-china.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

Amazon Lambda Developer Guide

Using an Amazon base image for Node.js

Prerequisites

To complete the steps in this section, you must have the following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Docker (minimum version 20.10.10 for Node.js 20 and later base images)

• Node.js

Creating an image from a base image

To create a container image from an Amazon base image for Node.js

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Create a new Node.js project with npm. To accept the default options provided in the
interactive experience, press Enter.

npm init

3. Create a new file called index.js. You can add the following sample function code to the file
for testing, or use your own.

Example CommonJS handler

exports.handler = async (event) => {
 const response = {
 statusCode: 200,
 body: JSON.stringify('Hello from Lambda!'),
 };
 return response;
};

4. If your function depends on libraries other than the Amazon SDK for JavaScript, use npm to
add them to your package.

5. Create a new Dockerfile with the following configuration:

Using an Amazon base image 444

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://www.npmjs.com/

Amazon Lambda Developer Guide

• Set the FROM property to the URI of the base image.

• Use the COPY command to copy the function code and runtime dependencies to
{LAMBDA_TASK_ROOT}, a Lambda-defined environment variable.

• Set the CMD argument to the Lambda function handler.

Example Dockerfile

FROM public.ecr.aws/lambda/nodejs:20

Copy function code
COPY index.js ${LAMBDA_TASK_ROOT}

Set the CMD to your handler (could also be done as a parameter override outside
 of the Dockerfile)
CMD ["index.handler"]

6. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

Using an Amazon base image 445

https://gallery.ecr.aws/lambda/nodejs
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

3. Get the container ID.

Using an Amazon base image 446

Amazon Lambda Developer Guide

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the Amazon Web Services Region where you want to create the
Amazon ECR repository.

• Replace 111122223333 with your Amazon Web Services account ID.

aws ecr get-login-password --region cn-north-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region cn-north-1 --
image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same Amazon Web Services Region as the
Lambda function.

If successful, you see a response like this:

{
 "repository": {

Using an Amazon base image 447

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

Amazon Lambda Developer Guide

 "repositoryArn": "arn:aws:ecr:cn-north-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• Replace docker-image:test with the name and tag of your Docker image.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.cn-
north-1.amazonaws.com.cn/hello-world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

Using an Amazon base image 448

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

Amazon Lambda Developer Guide

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different Amazon account, as long as
the image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Using an alternative base image with the runtime interface client

If you use an OS-only base image or an alternative base image, you must include the runtime
interface client in your image. The runtime interface client extends the Lambda runtime API, which
manages the interaction between Lambda and your function code.

Using a non-Amazon base image 449

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

Amazon Lambda Developer Guide

Install the Node.js runtime interface client using the npm package manager:

npm install aws-lambda-ric

You can also download the Node.js runtime interface client from GitHub. The runtime interface
client supports the following Node.js versions:

• 14.x

• 16.x

• 18.x

• 20.x

The following example demonstrates how to build a container image for Node.js using a non-
Amazon base image. The example Dockerfile uses a buster base image. The Dockerfile includes
the runtime interface client.

Prerequisites

To complete the steps in this section, you must have the following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Docker

• Node.js

Creating an image from an alternative base image

To create a container image from a non-Amazon base image

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Create a new Node.js project with npm. To accept the default options provided in the
interactive experience, press Enter.

npm init

Using a non-Amazon base image 450

http://npmjs.com/package/aws-lambda-ric
https://github.com/aws/aws-lambda-nodejs-runtime-interface-client
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker

Amazon Lambda Developer Guide

3. Create a new file called index.js. You can add the following sample function code to the file
for testing, or use your own.

Example CommonJS handler

exports.handler = async (event) => {
 const response = {
 statusCode: 200,
 body: JSON.stringify('Hello from Lambda!'),
 };
 return response;
};

4. Create a new Dockerfile. The following Dockerfile uses a buster base image instead of an
Amazon base image. The Dockerfile includes the runtime interface client, which makes the
image compatible with Lambda. The Dockerfile uses a multi-stage build. The first stage creates
a build image, which is a standard Node.js environment where the function's dependencies are
installed. The second stage creates a slimmer image which includes the function code and its
dependencies. This reduces the final image size.

• Set the FROM property to the base image identifier.

• Use the COPY command to copy the function code and runtime dependencies.

• Set the ENTRYPOINT to the module that you want the Docker container to run when it
starts. In this case, the module is the runtime interface client.

• Set the CMD argument to the Lambda function handler.

Example Dockerfile

Define custom function directory
ARG FUNCTION_DIR="/function"

FROM node:20-buster as build-image

Include global arg in this stage of the build
ARG FUNCTION_DIR

Install build dependencies
RUN apt-get update && \
 apt-get install -y \
 g++ \

Using a non-Amazon base image 451

http://npmjs.com/package/aws-lambda-ric
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds

Amazon Lambda Developer Guide

 make \
 cmake \
 unzip \
 libcurl4-openssl-dev

Copy function code
RUN mkdir -p ${FUNCTION_DIR}
COPY . ${FUNCTION_DIR}

WORKDIR ${FUNCTION_DIR}

Install Node.js dependencies
RUN npm install

Install the runtime interface client
RUN npm install aws-lambda-ric

Grab a fresh slim copy of the image to reduce the final size
FROM node:20-buster-slim

Required for Node runtimes which use npm@8.6.0+ because
by default npm writes logs under /home/.npm and Lambda fs is read-only
ENV NPM_CONFIG_CACHE=/tmp/.npm

Include global arg in this stage of the build
ARG FUNCTION_DIR

Set working directory to function root directory
WORKDIR ${FUNCTION_DIR}

Copy in the built dependencies
COPY --from=build-image ${FUNCTION_DIR} ${FUNCTION_DIR}

Set runtime interface client as default command for the container runtime
ENTRYPOINT ["/usr/local/bin/npx", "aws-lambda-ric"]
Pass the name of the function handler as an argument to the runtime
CMD ["index.handler"]

5. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Using a non-Amazon base image 452

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

Use the runtime interface emulator to locally test the image. You can build the emulator into your
image or install it on your local machine.

To install and run the runtime interface emulator on your local machine

1. From your project directory, run the following command to download the runtime interface
emulator (x86-64 architecture) from GitHub and install it on your local machine.

Linux/macOS

mkdir -p ~/.aws-lambda-rie && \
 curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-
runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \
 chmod +x ~/.aws-lambda-rie/aws-lambda-rie

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

PowerShell

$dirPath = "$HOME\.aws-lambda-rie"
if (-not (Test-Path $dirPath)) {
 New-Item -Path $dirPath -ItemType Directory
}

Using a non-Amazon base image 453

Amazon Lambda Developer Guide

$downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/
releases/latest/download/aws-lambda-rie"
$destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie"
Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

To install the arm64 emulator, replace the $downloadLink with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

2. Start the Docker image with the docker run command. Note the following:

• docker-image is the image name and test is the tag.

• /usr/local/bin/npx aws-lambda-ric index.handler is the ENTRYPOINT followed
by the CMD from your Dockerfile.

Linux/macOS

docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p
 9000:8080 \
 --entrypoint /aws-lambda/aws-lambda-rie \
 docker-image:test \
 /usr/local/bin/npx aws-lambda-ric index.handler

PowerShell

docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p
 9000:8080 `
--entrypoint /aws-lambda/aws-lambda-rie `
docker-image:test `
 /usr/local/bin/npx aws-lambda-ric index.handler

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Using a non-Amazon base image 454

Amazon Lambda Developer Guide

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

3. Post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

4. Get the container ID.

docker ps

Using a non-Amazon base image 455

Amazon Lambda Developer Guide

5. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the Amazon Web Services Region where you want to create the
Amazon ECR repository.

• Replace 111122223333 with your Amazon Web Services account ID.

aws ecr get-login-password --region cn-north-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region cn-north-1 --
image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same Amazon Web Services Region as the
Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:cn-north-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",

Using a non-Amazon base image 456

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

Amazon Lambda Developer Guide

 "repositoryUri": "111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• Replace docker-image:test with the name and tag of your Docker image.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.cn-
north-1.amazonaws.com.cn/hello-world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \

Using a non-Amazon base image 457

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

Amazon Lambda Developer Guide

 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different Amazon account, as long as
the image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Using a non-Amazon base image 458

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

Amazon Lambda Developer Guide

Amazon Lambda context object in Node.js

When Lambda runs your function, it passes a context object to the handler. This object provides
methods and properties that provide information about the invocation, function, and execution
environment.

Context methods

• getRemainingTimeInMillis() – Returns the number of milliseconds left before the
execution times out.

Context properties

• functionName – The name of the Lambda function.

• functionVersion – The version of the function.

• invokedFunctionArn – The Amazon Resource Name (ARN) that's used to invoke the function.
Indicates if the invoker specified a version number or alias.

• memoryLimitInMB – The amount of memory that's allocated for the function.

• awsRequestId – The identifier of the invocation request.

• logGroupName – The log group for the function.

• logStreamName – The log stream for the function instance.

• identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• cognitoIdentityId – The authenticated Amazon Cognito identity.

• cognitoIdentityPoolId – The Amazon Cognito identity pool that authorized the
invocation.

• clientContext – (mobile apps) Client context that's provided to Lambda by the client
application.

• client.installation_id

• client.app_title

• client.app_version_name

• client.app_version_code

• client.app_package_name

• env.platform_version

Context 459

Amazon Lambda Developer Guide

• env.platform

• env.make

• env.model

• env.locale

• Custom – Custom values that are set by the client application.

• callbackWaitsForEmptyEventLoop – Set to false to send the response right away when
the callback runs, instead of waiting for the Node.js event loop to be empty. If this is false, any
outstanding events continue to run during the next invocation.

The following example function logs context information and returns the location of the logs.

Example index.js file

exports.handler = async function(event, context) {
 console.log('Remaining time: ', context.getRemainingTimeInMillis())
 console.log('Function name: ', context.functionName)
 return context.logStreamName
}

Context 460

Amazon Lambda Developer Guide

Amazon Lambda function logging in Node.js

Amazon Lambda automatically monitors Lambda functions on your behalf and sends logs to
Amazon CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log
stream for each instance of your function. The Lambda runtime environment sends details about
each invocation to the log stream, and relays logs and other output from your function's code. For
more information, see Using Amazon CloudWatch logs with Amazon Lambda.

This page describes how to produce log output from your Lambda function's code, or access logs
using the Amazon Command Line Interface, the Lambda console, or the CloudWatch console.

Sections

• Creating a function that returns logs

• Using Lambda advanced logging controls with Node.js

• Using the Lambda console

• Using the CloudWatch console

• Using the Amazon Command Line Interface (Amazon CLI)

• Deleting logs

Creating a function that returns logs

To output logs from your function code, you can use methods on the console object, or any logging
library that writes to stdout or stderr. The following example logs the values of environment
variables and the event object.

Example index.js file – Logging

exports.handler = async function(event, context) {
 console.log("ENVIRONMENT VARIABLES\n" + JSON.stringify(process.env, null, 2))
 console.info("EVENT\n" + JSON.stringify(event, null, 2))
 console.warn("Event not processed.")
 return context.logStreamName
}

Example log format

START RequestId: c793869b-ee49-115b-a5b6-4fd21e8dedac Version: $LATEST

Logging 461

https://developer.mozilla.org/en-US/docs/Web/API/Console

Amazon Lambda Developer Guide

2019-06-07T19:11:20.562Z c793869b-ee49-115b-a5b6-4fd21e8dedac INFO ENVIRONMENT
 VARIABLES
{
 "AWS_LAMBDA_FUNCTION_VERSION": "$LATEST",
 "AWS_LAMBDA_LOG_GROUP_NAME": "/aws/lambda/my-function",
 "AWS_LAMBDA_LOG_STREAM_NAME": "2019/06/07/[$LATEST]e6f4a0c4241adcd70c262d34c0bbc85c",
 "AWS_EXECUTION_ENV": "AWS_Lambda_nodejs12.x",
 "AWS_LAMBDA_FUNCTION_NAME": "my-function",
 "PATH": "/var/lang/bin:/usr/local/bin:/usr/bin/:/bin:/opt/bin",
 "NODE_PATH": "/opt/nodejs/node10/node_modules:/opt/nodejs/node_modules:/var/runtime/
node_modules",
 ...
}
2019-06-07T19:11:20.563Z c793869b-ee49-115b-a5b6-4fd21e8dedac INFO EVENT
{
 "key": "value"
}
2019-06-07T19:11:20.564Z c793869b-ee49-115b-a5b6-4fd21e8dedac WARN Event not processed.
END RequestId: c793869b-ee49-115b-a5b6-4fd21e8dedac
REPORT RequestId: c793869b-ee49-115b-a5b6-4fd21e8dedac Duration: 128.83 ms Billed
 Duration: 200 ms Memory Size: 128 MB Max Memory Used: 74 MB Init Duration: 166.62 ms
 XRAY TraceId: 1-5d9d007f-0a8c7fd02xmpl480aed55ef0 SegmentId: 3d752xmpl1bbe37e Sampled:
 true

The Node.js runtime logs the START, END, and REPORT lines for each invocation. It adds a
timestamp, request ID, and log level to each entry logged by the function. The report line provides
the following details.

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the Amazon X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

Creating a function that returns logs 462

Amazon Lambda Developer Guide

• Sampled – For traced requests, the sampling result.

You can view logs in the Lambda console, in the CloudWatch Logs console, or from the command
line.

Using Lambda advanced logging controls with Node.js

To give you more control over how your functions’ logs are captured, processed, and consumed,
you can configure the following logging options for supported Node.js runtimes:

• Log format - select between plain text and structured JSON format for your function’s logs

• Log level - for logs in JSON format, choose the detail level of the logs Lambda sends to Amazon
CloudWatch, such as ERROR, DEBUG, or INFO

• Log group - choose the CloudWatch log group your function sends logs to

For more information about these logging options, and instructions on how to configure your
function to use them, see the section called “Configuring advanced logging controls for your
Lambda function”.

To use the log format and log level options with your Node.js Lambda functions, see the guidance
in the following sections.

Using structured JSON logs with Node.js

If you select JSON for your function’s log format, Lambda will send logs output using the console
methods of console.trace, console.debug, console.log, console.info, console.error,
and console.warn to CloudWatch as structured JSON. Each JSON log object contains at least
four key value pairs with the following keys:

• "timestamp" - the time the log message was generated

• "level" - the log level assigned to the message

• "message" - the contents of the log message

• "requestId" - the unique request ID for the function invocation

Depending on the logging method that your function uses, this JSON object may also contain
additional key pairs. For example, if your function uses console methods to log error objects

Using Lambda advanced logging controls with Node.js 463

Amazon Lambda Developer Guide

using multiple arguments, the JSON object will contain extra key value pairs with the keys
errorMessage, errorType, and stackTrace.

If your code already uses another logging library, such as Powertools for Amazon Lambda, to
produce JSON structured logs, you don’t need to make any changes. Lambda doesn’t double-
encode any logs that are already JSON encoded, so your function’s application logs will continue to
be captured as before.

For more information about using the Powertools for Amazon Lambda logging package to create
JSON structured logs in the Node.js runtime, see the section called “Logging”.

Example JSON formatted log outputs

The following examples shows how various log outputs generated using the console methods
with single and multiple arguments are captured in CloudWatch Logs when you set your function's
log format to JSON.

The first example uses the console.error method to output a simple string.

Example Node.js logging code

export const handler = async (event) => {
 console.error("This is a warning message");
 ...
}

Example JSON log record

{
 "timestamp":"2023-11-01T00:21:51.358Z",
 "level":"ERROR",
 "message":"This is a warning message",
 "requestId":"93f25699-2cbf-4976-8f94-336a0aa98c6f"
}

You can also output more complex structured log messages using either single or multiple
arguments with the console methods. In the next example, you use console.log to output two
key value pairs using a single argument. Note that the "message" field in the JSON object Lambda
sends to CloudWatch Logs is not stringified.

Using Lambda advanced logging controls with Node.js 464

Amazon Lambda Developer Guide

Example Node.js logging code

export const handler = async (event) => {
 console.log({data: 12.3, flag: false});
 ...
}

Example JSON log record

{
 "timestamp": "2023-12-08T23:21:04.664Z",
 "level": "INFO",
 "requestId": "405a4537-9226-4216-ac59-64381ec8654a",
 "message": {
 "data": 12.3,
 "flag": false
 }
}

In the next example, you again use the console.log method to create a log output. This time, the
method takes two arguments, a map containing two key value pairs and an identifying string. Note
that in this case, because you have supplied two arguments, Lambda stringifies the "message"
field.

Example Node.js logging code

export const handler = async (event) => {
 console.log('Some object - ', {data: 12.3, flag: false});
 ...
}

Example JSON log record

{
 "timestamp": "2023-12-08T23:21:04.664Z",
 "level": "INFO",
 "requestId": "405a4537-9226-4216-ac59-64381ec8654a",
 "message": "Some object - { data: 12.3, flag: false }"
}

Lambda assigns outputs generated using console.log the log level INFO.

Using Lambda advanced logging controls with Node.js 465

Amazon Lambda Developer Guide

The final example shows how error objects can be output to CloudWatch Logs using the console
methods. Note that when you log error objects using multiple arguments, Lambda adds the fields
errorMessage, errorType, and stackTrace to the log output. To learn more about function
errors in Node.js, see the section called “Errors”.

Example Node.js logging code

export const handler = async (event) => {
 let e1 = new ReferenceError("some reference error");
 let e2 = new SyntaxError("some syntax error");
 console.log(e1);
 console.log("errors logged - ", e1, e2);
};

Example JSON log record

{
 "timestamp": "2023-12-08T23:21:04.632Z",
 "level": "INFO",
 "requestId": "405a4537-9226-4216-ac59-64381ec8654a",
 "message": {
 "errorType": "ReferenceError",
 "errorMessage": "some reference error",
 "stackTrace": [
 "ReferenceError: some reference error",
 " at Runtime.handler (file:///var/task/index.mjs:3:12)",
 " at Runtime.handleOnceNonStreaming (file:///var/runtime/
index.mjs:1173:29)"
]
 }
}

{
 "timestamp": "2023-12-08T23:21:04.646Z",
 "level": "INFO",
 "requestId": "405a4537-9226-4216-ac59-64381ec8654a",
 "message": "errors logged - ReferenceError: some reference error
\n at Runtime.handler (file:///var/task/index.mjs:3:12)\n at
 Runtime.handleOnceNonStreaming
 (file:///var/runtime/index.mjs:1173:29) SyntaxError: some syntax
 error\n at Runtime.handler (file:///var/task/index.mjs:4:12)\n at
 Runtime.handleOnceNonStreaming

Using Lambda advanced logging controls with Node.js 466

Amazon Lambda Developer Guide

 (file:///var/runtime/index.mjs:1173:29)",
 "errorType": "ReferenceError",
 "errorMessage": "some reference error",
 "stackTrace": [
 "ReferenceError: some reference error",
 " at Runtime.handler (file:///var/task/index.mjs:3:12)",
 " at Runtime.handleOnceNonStreaming (file:///var/runtime/index.mjs:1173:29)"
]
}

When logging multiple error types, the extra fields errorMessage, errorType, and stackTrace
are extracted from the first error type supplied to the console method.

Using embedded metric format (EMF) client libraries with structured JSON logs

Amazon provides open-sourced client libraries for Node.js which you can use to create embedded
metric format (EMF) logs. If you have existing functions that use these libraries and you change
your function's log format to JSON, CloudWatch may no longer recognize the metrics emitted by
your code.

If your code currently emits EMF logs directly using console.log or by using Powertools for
Amazon Lambda (TypeScript), CloudWatch will also be unable to parse these if you change your
function's log format to JSON.

Important

To ensure that your functions' EMF logs continue to be properly parsed by CloudWatch,
update your EMF and Powertools for Amazon Lambda libraries to the latest versions. If
switching to the JSON log format, we also recommend that you carry out testing to ensure
compatibility with your function's embedded metrics. If your code emits EMF logs directly
using console.log, change your code to output those metrics directly to stdout as
shown in the following code example.

Example code emitting embedded metrics to stdout

process.stdout.write(JSON.stringify(
 {
 "_aws": {
 "Timestamp": Date.now(),

Using Lambda advanced logging controls with Node.js 467

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Libraries.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Libraries.html
https://github.com/awslabs/aws-embedded-metrics-node
https://github.com/aws-powertools/powertools-lambda-typescript

Amazon Lambda Developer Guide

 "CloudWatchMetrics": [{
 "Namespace": "lambda-function-metrics",
 "Dimensions": [["functionVersion"]],
 "Metrics": [{
 "Name": "time",
 "Unit": "Milliseconds",
 "StorageResolution": 60
 }]
 }]
 },
 "functionVersion": "$LATEST",
 "time": 100,
 "requestId": context.awsRequestId
 }
) + "\n")

Using log-level filtering with Node.js

For Amazon Lambda to filter your application logs according to their log level, your function must
use JSON formatted logs. You can achieve this in two ways:

• Create log outputs using the standard console methods and configure your function to use JSON
log formatting. Amazon Lambda then filters your log outputs using the “level” key value pair in
the JSON object described in the section called “Using structured JSON logs with Node.js”. To
learn how to configure your function’s log format, see the section called “Configuring advanced
logging controls for your Lambda function”.

• Use another logging library or method to create JSON structured logs in your code that include
a “level” key value pair defining the level of the log output. For example, you can use Powertools
for Amazon Lambda to generate JSON structured log outputs from your code. See the section
called “Logging” to learn more about using Powertools with the Node.js runtime.

For Lambda to filter your function's logs, you must also include a "timestamp" key value pair
in your JSON log output. The time must be specified in valid RFC 3339 timestamp format. If you
don't supply a valid timestamp, Lambda will assign the log the level INFO and add a timestamp
for you.

When you configure your function to use log-level filtering, you select the level of logs you want
Amazon Lambda to send to CloudWatch Logs from the following options:

Using Lambda advanced logging controls with Node.js 468

https://www.ietf.org/rfc/rfc3339.txt

Amazon Lambda Developer Guide

Log level Standard usage

TRACE (most detail) The most fine-grained information used to
trace the path of your code's execution

DEBUG Detailed information for system debugging

INFO Messages that record the normal operation of
your function

WARN Messages about potential errors that may lead
to unexpected behavior if unaddressed

ERROR Messages about problems that prevent the
code from performing as expected

FATAL (least detail) Messages about serious errors that cause the
application to stop functioning

Lambda sends logs of the selected level and lower to CloudWatch. For example, if you configure a
log level of WARN, Lambda will send logs corresponding to the WARN, ERROR, and FATAL levels.

Using the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Using the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

Using the Lambda console 469

https://console.amazonaws.cn/cloudwatch/home?#logs:

Amazon Lambda Developer Guide

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with Amazon X-Ray. X-Ray records details about the request and the log stream in the
trace.

To use a sample application that correlates logs and traces with X-Ray, see Error processor sample
application for Amazon Lambda.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

You can use the Amazon CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Using the Amazon Command Line Interface (Amazon CLI) 470

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html

Amazon Lambda Developer Guide

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

Using the Amazon Command Line Interface (Amazon CLI) 471

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353

Using the Amazon Command Line Interface (Amazon CLI) 472

Amazon Lambda Developer Guide

 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Deleting logs 473

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

Amazon Lambda Developer Guide

Amazon Lambda function errors in Node.js

When your code raises an error, Lambda generates a JSON representation of the error. This error
document appears in the invocation log and, for synchronous invocations, in the output.

This page describes how to view Lambda function invocation errors for the Node.js runtime using
the Lambda console and the Amazon CLI.

Sections

• Syntax

• How it works

• Using the Lambda console

• Using the Amazon Command Line Interface (Amazon CLI)

• Error handling in other Amazon services

• What's next?

Syntax

Example index.js file – Reference error

exports.handler = async function() {
 return x + 10
 }

This code results in a reference error. Lambda catches the error and generates a JSON document
with fields for the error message, the type, and the stack trace.

{
 "errorType": "ReferenceError",
 "errorMessage": "x is not defined",
 "trace": [
 "ReferenceError: x is not defined",
 " at Runtime.exports.handler (/var/task/index.js:2:3)",
 " at Runtime.handleOnce (/var/runtime/Runtime.js:63:25)",
 " at process._tickCallback (internal/process/next_tick.js:68:7)"
]
 }

Errors 474

Amazon Lambda Developer Guide

How it works

When you invoke a Lambda function, Lambda receives the invocation request and validates the
permissions in your execution role, verifies that the event document is a valid JSON document, and
checks parameter values.

If the request passes validation, Lambda sends the request to a function instance. The Lambda
runtime environment converts the event document into an object, and passes it to your function
handler.

If Lambda encounters an error, it returns an exception type, message, and HTTP status code that
indicates the cause of the error. The client or service that invoked the Lambda function can handle
the error programmatically, or pass it along to an end user. The correct error handling behavior
depends on the type of application, the audience, and the source of the error.

The following list describes the range of status codes you can receive from Lambda.

2xx

A 2xx series error with a X-Amz-Function-Error header in the response indicates a Lambda
runtime or function error. A 2xx series status code indicates that Lambda accepted the request,
but instead of an error code, Lambda indicates the error by including the X-Amz-Function-
Error header in the response.

4xx

A 4xx series error indicates an error that the invoking client or service can fix by modifying the
request, requesting permission, or by retrying the request. 4xx series errors other than 429
generally indicate an error with the request.

5xx

A 5xx series error indicates an issue with Lambda, or an issue with the function's configuration
or resources. 5xx series errors can indicate a temporary condition that can be resolved without
any action by the user. These issues can't be addressed by the invoking client or service, but a
Lambda function's owner may be able to fix the issue.

For a complete list of invocation errors, see InvokeFunction errors.

How it works 475

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html#API_Invoke_Errors

Amazon Lambda Developer Guide

Using the Lambda console

You can invoke your function on the Lambda console by configuring a test event and viewing the
output. The output is captured in the function's execution logs and, when active tracing is enabled,
in Amazon X-Ray.

To invoke a function on the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose the function to test, and choose Test.

3. Under Test event, select New event.

4. Select a Template.

5. For Name, enter a name for the test. In the text entry box, enter the JSON test event.

6. Choose Save changes.

7. Choose Test.

The Lambda console invokes your function synchronously and displays the result. To see the
response, logs, and other information, expand the Details section.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

When you invoke a Lambda function in the Amazon CLI, the Amazon CLI splits the response into
two documents. The Amazon CLI response is displayed in your command prompt. If an error has
occurred, the response contains a FunctionError field. The invocation response or error returned
by the function is written to an output file. For example, output.json or output.txt.

The following invoke command example demonstrates how to invoke a function and write the
invocation response to an output.txt file.

aws lambda invoke \

Using the Lambda console 476

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/invoke.html

Amazon Lambda Developer Guide

 --function-name my-function \
 --cli-binary-format raw-in-base64-out \
 --payload '{"key1": "value1", "key2": "value2", "key3": "value3"}' output.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the Amazon CLI response in your command prompt:

{
 "StatusCode": 200,
 "FunctionError": "Unhandled",
 "ExecutedVersion": "$LATEST"
}

You should see the function invocation response in the output.txt file. In the same command
prompt, you can also view the output in your command prompt using:

cat output.txt

You should see the invocation response in your command prompt.

{"errorType":"ReferenceError","errorMessage":"x is not defined","trace":
["ReferenceError: x is not defined"," at Runtime.exports.handler (/var/task/
index.js:2:3)"," at Runtime.handleOnce (/var/runtime/Runtime.js:63:25)"," at
 process._tickCallback (internal/process/next_tick.js:68:7)"]}

Lambda also records up to 256 KB of the error object in the function's logs. For more information,
see Amazon Lambda function logging in Node.js.

Error handling in other Amazon services

When another Amazon service invokes your function, the service chooses the invocation type
and retry behavior. Amazon services can invoke your function on a schedule, in response to a
lifecycle event on a resource, or to serve a request from a user. Some services invoke functions
asynchronously and let Lambda handle errors, while others retry or pass errors back to the user.

Error handling in other Amazon services 477

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

For example, API Gateway treats all invocation and function errors as internal errors. If the Lambda
API rejects the invocation request, API Gateway returns a 500 error code. If the function runs but
returns an error, or returns a response in the wrong format, API Gateway returns a 502 error code.
To customize the error response, you must catch errors in your code and format a response in the
required format.

We recommend using Amazon X-Ray to determine the source of an error and its cause. X-Ray
allows you to find out which component encountered an error, and see details about the errors.
The following example shows a function error that resulted in a 502 response from API Gateway.

For more information, see Instrumenting Node.js code in Amazon Lambda.

What's next?

• Learn how to show logging events for your Lambda function on the the section called “Logging”
page.

What's next? 478

Amazon Lambda Developer Guide

Instrumenting Node.js code in Amazon Lambda

Lambda integrates with Amazon X-Ray to help you trace, debug, and optimize Lambda
applications. You can use X-Ray to trace a request as it traverses resources in your application,
which may include Lambda functions and other Amazon services.

To send tracing data to X-Ray, you can use one of two SDK libraries:

• Amazon Distro for OpenTelemetry (ADOT) – A secure, production-ready, Amazon-supported
distribution of the OpenTelemetry (OTel) SDK.

• Amazon X-Ray SDK for Node.js – An SDK for generating and sending trace data to X-Ray.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for Amazon Lambda SDKs are part of a tightly integrated
instrumentation solution offered by Amazon. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
Amazon Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using ADOT to instrument your Node.js functions

• Using the X-Ray SDK to instrument your Node.js functions

• Activating tracing with the Lambda console

• Activating tracing with the Lambda API

• Activating tracing with Amazon CloudFormation

• Interpreting an X-Ray trace

• Storing runtime dependencies in a layer (X-Ray SDK)

Tracing 479

https://www.amazonaws.cn/otel
https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-nodejs.html
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

Amazon Lambda Developer Guide

Using ADOT to instrument your Node.js functions

ADOT provides fully managed Lambda layers that package everything you need to collect
telemetry data using the OTel SDK. By consuming this layer, you can instrument your Lambda
functions without having to modify any function code. You can also configure your layer to do
custom initialization of OTel. For more information, see Custom configuration for the ADOT
Collector on Lambda in the ADOT documentation.

For Node.js runtimes, you can add the Amazon managed Lambda layer for ADOT Javascript to
automatically instrument your functions. For detailed instructions on how to add this layer, see
Amazon Distro for OpenTelemetry Lambda Support for JavaScript in the ADOT documentation.

Using the X-Ray SDK to instrument your Node.js functions

To record details about calls that your Lambda function makes to other resources in your
application, you can also use the Amazon X-Ray SDK for Node.js. To get the SDK, add the aws-
xray-sdk-core package to your application's dependencies.

Example blank-nodejs/package.json

{
 "name": "blank-nodejs",
 "version": "1.0.0",
 "private": true,
 "devDependencies": {
 "aws-sdk": "2.631.0",
 "jest": "25.4.0"
 },
 "dependencies": {
 "aws-xray-sdk-core": "1.1.2"
 },
 "scripts": {
 "test": "jest"
 }
}

To instrument Amazon SDK clients, wrap the aws-sdk library with the captureAWS method.

Example blank-nodejs/function/index.js – Tracing an Amazon SDK client

const AWSXRay = require('aws-xray-sdk-core')

Using ADOT to instrument your Node.js functions 480

https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda/lambda-js
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/package.json
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/function/index.js

Amazon Lambda Developer Guide

const AWS = AWSXRay.captureAWS(require('aws-sdk'))

// Create client outside of handler to reuse
const lambda = new AWS.Lambda()

// Handler
exports.handler = async function(event, context) {
 event.Records.forEach(record => {
 ...

The Lambda runtime sets some environment variables to configure the X-Ray SDK. For example,
Lambda sets AWS_XRAY_CONTEXT_MISSING to LOG_ERROR to avoid throwing runtime errors from
the X-Ray SDK. To set a custom context missing strategy, override the environment variable in
your function configuration to have no value, and then you can set the context missing strategy
programmatically.

Example Example initialization code

const AWSXRay = require('aws-xray-sdk-core');

// Configure the context missing strategy to do nothing
AWSXRay.setContextMissingStrategy(() => {});

For more information, see the section called “Environment variables”.

After you add the correct dependencies and make the necessary code changes, activate tracing in
your function's configuration via the Lambda console or the API.

Activating tracing with the Lambda console

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Choose Edit.

5. Under X-Ray, toggle on Active tracing.

6. Choose Save.

Activating tracing with the Lambda console 481

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Activating tracing with the Lambda API

Configure tracing on your Lambda function with the Amazon CLI or Amazon SDK, use the following
API operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example Amazon CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Activating tracing with Amazon CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an Amazon CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

For an Amazon Serverless Application Model (Amazon SAM) AWS::Serverless::Function
resource, use the Tracing property.

Example template.yml – Tracing configuration

Resources:

Activating tracing with the Lambda API 482

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml

Amazon Lambda Developer Guide

 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Interpreting an X-Ray trace

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example from the error processor sample application shows an application with two
functions. The primary function processes events and sometimes returns errors. The second
function at the top processes errors that appear in the first's log group and uses the Amazon SDK
to call X-Ray, Amazon Simple Storage Service (Amazon S3), and Amazon CloudWatch Logs.

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests.

Note

You cannot configure the X-Ray sampling rate for your functions.

Interpreting an X-Ray trace 483

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.amazonaws.cn/xray/latest/devguide/xray-concepts.html#xray-concepts-servicegraph

Amazon Lambda Developer Guide

When using active tracing, Lambda records 2 segments per trace, which creates two nodes on the
service graph. The following image highlights these two nodes for the primary function from the
error processor sample application.

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has origin AWS::Lambda::Function.

This example expands the function segment to show its three subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

Interpreting an X-Ray trace 484

Amazon Lambda Developer Guide

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see the Amazon X-Ray SDK for Node.js in the
Amazon X-Ray Developer Guide.

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the Amazon
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see Amazon X-Ray pricing.

Storing runtime dependencies in a layer (X-Ray SDK)

If you use the X-Ray SDK to instrument Amazon SDK clients your function code, your deployment
package can become quite large. To avoid uploading runtime dependencies every time you update
your function code, package the X-Ray SDK in a Lambda layer.

The following example shows an AWS::Serverless::LayerVersion resource that stores the
Amazon X-Ray SDK for Node.js.

Example template.yml – Dependencies layer

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: function/.
 Tracing: Active
 Layers:
 - !Ref libs
 ...
 libs:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: blank-nodejs-lib
 Description: Dependencies for the blank sample app.
 ContentUri: lib/.
 CompatibleRuntimes:
 - nodejs16.x

Storing runtime dependencies in a layer (X-Ray SDK) 485

https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-nodejs.html
https://www.amazonaws.cn/xray/pricing/
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-layerversion.html

Amazon Lambda Developer Guide

With this configuration, you update the library layer only if you change your runtime dependencies.
Since the function deployment package contains only your code, this can help reduce upload times.

Creating a layer for dependencies requires build changes to generate the layer archive prior to
deployment. For a working example, see the blank-nodejs sample application.

Storing runtime dependencies in a layer (X-Ray SDK) 486

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs

Amazon Lambda Developer Guide

Building Lambda functions with TypeScript

You can use the Node.js runtime to run TypeScript code in Amazon Lambda. Because Node.js
doesn't run TypeScript code natively, you must first transpile your TypeScript code into JavaScript.
Then, use the JavaScript files to deploy your function code to Lambda. Your code runs in an
environment that includes the Amazon SDK for JavaScript, with credentials from an Amazon
Identity and Access Management (IAM) role that you manage. To learn more about the SDK
versions included with the Node.js runtimes, see the section called “Runtime-included SDK
versions”.

Lambda supports the following Node.js runtimes.

Node.js

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Node.js 20 nodejs20.
x

Amazon
Linux 2023

Node.js 18 nodejs18.
x

Amazon
Linux 2

Node.js 16 nodejs16.
x

Amazon
Linux 2

Jun 12, 2024 Jul 15, 2024 Aug 15, 2024

Topics

• Setting up a TypeScript development environment

• Amazon Lambda function handler in TypeScript

• Deploy transpiled TypeScript code in Lambda with .zip file archives

• Deploy transpiled TypeScript code in Lambda with container images

• Amazon Lambda context object in TypeScript

• Amazon Lambda function logging in TypeScript

• Amazon Lambda function testing in TypeScript

487

Amazon Lambda Developer Guide

• Amazon Lambda function errors in TypeScript

• Tracing TypeScript code in Amazon Lambda

Setting up a TypeScript development environment

Use a local integrated development environment (IDE), text editor, or Amazon Cloud9 to write your
TypeScript function code. You can’t create TypeScript code on the Lambda console.

To transpile your TypeScript code, set up a compiler such as esbuild or Microsoft's TypeScript
compiler (tsc) , which is bundled with the TypeScript distribution. You can use the Amazon
Serverless Application Model (Amazon SAM) or the Amazon Cloud Development Kit (Amazon CDK)
to simplify building and deploying TypeScript code. Both tools use esbuild to transpile TypeScript
code into JavaScript.

When using esbuild, consider the following:

• There are several TypeScript caveats.

• You must configure your TypeScript transpilation settings to match the Node.js runtime that
you plan to use. For more information, see Target in the esbuild documentation. For an example
of a tsconfig.json file that demonstrates how to target a specific Node.js version supported by
Lambda, refer to the TypeScript GitHub repository.

• esbuild doesn’t perform type checks. To check types, use the tsc compiler. Run tsc -noEmit
or add a "noEmit" parameter to your tsconfig.json file, as shown in the following example.
This configures tsc to not emit JavaScript files. After checking types, use esbuild to convert the
TypeScript files into JavaScript.

Example tsconfig.json

 {
 "compilerOptions": {
 "target": "es2020",
 "strict": true,
 "preserveConstEnums": true,
 "noEmit": true,
 "sourceMap": false,
 "module":"commonjs",
 "moduleResolution":"node",
 "esModuleInterop": true,

Development environment 488

https://docs.amazonaws.cn/cloud9/latest/user-guide/sample-typescript.html
https://esbuild.github.io/
https://www.typescriptlang.org/download
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/cdk/v2/guide/getting_started.html
https://esbuild.github.io/content-types/#typescript-caveats
https://esbuild.github.io/api/#target
https://github.com/tsconfig/bases/blob/main/bases/node14.json

Amazon Lambda Developer Guide

 "skipLibCheck": true,
 "forceConsistentCasingInFileNames": true,
 "isolatedModules": true,
 },
 "exclude": ["node_modules", "**/*.test.ts"]
}

Development environment 489

Amazon Lambda Developer Guide

Amazon Lambda function handler in TypeScript

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

Example TypeScript handler

This example function logs the contents of the event object and returns the location of the logs.
Note the following:

• Before using this code in a Lambda function, you must add the @types/aws-lambda package
as a development dependency. This package contains the type definitions for Lambda. When
@types/aws-lambda is installed, the import statement (import ... from 'aws-lambda')
imports the type definitions. It does not import the aws-lambda NPM package, which is an
unrelated third-party tool. For more information, see aws-lambda in the DefinitelyTyped GitHub
repository.

• The handler in this example is an ES module and must be designated as such in your
package.json file or by using the .mjs file extension. For more information, see see
Designating a function handler as an ES module.

import { Handler } from 'aws-lambda';

export const handler: Handler = async (event, context) => {
 console.log('EVENT: \n' + JSON.stringify(event, null, 2));
 return context.logStreamName;
};

The runtime passes arguments to the handler method. The first argument is the event object,
which contains information from the invoker. The invoker passes this information as a JSON-
formatted string when it calls Invoke, and the runtime converts it to an object. When an
Amazon service invokes your function, the event structure varies by service. With TypeScript, we
recommend using type annotations for the event object. For more information, see Using types for
the event object.

The second argument is the context object, which contains information about the invocation,
function, and execution environment. In the preceding example, the function gets the name of the
log stream from the context object and returns it to the invoker.

Handler 490

https://www.npmjs.com/package/@types/aws-lambda
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda
https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html

Amazon Lambda Developer Guide

You can also use a callback argument, which is a function that you can call in non-async handlers
to send a response. We recommend that you use async/await instead of callbacks. Async/await
provides improved readability, error handling, and efficiency. For more information about the
differences between async/await and callbacks, see Using callbacks.

Using async/await

If your code performs an asynchronous task, use the async/await pattern to make sure that the
handler finishes running. Async/await is a concise and readable way to write asynchronous code
in Node.js, without the need for nested callbacks or chaining promises. With async/await, you can
write code that reads like synchronous code, while still being asynchronous and non-blocking.

The async keyword marks a function as asynchronous, and the await keyword pauses the
execution of the function until a Promise is resolved.

Example TypeScript function – asynchronous

This example uses fetch, which is available in the nodejs18.x runtime. Note the following:

• Before using this code in a Lambda function, you must add the @types/aws-lambda package
as a development dependency. This package contains the type definitions for Lambda. When
@types/aws-lambda is installed, the import statement (import ... from 'aws-lambda')
imports the type definitions. It does not import the aws-lambda NPM package, which is an
unrelated third-party tool. For more information, see aws-lambda in the DefinitelyTyped GitHub
repository.

• The handler in this example is an ES module and must be designated as such in your
package.json file or by using the .mjs file extension. For more information, see see
Designating a function handler as an ES module.

import { APIGatewayProxyEvent, APIGatewayProxyResult } from 'aws-lambda';
const url = 'https://aws.amazon.com/';
export const lambdaHandler = async (event: APIGatewayProxyEvent):
 Promise<APIGatewayProxyResult> => {
 try {
 // fetch is available with Node.js 18
 const res = await fetch(url);
 return {
 statusCode: res.status,
 body: JSON.stringify({

Using async/await 491

https://www.npmjs.com/package/@types/aws-lambda
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda

Amazon Lambda Developer Guide

 message: await res.text(),
 }),
 };
 } catch (err) {
 console.log(err);
 return {
 statusCode: 500,
 body: JSON.stringify({
 message: 'some error happened',
 }),
 };
 }
};

Using callbacks

We recommend that you use async/await to declare the function handler instead of using
callbacks. Async/await is a better choice for several reasons:

• Readability: Async/await code is easier to read and understand than callback code, which can
quickly become difficult to follow and result in callback hell.

• Debugging and error handling: Debugging callback-based code can be difficult. The call stack
can become hard to follow and errors can easily be swallowed. With async/await, you can use
try/catch blocks to handle errors.

• Efficiency: Callbacks often require switching between different parts of the code. Async/await
can reduce the number of context switches, resulting in more efficient code.

When you use callbacks in your handler, the function continues to execute until the event loop is
empty or the function times out. The response isn't sent to the invoker until all event loop tasks are
finished. If the function times out, an error is returned instead. You can configure the runtime to
send the response immediately by setting context.callbackWaitsForEmptyEventLoop to false.

The callback function takes two arguments: an Error and a response. The response object must be
compatible with JSON.stringify.

Example TypeScript function with callback

This sample function receives an event from Amazon API Gateway, logs the event and context
objects, and then returns a response to API Gateway. Note the following:

Using callbacks 492

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

Amazon Lambda Developer Guide

• Before using this code in a Lambda function, you must add the @types/aws-lambda package
as a development dependency. This package contains the type definitions for Lambda. When
@types/aws-lambda is installed, the import statement (import ... from 'aws-lambda')
imports the type definitions. It does not import the aws-lambda NPM package, which is an
unrelated third-party tool. For more information, see aws-lambda in the DefinitelyTyped GitHub
repository.

• The handler in this example is an ES module and must be designated as such in your
package.json file or by using the .mjs file extension. For more information, see see
Designating a function handler as an ES module.

import { Context, APIGatewayProxyCallback, APIGatewayEvent } from 'aws-lambda';

export const lambdaHandler = (event: APIGatewayEvent, context: Context, callback:
 APIGatewayProxyCallback): void => {
 console.log(`Event: ${JSON.stringify(event, null, 2)}`);
 console.log(`Context: ${JSON.stringify(context, null, 2)}`);
 callback(null, {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',
 }),
 });
};

Using types for the event object

We recommend that you don’t use the any type for the handler arguments and return type because
you lose the ability to check types. Instead, generate an event using the sam local generate-event
Amazon Serverless Application Model CLI command, or use an open-source definition from the
@types/aws-lambda package.

Generating an event using the sam local generate-event command

1. Generate an Amazon Simple Storage Service (Amazon S3) proxy event.

sam local generate-event s3 put >> S3PutEvent.json

2. Use the quicktype utility to generate type definitions from the S3PutEvent.json file.

Using types for the event object 493

https://www.npmjs.com/package/@types/aws-lambda
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda
https://www.typescriptlang.org/docs/handbook/declaration-files/do-s-and-don-ts.html#any
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-local-generate-event.html
https://www.npmjs.com/package/@types/aws-lambda
https://quicktype.io/typescript

Amazon Lambda Developer Guide

npm install -g quicktype
quicktype S3PutEvent.json -o S3PutEvent.ts

3. Use the generated types in your code.

import { S3PutEvent } from './S3PutEvent';

export const lambdaHandler = async (event: S3PutEvent): Promise<void> => {
 event.Records.map((record) => console.log(record.s3.object.key));
};

Generating an event using an open-source definition from the @types/aws-lambda package

1. Add the @types/aws-lambda package as a development dependency.

npm install -D @types/aws-lambda

2. Use the types in your code.

import { S3Event } from "aws-lambda";

export const lambdaHandler = async (event: S3Event): Promise<void> => {
 event.Records.map((record) => console.log(record.s3.object.key));
};

Using types for the event object 494

https://www.npmjs.com/package/@types/aws-lambda

Amazon Lambda Developer Guide

Deploy transpiled TypeScript code in Lambda with .zip file
archives

Before you can deploy TypeScript code to Amazon Lambda, you need to transpile it into JavaScript.
This page explains three ways to build and deploy TypeScript code to Lambda with .zip file
archives:

• Using Amazon Serverless Application Model (Amazon SAM)

• Using the Amazon Cloud Development Kit (Amazon CDK)

• Using the Amazon Command Line Interface (Amazon CLI) and esbuild

Amazon SAM and Amazon CDK simplify building and deploying TypeScript functions. The Amazon
SAM template specification provides a simple and clean syntax to describe the Lambda functions,
APIs, permissions, configurations, and events that make up your serverless application. The
Amazon CDK lets you build reliable, scalable, cost-effective applications in the cloud with the
considerable expressive power of a programming language. The Amazon CDK is intended for
moderately to highly experienced Amazon users. Both the Amazon CDK and the Amazon SAM use
esbuild to transpile TypeScript code into JavaScript.

Using Amazon SAM to deploy TypeScript code to Lambda

Follow the steps below to download, build, and deploy a sample Hello World TypeScript
application using the Amazon SAM. This application implements a basic API backend. It consists of
an Amazon API Gateway endpoint and a Lambda function. When you send a GET request to the API
Gateway endpoint, the Lambda function is invoked. The function returns a hello world message.

Note

Amazon SAM uses esbuild to create Node.js Lambda functions from TypeScript code.
esbuild support is currently in public preview. During public preview, esbuild support may
be subject to backwards incompatible changes.

Prerequisites

To complete the steps in this section, you must have the following:

Deploy .zip file archives 495

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-specification.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-specification.html
https://docs.amazonaws.cn/cdk/v2/guide/home.html

Amazon Lambda Developer Guide

• Amazon CLI version 2

• Amazon SAM CLI version 1.75 or later

• Node.js 18.x

Deploy a sample Amazon SAM application

1. Initialize the application using the Hello World TypeScript template.

sam init --app-template hello-world-typescript --name sam-app --package-type Zip --
runtime nodejs18.x

2. (Optional) The sample application includes configurations for commonly used tools, such as
ESLlint for code linting and Jest for unit testing. To run lint and test commands:

cd sam-app/hello-world
npm install
npm run lint
npm run test

3. Build the app.

cd sam-app
sam build

4. Deploy the app.

sam deploy --guided

5. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, respond with Enter.

6. The output shows the endpoint for the REST API. Open the endpoint in a browser to test the
function. You should see this response:

{"message":"hello world"}

7. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Using Amazon SAM 496

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://eslint.org/
https://jestjs.io/

Amazon Lambda Developer Guide

Using the Amazon CDK to deploy TypeScript code to Lambda

Follow the steps below to build and deploy a sample TypeScript application using the Amazon
CDK. This application implements a basic API backend. It consists of an API Gateway endpoint
and a Lambda function. When you send a GET request to the API Gateway endpoint, the Lambda
function is invoked. The function returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Amazon CLI version 2

• Amazon CDK version 2

• Node.js 18.x

• Either Docker or esbuild

Deploy a sample Amazon CDK application

1. Create a project directory for your new application.

mkdir hello-world
cd hello-world

2. Initialize the app.

cdk init app --language typescript

3. Add the @types/aws-lambda package as a development dependency. This package contains
the type definitions for Lambda.

npm install -D @types/aws-lambda

4. Open the lib directory. You should see a file called hello-world-stack.ts. Create two new files
in this directory: hello-world.function.ts and hello-world.ts.

5. Open hello-world.function.ts and add the following code to the file. This is the code for the
Lambda function.

Using the Amazon CDK 497

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://www.docker.com/get-started/
https://esbuild.github.io/
https://www.npmjs.com/package/@types/aws-lambda

Amazon Lambda Developer Guide

Note

The import statement imports the type definitions from @types/aws-lambda. It does
not import the aws-lambda NPM package, which is an unrelated third-party tool. For
more information, see aws-lambda in the DefinitelyTyped GitHub repository.

import { Context, APIGatewayProxyResult, APIGatewayEvent } from 'aws-lambda';

export const handler = async (event: APIGatewayEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 console.log(`Event: ${JSON.stringify(event, null, 2)}`);
 console.log(`Context: ${JSON.stringify(context, null, 2)}`);
 return {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',
 }),
 };
};

6. Open hello-world.ts and add the following code to the file. This contains the NodejsFunction
construct, which creates the Lambda function, and the LambdaRestApi construct, which
creates the REST API.

import { Construct } from 'constructs';
import { NodejsFunction } from 'aws-cdk-lib/aws-lambda-nodejs';
import { LambdaRestApi } from 'aws-cdk-lib/aws-apigateway';

export class HelloWorld extends Construct {
 constructor(scope: Construct, id: string) {
 super(scope, id);
 const helloFunction = new NodejsFunction(this, 'function');
 new LambdaRestApi(this, 'apigw', {
 handler: helloFunction,
 });
 }
}

The NodejsFunction construct assumes the following by default:

Using the Amazon CDK 498

https://www.npmjs.com/package/@types/aws-lambda
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda
https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_apigateway.LambdaRestApi.html

Amazon Lambda Developer Guide

• Your function handler is called handler.

• The .ts file that contains the function code (hello-world.function.ts) is in the same directory
as the .ts file that contains the construct (hello-world.ts). The construct uses the construct's
ID ("hello-world") and the name of the Lambda handler file ("function") to find the function
code. For example, if your function code is in a file called hello-world.my-function.ts, the
hello-world.ts file must reference the function code like this:

const helloFunction = new NodejsFunction(this, 'my-function');

You can change this behavior and configure other esbuild parameters. For more information,
see Configuring esbuild in the Amazon CDK API reference.

7. Open hello-world-stack.ts. This is the code that defines your Amazon CDK stack. Replace the
code with the following:

import { Stack, StackProps } from 'aws-cdk-lib';
import { Construct } from 'constructs';
import { HelloWorld } from './hello-world';

export class HelloWorldStack extends Stack {
 constructor(scope: Construct, id: string, props?: StackProps) {
 super(scope, id, props);
 new HelloWorld(this, 'hello-world');
 }
}

8. from the hello-world directory containing your cdk.json file, deploy your application.

cdk deploy

9. The Amazon CDK builds and packages the Lambda function using esbuild, and then deploys
the function to the Lambda runtime. The output shows the endpoint for the REST API. Open
the endpoint in a browser to test the function. You should see this response:

{"message":"hello world"}

This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

Using the Amazon CDK 499

https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html#configuring-esbuild
https://docs.amazonaws.cn/cdk/v2/guide/stacks.html

Amazon Lambda Developer Guide

Using the Amazon CLI and esbuild to deploy TypeScript code to
Lambda

The following example demonstrates how to transpile and deploy TypeScript code to Lambda
using esbuild and the Amazon CLI. esbuild produces one JavaScript file with all dependencies. This
is the only file that you need to add to the .zip archive.

Prerequisites

To complete the steps in this section, you must have the following:

• Amazon CLI version 2

• Node.js 18.x

• An execution role for the Lambda function

• For Windows users, a zip file utility such as 7zip.

Deploy a sample function

1. On your local machine, create a project directory for your new function.

2. Create a new Node.js project with npm or a package manager of your choice.

npm init

3. Add the @types/aws-lambda and esbuild packages as development dependencies. The
@types/aws-lambda package contains the type definitions for Lambda.

npm install -D @types/aws-lambda esbuild

4. Create a new file called index.ts. Add the following code to the new file. This is the code for
the Lambda function. The function returns a hello world message. The function doesn’t
create any API Gateway resources.

Note

The import statement imports the type definitions from @types/aws-lambda. It does
not import the aws-lambda NPM package, which is an unrelated third-party tool. For
more information, see aws-lambda in the DefinitelyTyped GitHub repository.

Using the Amazon CLI and esbuild 500

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://www.7-zip.org/download.html
https://www.npmjs.com/package/@types/aws-lambda
https://esbuild.github.io/
https://www.npmjs.com/package/@types/aws-lambda
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda

Amazon Lambda Developer Guide

import { Context, APIGatewayProxyResult, APIGatewayEvent } from 'aws-lambda';

export const handler = async (event: APIGatewayEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 console.log(`Event: ${JSON.stringify(event, null, 2)}`);
 console.log(`Context: ${JSON.stringify(context, null, 2)}`);
 return {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',
 }),
 };
};

5. Add a build script to the package.json file. This configures esbuild to automatically
create the .zip deployment package. For more information, see Build scripts in the esbuild
documentation.

Linux and MacOS

"scripts": {
 "prebuild": "rm -rf dist",
 "build": "esbuild index.ts --bundle --minify --sourcemap --platform=node --
target=es2020 --outfile=dist/index.js",
 "postbuild": "cd dist && zip -r index.zip index.js*"
},

Windows

In this example, the "postbuild" command uses the 7zip utility to create your .zip file.
Use your own preferred Windows zip utility and modify the command as necessary.

"scripts": {
 "prebuild": "del /q dist",
 "build": "esbuild index.ts --bundle --minify --sourcemap --platform=node --
target=es2020 --outfile=dist/index.js",
 "postbuild": "cd dist && 7z a -tzip index.zip index.js*"
},

6. Build the package.

Using the Amazon CLI and esbuild 501

https://esbuild.github.io/getting-started/#build-scripts
https://www.7-zip.org/download.html

Amazon Lambda Developer Guide

npm run build

7. Create a Lambda function using the .zip deployment package. Replace the highlighted text
with the Amazon Resource Name (ARN) of your execution role.

aws lambda create-function --function-name hello-world --runtime "nodejs18.x"
 --role arn:aws-cn:iam::123456789012:role/lambda-ex --zip-file "fileb://dist/
index.zip" --handler index.handler

8. Run a test event to confirm that the function returns the following response. If you want to
invoke this function using API Gateway, create and configure a REST API.

{
 "statusCode": 200,
 "body": "{\"message\":\"hello world\"}"
}

Using the Amazon CLI and esbuild 502

https://docs.amazonaws.cn/apigateway/latest/developerguide/how-to-create-api.html

Amazon Lambda Developer Guide

Deploy transpiled TypeScript code in Lambda with container
images

You can deploy your TypeScript code to an Amazon Lambda function as a Node.js container image.
Amazon provides base images for Node.js to help you build the container image. These base
images are preloaded with a language runtime and other components that are required to run the
image on Lambda. Amazon provides a Dockerfile for each of the base images to help with building
your container image.

If you use a community or private enterprise base image, you must add the Node.js runtime
interface client (RIC) to the base image to make it compatible with Lambda.

Lambda provides a runtime interface emulator for local testing. The Amazon base images for
Node.js include the runtime interface emulator. If you use an alternative base image, such as an
Alpine Linux or Debian image, you can build the emulator into your image or install it on your local
machine.

Using a Node.js base image to build and package TypeScript function
code

Prerequisites

To complete the steps in this section, you must have the following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Docker

• Node.js 18.x

Creating an image from a base image

To create an image from an Amazon base image for Lambda

1. On your local machine, create a project directory for your new function.

2. Create a new Node.js project with npm or a package manager of your choice.

npm init

Deploy container images 503

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker

Amazon Lambda Developer Guide

3. Add the @types/aws-lambda and esbuild packages as development dependencies. The
@types/aws-lambda package contains the type definitions for Lambda.

npm install -D @types/aws-lambda esbuild

4. Add a build script to the package.json file.

 "scripts": {
 "build": "esbuild index.ts --bundle --minify --sourcemap --platform=node --
target=es2020 --outfile=dist/index.js"
}

5. Create a new file called index.ts. Add the following sample code to the new file. This is the
code for the Lambda function. The function returns a hello world message.

Note

The import statement imports the type definitions from @types/aws-lambda. It does
not import the aws-lambda NPM package, which is an unrelated third-party tool. For
more information, see aws-lambda in the DefinitelyTyped GitHub repository.

import { Context, APIGatewayProxyResult, APIGatewayEvent } from 'aws-lambda';

export const handler = async (event: APIGatewayEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 console.log(`Event: ${JSON.stringify(event, null, 2)}`);
 console.log(`Context: ${JSON.stringify(context, null, 2)}`);
 return {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',
 }),
 };
};

6. Create a new Dockerfile with the following configuration:

• Set the FROM property to the URI of the base image.

• Set the CMD argument to specify the Lambda function handler.

Using a Node.js base image to build and package TypeScript function code 504

https://www.npmjs.com/package/@types/aws-lambda
https://esbuild.github.io/
https://esbuild.github.io/getting-started/#build-scripts
https://www.npmjs.com/package/@types/aws-lambda
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda

Amazon Lambda Developer Guide

Example Dockerfile

The following Dockerfile uses a multi-stage build. The first step transpiles the TypeScript code
into JavaScript. The second step produces a container image that contains only JavaScript files
and production dependencies.

FROM public.ecr.aws/lambda/nodejs:18 as builder
WORKDIR /usr/app
COPY package.json index.ts ./
RUN npm install
RUN npm run build

FROM public.ecr.aws/lambda/nodejs:18
WORKDIR ${LAMBDA_TASK_ROOT}
COPY --from=builder /usr/app/dist/* ./
CMD ["index.handler"]

7. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

Using a Node.js base image to build and package TypeScript function code 505

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

3. Get the container ID.

Using a Node.js base image to build and package TypeScript function code 506

Amazon Lambda Developer Guide

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the Amazon Web Services Region where you want to create the
Amazon ECR repository.

• Replace 111122223333 with your Amazon Web Services account ID.

aws ecr get-login-password --region cn-north-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region cn-north-1 --
image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same Amazon Web Services Region as the
Lambda function.

If successful, you see a response like this:

{
 "repository": {

Using a Node.js base image to build and package TypeScript function code 507

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

Amazon Lambda Developer Guide

 "repositoryArn": "arn:aws:ecr:cn-north-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• Replace docker-image:test with the name and tag of your Docker image.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.cn-
north-1.amazonaws.com.cn/hello-world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

Using a Node.js base image to build and package TypeScript function code 508

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

Amazon Lambda Developer Guide

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different Amazon account, as long as
the image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Using a Node.js base image to build and package TypeScript function code 509

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

Amazon Lambda Developer Guide

Amazon Lambda context object in TypeScript

When Lambda runs your function, it passes a context object to the handler. This object provides
methods and properties that provide information about the invocation, function, and execution
environment.

Context methods

• getRemainingTimeInMillis() – Returns the number of milliseconds left before the
execution times out.

Context properties

• functionName – The name of the Lambda function.

• functionVersion – The version of the function.

• invokedFunctionArn – The Amazon Resource Name (ARN) that's used to invoke the function.
Indicates if the invoker specified a version number or alias.

• memoryLimitInMB – The amount of memory that's allocated for the function.

• awsRequestId – The identifier of the invocation request.

• logGroupName – The log group for the function.

• logStreamName – The log stream for the function instance.

• identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• cognitoIdentityId – The authenticated Amazon Cognito identity.

• cognitoIdentityPoolId – The Amazon Cognito identity pool that authorized the
invocation.

• clientContext – (mobile apps) Client context that's provided to Lambda by the client
application.

• client.installation_id

• client.app_title

• client.app_version_name

• client.app_version_code

• client.app_package_name

• env.platform_version

Context 510

Amazon Lambda Developer Guide

• env.platform

• env.make

• env.model

• env.locale

• Custom – Custom values that are set by the client application.

• callbackWaitsForEmptyEventLoop – Set to false to send the response right away when
the callback runs, instead of waiting for the Node.js event loop to be empty. If this is false, any
outstanding events continue to run during the next invocation.

You can use the @types/aws-lambda npm package to work with the context object.

Example index.ts file

The following example function logs context information and returns the location of the logs.

Note

Before using this code in a Lambda function, you must add the @types/aws-lambda
package as a development dependency. This package contains the type definitions for
Lambda. When @types/aws-lambda is installed, the import statement (import ...
from 'aws-lambda') imports the type definitions. It does not import the aws-lambda
NPM package, which is an unrelated third-party tool. For more information, see aws-
lambda in the DefinitelyTyped GitHub repository.

import { Context } from 'aws-lambda';
export const lambdaHandler = async (event: string, context: Context): Promise<string>
 => {
 console.log('Remaining time: ', context.getRemainingTimeInMillis());
 console.log('Function name: ', context.functionName);
 return context.logStreamName;
};

Context 511

https://www.npmjs.com/package/@types/aws-lambda
https://www.npmjs.com/package/@types/aws-lambda
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/aws-lambda

Amazon Lambda Developer Guide

Amazon Lambda function logging in TypeScript

Amazon Lambda automatically monitors Lambda functions and sends log entries to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation and other output from your function's code to the log stream. For more information
about CloudWatch Logs, see Using Amazon CloudWatch logs with Amazon Lambda.

To output logs from your function code, you can use methods on the console object. For more
detailed logging, you can use any logging library that writes to stdout or stderr.

Sections

• Tools and libraries

• Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM for structured logging

• Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for structured logging

• Using the Lambda console

• Using the CloudWatch console

Tools and libraries

Powertools for Amazon Lambda (TypeScript) is a developer toolkit to implement Serverless best
practices and increase developer velocity. The Logger utility provides a Lambda optimized logger
which includes additional information about function context across all your functions with output
structured as JSON. Use this utility to do the following:

• Capture key fields from the Lambda context, cold start and structures logging output as JSON

• Log Lambda invocation events when instructed (disabled by default)

• Print all the logs only for a percentage of invocations via log sampling (disabled by default)

• Append additional keys to structured log at any point in time

• Use a custom log formatter (Bring Your Own Formatter) to output logs in a structure compatible
with your organization’s Logging RFC

Logging 512

https://nodejs.org/docs/latest-v18.x/api/console.html
https://docs.powertools.aws.dev/lambda/typescript/latest/
https://docs.powertools.aws.dev/lambda/typescript/latest/core/logger/

Amazon Lambda Developer Guide

Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM
for structured logging

Follow the steps below to download, build, and deploy a sample Hello World TypeScript
application with integrated Powertools for Amazon Lambda (TypeScript) modules using the
Amazon SAM. This application implements a basic API backend and uses Powertools for emitting
logs, metrics, and traces. It consists of an Amazon API Gateway endpoint and a Lambda function.
When you send a GET request to the API Gateway endpoint, the Lambda function invokes, sends
logs and metrics using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-
Ray. The function returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Node.js 18.x or later

• Amazon CLI version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Deploy a sample Amazon SAM application

1. Initialize the application using the Hello World TypeScript template.

sam init --app-template hello-world-powertools-typescript --name sam-app --package-
type Zip --runtime nodejs18.x

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM for structured logging 513

https://docs.powertools.aws.dev/lambda-typescript
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the logs for the function, run sam logs. For more information, see Working with logs in
the Amazon Serverless Application Model Developer Guide.

sam logs --stack-name sam-app

The log output looks like this:

2023/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2022-08-31T09:33:10.552000
 START RequestId: 70693159-7e94-4102-a2af-98a6343fb8fb Version: $LATEST
2023/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2022-08-31T09:33:10.594000
 2022-08-31T09:33:10.557Z 70693159-7e94-4102-a2af-98a6343fb8fb
 INFO {"_aws":{"Timestamp":1661938390556,"CloudWatchMetrics":
[{"Namespace":"sam-app","Dimensions":[["service"]],"Metrics":
[{"Name":"ColdStart","Unit":"Count"}]}]},"service":"helloWorld","ColdStart":1}
2023/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2022-08-31T09:33:10.595000
 2022-08-31T09:33:10.595Z 70693159-7e94-4102-a2af-98a6343fb8fb INFO
 {"level":"INFO","message":"This is an INFO log - sending HTTP 200 - hello world
 response","service":"helloWorld","timestamp":"2022-08-31T09:33:10.594Z"}
2023/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2022-08-31T09:33:10.655000
 2022-08-31T09:33:10.655Z 70693159-7e94-4102-a2af-98a6343fb8fb INFO
 {"_aws":{"Timestamp":1661938390655,"CloudWatchMetrics":[{"Namespace":"sam-
app","Dimensions":[["service"]],"Metrics":[]}]},"service":"helloWorld"}

Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM for structured logging 514

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

Amazon Lambda Developer Guide

2023/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2022-08-31T09:33:10.754000 END
 RequestId: 70693159-7e94-4102-a2af-98a6343fb8fb
2023/01/31/[$LATEST]4d53e8d279824834a1ccd35511a4949c 2022-08-31T09:33:10.754000
 REPORT RequestId: 70693159-7e94-4102-a2af-98a6343fb8fb Duration: 201.55 ms Billed
 Duration: 202 ms Memory Size: 128 MB Max Memory Used: 66 MB Init Duration: 252.42
 ms
XRAY TraceId: 1-630f2ad5-1de22b6d29a658a466e7ecf5 SegmentId: 567c116658fbf11a
 Sampled: true

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Managing log retention

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which CloudWatch
automatically deletes the logs. To set up log retention, add the following to your Amazon SAM
template:

Resources:
 HelloWorldFunction:
 Type: AWS::Serverless::Function
 Properties:
 # Omitting other properties

 LogGroup:
 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: !Sub "/aws/lambda/${HelloWorldFunction}"
 RetentionInDays: 7

Using Powertools for Amazon Lambda (TypeScript) and the Amazon
CDK for structured logging

Follow the steps below to download, build, and deploy a sample Hello World TypeScript
application with integrated Powertools for Amazon Lambda (TypeScript) modules using the
Amazon CDK. This application implements a basic API backend and uses Powertools for emitting
logs, metrics, and traces. It consists of an Amazon API Gateway endpoint and a Lambda function.

Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for structured logging 515

https://docs.powertools.aws.dev/lambda-typescript

Amazon Lambda Developer Guide

When you send a GET request to the API Gateway endpoint, the Lambda function invokes, sends
logs and metrics using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-
Ray. The function returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Node.js 18.x or later

• Amazon CLI version 2

• Amazon CDK version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Deploy a sample Amazon CDK application

1. Create a project directory for your new application.

mkdir hello-world
cd hello-world

2. Initialize the app.

cdk init app --language typescript

3. Add the @types/aws-lambda package as a development dependency.

npm install -D @types/aws-lambda

4. Install the Powertools Logger utility.

npm install @aws-lambda-powertools/logger

5. Open the lib directory. You should see a file called hello-world-stack.ts. Create new two new
files in this directory: hello-world.function.ts and hello-world.ts.

6. Open hello-world.function.ts and add the following code to the file. This is the code for the
Lambda function.

import { APIGatewayEvent, APIGatewayProxyResult, Context } from 'aws-lambda';

Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for structured logging 516

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade
https://www.npmjs.com/package/@types/aws-lambda
https://docs.powertools.aws.dev/lambda-typescript/latest/core/logger/

Amazon Lambda Developer Guide

import { Logger } from '@aws-lambda-powertools/logger';
const logger = new Logger();

export const handler = async (event: APIGatewayEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 logger.info('This is an INFO log - sending HTTP 200 - hello world response');
 return {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',
 }),
 };
};

7. Open hello-world.ts and add the following code to the file. This contains the NodejsFunction
construct, which creates the Lambda function, configures environment variables for
Powertools, and sets log retention to one week. It also includes the LambdaRestApi construct,
which creates the REST API.

import { Construct } from 'constructs';
import { NodejsFunction } from 'aws-cdk-lib/aws-lambda-nodejs';
import { LambdaRestApi } from 'aws-cdk-lib/aws-apigateway';
import { RetentionDays } from 'aws-cdk-lib/aws-logs';
import { CfnOutput } from 'aws-cdk-lib';

export class HelloWorld extends Construct {
 constructor(scope: Construct, id: string) {
 super(scope, id);
 const helloFunction = new NodejsFunction(this, 'function', {
 environment: {
 Powertools_SERVICE_NAME: 'helloWorld',
 LOG_LEVEL: 'INFO',
 },
 logRetention: RetentionDays.ONE_WEEK,
 });
 const api = new LambdaRestApi(this, 'apigw', {
 handler: helloFunction,
 });
 new CfnOutput(this, 'apiUrl', {
 exportName: 'apiUrl',
 value: api.url,
 });
 }

Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for structured logging 517

https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_apigateway.LambdaRestApi.html

Amazon Lambda Developer Guide

}

8. Open hello-world-stack.ts. This is the code that defines your Amazon CDK stack. Replace the
code with the following:

import { Stack, StackProps } from 'aws-cdk-lib';
import { Construct } from 'constructs';
import { HelloWorld } from './hello-world';

export class HelloWorldStack extends Stack {
 constructor(scope: Construct, id: string, props?: StackProps) {
 super(scope, id, props);
 new HelloWorld(this, 'hello-world');
 }
}

9. Go back to the project directory.

cd hello-world

10. Deploy your application.

cdk deploy

11. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name HelloWorldStack --query
 'Stacks[0].Outputs[?ExportName==`apiUrl`].OutputValue' --output text

12. Invoke the API endpoint:

curl <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

13. To get the logs for the function, run sam logs. For more information, see Working with logs in
the Amazon Serverless Application Model Developer Guide.

sam logs --stack-name HelloWorldStack

Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for structured logging 518

https://docs.amazonaws.cn/cdk/v2/guide/stacks.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

Amazon Lambda Developer Guide

The log output looks like this:

2023/01/31/[$LATEST]2ca67f180dcd4d3e88b5d68576740c8e 2022-08-31T14:48:37.047000
 START RequestId: 19ad1007-ff67-40ce-9afe-0af0a9eb512c Version: $LATEST
2023/01/31/[$LATEST]2ca67f180dcd4d3e88b5d68576740c8e 2022-08-31T14:48:37.050000 {
"level": "INFO",
"message": "This is an INFO log - sending HTTP 200 - hello world response",
"service": "helloWorld",
"timestamp": "2022-08-31T14:48:37.048Z",
"xray_trace_id": "1-630f74c4-2b080cf77680a04f2362bcf2"
}
2023/01/31/[$LATEST]2ca67f180dcd4d3e88b5d68576740c8e 2022-08-31T14:48:37.082000 END
 RequestId: 19ad1007-ff67-40ce-9afe-0af0a9eb512c
2023/01/31/[$LATEST]2ca67f180dcd4d3e88b5d68576740c8e 2022-08-31T14:48:37.082000
 REPORT RequestId: 19ad1007-ff67-40ce-9afe-0af0a9eb512c Duration: 34.60 ms Billed
 Duration: 35 ms Memory Size: 128 MB Max Memory Used: 57 MB Init Duration: 173.48
 ms

14. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

cdk destroy

Using the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Using the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

Using the Lambda console 519

https://console.amazonaws.cn/cloudwatch/home?#logs:

Amazon Lambda Developer Guide

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with Amazon X-Ray. X-Ray records details about the request and the log stream in the
trace.

To use a sample application that correlates logs and traces with X-Ray, see Error processor sample
application for Amazon Lambda.

Using the CloudWatch console 520

Amazon Lambda Developer Guide

Amazon Lambda function testing in TypeScript

Note

See the Testing functions chapter for a complete introduction to techniques and best
practices for testing serverless solutions.

Testing serverless functions uses traditional test types and techniques, but you must also consider
testing serverless applications as a whole. Cloud-based tests will provide the most accurate
measure of quality of both your functions and serverless applications.

A serverless application architecture includes managed services that provide critical application
functionality through API calls. For this reason, your development cycle should include automated
tests that verify functionality when your function and services interact.

If you do not create cloud-based tests, you could encounter issues due to differences between your
local environment and the deployed environment. Your continuous integration process should run
tests against a suite of resources provisioned in the cloud before promoting your code to the next
deployment environment, such as QA, Staging, or Production.

Continue reading this short guide to learn about testing strategies for serverless applications, or
visit the Serverless Test Samples repository to dive in with practical examples, specific to your
chosen language and runtime.

Testing 521

https://github.com/aws-samples/serverless-test-samples

Amazon Lambda Developer Guide

For serverless testing, you will still write unit, integration and end-to-end tests.

• Unit tests - Tests that run against an isolated block of code. For example, verifying the business
logic to calculate the delivery charge given a particular item and destination.

• Integration tests - Tests involving two or more components or services that interact, typically in
a cloud environment. For example, verifying a function processes events from a queue.

• End-to-end tests - Tests that verify behavior across an entire application. For example, ensuring
infrastructure is set up correctly and that events flow between services as expected to record a
customer's order.

Testing your serverless applications

You will generally use a mix of approaches to test your serverless application code, including
testing in the cloud, testing with mocks, and occasionally testing with emulators.

Testing in the cloud

Testing in the cloud is valuable for all phases of testing, including unit tests, integration tests, and
end-to-end tests. You run tests against code deployed in the cloud and interacting with cloud-
based services. This approach provides the most accurate measure of quality of your code.

A convenient way to debug your Lambda function in the cloud is through the console with a test
event. A test event is a JSON input to your function. If your function does not require input, the
event can be an empty JSON document ({}). The console provides sample events for a variety
of service integrations. After creating an event in the console, you can share it with your team to
make testing easier and consistent.

Note

Testing a function in the console is a quick way to get started, but automating your test
cycles ensures application quality and development speed.

Testing tools

Tools and techniques exist to accelerate development feedback loops. For example, Amazon
SAM Accelerate and Amazon CDK watch mode both decrease the time required to update cloud
environments.

Testing your serverless applications 522

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/accelerate.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/accelerate.html
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch

Amazon Lambda Developer Guide

TypeScript code uses import or require statements to import dependencies. You can use the
module loading behavior of the Node.js runtime to replace or wrap dependencies before they are
imported by the System Under Test (SUT).

The Amazon SDK V3 Client Mock is a TypeScript library for mocking Amazon services and
resources. This library provides a way to mock the sending of Commands and a way to define the
returned results depending on the Command type and payload.

Another commonly used framework for testing, Jest, provides a custom resolver for imports so you
can create mock objects that are outside of your test’s scope.

For more information on mocking, read the blog post: Unit Testing Lambda with TypeScript and
Mock Amazon Services.

To reduce the latency involved with cloud deployment iterations, see Amazon Serverless
Application Model (Amazon SAM) Accelerate, Amazon Cloud Development Kit (Amazon CDK) watch
mode. These tools monitor your infrastructure and code for changes. They react to these changes
by creating and deploying incremental updates automatically into your cloud environment.

Examples that use these tools are available in the TypeScript Test Samples code repository.

Testing your serverless applications 523

https://github.com/m-radzikowski/aws-sdk-client-mock
https://jestjs.io/
https://aws.amazon.com/blogs/developer/mocking-modular-aws-sdk-for-javascript-v3-in-unit-tests/
https://aws.amazon.com/blogs/developer/mocking-modular-aws-sdk-for-javascript-v3-in-unit-tests/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-sync.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-sync.html
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch
https://github.com/aws-samples/serverless-test-samples/tree/main/typescript-test-samples

Amazon Lambda Developer Guide

Amazon Lambda function errors in TypeScript

If an exception occurs in TypeScript code that's transpiled into JavaScript, use source map files to
determine where the error occurred. Source map files allow debuggers to map compiled JavaScript
files to the TypeScript source code.

For example, the following code results in an error:

export const handler = async (event: unknown): Promise<unknown> => {
 throw new Error('Some exception');
};

Amazon Lambda catches the error and generates a JSON document. However, this JSON document
refers to the compiled JavaScript file (app.js), not the TypeScript source file.

{
 "errorType": "Error",
 "errorMessage": "Some exception",
 "stack": [
 "Error: Some exception",
 " at Runtime.p [as handler] (/var/task/app.js:1:491)",
 " at Runtime.handleOnce (/var/runtime/Runtime.js:66:25)"
]
}

To get an error response that maps to your TypeScript source file

Note

The following steps aren't valid for Lambda@Edge functions because Lambda@Edge
doesn't support environment variables.

1. Generate a source map file with esbuild or another TypeScript compiler. Example:

esbuild app.ts —sourcemap —outfile=output.js

2. Add the source map to your deployment.

3. Turn on source maps for the Node.js runtime by adding --enable-source-maps to your
NODE_OPTIONS.

Errors 524

Amazon Lambda Developer Guide

Example for the Amazon Serverless Application Model (Amazon SAM)

Globals:
 Function:
 Environment:
 Variables:
 NODE_OPTIONS: '--enable-source-maps'

Make sure that the esbuild properties in your template.yaml file include Sourcemap: true.
Example:

Metadata: # Manage esbuild properties
 BuildMethod: esbuild
 BuildProperties:
 Minify: true
 Target: "es2020"
 Sourcemap: true
 EntryPoints:
 - app.ts

Example Example for the Amazon Cloud Development Kit (Amazon CDK)

To use a source map with an Amazon CDK application, add the following code to the file that
contains the NodejsFunction construct.

const helloFunction = new NodejsFunction(this, 'function',{
 bundling: {
 minify: true,
 sourceMap: true
 },
 environment:{
 NODE_OPTIONS: '--enable-source-maps',
 }
});

When you use a source map in your code, you get an error response similar to the following. This
response shows that the error happened at line 2, column 11 in the app.ts file.

{
 "errorType": "Error",
 "errorMessage": "Some exception",

Errors 525

https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html

Amazon Lambda Developer Guide

 "stack": [
 "Error: Some exception",
 " at Runtime.p (/private/var/folders/3c/0d4wz7dn2y75bw_hxdwc0h6w0000gr/T/
tmpfmxb4ziy/app.ts:2:11)",
 " at Runtime.handleOnce (/var/runtime/Runtime.js:66:25)"
]
}

Errors 526

Amazon Lambda Developer Guide

Tracing TypeScript code in Amazon Lambda

Lambda integrates with Amazon X-Ray to help you trace, debug, and optimize Lambda
applications. You can use X-Ray to trace a request as it traverses resources in your application,
which may include Lambda functions and other Amazon services.

To send tracing data to X-Ray, you can use one of three SDK libraries:

• Amazon Distro for OpenTelemetry (ADOT) – A secure, production-ready, Amazon-supported
distribution of the OpenTelemetry (OTel) SDK.

• Amazon X-Ray SDK for Node.js – An SDK for generating and sending trace data to X-Ray.

• Powertools for Amazon Lambda (TypeScript) – A developer toolkit to implement Serverless best
practices and increase developer velocity.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for Amazon Lambda SDKs are part of a tightly integrated
instrumentation solution offered by Amazon. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
Amazon Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM for tracing

• Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for tracing

• Interpreting an X-Ray trace

Tracing 527

https://www.amazonaws.cn/otel
https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-nodejs.html
https://docs.powertools.aws.dev/lambda-typescript/
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

Amazon Lambda Developer Guide

Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM
for tracing

Follow the steps below to download, build, and deploy a sample Hello World TypeScript
application with integrated Powertools for Amazon Lambda (TypeScript) modules using the
Amazon SAM. This application implements a basic API backend and uses Powertools for emitting
logs, metrics, and traces. It consists of an Amazon API Gateway endpoint and a Lambda function.
When you send a GET request to the API Gateway endpoint, the Lambda function invokes, sends
logs and metrics using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-
Ray. The function returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Node.js 18.x or later

• Amazon CLI version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Deploy a sample Amazon SAM application

1. Initialize the application using the Hello World TypeScript template.

sam init --app-template hello-world-powertools-typescript --name sam-app --package-
type Zip --runtime nodejs18.x --no-tracing

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM for tracing 528

https://docs.powertools.aws.dev/lambda-typescript
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the traces for the function, run sam traces.

sam traces

The trace output looks like this:

XRay Event [revision 1] at (2023-01-31T11:29:40.527000) with id
 (1-11a2222-111a222222cb33de3b95daf9) and duration (0.483s)
 - 0.425s - sam-app/Prod [HTTP: 200]
 - 0.422s - Lambda [HTTP: 200]
 - 0.406s - sam-app-HelloWorldFunction-Xyzv11a1bcde [HTTP: 200]
 - 0.172s - sam-app-HelloWorldFunction-Xyzv11a1bcde
 - 0.179s - Initialization
 - 0.112s - Invocation
 - 0.052s - ## app.lambdaHandler
 - 0.001s - ### MySubSegment
 - 0.059s - Overhead

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM for tracing 529

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

Amazon Lambda Developer Guide

sam delete

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests.

Note

You cannot configure the X-Ray sampling rate for your functions.

Using Powertools for Amazon Lambda (TypeScript) and the Amazon
CDK for tracing

Follow the steps below to download, build, and deploy a sample Hello World TypeScript
application with integrated Powertools for Amazon Lambda (TypeScript) modules using the
Amazon CDK. This application implements a basic API backend and uses Powertools for emitting
logs, metrics, and traces. It consists of an Amazon API Gateway endpoint and a Lambda function.
When you send a GET request to the API Gateway endpoint, the Lambda function invokes, sends
logs and metrics using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-
Ray. The function returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Node.js 18.x or later

• Amazon CLI version 2

• Amazon CDK version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Deploy a sample Amazon Cloud Development Kit (Amazon CDK) application

1. Create a project directory for your new application.

Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for tracing 530

https://docs.powertools.aws.dev/lambda-typescript
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

mkdir hello-world
cd hello-world

2. Initialize the app.

cdk init app --language typescript

3. Add the @types/aws-lambda package as a development dependency.

npm install -D @types/aws-lambda

4. Install the Powertools Tracer utility.

npm install @aws-lambda-powertools/tracer

5. Open the lib directory. You should see a file called hello-world-stack.ts. Create new two new
files in this directory: hello-world.function.ts and hello-world.ts.

6. Open hello-world.function.ts and add the following code to the file. This is the code for the
Lambda function.

import { APIGatewayEvent, APIGatewayProxyResult, Context } from 'aws-lambda';
import { Tracer } from '@aws-lambda-powertools/tracer';
const tracer = new Tracer();

export const handler = async (event: APIGatewayEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 // Get facade segment created by Lambda
 const segment = tracer.getSegment();

 // Create subsegment for the function and set it as active
 const handlerSegment = segment.addNewSubsegment(`## ${process.env._HANDLER}`);
 tracer.setSegment(handlerSegment);

 // Annotate the subsegment with the cold start and serviceName
 tracer.annotateColdStart();
 tracer.addServiceNameAnnotation();

 // Add annotation for the awsRequestId
 tracer.putAnnotation('awsRequestId', context.awsRequestId);
 // Create another subsegment and set it as active
 const subsegment = handlerSegment.addNewSubsegment('### MySubSegment');

Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for tracing 531

https://www.npmjs.com/package/@types/aws-lambda
https://docs.powertools.aws.dev/lambda-typescript/latest/core/tracer/

Amazon Lambda Developer Guide

 tracer.setSegment(subsegment);
 let response: APIGatewayProxyResult = {
 statusCode: 200,
 body: JSON.stringify({
 message: 'hello world',
 }),
 };
 // Close subsegments (the Lambda one is closed automatically)
 subsegment.close(); // (### MySubSegment)
 handlerSegment.close(); // (## index.handler)

 // Set the facade segment as active again (the one created by Lambda)
 tracer.setSegment(segment);
 return response;
};

7. Open hello-world.ts and add the following code to the file. This contains the NodejsFunction
construct, which creates the Lambda function, configures environment variables for
Powertools, and sets log retention to one week. It also includes the LambdaRestApi construct,
which creates the REST API.

import { Construct } from 'constructs';
import { NodejsFunction } from 'aws-cdk-lib/aws-lambda-nodejs';
import { LambdaRestApi } from 'aws-cdk-lib/aws-apigateway';
import { CfnOutput } from 'aws-cdk-lib';
import { Tracing } from 'aws-cdk-lib/aws-lambda';

export class HelloWorld extends Construct {
 constructor(scope: Construct, id: string) {
 super(scope, id);
 const helloFunction = new NodejsFunction(this, 'function', {
 environment: {
 POWERTOOLS_SERVICE_NAME: 'helloWorld',
 },
 tracing: Tracing.ACTIVE,
 });
 const api = new LambdaRestApi(this, 'apigw', {
 handler: helloFunction,
 });
 new CfnOutput(this, 'apiUrl', {
 exportName: 'apiUrl',
 value: api.url,
 });

Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for tracing 532

https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_lambda_nodejs-readme.html
https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_apigateway.LambdaRestApi.html

Amazon Lambda Developer Guide

 }
}

8. Open hello-world-stack.ts. This is the code that defines your Amazon CDK stack. Replace the
code with the following:

import { Stack, StackProps } from 'aws-cdk-lib';
import { Construct } from 'constructs';
import { HelloWorld } from './hello-world';

export class HelloWorldStack extends Stack {
 constructor(scope: Construct, id: string, props?: StackProps) {
 super(scope, id, props);
 new HelloWorld(this, 'hello-world');
 }
}

9. Deploy your application.

cd ..
cdk deploy

10. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name HelloWorldStack --query
 'Stacks[0].Outputs[?ExportName==`apiUrl`].OutputValue' --output text

11. Invoke the API endpoint:

curl <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

12. To get the traces for the function, run sam traces.

sam traces

The trace output looks like this:

Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for tracing 533

https://docs.amazonaws.cn/cdk/v2/guide/stacks.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

Amazon Lambda Developer Guide

XRay Event [revision 1] at (2023-01-31T11:50:06.997000) with id
 (1-11a2222-111a222222cb33de3b95daf9) and duration (0.449s)
 - 0.350s - HelloWorldStack-helloworldfunction111A2BCD-Xyzv11a1bcde [HTTP: 200]
 - 0.157s - HelloWorldStack-helloworldfunction111A2BCD-Xyzv11a1bcde
 - 0.169s - Initialization
 - 0.058s - Invocation
 - 0.055s - ## index.handler
 - 0.000s - ### MySubSegment
 - 0.099s - Overhead

13. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

cdk destroy

Interpreting an X-Ray trace

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray trace map provides information about your application and all its components. The
following example shows a trace from the sample application:

Interpreting an X-Ray trace 534

https://docs.amazonaws.cn/xray/latest/devguide/xray-console-servicemap.html

Amazon Lambda Developer Guide

Building Lambda functions with Python

You can run Python code in Amazon Lambda. Lambda provides runtimes for Python that run
your code to process events. Your code runs in an environment that includes the SDK for Python
(Boto3), with credentials from an Amazon Identity and Access Management (IAM) role that you
manage. To learn more about the SDK versions included with the Python runtimes, see the section
called “Runtime-included SDK versions”.

Lambda supports the following Python runtimes.

Python

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Python 3.12 python3.1
2

Amazon
Linux 2023

Python 3.11 python3.1
1

Amazon
Linux 2

Python 3.10 python3.1
0

Amazon
Linux 2

Python 3.9 python3.9 Amazon
Linux 2

Python 3.8 python3.8 Amazon
Linux 2

Oct 14, 2024 Nov 13, 2024 Jan 7, 2025

Note

The runtime information in this table undergoes continuous updates. For more information
on using Amazon SDKs in Lambda, see Managing Amazon SDKs in Lambda functions in
Serverless Land.

535

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/sdks-functions

Amazon Lambda Developer Guide

To create a Python function

1. Open the Lambda console.

2. Choose Create function.

3. Configure the following settings:

• Function name: Enter a name for the function.

• Runtime: Choose Python 3.12.

4. Choose Create function.

5. To configure a test event, choose Test.

6. For Event name, enter test.

7. Choose Save changes.

8. To invoke the function, choose Test.

The console creates a Lambda function with a single source file named lambda_function. You
can edit this file and add more files in the built-in code editor. To save your changes, choose Save.
Then, to run your code, choose Test.

Note

The Lambda console uses Amazon Cloud9 to provide an integrated development
environment in the browser. You can also use Amazon Cloud9 to develop Lambda functions
in your own environment. For more information, see Working with Amazon Lambda
functions using the Amazon Toolkit in the Amazon Cloud9 user guide.

Note

To get started with application development in your local environment, deploy one of the
sample applications available in this guide's GitHub repository.

Sample Lambda applications in Python

• blank-python – A Python function that shows the use of logging, environment variables,
Amazon X-Ray tracing, layers, unit tests and the Amazon SDK.

536

https://console.amazonaws.cn/lambda
https://docs.amazonaws.cn/cloud9/latest/user-guide/lambda-toolkit.html
https://docs.amazonaws.cn/cloud9/latest/user-guide/lambda-toolkit.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python

Amazon Lambda Developer Guide

Your Lambda function comes with a CloudWatch Logs log group. The function runtime sends
details about each invocation to CloudWatch Logs. It relays any logs that your function outputs
during invocation. If your function returns an error, Lambda formats the error and returns it to the
invoker.

Topics

• Runtime-included SDK versions

• Response format

• Graceful shutdown for extensions

• Lambda function handler in Python

• Working with .zip file archives for Python Lambda functions

• Deploy Python Lambda functions with container images

• Working with layers for Python Lambda functions

• Amazon Lambda context object in Python

• Amazon Lambda function logging in Python

• Amazon Lambda function testing in Python

• Amazon Lambda function errors in Python

• Instrumenting Python code in Amazon Lambda

Runtime-included SDK versions

The version of the Amazon SDK included in the Python runtime depends on the runtime version
and your Amazon Web Services Region. To find the version of the SDK included in the runtime
you're using, create a Lambda function with the following code.

import boto3
import botocore

def lambda_handler(event, context):
 print(f'boto3 version: {boto3.__version__}')
 print(f'botocore version: {botocore.__version__}')

Runtime-included SDK versions 537

Amazon Lambda Developer Guide

Response format

In Python 3.12 and later Python runtimes, functions return Unicode characters as part of their
JSON response. Earlier Python runtimes return escaped sequences for Unicode characters in
responses. For example, in Python 3.11, if you return a Unicode string such as "こんにちは", it
escapes the Unicode characters and returns "\u3053\u3093\u306b\u3061\u306f". The Python
3.12 runtime returns the original "こんにちは".

Using Unicode responses reduces the size of Lambda responses, making it easier to fit larger
responses into the 6 MB maximum payload size for synchronous functions. In the previous
example, the escaped version is 32 bytes—compared to 17 bytes with the Unicode string.

When you upgrade to Python 3.12, you might need to adjust your code to account for the new
response format. If the caller expects escaped Unicode, you must either add code to the returning
function to escape the Unicode manually, or adjust the caller to handle the Unicode return.

Graceful shutdown for extensions

Python 3.12 and later Python runtimes offer improved graceful shutdown capabilities for functions
with external extensions. When Lambda shuts down an execution environment, it sends a SIGTERM
signal to the runtime and then a SHUTDOWN event to each registered external extension. You
can catch the SIGTERM signal in your Lambda function and clean up resources such as database
connections that were created by the function.

To learn more about the execution environment lifecycle, see Lambda execution environment.
For examples of how to use graceful shutdown with extensions, see the Amazon Samples GitHub
repository.

Response format 538

https://github.com/aws-samples/graceful-shutdown-with-aws-lambda
https://github.com/aws-samples/graceful-shutdown-with-aws-lambda

Amazon Lambda Developer Guide

Lambda function handler in Python

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

You can use the following general syntax when creating a function handler in Python:

def handler_name(event, context):
 ...
 return some_value

Naming

The Lambda function handler name specified at the time that you create a Lambda function is
derived from:

• The name of the file in which the Lambda handler function is located.

• The name of the Python handler function.

A function handler can be any name; however, the default name in the Lambda console is
lambda_function.lambda_handler. This function handler name reflects the function name
(lambda_handler) and the file where the handler code is stored (lambda_function.py).

If you create a function in the console using a different file name or function handler name, you
must edit the default handler name.

To change the function handler name (console)

1. Open the Functions page of the Lambda console and choose your function.

2. Choose the Code tab.

3. Scroll down to the Runtime settings pane and choose Edit.

4. In Handler, enter the new name for your function handler.

5. Choose Save.

Handler 539

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

How it works

When Lambda invokes your function handler, the Lambda runtime passes two arguments to the
function handler:

• The first argument is the event object. An event is a JSON-formatted document that contains
data for a Lambda function to process. The Lambda runtime converts the event to an object and
passes it to your function code. It is usually of the Python dict type. It can also be list, str,
int, float, or the NoneType type.

The event object contains information from the invoking service. When you invoke a function,
you determine the structure and contents of the event. When an Amazon service invokes your
function, the service defines the event structure. For more information about events from
Amazon services, see Using Amazon Lambda with other services.

• The second argument is the context object. A context object is passed to your function by
Lambda at runtime. This object provides methods and properties that provide information about
the invocation, function, and runtime environment.

Returning a value

Optionally, a handler can return a value. What happens to the returned value depends on the
invocation type and the service that invoked the function. For example:

• If you use the RequestResponse invocation type, such as Synchronous invocation, Amazon
Lambda returns the result of the Python function call to the client invoking the Lambda function
(in the HTTP response to the invocation request, serialized into JSON). For example, Amazon
Lambda console uses the RequestResponse invocation type, so when you invoke the function
on the console, the console will display the returned value.

• If the handler returns objects that can't be serialized by json.dumps, the runtime returns an
error.

• If the handler returns None, as Python functions without a return statement implicitly do, the
runtime returns null.

• If you use the Event invocation type (an asynchronous invocation), the value is discarded.

How it works 540

https://docs.amazonaws.cn/lambda/latest/dg/gettingstarted-concepts.html#gettingstarted-concepts-event

Amazon Lambda Developer Guide

Note

In Python 3.9 and later releases, Lambda includes the requestId of the invocation in the
error response.

Examples

The following section shows examples of Python functions you can use with Lambda. If you use
the Lambda console to author your function, you do not need to attach a .zip archive file to run the
functions in this section. These functions use standard Python libraries which are included with the
Lambda runtime you selected. For more information, see Lambda deployment packages.

Returning a message

The following example shows a function called lambda_handler. The function accepts user input
of a first and last name, and returns a message that contains data from the event it received as
input.

def lambda_handler(event, context):
 message = 'Hello {} {}!'.format(event['first_name'], event['last_name'])
 return {
 'message' : message
 }

You can use the following event data to invoke the function:

{
 "first_name": "John",
 "last_name": "Smith"
}

The response shows the event data passed as input:

{
 "message": "Hello John Smith!"
}

Examples 541

Amazon Lambda Developer Guide

Parsing a response

The following example shows a function called lambda_handler. The function uses event data
passed by Lambda at runtime. It parses the environment variable in AWS_REGION returned in the
JSON response.

import os
import json

def lambda_handler(event, context):
 json_region = os.environ['AWS_REGION']
 return {
 "statusCode": 200,
 "headers": {
 "Content-Type": "application/json"
 },
 "body": json.dumps({
 "Region ": json_region
 })
 }

You can use any event data to invoke the function:

{
 "key1": "value1",
 "key2": "value2",
 "key3": "value3"
}

Lambda runtimes set several environment variables during initialization. For more information on
the environment variables returned in the response at runtime, see Using Lambda environment
variables.

The function in this example depends on a successful response (in 200) from the Invoke API. For
more information on the Invoke API status, see the Invoke Response Syntax.

Returning a calculation

The following example shows a function called lambda_handler. The function accepts user input
and returns a calculation to the user. For more information about this example, see the aws-doc-
sdk-examples GitHub repository.

Examples 542

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/python/example_code/lambda/lambda_handler_basic.py
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/python/example_code/lambda/lambda_handler_basic.py

Amazon Lambda Developer Guide

import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
 ...
 result = None
 action = event.get('action')
 if action == 'increment':
 result = event.get('number', 0) + 1
 logger.info('Calculated result of %s', result)
 else:
 logger.error("%s is not a valid action.", action)

 response = {'result': result}
 return response

You can use the following event data to invoke the function:

{
 "action": "increment",
 "number": 3
}

Examples 543

Amazon Lambda Developer Guide

Working with .zip file archives for Python Lambda functions

Your Amazon Lambda function’s code comprises a .py file containing your function’s handler code,
together with any additional packages and modules your code depends on. To deploy this function
code to Lambda, you use a deployment package. This package may either be a .zip file archive or
a container image. For more information about using container images with Python, see Deploy
Python Lambda functions with container images.

To create your deployment package as .zip file archive, you can use your command-line tool’s
built-in .zip file archive utility, or any other .zip file utility such as 7zip. The examples shown in the
following sections assume you’re using a command-line zip tool in a Linux or MacOS environment.
To use the same commands in Windows, you can install the Windows Subsystem for Linux to get a
Windows-integrated version of Ubuntu and Bash.

Note that Lambda uses POSIX file permissions, so you may need to set permissions for the
deployment package folder before you create the .zip file archive.

Topics

• Runtime dependencies in Python

• Creating a .zip deployment package with no dependencies

• Creating a .zip deployment package with dependencies

• Dependency search path and runtime-included libraries

• Using __pycache__ folders

• Creating .zip deployment packages with native libraries

• Creating and updating Python Lambda functions using .zip files

Runtime dependencies in Python

For Lambda functions that use the Python runtime, a dependency can be any Python package
or module. When you deploy your function using a .zip archive, you can either add these
dependencies to your .zip file with your function code or use a Lambda layer. A layer is a
separate .zip file that can contain additional code and other content. To learn more about using
Lambda layers in Python, see the section called “Layers”.

The Lambda Python runtimes includes the Amazon SDK for Python (Boto3) and its dependencies.
Lambda provides the SDK in the runtime for deployment scenarios where you are unable to add
your own dependencies. These scenarios include creating functions in the console using the built-

Deploy .zip file archives 544

https://docs.amazonaws.cn/lambda/latest/dg/python-image.html
https://docs.amazonaws.cn/lambda/latest/dg/python-image.html
https://www.7-zip.org/download.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/

Amazon Lambda Developer Guide

in code editor or using inline functions in Amazon Serverless Application Model (Amazon SAM) or
Amazon CloudFormation templates.

Lambda periodically updates the libraries in the Python runtime to include the latest updates and
security patches. If your function uses the version of the Boto3 SDK included in the runtime but
your deployment package includes SDK dependencies, this can cause version misalignment issues.
For example, your deployment package could include the SDK dependency urllib3. When Lambda
updates the SDK in the runtime, compatibility issues between the new version of the runtime and
the version of urllib3 in your deployment package can cause your function to fail.

Important

To maintain full control over your dependencies and to avoid possible version misalignment
issues, we recommend you add all of your function’s dependencies to your deployment
package, even if versions of them are included in the Lambda runtime. This includes the
Boto3 SDK.

To find out which version of the SDK for Python (Boto3) is included in the runtime you're using, see
the section called “Runtime-included SDK versions”.

Under the Amazon shared responsibility model, you are responsible for the management of any
dependencies in your functions' deployment packages. This includes applying updates and security
patches. To update dependencies in your function's deployment package, first create a new .zip
file and then upload it to Lambda. See Creating a .zip deployment package with dependencies and
Creating and updating Python Lambda functions using .zip files for more information.

Creating a .zip deployment package with no dependencies

If your function code has no dependencies, your .zip file contains only the .py file with your
function’s handler code. Use your preferred zip utility to create a .zip file with your .py file at the
root. If the .py file is not at the root of your .zip file, Lambda won’t be able to run your code.

To learn how to deploy your .zip file to create a new Lambda function or update an existing one,
see Creating and updating Python Lambda functions using .zip files.

Creating a .zip deployment package with dependencies

If your function code depends on additional packages or modules, you can either add these
dependencies to your .zip file with your function code or use a Lambda layer. The instructions

Creating a .zip deployment package with no dependencies 545

https://docs.aws.amazon.com/whitepapers/latest/aws-risk-and-compliance/shared-responsibility-model.html

Amazon Lambda Developer Guide

in this section show you how to include your dependencies in your .zip deployment package.
For Lambda to run your code, the .py file containing your handler code and all of your function's
dependencies must be installed at the root of the .zip file.

Suppose your function code is saved in a file named lambda_function.py. The following
example CLI commands create a .zip file named my_deployment_package.zip containing your
function code and its dependencies. You can either install your dependencies directly to a folder in
your project directory or use a Python virtual environment.

To create the deployment package (project directory)

1. Navigate to the project directory containing your lambda_function.py source code file. In
this example, the directory is named my_function.

cd my_function

2. Create a new directory named package into which you will install your dependencies.

mkdir package

Note that for a .zip deployment package, Lambda expects your source code and its
dependencies all to be at the root of the .zip file. However, installing dependencies directly
in your project directory can introduce a large number of new files and folders and make
navigating around your IDE difficult. You create a separate package directory here to keep
your dependencies separate from your source code.

3. Install your dependencies in the package directory. The example below installs the Boto3
SDK from the Python Package Index using pip. If your function code uses Python packages you
have created yourself, save them in the package directory.

pip install --target ./package boto3

4. Create a .zip file with the installed libraries at the root.

cd package
zip -r ../my_deployment_package.zip .

This generates a my_deployment_package.zip file in your project directory.

5. Add the lambda_function.py file to the root of the .zip file

Creating a .zip deployment package with dependencies 546

Amazon Lambda Developer Guide

cd ..
zip my_deployment_package.zip lambda_function.py

Your .zip file should have a flat directory structure, with your function's handler code and all
your dependency folders installed at the root as follows.

my_deployment_package.zip
|- bin
| |-jp.py
|- boto3
| |-compat.py
| |-data
| |-docs
...
|- lambda_function.py

If the .py file containing your function’s handler code is not at the root of your .zip file, Lambda
will not be able to run your code.

To create the deployment package (virtual environment)

1. Create and activate a virtual environment in your project directory. In this example the project
directory is named my_function.

~$ cd my_function
~/my_function$ python3.12 -m venv my_virtual_env
~/my_function$ source ./my_virtual_env/bin/activate

2. Install your required libraries using pip. The following example installs the Boto3 SDK

(my_virtual_env) ~/my_function$ pip install boto3

3. Use pip show to find the location in your virtual environment where pip has installed your
dependencies.

(my_virtual_env) ~/my_function$ pip show <package_name>

Creating a .zip deployment package with dependencies 547

Amazon Lambda Developer Guide

The folder in which pip installs your libraries may be named site-packages or dist-
packages. This folder may be located in either the lib/python3.x or lib64/python3.x
directory (where python3.x represents the version of Python you are using).

4. Deactivate the virtual environment

(my_virtual_env) ~/my_function$ deactivate

5. Navigate into the directory containing the dependencies you installed with pip and create
a .zip file in your project directory with the installed dependencies at the root. In this example,
pip has installed your dependencies in the my_virtual_env/lib/python3.12/site-
packages directory.

~/my_function$ cd my_virtual_env/lib/python3.12/site-packages
~/my_function/my_virtual_env/lib/python3.12/site-packages$ zip -r ../../../../
my_deployment_package.zip .

6. Navigate to the root of your project directory where the .py file containing your handler code
is located and add that file to the root of your .zip package. In this example, your function code
file is named lambda_function.py.

~/my_function/my_virtual_env/lib/python3.12/site-packages$ cd ../../../../
~/my_function$ zip my_deployment_package.zip lambda_function.py

Dependency search path and runtime-included libraries

When you use an import statement in your code, the Python runtime searches the directories
in its search path until it finds the module or package. By default, the first location the runtime
searches is the directory into which your .zip deployment package is decompressed and mounted
(/var/task). If you include a version of a runtime-included library in your deployment package,
your version will take precedence over the version that's included in the runtime. Dependencies in
your deployment package also have precedence over dependencies in layers.

When you add a dependency to a layer, Lambda extracts this to /opt/python/lib/python3.x/
site-packages (where python3.x represents the version of the runtime you're using) or /opt/
python. In the search path, these directories have precedence over the directories containing
the runtime-included libraries and pip-installed libraries (/var/runtime and /var/lang/

Dependency search path and runtime-included libraries 548

Amazon Lambda Developer Guide

lib/python3.x/site-packages). Libraries in function layers therefore have precedence over
versions included in the runtime.

Note

In the Python 3.11 managed runtime and base image, the Amazon SDK and its
dependencies are installed in the /var/lang/lib/python3.11/site-packages
directory.

You can see the full search path for your Lambda function by adding the following code snippet.

import sys

search_path = sys.path
print(search_path)

Note

Because dependencies in your deployment package or layers take precedence over
runtime-included libraries, this can cause version misalignment problems if you include
an SDK dependency such as urllib3 in your package without including the SDK as well.
If you deploy your own version of a Boto3 dependency, you must also deploy Boto3 as a
dependency in your deployment package. We recommend that you package all of your
function’s dependencies, even if versions of them are included in the runtime.

You can also add dependencies in a separate folder inside your .zip package. For example, you
might add a version of the Boto3 SDK to a folder in your .zip package called common. When
your .zip package is decompressed and mounted, this folder is placed inside the /var/task
directory. To use a dependency from a folder in your .zip deployment package in your code, use an
import from statement. For example, to use a version of Boto3 from a folder named common in
your .zip package, use the following statement.

from common import boto3

Dependency search path and runtime-included libraries 549

Amazon Lambda Developer Guide

Using __pycache__ folders

We recommend that you don't include __pycache__ folders in your function's deployment
package. Python bytecode that's compiled on a build machine with a different architecture or
operating system might not be compatible with the Lambda execution environment.

Creating .zip deployment packages with native libraries

If your function uses only pure Python packages and modules, you can use the pip install
command to install your dependencies on any local build machine and create your .zip file. Many
popular Python libraries, including NumPy and Pandas, are not pure Python and contain code
written in C or C++. When you add libraries containing C/C++ code to your deployment package,
you must build your package correctly to ensure that it’s compatible with the Lambda execution
environment.

Most packages available on the Python Package Index (PyPI) are available as “wheels” (.whl files).
A .whl file is a type of ZIP file which contains a built distribution with pre-compiled binaries for a
particular operating system and instruction set architecture. To make your deployment package
compatible with Lambda, you install the wheel for Linux operating systems and your function’s
instruction set architecture.

Some packages may only be available as source distributions. For these packages, you need to
compile and build the C/C++ components yourself.

To see what distributions are available for your required package, do the following:

1. Search for the name of the package on the Python Package Index main page.

2. Choose the version of the package you want to use.

3. Choose Download files.

Working with built distributions (wheels)

To download a wheel that’s compatible with Lambda, you use the pip --platform option.

If your Lambda function uses the x86_64 instruction set architecture, run the following pip
install command to install a compatible wheel in your package directory. Replace --python
3.x with the version of the Python runtime you are using.

Using __pycache__ folders 550

https://pypi.org/
https://pypi.org/

Amazon Lambda Developer Guide

pip install \
--platform manylinux2014_x86_64 \
--target=package \
--implementation cp \
--python-version 3.x \
--only-binary=:all: --upgrade \
<package_name>

If your function uses the arm64 instruction set architecture, run the following command. Replace
--python 3.x with the version of the Python runtime you are using.

pip install \
--platform manylinux2014_aarch64 \
--target=package \
--implementation cp \
--python-version 3.x \
--only-binary=:all: --upgrade \
<package_name>

Working with source distributions

If your package is only available as a source distribution, you need to build the C/C++ libraries
yourself. To make your package compatible with the Lambda execution environment, you need to
build it in an environment that uses the same Amazon Linux 2 operating system. You can do this by
building your package in an Amazon EC2 Linux instance.

To learn how to launch and connect to an Amazon EC2 Linux instance, see Tutorial: Get started
with Amazon EC2 Linux instances in the Amazon EC2 User Guide for Linux Instances.

Creating and updating Python Lambda functions using .zip files

Once you have created your .zip deployment package, you can use it to create a new Lambda
function or update an existing one. You can deploy your .zip package using the Lambda console,
the Amazon Command Line Interface, and the Lambda API. You can also create and update
Lambda functions using Amazon Serverless Application Model (Amazon SAM) and Amazon
CloudFormation.

The maximum size for a .zip deployment package for Lambda is 250 MB (unzipped). Note that this
limit applies to the combined size of all the files you upload, including any Lambda layers.

Creating and updating Python Lambda functions using .zip files 551

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

Amazon Lambda Developer Guide

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give an executable file the correct permissions, run the
following command.

chmod 755 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object
in the Microsoft Windows documentation.

Creating and updating functions with .zip files using the console

To create a new function, you must first create the function in the console, then upload your .zip
archive. To update an existing function, open the page for your function, then follow the same
procedure to add your updated .zip file.

If your .zip file is less than 50MB, you can create or update a function by uploading the file directly
from your local machine. For .zip files greater than 50MB, you must upload your package to an
Amazon S3 bucket first. For instructions on how to upload a file to an Amazon S3 bucket using the
Amazon Web Services Management Console, see Getting started with Amazon S3. To upload files
using the Amazon CLI, see Move objects in the Amazon CLI User Guide.

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

To create a new function (console)

1. Open the Functions page of the Lambda console and choose Create Function.

2. Choose Author from scratch.

3. Under Basic information, do the following:

a. For Function name, enter the name for your function.

Creating and updating Python Lambda functions using .zip files 552

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

b. For Runtime, select the runtime you want to use.

c. (Optional) For Architecture, choose the instruction set architecture for your function. The
default architecture is x86_64. Ensure that the .zip deployment package for your function
is compatible with the instruction set architecture you select.

4. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing one.

5. Choose Create function. Lambda creates a basic 'Hello world' function using your chosen
runtime.

To upload a .zip archive from your local machine (console)

1. In the Functions page of the Lambda console, choose the function you want to upload the .zip
file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose .zip file.

5. To upload the .zip file, do the following:

a. Select Upload, then select your .zip file in the file chooser.

b. Choose Open.

c. Choose Save.

To upload a .zip archive from an Amazon S3 bucket (console)

1. In the Functions page of the Lambda console, choose the function you want to upload a
new .zip file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose Amazon S3 location.

5. Paste the Amazon S3 link URL of your .zip file and choose Save.

Creating and updating Python Lambda functions using .zip files 553

https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Updating .zip file functions using the console code editor

For some functions with .zip deployment packages, you can use the Lambda console’s built-in
code editor to update your function code directly. To use this feature, your function must meet the
following criteria:

• Your function must use one of the interpreted language runtimes (Python, Node.js, or Ruby)
• Your function’s deployment package must be smaller than 3MB.

Function code for functions with container image deployment packages cannot be edited directly
in the console.

To update function code using the console code editor

1. Open the Functions page of the Lambda console and select your function.

2. Select the Code tab.

3. In the Code source pane, select your source code file and edit it in the integrated code editor.

4. When you have finished editing your code, choose Deploy to save your changes and update
your function.

Creating and updating functions with .zip files using the Amazon CLI

You can can use the Amazon CLI to create a new function or to update an existing one using a .zip
file. Use the create-function and update-function-code commands to deploy your .zip package.
If your .zip file is smaller than 50MB, you can upload the .zip package from a file location on your
local build machine. For larger files, you must upload your .zip package from an Amazon S3 bucket.
For instructions on how to upload a file to an Amazon S3 bucket using the Amazon CLI, see Move
objects in the Amazon CLI User Guide.

Note

If you upload your .zip file from an Amazon S3 bucket using the Amazon CLI, the bucket
must be located in the same Amazon Web Services Region as your function.

To create a new function using a .zip file with the Amazon CLI, you must specify the following:

• The name of your function (--function-name)

Creating and updating Python Lambda functions using .zip files 554

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-function.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-function.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

Amazon Lambda Developer Guide

• Your function’s runtime (--runtime)

• The Amazon Resource Name (ARN) of your function’s execution role (--role)

• The name of the handler method in your function code (--handler)

You must also specify the location of your .zip file. If your .zip file is located in a folder on your
local build machine, use the --zip-file option to specify the file path, as shown in the following
example command.

aws lambda create-function --function-name myFunction \
--runtime python3.12 --handler lambda_function.lambda_handler \
--role arn:aws-cn:iam::111122223333:role/service-role/my-lambda-role \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --code option as shown in
the following example command. You only need to use the S3ObjectVersion parameter for
versioned objects.

aws lambda create-function --function-name myFunction \
--runtime python3.12 --handler lambda_function.lambda_handler \
--role arn:aws-cn:iam::111122223333:role/service-role/my-lambda-role \
--code S3Bucket=myBucketName,S3Key=myFileName.zip,S3ObjectVersion=myObjectVersion

To update an existing function using the CLI, you specify the the name of your function using the
--function-name parameter. You must also specify the location of the .zip file you want to use
to update your function code. If your .zip file is located in a folder on your local build machine, use
the --zip-file option to specify the file path, as shown in the following example command.

aws lambda update-function-code --function-name myFunction \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --s3-bucket and --s3-key
options as shown in the following example command. You only need to use the --s3-object-
version parameter for versioned objects.

aws lambda update-function-code --function-name myFunction \
--s3-bucket myBucketName --s3-key myFileName.zip --s3-object-version myObject Version

Creating and updating Python Lambda functions using .zip files 555

https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html

Amazon Lambda Developer Guide

Creating and updating functions with .zip files using the Lambda API

To create and update functions using a .zip file archive, use the following API operations:

• CreateFunction

• UpdateFunctionCode

Creating and updating functions with .zip files using Amazon SAM

The Amazon Serverless Application Model (Amazon SAM) is a toolkit that helps streamline the
process of building and running serverless applications on Amazon. You define the resources for
your application in a YAML or JSON template and use the Amazon SAM command line interface
(Amazon SAM CLI) to build, package, and deploy your applications. When you build a Lambda
function from an Amazon SAM template, Amazon SAM automatically creates a .zip deployment
package or container image with your function code and any dependencies you specify. To learn
more about using Amazon SAM to build and deploy Lambda functions, see Getting started with
Amazon SAM in the Amazon Serverless Application Model Developer Guide.

You can also use Amazon SAM to create a Lambda function using an existing .zip file archive. To
create a Lambda function using Amazon SAM, you can save your .zip file in an Amazon S3 bucket
or in a local folder on your build machine. For instructions on how to upload a file to an Amazon S3
bucket using the Amazon CLI, see Move objects in the Amazon CLI User Guide.

In your Amazon SAM template, the AWS::Serverless::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - set to Zip

• CodeUri - set to the function code's Amazon S3 URI, path to local folder, or FunctionCode object

• Runtime - Set to your chosen runtime

With Amazon SAM, if your .zip file is larger than 50MB, you don’t need to upload it to an Amazon
S3 bucket first. Amazon SAM can upload .zip packages up to the maximum allowed size of 250MB
(unzipped) from a location on your local build machine.

To learn more about deploying functions using .zip file in Amazon SAM, see
AWS::Serverless::Function in the Amazon SAM Developer Guide.

Creating and updating Python Lambda functions using .zip files 556

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-functioncode.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

Creating and updating functions with .zip files using Amazon CloudFormation

You can use Amazon CloudFormation to create a Lambda function using a .zip file archive. To
create a Lambda function from a .zip file, you must first upload your file to an Amazon S3 bucket.
For instructions on how to upload a file to an Amazon S3 bucket using the Amazon CLI, see Move
objects in the Amazon CLI User Guide.

For Node.js and Python runtimes, you can also provide inline source code in your Amazon
CloudFormation template. Amazon CloudFormation then creates a .zip file containing your code
when you build your function.

Using an existing .zip file

In your Amazon CloudFormation template, the AWS::Lambda::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - Set to Zip
• Code - Enter the Amazon S3 bucket name and the .zip file name in the S3Bucket and S3Key

fields
• Runtime - Set to your chosen runtime

Creating a .zip file from inline code

You can declare simple functions written in Python or Node.js inline in an Amazon CloudFormation
template. Because the code is embedded in YAML or JSON, you can't add any external
dependenices to your deployment package. This means your function has to use the version
of the Amazon SDK that's included in the runtime. The requirements of the template, such as
having to escape certain characters, also make it harder to use your IDE's syntax checking and code
completion features. This means that your template might require additional testing. Beacuse
of these limitations, declaring functions inline is best suited for very simple code that does not
change frequently.

To create a .zip file from inline code for Node.js and Python runtimes, set the following properties
in your template’s AWS::Lambda::Function resource:

• PackageType - Set to Zip
• Code - Enter your function code in the ZipFile field
• Runtime - Set to your chosen runtime

Creating and updating Python Lambda functions using .zip files 557

https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

Amazon Lambda Developer Guide

The .zip file that Amazon CloudFormation generates cannot exceed 4MB. To learn more about
deploying functions using .zip file in Amazon CloudFormation, see AWS::Lambda::Function in the
Amazon CloudFormation User Guide.

Creating and updating Python Lambda functions using .zip files 558

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

Amazon Lambda Developer Guide

Deploy Python Lambda functions with container images

There are three ways to build a container image for a Python Lambda function:

• Using an Amazon base image for Python

The Amazon base images are preloaded with a language runtime, a runtime interface client
to manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an Amazon OS-only base image

Amazon OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include the runtime interface
client for Python in the image.

• Using a non-Amazon base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the runtime interface client for Python in the image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

Topics

• Amazon base images for Python

• Using an Amazon base image for Python

• Using an alternative base image with the runtime interface client

Deploy container images 559

https://gallery.ecr.aws/lambda/provided
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Amazon Lambda Developer Guide

Amazon base images for Python

Amazon provides the following base images for Python:

Tags Runtime Operating
system

Dockerfile Deprecation

3.12 Python
3.12

Amazon
Linux 2023

Dockerfile for Python 3.12
on GitHub

3.11 Python
3.11

Amazon
Linux 2

Dockerfile for Python 3.11
on GitHub

3.10 Python
3.10

Amazon
Linux 2

Dockerfile for Python 3.10
on GitHub

3.9 Python 3.9 Amazon
Linux 2

Dockerfile for Python 3.9
on GitHub

3.8 Python 3.8 Amazon
Linux 2

Dockerfile for Python 3.8
on GitHub

Oct 14, 2024

Amazon ECR repository: gallery.ecr.aws/lambda/python

Python 3.12 and later base images are based on the Amazon Linux 2023 minimal container image.
The Python 3.8-3.11 base images are based on the Amazon Linux 2 image. AL2023-based images
provide several advantages over Amazon Linux 2, including a smaller deployment footprint and
updated versions of libraries such as glibc.

AL2023-based images use microdnf (symlinked as dnf) as the package manager instead
of yum, which is the default package manager in Amazon Linux 2. microdnf is a standalone
implementation of dnf. For a list of packages that are included in AL2023-based images, refer to
the Minimal Container columns in Comparing packages installed on Amazon Linux 2023 Container
Images. For more information about the differences between AL2023 and Amazon Linux 2, see
Introducing the Amazon Linux 2023 runtime for Amazon Lambda on the Amazon Compute Blog.

Amazon base images for Python 560

https://github.com/aws/aws-lambda-base-images/blob/python3.12/Dockerfile.python3.12
https://github.com/aws/aws-lambda-base-images/blob/python3.12/Dockerfile.python3.12
https://github.com/aws/aws-lambda-base-images/blob/python3.11/Dockerfile.python3.11
https://github.com/aws/aws-lambda-base-images/blob/python3.11/Dockerfile.python3.11
https://github.com/aws/aws-lambda-base-images/blob/python3.10/Dockerfile.python3.10
https://github.com/aws/aws-lambda-base-images/blob/python3.10/Dockerfile.python3.10
https://github.com/aws/aws-lambda-base-images/blob/python3.9/Dockerfile.python3.9
https://github.com/aws/aws-lambda-base-images/blob/python3.9/Dockerfile.python3.9
https://github.com/aws/aws-lambda-base-images/blob/python3.8/Dockerfile.python3.8
https://github.com/aws/aws-lambda-base-images/blob/python3.8/Dockerfile.python3.8
https://gallery.ecr.aws/lambda/python
https://docs.amazonaws.cn/linux/al2023/ug/minimal-container.html
https://docs.amazonaws.cn/linux/al2023/ug/al2023-container-image-types.html
https://docs.amazonaws.cn/linux/al2023/ug/al2023-container-image-types.html
https://amazonaws-china.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

Amazon Lambda Developer Guide

Note

To run AL2023-based images locally, including with Amazon Serverless Application Model
(Amazon SAM), you must use Docker version 20.10.10 or later.

Dependency search path in the base images

When you use an import statement in your code, the Python runtime searches the directories
in its search path until it finds the module or package. By default, the runtime searches the
{LAMBDA_TASK_ROOT} directory first. If you include a version of a runtime-included library in your
image, your version will take precedence over the version that's included in the runtime.

Other steps in the search path depend on which version of the Lambda base image for Python
you're using:

• Python 3.11 and later: Runtime-included libraries and pip-installed libraries are installed in
the /var/lang/lib/python3.11/site-packages directory. This directory has precedence
over /var/runtime in the search path. You can override the SDK by using pip to install a
newer version. You can use pip to verify that the runtime-included SDK and its dependencies are
compatible with any packages that you install.

• Python 3.8-3.10: Runtime-included libraries are installed in the /var/runtime directory. Pip-
installed libraries are installed in the /var/lang/lib/python3.x/site-packages directory.
The /var/runtime directory has precedence over /var/lang/lib/python3.x/site-
packages in the search path.

You can see the full search path for your Lambda function by adding the following code snippet.

import sys

search_path = sys.path
print(search_path)

Using an Amazon base image for Python

Prerequisites

To complete the steps in this section, you must have the following:

Using an Amazon base image 561

Amazon Lambda Developer Guide

• Amazon Command Line Interface (Amazon CLI) version 2

• Docker (minimum version 20.10.10 for Python 3.12 and later base images)

• Python

Creating an image from a base image

To create a container image from an Amazon base image for Python

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Create a new file called lambda_function.py. You can add the following sample function
code to the file for testing, or use your own.

Example Python function

import sys
def handler(event, context):
 return 'Hello from Amazon Lambda using Python' + sys.version + '!'

3. Create a new file called requirements.txt. If you're using the sample function code from
the previous step, you can leave the file empty because there are no dependencies. Otherwise,
list each required library. For example, here's what your requirements.txt should look like
if your function uses the Amazon SDK for Python (Boto3):

Example requirements.txt

boto3

4. Create a new Dockerfile with the following configuration:

• Set the FROM property to the URI of the base image.

• Use the COPY command to copy the function code and runtime dependencies to
{LAMBDA_TASK_ROOT}, a Lambda-defined environment variable.

• Set the CMD argument to the Lambda function handler.

Using an Amazon base image 562

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://gallery.ecr.aws/lambda/python/

Amazon Lambda Developer Guide

Example Dockerfile

FROM public.ecr.aws/lambda/python:3.12

Copy requirements.txt
COPY requirements.txt ${LAMBDA_TASK_ROOT}

Install the specified packages
RUN pip install -r requirements.txt

Copy function code
COPY lambda_function.py ${LAMBDA_TASK_ROOT}

Set the CMD to your handler (could also be done as a parameter override outside
 of the Dockerfile)
CMD ["lambda_function.handler"]

5. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

Using an Amazon base image 563

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

3. Get the container ID.

Using an Amazon base image 564

Amazon Lambda Developer Guide

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the Amazon Web Services Region where you want to create the
Amazon ECR repository.

• Replace 111122223333 with your Amazon Web Services account ID.

aws ecr get-login-password --region cn-north-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region cn-north-1 --
image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same Amazon Web Services Region as the
Lambda function.

If successful, you see a response like this:

{
 "repository": {

Using an Amazon base image 565

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

Amazon Lambda Developer Guide

 "repositoryArn": "arn:aws:ecr:cn-north-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• Replace docker-image:test with the name and tag of your Docker image.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.cn-
north-1.amazonaws.com.cn/hello-world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

Using an Amazon base image 566

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

Amazon Lambda Developer Guide

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different Amazon account, as long as
the image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Using an alternative base image with the runtime interface client

If you use an OS-only base image or an alternative base image, you must include the runtime
interface client in your image. The runtime interface client extends the Lambda runtime API, which
manages the interaction between Lambda and your function code.

Using a non-Amazon base image 567

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

Amazon Lambda Developer Guide

Install the the runtime interface client for Python using the pip package manager:

pip install awslambdaric

You can also download the Python runtime interface client from GitHub.

The following example demonstrates how to build a container image for Python using a non-
Amazon base image. The example Dockerfile uses an official Python base image. The Dockerfile
includes the runtime interface client for Python.

Prerequisites

To complete the steps in this section, you must have the following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Docker

• Python

Creating an image from an alternative base image

To create a container image from a non-Amazon base image

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Create a new file called lambda_function.py. You can add the following sample function
code to the file for testing, or use your own.

Example Python function

import sys
def handler(event, context):
 return 'Hello from Amazon Lambda using Python' + sys.version + '!'

3. Create a new file called requirements.txt. If you're using the sample function code from
the previous step, you can leave the file empty because there are no dependencies. Otherwise,
list each required library. For example, here's what your requirements.txt should look like
if your function uses the Amazon SDK for Python (Boto3):

Using a non-Amazon base image 568

https://pypi.org/project/awslambdaric
https://github.com/aws/aws-lambda-python-runtime-interface-client/
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker

Amazon Lambda Developer Guide

Example requirements.txt

boto3

4. Create a new Dockerfile. The following Dockerfile uses an official Python base image instead of
an Amazon base image. The Dockerfile includes the runtime interface client, which makes the
image compatible with Lambda. The following example Dockerfile uses a multi-stage build.

• Set the FROM property to the base image.

• Set the ENTRYPOINT to the module that you want the Docker container to run when it
starts. In this case, the module is the runtime interface client.

• Set the CMD to the Lambda function handler.

Example Dockerfile

Define custom function directory
ARG FUNCTION_DIR="/function"

FROM python:3.12 as build-image

Include global arg in this stage of the build
ARG FUNCTION_DIR

Copy function code
RUN mkdir -p ${FUNCTION_DIR}
COPY . ${FUNCTION_DIR}

Install the function's dependencies
RUN pip install \
 --target ${FUNCTION_DIR} \
 awslambdaric

Use a slim version of the base Python image to reduce the final image size
FROM python:3.12-slim

Include global arg in this stage of the build
ARG FUNCTION_DIR
Set working directory to function root directory
WORKDIR ${FUNCTION_DIR}

Using a non-Amazon base image 569

https://pypi.org/project/awslambdaric
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds

Amazon Lambda Developer Guide

Copy in the built dependencies
COPY --from=build-image ${FUNCTION_DIR} ${FUNCTION_DIR}

Set runtime interface client as default command for the container runtime
ENTRYPOINT ["/usr/local/bin/python", "-m", "awslambdaric"]
Pass the name of the function handler as an argument to the runtime
CMD ["lambda_function.handler"]

5. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

Use the runtime interface emulator to locally test the image. You can build the emulator into your
image or install it on your local machine.

To install and run the runtime interface emulator on your local machine

1. From your project directory, run the following command to download the runtime interface
emulator (x86-64 architecture) from GitHub and install it on your local machine.

Linux/macOS

mkdir -p ~/.aws-lambda-rie && \
 curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-
runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \
 chmod +x ~/.aws-lambda-rie/aws-lambda-rie

Using a non-Amazon base image 570

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

PowerShell

$dirPath = "$HOME\.aws-lambda-rie"
if (-not (Test-Path $dirPath)) {
 New-Item -Path $dirPath -ItemType Directory
}

$downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/
releases/latest/download/aws-lambda-rie"
$destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie"
Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

To install the arm64 emulator, replace the $downloadLink with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

2. Start the Docker image with the docker run command. Note the following:

• docker-image is the image name and test is the tag.

• /usr/local/bin/python -m awslambdaric lambda_function.handler is the
ENTRYPOINT followed by the CMD from your Dockerfile.

Linux/macOS

docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p
 9000:8080 \
 --entrypoint /aws-lambda/aws-lambda-rie \
 docker-image:test \
 /usr/local/bin/python -m awslambdaric lambda_function.handler

Using a non-Amazon base image 571

Amazon Lambda Developer Guide

PowerShell

docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p
 9000:8080 `
--entrypoint /aws-lambda/aws-lambda-rie `
docker-image:test `
 /usr/local/bin/python -m awslambdaric lambda_function.handler

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

3. Post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

Using a non-Amazon base image 572

Amazon Lambda Developer Guide

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

4. Get the container ID.

docker ps

5. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the Amazon Web Services Region where you want to create the
Amazon ECR repository.

• Replace 111122223333 with your Amazon Web Services account ID.

aws ecr get-login-password --region cn-north-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region cn-north-1 --
image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Using a non-Amazon base image 573

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

Amazon Lambda Developer Guide

Note

The Amazon ECR repository must be in the same Amazon Web Services Region as the
Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:cn-north-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• Replace docker-image:test with the name and tag of your Docker image.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

Using a non-Amazon base image 574

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

docker tag docker-image:test 111122223333.dkr.ecr.cn-
north-1.amazonaws.com.cn/hello-world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different Amazon account, as long as
the image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

Using a non-Amazon base image 575

https://docs.docker.com/engine/reference/commandline/push/

Amazon Lambda Developer Guide

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

For an example of how to create a Python image from an Alpine base image, see Container image
support for Lambda on the Amazon Blog.

Using a non-Amazon base image 576

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://amazonaws-china.com/blogs/aws/new-for-aws-lambda-container-image-support/
https://amazonaws-china.com/blogs/aws/new-for-aws-lambda-container-image-support/

Amazon Lambda Developer Guide

Working with layers for Python Lambda functions

A Lambda layer is a .zip file archive that contains supplementary code or data. Layers usually
contain library dependencies, a custom runtime, or configuration files. Creating a layer involves
three general steps:

1. Package your layer content. This means creating a .zip file archive that contains the
dependencies you want to use in your functions.

2. Create the layer in Lambda.

3. Add the layer to your functions.

This topic contains steps and guidance on how to properly package and create a Python Lambda
layer with external library dependencies.

Topics

• Prerequisites

• Python layer compatibility with Amazon Linux

• Layer paths for Python runtimes

• Packaging the layer content

• Creating the layer

• Adding the layer to your function

• Working with manylinux wheel distributions

Prerequisites

To follow the steps in this section, you must have the following:

• Python 3.11 and the pip package installer

• Amazon Command Line Interface (Amazon CLI) version 2

Throughout this topic, we reference the layer-python sample application on the awsdocs
GitHub repository. This application contains scripts that download the dependencies and generate
the layers. The application also contains corresponding functions that use dependencies from the
layers. After creating a layer, you can deploy and invoke the corresponding function to verify that

Layers 577

https://www.python.org/downloads/release/python-3118/
https://pip.pypa.io/en/stable/installation/
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/layer-python

Amazon Lambda Developer Guide

everything works properly. Because you use the Python 3.11 runtime for the functions, the layers
must also be compatible with Python 3.11.

In the layer-python sample application, there are two examples:

• The first example involves packaging the requests library into a Lambda layer. The layer/
directory contains the scripts to generate the layer. The function/ directory contains a sample
function to help test that the layer works. The majority of this tutorial walks through how to
create and package this layer.

• The second example involves packaging the numpy library into a Lambda layer. The layer-
numpy/ directory contains the scripts to generate the layer. The function-numpy/ directory
contains a sample function to help test that the layer works. For an example of how to create
and package this layer, see the section called “Working with manylinux wheel distributions”.

Python layer compatibility with Amazon Linux

The first step to creating a layer is to bundle all of your layer content into a .zip file archive.
Because Lambda functions run on Amazon Linux, your layer content must be able to compile and
build in a Linux environment.

In Python, most packages are available as wheels (.whl files) in addition to the source distribution.
Each wheel is a type of built distribution that supports a specific combination of Python versions,
operating systems, and machine instruction sets.

Wheels are useful for ensuring that your layer is compatible with Amazon Linux. When you
download your dependencies, download the universal wheel if possible. (By default, pip installs
the universal wheel if one is available.) The universal wheel contains any as the platform tag,
indicating that it's compatible with all platforms, including Amazon Linux.

In the example that follows, you package the requests library into a Lambda layer. The
requests library is an example of a package that's available as a universal wheel.

Not all Python packages are distributed as universal wheels. For example, numpy has multiple
wheel distributions, each supporting a different set of platforms. For such packages, download the
manylinux distribution to ensure compatibility with Amazon Linux. For detailed instructions about
how to package such layers, see the section called “Working with manylinux wheel distributions”.

In rare cases, a Python package might not be available as a wheel. If only the source distribution
(sdist) exists, then we recommend installing and packaging your dependencies in a Docker

Python layer compatibility with Amazon Linux 578

https://pypi.org/project/requests/
https://numpy.org/
https://docs.amazonaws.cn/linux/al2023/ug/what-is-amazon-linux.html
https://packaging.python.org/en/latest/glossary/#term-Wheel
https://numpy.org/
https://packaging.python.org/en/latest/overview/#python-source-distributions
https://docs.docker.com/get-docker

Amazon Lambda Developer Guide

environment based on the Amazon Linux 2023 base container image. We also recommend this
approach if you want to include your own custom libraries written in other languages such as C/C+
+. This approach mimics the Lambda execution environment in Docker, and ensures that your non-
Python package dependencies are compatible with Amazon Linux.

Layer paths for Python runtimes

When you add a layer to a function, Lambda loads the layer content into the /opt directory of
that execution environment. For each Lambda runtime, the PATH variable already includes specific
folder paths within the /opt directory. To ensure that the PATH variable picks up your layer
content, your layer .zip file should have its dependencies in the following folder paths:

• python

• python/lib/python3.x/site-packages

For example, the resulting layer .zip file that you create in this tutorial has the following directory
structure:

layer_content.zip
python
 # lib
 # python3.11
 # site-packages
 # requests
 # <other_dependencies> (i.e. dependencies of the requests package)
 # ...)

The requests library is correctly located in the python/lib/python3.11/site-packages
directory. This ensures that Lambda can locate the library during function invocations.

Packaging the layer content

In this example, you package the Python requests library in a layer .zip file. Complete the
following steps to install and package the layer content.

To install and package your layer content

1. Clone the aws-lambda-developer-guide GitHub repo, which contains the sample code
that you need in the sample-apps/layer-python directory.

Layer paths for Python runtimes 579

https://docs.amazonaws.cn/linux/al2023/ug/base-container.html
https://pypi.org/project/requests/
https://github.com/awsdocs/aws-lambda-developer-guide

Amazon Lambda Developer Guide

git clone https://github.com/awsdocs/aws-lambda-developer-guide.git

2. Navigate to the layer directory of the layer-python sample app. This directory contains
the scripts that you use to create and package the layer properly.

cd aws-lambda-developer-guide/sample-apps/layer-python/layer

3. Examine the requirements.txt file. This file defines the dependencies that you want to
include in the layer, namely the requests library. You can update this file to include any
dependencies that you want to include in your own layer.

Example requirements.txt

requests==2.31.0

4. Ensure that you have permissions to run both scripts.

chmod 744 1-install.sh && chmod 744 2-package.sh

5. Run the 1-install.sh script using the following command:

./1-install.sh

This script uses venv to create a Python virtual environment named create_layer. It then
installs all required dependencies in the create_layer/lib/python3.11/site-packages
directory.

Example 1-install.sh

python3.11 -m venv create_layer
source create_layer/bin/activate
pip install -r requirements.txt

6. Run the 2-package.sh script using the following command:

./2-package.sh

This script copies the contents from the create_layer/lib directory into a new directory
named python. It then zips the contents of the python directory into a file named

Packaging the layer content 580

https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/sample-apps/layer-python/layer/requirements.txt
https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/sample-apps/layer-python/layer/1-install.sh
https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/sample-apps/layer-python/layer/2-package.sh

Amazon Lambda Developer Guide

layer_content.zip. This is the .zip file for your layer. You can unzip the file and verify that
it contains the correct file structure, as shown in the the section called “Layer paths for Python
runtimes” section.

Example 2-package.sh

mkdir python
cp -r create_layer/lib python/
zip -r layer_content.zip python

Creating the layer

In this section, you take the layer_content.zip file that you generated in the previous
section and upload it as a Lambda layer. You can upload a layer using the Amazon Web Services
Management Console or the Lambda API via the Amazon Command Line Interface (Amazon CLI).
When you upload your layer .zip file, in the following PublishLayerVersion Amazon CLI command,
specify python3.11 as the compatible runtime and arm64 as the compatible architecture.

aws lambda publish-layer-version --layer-name python-requests-layer \
 --zip-file fileb://layer_content.zip \
 --compatible-runtimes python3.11 \
 --compatible-architectures "arm64"

From the response, note the LayerVersionArn, which looks like arn:aws:lambda:us-
east-1:123456789012:layer:python-requests-layer:1. You'll need this Amazon
Resource Name (ARN) in the next step of this tutorial, when you add the layer to your function.

Adding the layer to your function

In this section, you deploy a sample Lambda function that uses the requests library in its
function code, then you attach the layer. To deploy the function, you need a the section called
“Execution role”. If you don't have an existing execution role, follow the steps in the collapsible
section. Otherwise, skip to the next section to deploy the function.

(Optional) Create an execution role

To create an execution role

1. Open the roles page in the IAM console.

Creating the layer 581

https://docs.amazonaws.cn/lambda/latest/api/API_PublishLayerVersion.html
https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

2. Choose Create role.

3. Create a role with the following properties.

• Trusted entity – Lambda.

• Permissions – AWSLambdaBasicExecutionRole.

• Role name – lambda-role.

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to
write logs to CloudWatch Logs.

To deploy the Lambda function

1. Navigate to the function/ directory. If you're currently in the layer/ directory, then run the
following command:

cd ../function

2. Review the function code. The function imports the requests library, makes a simple HTTP
GET request, and then returns the status code and body.

import requests

def lambda_handler(event, context):
 print(f"Version of requests library: {requests.__version__}")
 request = requests.get('https://api.github.com/')
 return {
 'statusCode': request.status_code,
 'body': request.text
 }

3. Create a .zip file deployment package using the following command:

zip my_deployment_package.zip lambda_function.py

4. Deploy the function. In the following Amazon CLI command, replace the --role parameter
with your execution role ARN:

aws lambda create-function --function-name python_function_with_layer \
 --runtime python3.11 \

Adding the layer to your function 582

https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/sample-apps/layer-python/function/lambda_function.py

Amazon Lambda Developer Guide

 --architectures "arm64" \
 --handler lambda_function.lambda_handler \
 --role arn:aws:iam::123456789012:role/lambda-role \
 --zip-file fileb://my_deployment_package.zip

(Optional) Invoke your function without attaching a layer

At this point, you can optionally try to invoke your function before attaching the layer. If you try
this, then you should get an import error because your function cannot reference the requests
package. To invoke your function, use the following Amazon CLI command:

aws lambda invoke --function-name python_function_with_layer \
 --cli-binary-format raw-in-base64-out \
 --payload '{ "key": "value" }' response.json

You should see output that looks like this:

{
 "StatusCode": 200,
 "FunctionError": "Unhandled",
 "ExecutedVersion": "$LATEST"
}

To view the specific error, open the output response.json file. You should see an
ImportModuleError with the following error message:

"errorMessage": "Unable to import module 'lambda_function': No module named 'requests'"

Next, attach the layer to your function. In the following Amazon CLI command, replace the --
layers parameter with the layer version ARN that you noted earlier:

aws lambda update-function-configuration --function-name python_function_with_layer \
 --cli-binary-format raw-in-base64-out \
 --layers "arn:aws:lambda:us-east-1:123456789012:layer:python-requests-layer:1"

Finally, try to invoke your function using the following Amazon CLI command:

aws lambda invoke --function-name python_function_with_layer \

Adding the layer to your function 583

Amazon Lambda Developer Guide

 --cli-binary-format raw-in-base64-out \
 --payload '{ "key": "value" }' response.json

You should see output that looks like this:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

The output response.json file contains details about the response.

(Optional) Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

To delete the Lambda layer

1. Open the Layers page of the Lambda console.

2. Select the layer that you created.

3. Choose Delete, then choose Delete again.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

Working with manylinux wheel distributions

Sometimes, a package that you want to include as a dependency won't have a universal wheel
(specifically, it doesn't have any as the platform tag). In this case, download the wheel that
supports manylinux instead. This ensures that your layer libraries are compatible with Amazon
Linux.

Working with manylinux wheel distributions 584

https://console.amazonaws.cn/lambda/home#/layers
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

numpy is one package that doesn't have a universal wheel. If you want to include the numpy
package in your layer, then you can complete the following example steps to install and package
your layer properly.

To install and package your layer content

1. Clone the aws-lambda-developer-guide GitHub repo, which contains the sample code
that you need in the sample-apps/layer-python directory.

git clone https://github.com/awsdocs/aws-lambda-developer-guide.git

2. Navigate to the layer-numpy directory of the layer-python sample app. This directory
contains the scripts that you use to create and package the layer properly.

cd aws-lambda-developer-guide/sample-apps/layer-python/layer-numpy

3. Examine the requirements.txt file. This file defines the dependencies that you want to
include in your layer, namely the numpy library. Here, you specify the URL of the manylinux
wheel distribution that's compatible with Python 3.11, Amazon Linux, and the x86_64
instruction set:

Example requirements.txt

https://files.pythonhosted.org/packages/3a/d0/
edc009c27b406c4f9cbc79274d6e46d634d139075492ad055e3d68445925/numpy-1.26.4-cp311-
cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

4. Ensure that you have permissions to run both scripts.

chmod 744 1-install.sh && chmod 744 2-package.sh

5. Run the 1-install.sh script using the following command:

./1-install.sh

This script uses venv to create a Python virtual environment named create_layer. It
then installs all required dependencies in the create_layer/lib/python3.11/site-
packages directory. The pip command is different in this case, because you must specify the
--platform tag as manylinux2014_x86_64. This tells pip to install the correct manylinux
wheel, even if your local machine uses macOS or Windows.

Working with manylinux wheel distributions 585

https://numpy.org/
https://github.com/awsdocs/aws-lambda-developer-guide
https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/sample-apps/layer-python/layer-numpy/requirements.txt
https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/sample-apps/layer-python/layer-numpy/1-install.sh

Amazon Lambda Developer Guide

Example 1-install.sh

python3.11 -m venv create_layer
source create_layer/bin/activate
pip install -r requirements.txt --platform=manylinux2014_x86_64 --only-binary=:all:
 --target ./create_layer/lib/python3.11/site-packages

6. Run the 2-package.sh script using the following command:

./2-package.sh

This script copies the contents from the create_layer/lib directory into a new directory
named python. It then zips the contents of the python directory into a file named
layer_content.zip. This is the .zip file for your layer. You can unzip the file and verify that
it contains the correct file structure as shown in the the section called “Layer paths for Python
runtimes” section.

Example 2-package.sh

mkdir python
cp -r create_layer/lib python/
zip -r layer_content.zip python

To upload this layer to Lambda, use the following PublishLayerVersion Amazon CLI command:

aws lambda publish-layer-version --layer-name python-numpy-layer \
 --zip-file fileb://layer_content.zip \
 --compatible-runtimes python3.11 \
 --compatible-architectures "x86_64"

From the response, note the LayerVersionArn, which looks like arn:aws:lambda:us-
east-1:123456789012:layer:python-numpy-layer:1. To verify that your layer works as
expected, deploy the Lambda function in the function-numpy directory.

To deploy the Lambda function

1. Navigate to the function-numpy/ directory. If you're currently in the layer-numpy/
directory, then run the following command:

Working with manylinux wheel distributions 586

https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/sample-apps/layer-python/layer-numpy/2-package.sh
https://docs.amazonaws.cn/lambda/latest/api/API_PublishLayerVersion.html

Amazon Lambda Developer Guide

cd ../function-numpy

2. Review the function code. The function imports the numpy library, creates a simple numpy
array, and then returns a dummy status code and body.

import json
import numpy as np

def lambda_handler(event, context):

 x = np.arange(15, dtype=np.int64).reshape(3, 5)
 print(x)

 return {
 'statusCode': 200,
 'body': json.dumps('Hello from Lambda!')
 }

3. Create a .zip file deployment package using the following command:

zip my_deployment_package.zip lambda_function.py

4. Deploy the function. In the following Amazon CLI command, replace the --role parameter
with your execution role ARN:

aws lambda create-function --function-name python_function_with_numpy \
 --runtime python3.11 \
 --handler lambda_function.lambda_handler \
 --role arn:aws:iam::123456789012:role/lambda-role \
 --zip-file fileb://my_deployment_package.zip

(Optional) Invoke your function without attaching a layer

Optionally, you can try to invoke your function before attaching the layer. If you try this, then you
should get an import error because your function cannot reference the numpy package. To invoke
your function, use the following Amazon CLI command:

aws lambda invoke --function-name python_function_with_numpy \
 --cli-binary-format raw-in-base64-out \

Working with manylinux wheel distributions 587

https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/sample-apps/layer-python/function-numpy/lambda_function.py

Amazon Lambda Developer Guide

 --payload '{ "key": "value" }' response.json

You should see output that looks like this:

{
 "StatusCode": 200,
 "FunctionError": "Unhandled",
 "ExecutedVersion": "$LATEST"
}

To view the specific error, open the output response.json file. You should see an
ImportModuleError with the following error message:

"errorMessage": "Unable to import module 'lambda_function': No module named 'numpy'"

Next, attach the layer to your function. In the following Amazon CLI command, replace the --
layers parameter with your layer version ARN:

aws lambda update-function-configuration --function-name python_function_with_numpy \
 --cli-binary-format raw-in-base64-out \
 --layers "arn:aws:lambda:us-east-1:123456789012:layer:python-requests-layer:1"

Finally, try to invoke your function using the following Amazon CLI command:

aws lambda invoke --function-name python_function_with_numpy \
 --cli-binary-format raw-in-base64-out \
 --payload '{ "key": "value" }' response.json

You should see output that looks like this:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

You can examine the function logs to verify that the code prints the numpy array to standard out.

Working with manylinux wheel distributions 588

Amazon Lambda Developer Guide

Amazon Lambda context object in Python

When Lambda runs your function, it passes a context object to the handler. This object provides
methods and properties that provide information about the invocation, function, and execution
environment. For more information on how the context object is passed to the function handler,
see Lambda function handler in Python.

Context methods

• get_remaining_time_in_millis – Returns the number of milliseconds left before the
execution times out.

Context properties

• function_name – The name of the Lambda function.

• function_version – The version of the function.

• invoked_function_arn – The Amazon Resource Name (ARN) that's used to invoke the
function. Indicates if the invoker specified a version number or alias.

• memory_limit_in_mb – The amount of memory that's allocated for the function.

• aws_request_id – The identifier of the invocation request.

• log_group_name – The log group for the function.

• log_stream_name – The log stream for the function instance.

• identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• cognito_identity_id – The authenticated Amazon Cognito identity.

• cognito_identity_pool_id – The Amazon Cognito identity pool that authorized the
invocation.

• client_context – (mobile apps) Client context that's provided to Lambda by the client
application.

• client.installation_id

• client.app_title

• client.app_version_name

• client.app_version_code

• client.app_package_name

Context 589

Amazon Lambda Developer Guide

• custom – A dict of custom values set by the mobile client application.

• env – A dict of environment information provided by the Amazon SDK.

The following example shows a handler function that logs context information.

Example handler.py

import time

def lambda_handler(event, context):
 print("Lambda function ARN:", context.invoked_function_arn)
 print("CloudWatch log stream name:", context.log_stream_name)
 print("CloudWatch log group name:", context.log_group_name)
 print("Lambda Request ID:", context.aws_request_id)
 print("Lambda function memory limits in MB:", context.memory_limit_in_mb)
 # We have added a 1 second delay so you can see the time remaining in
 get_remaining_time_in_millis.
 time.sleep(1)
 print("Lambda time remaining in MS:", context.get_remaining_time_in_millis())

In addition to the options listed above, you can also use the Amazon X-Ray SDK for Instrumenting
Python code in Amazon Lambda to identify critical code paths, trace their performance and
capture the data for analysis.

Context 590

Amazon Lambda Developer Guide

Amazon Lambda function logging in Python

Amazon Lambda automatically monitors Lambda functions and sends log entries to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation and other output from your function's code to the log stream. For more information
about CloudWatch Logs, see Using Amazon CloudWatch logs with Amazon Lambda.

To output logs from your function code, you can use the built-in logging module. For more
detailed entries, you can use any logging library that writes to stdout or stderr.

Printing to the log

To send basic output to the logs, you can use a print method in your function. The following
example logs the values of the CloudWatch Logs log group and stream, and the event object.

Note that if your function outputs logs using Python print statements, Lambda can only send log
outputs to CloudWatch Logs in plain text format. To capture logs in structured JSON, you need to
use a supported logging library. See the section called “Using Lambda advanced logging controls
with Python” for more information.

Example lambda_function.py

import os
def lambda_handler(event, context):
 print('## ENVIRONMENT VARIABLES')
 print(os.environ['AWS_LAMBDA_LOG_GROUP_NAME'])
 print(os.environ['AWS_LAMBDA_LOG_STREAM_NAME'])
 print('## EVENT')
 print(event)

Example log output

START RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95 Version: $LATEST
ENVIRONMENT VARIABLES
/aws/lambda/my-function
2023/08/31/[$LATEST]3893xmpl7fac4485b47bb75b671a283c
EVENT
{'key': 'value'}

Logging 591

https://docs.python.org/3/library/logging.html

Amazon Lambda Developer Guide

END RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95
REPORT RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95 Duration: 15.74 ms Billed
 Duration: 16 ms Memory Size: 128 MB Max Memory Used: 56 MB Init Duration: 130.49 ms
XRAY TraceId: 1-5e34a614-10bdxmplf1fb44f07bc535a1 SegmentId: 07f5xmpl2d1f6f85
 Sampled: true

The Python runtime logs the START, END, and REPORT lines for each invocation. The REPORT line
includes the following data:

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the Amazon X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

Using a logging library

For more detailed logs, use the logging module in the standard library, or any third party logging
library that writes to stdout or stderr.

For supported Python runtimes, you can choose whether logs created using the standard logging
module are captured in plain text or JSON. To learn more, see the section called “Using Lambda
advanced logging controls with Python”.

Currently, the default log format for all Python runtimes is plain text. The following example
shows how log outputs created using the standard logging module are captured in plain text in
CloudWatch Logs.

import os

Using a logging library 592

https://docs.python.org/3/library/logging.html

Amazon Lambda Developer Guide

import logging
logger = logging.getLogger()
logger.setLevel("INFO")

def lambda_handler(event, context):
 logger.info('## ENVIRONMENT VARIABLES')
 logger.info(os.environ['AWS_LAMBDA_LOG_GROUP_NAME'])
 logger.info(os.environ['AWS_LAMBDA_LOG_STREAM_NAME'])
 logger.info('## EVENT')
 logger.info(event)

The output from logger includes the log level, timestamp, and request ID.

START RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125 Version: $LATEST
[INFO] 2023-08-31T22:12:58.534Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 ##
 ENVIRONMENT VARIABLES
[INFO] 2023-08-31T22:12:58.534Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 /aws/
lambda/my-function
[INFO] 2023-08-31T22:12:58.534Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 2023/01/31/
[$LATEST]1bbe51xmplb34a2788dbaa7433b0aa4d
[INFO] 2023-08-31T22:12:58.535Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 ## EVENT
[INFO] 2023-08-31T22:12:58.535Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 {'key':
 'value'}
END RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125
REPORT RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125 Duration: 2.75 ms Billed
 Duration: 3 ms Memory Size: 128 MB Max Memory Used: 56 MB Init Duration: 113.51 ms
XRAY TraceId: 1-5e34a66a-474xmpl7c2534a87870b4370 SegmentId: 073cxmpl3e442861
 Sampled: true

Note

When your function's log format is set to plain text, the default log-level setting for Python
runtimes is WARN. This means that Lambda only sends log outputs of level WARN and
lower to CloudWatch Logs. To change the default log level, use the Python logging
setLevel() method as shown in this example code. If you set your function's log format
to JSON, we recommend that you configure your function's log level using Lambda
Advanced Logging Controls and not by setting the log level in code. To learn more, see the
section called “Using log-level filtering with Python”

Using a logging library 593

Amazon Lambda Developer Guide

Using Lambda advanced logging controls with Python

To give you more control over how your functions’ logs are captured, processed, and consumed,
you can configure the following logging options for supported Lambda Python runtimes:

• Log format - select between plain text and structured JSON format for your function’s logs

• Log level - for logs in JSON format, choose the detail level of the logs Lambda sends to Amazon
CloudWatch, such as ERROR, DEBUG, or INFO

• Log group - choose the CloudWatch log group your function sends logs to

For more information about these logging options, and instructions on how to configure your
function to use them, see the section called “Configuring advanced logging controls for your
Lambda function”.

To learn more about using the log format and log level options with your Python Lambda
functions, see the guidance in the following sections.

Using structured JSON logs with Python

If you select JSON for your function’s log format, Lambda will send logs output by the Python
standard logging library to CloudWatch as structured JSON. Each JSON log object contains at least
four key value pairs with the following keys:

• "timestamp" - the time the log message was generated

• "level" - the log level assigned to the message

• "message" - the contents of the log message

• "requestId" - the unique request ID for the function invocation

The Python logging library can also add extra key value pairs such as "logger" to this JSON
object.

The examples in the following sections show how log outputs generated using the Python
logging library are captured in CloudWatch Logs when you configure your function's log format
as JSON.

Note that if you use the print method to produce basic log outputs as described in the section
called “Printing to the log”, Lambda will capture these outputs as plain text, even if you configure
your function’s logging format as JSON.

Using Lambda advanced logging controls with Python 594

Amazon Lambda Developer Guide

Standard JSON log outputs using Python logging library

The following example code snippet and log output show how standard log outputs generated
using the Python logging library are captured in CloudWatch Logs when your function's log
format is set to JSON.

Example Python logging code

import logging
logger = logging.getLogger()

def lambda_handler(event, context):
 logger.info("Inside the handler function")

Example JSON log record

{
 "timestamp":"2023-10-27T19:17:45.586Z",
 "level":"INFO",
 "message":"Inside the handler function",
 "logger": "root",
 "requestId":"79b4f56e-95b1-4643-9700-2807f4e68189"
}

Logging extra parameters in JSON

When your function's log format is set to JSON, you can also log additional parameters with the
standard Python logging library by using the extra keyword to pass a Python dictionary to the
log output.

Example Python logging code

import logging

def lambda_handler(event, context):
 logging.info(
 "extra parameters example",
 extra={"a":"b", "b": [3]},
)

Using Lambda advanced logging controls with Python 595

Amazon Lambda Developer Guide

Example JSON log record

{
 "timestamp": "2023-11-02T15:26:28Z",
 "level": "INFO",
 "message": "extra parameters example",
 "logger": "root",
 "requestId": "3dbd5759-65f6-45f8-8d7d-5bdc79a3bd01",
 "a": "b",
 "b": [
 3
]
}

Logging exceptions in JSON

The following code snippet shows how Python exceptions are captured in your function's log
output when you configure the log format as JSON. Note that log outputs generated using
logging.exception are assigned the log level ERROR.

Example Python logging code

import logging

def lambda_handler(event, context):
 try:
 raise Exception("exception")
 except:
 logging.exception("msg")

Example JSON log record

{
 "timestamp": "2023-11-02T16:18:57Z",
 "level": "ERROR",
 "message": "msg",
 "logger": "root",
 "stackTrace": [
 " File \"/var/task/lambda_function.py\", line 15, in lambda_handler\n raise
 Exception(\"exception\")\n"
],

Using Lambda advanced logging controls with Python 596

Amazon Lambda Developer Guide

 "errorType": "Exception",
 "errorMessage": "exception",
 "requestId": "3f9d155c-0f09-46b7-bdf1-e91dab220855",
 "location": "/var/task/lambda_function.py:lambda_handler:17"
}

JSON structured logs with other logging tools

If your code already uses another logging library, such as Powertools for Amazon Lambda, to
produce JSON structured logs, you don’t need to make any changes. Amazon Lambda doesn’t
double-encode any logs that are already JSON encoded. Even if you configure your function to use
the JSON log format, your logging outputs appear in CloudWatch in the JSON structure you define.

The following example shows how log outputs generated using the Powertools for Amazon
Lambda package are captured in CloudWatch Logs. The format of this log output is the same
whether your function’s logging configuration is set to JSON or TEXT. For more information
about using Powertools for Amazon Lambda, see the section called “Using Powertools for
Amazon Lambda (Python) and Amazon SAM for structured logging” and the section called “Using
Powertools for Amazon Lambda (Python) and Amazon CDK for structured logging”

Example Python logging code snippet (using Powertools for Amazon Lambda)

from aws_lambda_powertools import Logger

logger = Logger()

def lambda_handler(event, context):
 logger.info("Inside the handler function")

Example JSON log record (using Powertools for Amazon Lambda)

{
 "level": "INFO",
 "location": "lambda_handler:7",
 "message": "Inside the handler function",
 "timestamp": "2023-10-31 22:38:21,010+0000",
 "service": "service_undefined",
 "xray_trace_id": "1-654181dc-65c15d6b0fecbdd1531ecb30"
}

Using Lambda advanced logging controls with Python 597

Amazon Lambda Developer Guide

Using log-level filtering with Python

By configuring log-level filtering, you can choose to send only logs of a certain logging level or
lower to CloudWatch Logs. To learn how to configure log-level filtering for your function, see the
section called “Log-level filtering”.

For Amazon Lambda to filter your application logs according to their log level, your function must
use JSON formatted logs. You can achieve this in two ways:

• Create log outputs using the standard Python logging library and configure your function
to use JSON log formatting. Amazon Lambda then filters your log outputs using the “level”
key value pair in the JSON object described in the section called “Using structured JSON logs
with Python”. To learn how to configure your function’s log format, see the section called
“Configuring advanced logging controls for your Lambda function”.

• Use another logging library or method to create JSON structured logs in your code that include
a “level” key value pair defining the level of the log output. For example, you can use Powertools
for Amazon Lambda to generate JSON structured log outputs from your code.

You can also use a print statement to output a JSON object containing a log level identifier. The
following print statement produces a JSON formatted output where the log level is set to INFO.
Amazon Lambda will send the JSON object to CloudWatch Logs if your function’s logging level is
set to INFO, DEBUG, or TRACE.

print('{"msg":"My log message", "level":"info"}')

For Lambda to filter your function's logs, you must also include a "timestamp" key value pair in
your JSON log output. The time must be specified in valid RFC 3339 timestamp format. If you don't
supply a valid timestamp, Lambda will assign the log the level INFO and add a timestamp for you.

Viewing logs in Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Viewing logs in Lambda console 598

https://www.ietf.org/rfc/rfc3339.txt

Amazon Lambda Developer Guide

Viewing logs in CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with Amazon X-Ray. X-Ray records details about the request and the log stream in the
trace.

To use a sample application that correlates logs and traces with X-Ray, see Error processor sample
application for Amazon Lambda.

Viewing logs with Amazon CLI

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

You can use the Amazon CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

Viewing logs in CloudWatch console 599

https://console.amazonaws.cn/cloudwatch/home?#logs:
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html

Amazon Lambda Developer Guide

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Viewing logs with Amazon CLI 600

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Lambda Developer Guide

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",

Viewing logs with Amazon CLI 601

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Tools and libraries

Powertools for Amazon Lambda (Python) is a developer toolkit to implement Serverless best
practices and increase developer velocity. The Logger utility provides a Lambda optimized logger

Deleting logs 602

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://docs.powertools.aws.dev/lambda/python/latest/
https://docs.powertools.aws.dev/lambda/python/latest/core/logger/

Amazon Lambda Developer Guide

which includes additional information about function context across all your functions with output
structured as JSON. Use this utility to do the following:

• Capture key fields from the Lambda context, cold start and structures logging output as JSON

• Log Lambda invocation events when instructed (disabled by default)

• Print all the logs only for a percentage of invocations via log sampling (disabled by default)

• Append additional keys to structured log at any point in time

• Use a custom log formatter (Bring Your Own Formatter) to output logs in a structure compatible
with your organization’s Logging RFC

Using Powertools for Amazon Lambda (Python) and Amazon SAM for
structured logging

Follow the steps below to download, build, and deploy a sample Hello World Python application
with integrated Powertools for Python modules using the Amazon SAM. This application
implements a basic API backend and uses Powertools for emitting logs, metrics, and traces. It
consists of an Amazon API Gateway endpoint and a Lambda function. When you send a GET
request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics using
Embedded Metric Format to CloudWatch, and sends traces to Amazon X-Ray. The function returns
a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Python 3.9

• Amazon CLI version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Deploy a sample Amazon SAM application

1. Initialize the application using the Hello World Python template.

sam init --app-template hello-world-powertools-python --name sam-app --package-type
 Zip --runtime python3.9 --no-tracing

Using Powertools for Amazon Lambda (Python) and Amazon SAM for structured logging 603

https://docs.powertools.aws.dev/lambda-python
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the logs for the function, run sam logs. For more information, see Working with logs in
the Amazon Serverless Application Model Developer Guide.

sam logs --stack-name sam-app

The log output looks like this:

2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04
 2023-02-03T14:59:50.371000 INIT_START Runtime Version:
 python:3.9.v16 Runtime Version ARN: arn:aws:lambda:us-
east-1::runtime:07a48df201798d627f2b950f03bb227aab4a655a1d019c3296406f95937e2525

Using Powertools for Amazon Lambda (Python) and Amazon SAM for structured logging 604

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

Amazon Lambda Developer Guide

2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.112000
 START RequestId: d455cfc4-7704-46df-901b-2a5cce9405be Version: $LATEST
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.114000 {
 "level": "INFO",
 "location": "hello:23",
 "message": "Hello world API - HTTP 200",
 "timestamp": "2023-02-03 14:59:51,113+0000",
 "service": "PowertoolsHelloWorld",
 "cold_start": true,
 "function_name": "sam-app-HelloWorldFunction-YBg8yfYtOc9j",
 "function_memory_size": "128",
 "function_arn": "arn:aws:lambda:us-east-1:111122223333:function:sam-app-
HelloWorldFunction-YBg8yfYtOc9j",
 "function_request_id": "d455cfc4-7704-46df-901b-2a5cce9405be",
 "correlation_id": "e73f8aef-5e07-436e-a30b-63e4b23f0047",
 "xray_trace_id": "1-63dd2166-434a12c22e1307ff2114f299"
}
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.126000 {
 "_aws": {
 "Timestamp": 1675436391126,
 "CloudWatchMetrics": [
 {
 "Namespace": "Powertools",
 "Dimensions": [
 [
 "function_name",
 "service"
]
],
 "Metrics": [
 {
 "Name": "ColdStart",
 "Unit": "Count"
 }
]
 }
]
 },
 "function_name": "sam-app-HelloWorldFunction-YBg8yfYtOc9j",
 "service": "PowertoolsHelloWorld",
 "ColdStart": [
 1.0
]
}

Using Powertools for Amazon Lambda (Python) and Amazon SAM for structured logging 605

Amazon Lambda Developer Guide

2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.126000 {
 "_aws": {
 "Timestamp": 1675436391126,
 "CloudWatchMetrics": [
 {
 "Namespace": "Powertools",
 "Dimensions": [
 [
 "service"
]
],
 "Metrics": [
 {
 "Name": "HelloWorldInvocations",
 "Unit": "Count"
 }
]
 }
]
 },
 "service": "PowertoolsHelloWorld",
 "HelloWorldInvocations": [
 1.0
]
}
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.128000 END
 RequestId: d455cfc4-7704-46df-901b-2a5cce9405be
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.128000
 REPORT RequestId: d455cfc4-7704-46df-901b-2a5cce9405be Duration: 16.33 ms
 Billed Duration: 17 ms Memory Size: 128 MB Max Memory Used: 64 MB Init
 Duration: 739.46 ms
XRAY TraceId: 1-63dd2166-434a12c22e1307ff2114f299 SegmentId: 3c5d18d735a1ced0
 Sampled: true

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Using Powertools for Amazon Lambda (Python) and Amazon SAM for structured logging 606

Amazon Lambda Developer Guide

Managing log retention

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which CloudWatch
automatically deletes the logs. To set up log retention, add the following to your Amazon SAM
template:

Resources:
 HelloWorldFunction:
 Type: AWS::Serverless::Function
 Properties:
 # Omitting other properties

 LogGroup:
 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: !Sub "/aws/lambda/${HelloWorldFunction}"
 RetentionInDays: 7

Using Powertools for Amazon Lambda (Python) and Amazon CDK for
structured logging

Follow the steps below to download, build, and deploy a sample Hello World Python application
with integrated Powertools for Amazon Lambda (Python) modules using the Amazon CDK. This
application implements a basic API backend and uses Powertools for emitting logs, metrics, and
traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send a
GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Python 3.9

• Amazon CLI version 2

• Amazon CDK version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Using Powertools for Amazon Lambda (Python) and Amazon CDK for structured logging 607

https://docs.powertools.aws.dev/lambda-python
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

Deploy a sample Amazon CDK application

1. Create a project directory for your new application.

mkdir hello-world
cd hello-world

2. Initialize the app.

cdk init app --language python

3. Install the Python dependencies.

pip install -r requirements.txt

4. Create a directory lambda_function under the root folder.

mkdir lambda_function
cd lambda_function

5. Create a file app.py and add the following code to the file. This is the code for the Lambda
function.

from aws_lambda_powertools.event_handler import APIGatewayRestResolver
from aws_lambda_powertools.utilities.typing import LambdaContext
from aws_lambda_powertools.logging import correlation_paths
from aws_lambda_powertools import Logger
from aws_lambda_powertools import Tracer
from aws_lambda_powertools import Metrics
from aws_lambda_powertools.metrics import MetricUnit

app = APIGatewayRestResolver()
tracer = Tracer()
logger = Logger()
metrics = Metrics(namespace="PowertoolsSample")

@app.get("/hello")
@tracer.capture_method
def hello():
 # adding custom metrics
 # See: https://docs.powertools.aws.dev/lambda-python/latest/core/metrics/

Using Powertools for Amazon Lambda (Python) and Amazon CDK for structured logging 608

Amazon Lambda Developer Guide

 metrics.add_metric(name="HelloWorldInvocations", unit=MetricUnit.Count,
 value=1)

 # structured log
 # See: https://docs.powertools.aws.dev/lambda-python/latest/core/logger/
 logger.info("Hello world API - HTTP 200")
 return {"message": "hello world"}

Enrich logging with contextual information from Lambda
@logger.inject_lambda_context(correlation_id_path=correlation_paths.API_GATEWAY_REST)
Adding tracer
See: https://docs.powertools.aws.dev/lambda-python/latest/core/tracer/
@tracer.capture_lambda_handler
ensures metrics are flushed upon request completion/failure and capturing
 ColdStart metric
@metrics.log_metrics(capture_cold_start_metric=True)
def lambda_handler(event: dict, context: LambdaContext) -> dict:
 return app.resolve(event, context)

6. Open the hello_world directory. You should see a file called hello_world_stack.py.

cd ..
cd hello_world

7. Open hello_world_stack.py and add the following code to the file. This contains the Lambda
Constructor, which creates the Lambda function, configures environment variables for
Powertools and sets log retention to one week, and the ApiGatewayv1 Constructor, which
creates the REST API.

from aws_cdk import (
 Stack,
 aws_apigateway as apigwv1,
 aws_lambda as lambda_,
 CfnOutput,
 Duration
)
from constructs import Construct

class HelloWorldStack(Stack):

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

Using Powertools for Amazon Lambda (Python) and Amazon CDK for structured logging 609

https://docs.amazonaws.cn/cdk/api/v1/python/aws_cdk.aws_lambda.html
https://docs.amazonaws.cn/cdk/api/v1/python/aws_cdk.aws_lambda.html
https://docs.amazonaws.cn/cdk/api/v1/python/aws_cdk.aws_apigateway.html

Amazon Lambda Developer Guide

 # Powertools Lambda Layer
 powertools_layer = lambda_.LayerVersion.from_layer_version_arn(
 self,
 id="lambda-powertools",
 # At the moment we wrote this example, the aws_lambda_python_alpha CDK
 constructor is in Alpha, o we use layer to make the example simpler
 # See https://docs.aws.amazon.com/cdk/api/v2/python/
aws_cdk.aws_lambda_python_alpha/README.html
 # Check all Powertools layers versions here: https://
docs.powertools.aws.dev/lambda-python/latest/#lambda-layer
 layer_version_arn=f"arn:aws:lambda:
{self.region}:017000801446:layer:AWSLambdaPowertoolsPythonV2:21"
)

 function = lambda_.Function(self,
 'sample-app-lambda',
 runtime=lambda_.Runtime.PYTHON_3_9,
 layers=[powertools_layer],
 code = lambda_.Code.from_asset("./lambda_function/"),
 handler="app.lambda_handler",
 memory_size=128,
 timeout=Duration.seconds(3),
 architecture=lambda_.Architecture.X86_64,
 environment={
 "POWERTOOLS_SERVICE_NAME": "PowertoolsHelloWorld",
 "POWERTOOLS_METRICS_NAMESPACE": "PowertoolsSample",
 "LOG_LEVEL": "INFO"
 }
)

 apigw = apigwv1.RestApi(self, "PowertoolsAPI",
 deploy_options=apigwv1.StageOptions(stage_name="dev"))

 hello_api = apigw.root.add_resource("hello")
 hello_api.add_method("GET", apigwv1.LambdaIntegration(function,
 proxy=True))

 CfnOutput(self, "apiUrl", value=f"{apigw.url}hello")

8. Deploy your application.

cd ..
cdk deploy

Using Powertools for Amazon Lambda (Python) and Amazon CDK for structured logging 610

Amazon Lambda Developer Guide

9. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name HelloWorldStack --query
 'Stacks[0].Outputs[?OutputKey==`apiUrl`].OutputValue' --output text

10. Invoke the API endpoint:

curl GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

11. To get the logs for the function, run sam logs. For more information, see Working with logs in
the Amazon Serverless Application Model Developer Guide.

sam logs --stack-name HelloWorldStack

The log output looks like this:

2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04
 2023-02-03T14:59:50.371000 INIT_START Runtime Version:
 python:3.9.v16 Runtime Version ARN: arn:aws:lambda:us-
east-1::runtime:07a48df201798d627f2b950f03bb227aab4a655a1d019c3296406f95937e2525
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.112000
 START RequestId: d455cfc4-7704-46df-901b-2a5cce9405be Version: $LATEST
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.114000 {
 "level": "INFO",
 "location": "hello:23",
 "message": "Hello world API - HTTP 200",
 "timestamp": "2023-02-03 14:59:51,113+0000",
 "service": "PowertoolsHelloWorld",
 "cold_start": true,
 "function_name": "sam-app-HelloWorldFunction-YBg8yfYtOc9j",
 "function_memory_size": "128",
 "function_arn": "arn:aws:lambda:us-east-1:111122223333:function:sam-app-
HelloWorldFunction-YBg8yfYtOc9j",
 "function_request_id": "d455cfc4-7704-46df-901b-2a5cce9405be",
 "correlation_id": "e73f8aef-5e07-436e-a30b-63e4b23f0047",
 "xray_trace_id": "1-63dd2166-434a12c22e1307ff2114f299"
}

Using Powertools for Amazon Lambda (Python) and Amazon CDK for structured logging 611

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

Amazon Lambda Developer Guide

2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.126000 {
 "_aws": {
 "Timestamp": 1675436391126,
 "CloudWatchMetrics": [
 {
 "Namespace": "Powertools",
 "Dimensions": [
 [
 "function_name",
 "service"
]
],
 "Metrics": [
 {
 "Name": "ColdStart",
 "Unit": "Count"
 }
]
 }
]
 },
 "function_name": "sam-app-HelloWorldFunction-YBg8yfYtOc9j",
 "service": "PowertoolsHelloWorld",
 "ColdStart": [
 1.0
]
}
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.126000 {
 "_aws": {
 "Timestamp": 1675436391126,
 "CloudWatchMetrics": [
 {
 "Namespace": "Powertools",
 "Dimensions": [
 [
 "service"
]
],
 "Metrics": [
 {
 "Name": "HelloWorldInvocations",
 "Unit": "Count"
 }
]

Using Powertools for Amazon Lambda (Python) and Amazon CDK for structured logging 612

Amazon Lambda Developer Guide

 }
]
 },
 "service": "PowertoolsHelloWorld",
 "HelloWorldInvocations": [
 1.0
]
}
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.128000 END
 RequestId: d455cfc4-7704-46df-901b-2a5cce9405be
2023/02/03/[$LATEST]ea9a64ec87294bf6bbc9026c05a01e04 2023-02-03T14:59:51.128000
 REPORT RequestId: d455cfc4-7704-46df-901b-2a5cce9405be Duration: 16.33 ms
 Billed Duration: 17 ms Memory Size: 128 MB Max Memory Used: 64 MB Init
 Duration: 739.46 ms
XRAY TraceId: 1-63dd2166-434a12c22e1307ff2114f299 SegmentId: 3c5d18d735a1ced0
 Sampled: true

12. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

cdk destroy

Using Powertools for Amazon Lambda (Python) and Amazon CDK for structured logging 613

Amazon Lambda Developer Guide

Amazon Lambda function testing in Python

Note

See the Testing functions chapter for a complete introduction to techniques and best
practices for testing serverless solutions.

Testing serverless functions uses traditional test types and techniques, but you must also consider
testing serverless applications as a whole. Cloud-based tests will provide the most accurate
measure of quality of both your functions and serverless applications.

A serverless application architecture includes managed services that provide critical application
functionality through API calls. For this reason, your development cycle should include automated
tests that verify functionality when your function and services interact.

If you do not create cloud-based tests, you could encounter issues due to differences between your
local environment and the deployed environment. Your continuous integration process should run
tests against a suite of resources provisioned in the cloud before promoting your code to the next
deployment environment, such as QA, Staging, or Production.

Continue reading this short guide to learn about testing strategies for serverless applications, or
visit the Serverless Test Samples repository to dive in with practical examples, specific to your
chosen language and runtime.

Testing 614

https://github.com/aws-samples/serverless-test-samples

Amazon Lambda Developer Guide

For serverless testing, you will still write unit, integration and end-to-end tests.

• Unit tests - Tests that run against an isolated block of code. For example, verifying the business
logic to calculate the delivery charge given a particular item and destination.

• Integration tests - Tests involving two or more components or services that interact, typically in
a cloud environment. For example, verifying a function processes events from a queue.

• End-to-end tests - Tests that verify behavior across an entire application. For example, ensuring
infrastructure is set up correctly and that events flow between services as expected to record a
customer's order.

Testing your serverless applications

You will generally use a mix of approaches to test your serverless application code, including
testing in the cloud, testing with mocks, and occasionally testing with emulators.

Testing in the cloud

Testing in the cloud is valuable for all phases of testing, including unit tests, integration tests, and
end-to-end tests. You run tests against code deployed in the cloud and interacting with cloud-
based services. This approach provides the most accurate measure of quality of your code.

A convenient way to debug your Lambda function in the cloud is through the console with a test
event. A test event is a JSON input to your function. If your function does not require input, the
event can be an empty JSON document ({}). The console provides sample events for a variety
of service integrations. After creating an event in the console, you can share it with your team to
make testing easier and consistent.

Note

Testing a function in the console is a quick way to get started, but automating your test
cycles ensures application quality and development speed.

Testing tools

Tools and techniques exist to accelerate development feedback loops. For example, Amazon
SAM Accelerate and Amazon CDK watch mode both decrease the time required to update cloud
environments.

Testing your serverless applications 615

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/accelerate.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/accelerate.html
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch

Amazon Lambda Developer Guide

Moto is a Python library for mocking Amazon services and resources, so that you can test your
functions with little or no modification using decorators to intercept and simulate responses.

The validation feature of the Powertools for Amazon Lambda (Python) provides decorators so you
can validate input events and output responses from your Python functions.

For more information, read the blog post Unit Testing Lambda with Python and Mock Amazon
Services.

To reduce the latency involved with cloud deployment iterations, see Amazon Serverless
Application Model (Amazon SAM) Accelerate, Amazon Cloud Development Kit (Amazon CDK) watch
mode. These tools monitor your infrastructure and code for changes. They react to these changes
by creating and deploying incremental updates automatically into your cloud environment.

Examples that use these tools are available in the Python Test Samples code repository.

Testing your serverless applications 616

https://pypi.org/project/moto/
https://docs.powertools.aws.dev/lambda-python/latest/utilities/validation/
https://aws.amazon.com/blogs/devops/unit-testing-aws-lambda-with-python-and-mock-aws-services/
https://aws.amazon.com/blogs/devops/unit-testing-aws-lambda-with-python-and-mock-aws-services/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-sync.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-cli-sync.html
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch
https://docs.aws.amazon.com/cdk/v2/guide/cli.html#cli-deploy-watch
https://github.com/aws-samples/serverless-test-samples/tree/main/python-test-samples

Amazon Lambda Developer Guide

Amazon Lambda function errors in Python

When your code raises an error, Lambda generates a JSON representation of the error. This error
document appears in the invocation log and, for synchronous invocations, in the output.

This page describes how to view Lambda function invocation errors for the Python runtime using
the Lambda console and the Amazon CLI.

Sections

• How it works

• Using the Lambda console

• Using the Amazon Command Line Interface (Amazon CLI)

• Error handling in other Amazon services

• Error examples

• Sample applications

• What's next?

How it works

When you invoke a Lambda function, Lambda receives the invocation request and validates the
permissions in your execution role, verifies that the event document is a valid JSON document, and
checks parameter values.

If the request passes validation, Lambda sends the request to a function instance. The Lambda
runtime environment converts the event document into an object, and passes it to your function
handler.

If Lambda encounters an error, it returns an exception type, message, and HTTP status code that
indicates the cause of the error. The client or service that invoked the Lambda function can handle
the error programmatically, or pass it along to an end user. The correct error handling behavior
depends on the type of application, the audience, and the source of the error.

The following list describes the range of status codes you can receive from Lambda.

2xx

A 2xx series error with a X-Amz-Function-Error header in the response indicates a Lambda
runtime or function error. A 2xx series status code indicates that Lambda accepted the request,

Errors 617

Amazon Lambda Developer Guide

but instead of an error code, Lambda indicates the error by including the X-Amz-Function-
Error header in the response.

4xx

A 4xx series error indicates an error that the invoking client or service can fix by modifying the
request, requesting permission, or by retrying the request. 4xx series errors other than 429
generally indicate an error with the request.

5xx

A 5xx series error indicates an issue with Lambda, or an issue with the function's configuration
or resources. 5xx series errors can indicate a temporary condition that can be resolved without
any action by the user. These issues can't be addressed by the invoking client or service, but a
Lambda function's owner may be able to fix the issue.

For a complete list of invocation errors, see InvokeFunction errors.

Using the Lambda console

You can invoke your function on the Lambda console by configuring a test event and viewing the
output. The output is captured in the function's execution logs and, when active tracing is enabled,
in Amazon X-Ray.

To invoke a function on the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose the function to test, and choose Test.

3. Under Test event, select New event.

4. Select a Template.

5. For Name, enter a name for the test. In the text entry box, enter the JSON test event.

6. Choose Save changes.

7. Choose Test.

The Lambda console invokes your function synchronously and displays the result. To see the
response, logs, and other information, expand the Details section.

Using the Lambda console 618

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html#API_Invoke_Errors
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

When you invoke a Lambda function in the Amazon CLI, the Amazon CLI splits the response into
two documents. The Amazon CLI response is displayed in your command prompt. If an error has
occurred, the response contains a FunctionError field. The invocation response or error returned
by the function is written to an output file. For example, output.json or output.txt.

The following invoke command example demonstrates how to invoke a function and write the
invocation response to an output.txt file.

aws lambda invoke \
 --function-name my-function \
 --cli-binary-format raw-in-base64-out \
 --payload '{"key1": "value1", "key2": "value2", "key3": "value3"}' output.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the Amazon CLI response in your command prompt:

{
 "StatusCode": 200,
 "FunctionError": "Unhandled",
 "ExecutedVersion": "$LATEST"
}

You should see the function invocation response in the output.txt file. In the same command
prompt, you can also view the output in your command prompt using:

cat output.txt

Using the Amazon Command Line Interface (Amazon CLI) 619

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/invoke.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

You should see the invocation response in your command prompt.

{"errorMessage": "'action'", "errorType": "KeyError", "stackTrace": [" File
 \"/var/task/lambda_function.py\", line 36, in lambda_handler\n result =
 ACTIONS[event['action']](event['number'])\n"]}

Lambda also records up to 256 KB of the error object in the function's logs. For more information,
see Amazon Lambda function logging in Python.

Error handling in other Amazon services

When another Amazon service invokes your function, the service chooses the invocation type
and retry behavior. Amazon services can invoke your function on a schedule, in response to a
lifecycle event on a resource, or to serve a request from a user. Some services invoke functions
asynchronously and let Lambda handle errors, while others retry or pass errors back to the user.

For example, API Gateway treats all invocation and function errors as internal errors. If the Lambda
API rejects the invocation request, API Gateway returns a 500 error code. If the function runs but
returns an error, or returns a response in the wrong format, API Gateway returns a 502 error code.
To customize the error response, you must catch errors in your code and format a response in the
required format.

We recommend using Amazon X-Ray to determine the source of an error and its cause. X-Ray
allows you to find out which component encountered an error, and see details about the errors.
The following example shows a function error that resulted in a 502 response from API Gateway.

For more information, see Instrumenting Python code in Amazon Lambda.

Error examples

The following section shows common errors you may receive when creating, updating, or invoking
your function using the Python Lambda runtimes.

Error handling in other Amazon services 620

Amazon Lambda Developer Guide

Example Runtime exception – ImportError

{
 "errorMessage": "Unable to import module 'lambda_function': Cannot import name
 '_imaging' from 'PIL' (/var/task/PIL/__init__.py)",
 "errorType": "Runtime.ImportModuleError"
}

This error is a result of using the Amazon Command Line Interface (Amazon CLI) to upload a
deployment package that contains a C or C++ library. For example, the Pillow (PIL), numpy, or
pandas library.

We recommend using the Amazon SAM CLI sam build command with the --use-container
option to create your deployment package. Using the Amazon SAM CLI with this option creates a
Docker container with a Lambda-like environment that is compatible with Lambda.

Example JSON serialization error – Runtime.MarshalError

{
 "errorMessage": "Unable to marshal response: Object of type AttributeError is not
 JSON serializable",
 "errorType": "Runtime.MarshalError"
}

This error can be the result of the base64-encoding mechanism you are using in your function
code. For example:

import base64
encrypted_data = base64.b64encode(payload_enc).decode("utf-8")

This error can also be the result of not specifying your .zip file as a binary file when you created
or updated your function. We recommend using the fileb:// command option to upload your
deployment package (.zip file).

aws lambda create-function --function-name my-function --zip-file fileb://my-
deployment-package.zip --handler lambda_function.lambda_handler --runtime python3.8 --
role arn:aws-cn:iam::your-account-id:role/lambda-ex

Error examples 621

https://pypi.org/project/Pillow/
https://pypi.org/project/numpy/
https://pypi.org/project/pandas/
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-using-build.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-usage-parameters-file.html#cli-usage-parameters-file-binary

Amazon Lambda Developer Guide

Sample applications

The GitHub repository for this guide includes sample applications that demonstrate the use of
the errors. Each sample application includes scripts for easy deployment and cleanup, an Amazon
Serverless Application Model (Amazon SAM) template, and supporting resources.

Sample Lambda applications in Python

• blank-python – A Python function that shows the use of logging, environment variables, Amazon
X-Ray tracing, layers, unit tests and the Amazon SDK.

What's next?

• Learn how to show logging events for your Lambda function on the the section called “Logging”
page.

Sample applications 622

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python

Amazon Lambda Developer Guide

Instrumenting Python code in Amazon Lambda

Lambda integrates with Amazon X-Ray to help you trace, debug, and optimize Lambda
applications. You can use X-Ray to trace a request as it traverses resources in your application,
which may include Lambda functions and other Amazon services.

To send tracing data to X-Ray, you can use one of three SDK libraries:

• Amazon Distro for OpenTelemetry (ADOT) – A secure, production-ready, Amazon-supported
distribution of the OpenTelemetry (OTel) SDK.

• Amazon X-Ray SDK for Python – An SDK for generating and sending trace data to X-Ray.

• Powertools for Amazon Lambda (Python) – A developer toolkit to implement Serverless best
practices and increase developer velocity.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for Amazon Lambda SDKs are part of a tightly integrated
instrumentation solution offered by Amazon. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
Amazon Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using Powertools for Amazon Lambda (Python) and Amazon SAM for tracing

• Using Powertools for Amazon Lambda (Python) and the Amazon CDK for tracing

• Using ADOT to instrument your Python functions

• Using the X-Ray SDK to instrument your Python functions

• Activating tracing with the Lambda console

• Activating tracing with the Lambda API

• Activating tracing with Amazon CloudFormation

Tracing 623

https://www.amazonaws.cn/otel
https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-python.html
https://docs.powertools.aws.dev/lambda-python/
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

Amazon Lambda Developer Guide

• Interpreting an X-Ray trace

• Storing runtime dependencies in a layer (X-Ray SDK)

Using Powertools for Amazon Lambda (Python) and Amazon SAM for
tracing

Follow the steps below to download, build, and deploy a sample Hello World Python application
with integrated Powertools for Amazon Lambda (Python) modules using the Amazon SAM. This
application implements a basic API backend and uses Powertools for emitting logs, metrics, and
traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send a
GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Python 3.9

• Amazon CLI version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Deploy a sample Amazon SAM application

1. Initialize the application using the Hello World Python template.

sam init --app-template hello-world-powertools-python --name sam-app --package-type
 Zip --runtime python3.9 --no-tracing

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

Using Powertools for Amazon Lambda (Python) and Amazon SAM for tracing 624

https://docs.powertools.aws.dev/lambda-python
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the traces for the function, run sam traces.

sam traces

The trace output looks like this:

New XRay Service Graph
 Start time: 2023-02-03 14:59:50+00:00
 End time: 2023-02-03 14:59:50+00:00
 Reference Id: 0 - (Root) AWS::Lambda - sam-app-HelloWorldFunction-YBg8yfYtOc9j -
 Edges: [1]
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.924
 Reference Id: 1 - AWS::Lambda::Function - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - Edges: []

Using Powertools for Amazon Lambda (Python) and Amazon SAM for tracing 625

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

Amazon Lambda Developer Guide

 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.016
 Reference Id: 2 - client - sam-app-HelloWorldFunction-YBg8yfYtOc9j - Edges: [0]
 Summary_statistics:
 - total requests: 0
 - ok count(2XX): 0
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0

XRay Event [revision 1] at (2023-02-03T14:59:50.204000) with id
 (1-63dd2166-434a12c22e1307ff2114f299) and duration (0.924s)
 - 0.924s - sam-app-HelloWorldFunction-YBg8yfYtOc9j [HTTP: 200]
 - 0.016s - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - 0.739s - Initialization
 - 0.016s - Invocation
 - 0.013s - ## lambda_handler
 - 0.000s - ## app.hello
 - 0.000s - Overhead

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests.

Note

You cannot configure the X-Ray sampling rate for your functions.

Using Powertools for Amazon Lambda (Python) and Amazon SAM for tracing 626

Amazon Lambda Developer Guide

Using Powertools for Amazon Lambda (Python) and the Amazon CDK
for tracing

Follow the steps below to download, build, and deploy a sample Hello World Python application
with integrated Powertools for Amazon Lambda (Python) modules using the Amazon CDK. This
application implements a basic API backend and uses Powertools for emitting logs, metrics, and
traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send a
GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Python 3.9

• Amazon CLI version 2

• Amazon CDK version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Deploy a sample Amazon CDK application

1. Create a project directory for your new application.

mkdir hello-world
cd hello-world

2. Initialize the app.

cdk init app --language python

3. Install the Python dependencies.

pip install -r requirements.txt

4. Create a directory lambda_function under the root folder.

mkdir lambda_function

Using Powertools for Amazon Lambda (Python) and the Amazon CDK for tracing 627

https://docs.powertools.aws.dev/lambda-python
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

cd lambda_function

5. Create a file app.py and add the following code to the file. This is the code for the Lambda
function.

from aws_lambda_powertools.event_handler import APIGatewayRestResolver
from aws_lambda_powertools.utilities.typing import LambdaContext
from aws_lambda_powertools.logging import correlation_paths
from aws_lambda_powertools import Logger
from aws_lambda_powertools import Tracer
from aws_lambda_powertools import Metrics
from aws_lambda_powertools.metrics import MetricUnit

app = APIGatewayRestResolver()
tracer = Tracer()
logger = Logger()
metrics = Metrics(namespace="PowertoolsSample")

@app.get("/hello")
@tracer.capture_method
def hello():
 # adding custom metrics
 # See: https://docs.powertools.aws.dev/lambda-python/latest/core/metrics/
 metrics.add_metric(name="HelloWorldInvocations", unit=MetricUnit.Count,
 value=1)

 # structured log
 # See: https://docs.powertools.aws.dev/lambda-python/latest/core/logger/
 logger.info("Hello world API - HTTP 200")
 return {"message": "hello world"}

Enrich logging with contextual information from Lambda
@logger.inject_lambda_context(correlation_id_path=correlation_paths.API_GATEWAY_REST)
Adding tracer
See: https://docs.powertools.aws.dev/lambda-python/latest/core/tracer/
@tracer.capture_lambda_handler
ensures metrics are flushed upon request completion/failure and capturing
 ColdStart metric
@metrics.log_metrics(capture_cold_start_metric=True)
def lambda_handler(event: dict, context: LambdaContext) -> dict:
 return app.resolve(event, context)

6. Open the hello_world directory. You should see a file called hello_world_stack.py.

Using Powertools for Amazon Lambda (Python) and the Amazon CDK for tracing 628

Amazon Lambda Developer Guide

cd ..
cd hello_world

7. Open hello_world_stack.py and add the following code to the file. This contains the Lambda
Constructor, which creates the Lambda function, configures environment variables for
Powertools and sets log retention to one week, and the ApiGatewayv1 Constructor, which
creates the REST API.

from aws_cdk import (
 Stack,
 aws_apigateway as apigwv1,
 aws_lambda as lambda_,
 CfnOutput,
 Duration
)
from constructs import Construct

class HelloWorldStack(Stack):

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 # Powertools Lambda Layer
 powertools_layer = lambda_.LayerVersion.from_layer_version_arn(
 self,
 id="lambda-powertools",
 # At the moment we wrote this example, the aws_lambda_python_alpha CDK
 constructor is in Alpha, o we use layer to make the example simpler
 # See https://docs.aws.amazon.com/cdk/api/v2/python/
aws_cdk.aws_lambda_python_alpha/README.html
 # Check all Powertools layers versions here: https://
docs.powertools.aws.dev/lambda-python/latest/#lambda-layer
 layer_version_arn=f"arn:aws:lambda:
{self.region}:017000801446:layer:AWSLambdaPowertoolsPythonV2:21"
)

 function = lambda_.Function(self,
 'sample-app-lambda',
 runtime=lambda_.Runtime.PYTHON_3_9,
 layers=[powertools_layer],
 code = lambda_.Code.from_asset("./lambda_function/"),
 handler="app.lambda_handler",

Using Powertools for Amazon Lambda (Python) and the Amazon CDK for tracing 629

https://docs.amazonaws.cn/cdk/api/v1/python/aws_cdk.aws_lambda.html
https://docs.amazonaws.cn/cdk/api/v1/python/aws_cdk.aws_lambda.html
https://docs.amazonaws.cn/cdk/api/v1/python/aws_cdk.aws_apigateway.html

Amazon Lambda Developer Guide

 memory_size=128,
 timeout=Duration.seconds(3),
 architecture=lambda_.Architecture.X86_64,
 environment={
 "POWERTOOLS_SERVICE_NAME": "PowertoolsHelloWorld",
 "POWERTOOLS_METRICS_NAMESPACE": "PowertoolsSample",
 "LOG_LEVEL": "INFO"
 }
)

 apigw = apigwv1.RestApi(self, "PowertoolsAPI",
 deploy_options=apigwv1.StageOptions(stage_name="dev"))

 hello_api = apigw.root.add_resource("hello")
 hello_api.add_method("GET", apigwv1.LambdaIntegration(function,
 proxy=True))

 CfnOutput(self, "apiUrl", value=f"{apigw.url}hello")

8. Deploy your application.

cd ..
cdk deploy

9. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name HelloWorldStack --query
 'Stacks[0].Outputs[?OutputKey==`apiUrl`].OutputValue' --output text

10. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

11. To get the traces for the function, run sam traces.

sam traces

The traces output looks like this:

Using Powertools for Amazon Lambda (Python) and the Amazon CDK for tracing 630

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

Amazon Lambda Developer Guide

New XRay Service Graph
 Start time: 2023-02-03 14:59:50+00:00
 End time: 2023-02-03 14:59:50+00:00
 Reference Id: 0 - (Root) AWS::Lambda - sam-app-HelloWorldFunction-YBg8yfYtOc9j -
 Edges: [1]
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.924
 Reference Id: 1 - AWS::Lambda::Function - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - Edges: []
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.016
 Reference Id: 2 - client - sam-app-HelloWorldFunction-YBg8yfYtOc9j - Edges: [0]
 Summary_statistics:
 - total requests: 0
 - ok count(2XX): 0
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0

XRay Event [revision 1] at (2023-02-03T14:59:50.204000) with id
 (1-63dd2166-434a12c22e1307ff2114f299) and duration (0.924s)
 - 0.924s - sam-app-HelloWorldFunction-YBg8yfYtOc9j [HTTP: 200]
 - 0.016s - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - 0.739s - Initialization
 - 0.016s - Invocation
 - 0.013s - ## lambda_handler
 - 0.000s - ## app.hello
 - 0.000s - Overhead

12. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

cdk destroy

Using Powertools for Amazon Lambda (Python) and the Amazon CDK for tracing 631

Amazon Lambda Developer Guide

Using ADOT to instrument your Python functions

ADOT provides fully managed Lambda layers that package everything you need to collect
telemetry data using the OTel SDK. By consuming this layer, you can instrument your Lambda
functions without having to modify any function code. You can also configure your layer to do
custom initialization of OTel. For more information, see Custom configuration for the ADOT
Collector on Lambda in the ADOT documentation.

For Python runtimes, you can add the Amazon managed Lambda layer for ADOT Python
to automatically instrument your functions. This layer works for both arm64 and x86_64
architectures. For detailed instructions on how to add this layer, see Amazon Distro for
OpenTelemetry Lambda Support for Python in the ADOT documentation.

Using the X-Ray SDK to instrument your Python functions

To record details about calls that your Lambda function makes to other resources in your
application, you can also use the Amazon X-Ray SDK for Python. To get the SDK, add the aws-
xray-sdk package to your application's dependencies.

Example requirements.txt

jsonpickle==1.3
aws-xray-sdk==2.4.3

In your function code, you can instrument Amazon SDK clients by patching the boto3 library with
the aws_xray_sdk.core module.

Example function – Tracing an Amazon SDK client

import boto3
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch_all

logger = logging.getLogger()
logger.setLevel(logging.INFO)
patch_all()

client = boto3.client('lambda')
client.get_account_settings()

Using ADOT to instrument your Python functions 632

https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda/lambda-python
https://aws-otel.github.io/docs/getting-started/lambda/lambda-python
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python/function/requirements.txt
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python/function/lambda_function.py

Amazon Lambda Developer Guide

def lambda_handler(event, context):
 logger.info('## ENVIRONMENT VARIABLES\r' + jsonpickle.encode(dict(**os.environ)))
 ...

After you add the correct dependencies and make the necessary code changes, activate tracing in
your function's configuration via the Lambda console or the API.

Activating tracing with the Lambda console

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Choose Edit.

5. Under X-Ray, toggle on Active tracing.

6. Choose Save.

Activating tracing with the Lambda API

Configure tracing on your Lambda function with the Amazon CLI or Amazon SDK, use the following
API operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example Amazon CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Activating tracing with the Lambda console 633

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html

Amazon Lambda Developer Guide

Activating tracing with Amazon CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an Amazon CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

For an Amazon Serverless Application Model (Amazon SAM) AWS::Serverless::Function
resource, use the Tracing property.

Example template.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Interpreting an X-Ray trace

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example from the error processor sample application shows an application with two
functions. The primary function processes events and sometimes returns errors. The second
function at the top processes errors that appear in the first's log group and uses the Amazon SDK
to call X-Ray, Amazon Simple Storage Service (Amazon S3), and Amazon CloudWatch Logs.

Activating tracing with Amazon CloudFormation 634

https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.amazonaws.cn/xray/latest/devguide/xray-concepts.html#xray-concepts-servicegraph

Amazon Lambda Developer Guide

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests.

Note

You cannot configure the X-Ray sampling rate for your functions.

When using active tracing, Lambda records 2 segments per trace, which creates two nodes on the
service graph. The following image highlights these two nodes for the primary function from the
error processor sample application.

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace

Interpreting an X-Ray trace 635

Amazon Lambda Developer Guide

with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has origin AWS::Lambda::Function.

This example expands the function segment to show its three subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see the Amazon X-Ray SDK for Python in the
Amazon X-Ray Developer Guide.

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the Amazon
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see Amazon X-Ray pricing.

Storing runtime dependencies in a layer (X-Ray SDK)

If you use the X-Ray SDK to instrument Amazon SDK clients your function code, your deployment
package can become quite large. To avoid uploading runtime dependencies every time you update
your function code, package the X-Ray SDK in a Lambda layer.

Storing runtime dependencies in a layer (X-Ray SDK) 636

https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-python.html
https://www.amazonaws.cn/xray/pricing/

Amazon Lambda Developer Guide

The following example shows an AWS::Serverless::LayerVersion resource that stores the
Amazon X-Ray SDK for Python.

Example template.yml – Dependencies layer

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: function/.
 Tracing: Active
 Layers:
 - !Ref libs
 ...
 libs:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: blank-python-lib
 Description: Dependencies for the blank-python sample app.
 ContentUri: package/.
 CompatibleRuntimes:
 - python3.8

With this configuration, you update the library layer only if you change your runtime dependencies.
Since the function deployment package contains only your code, this can help reduce upload times.

Creating a layer for dependencies requires build changes to generate the layer archive prior to
deployment. For a working example, see the blank-python sample application.

Storing runtime dependencies in a layer (X-Ray SDK) 637

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python/template.yml
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-layerversion.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python

Amazon Lambda Developer Guide

Building Lambda functions with Ruby

You can run Ruby code in Amazon Lambda. Lambda provides runtimes for Ruby that run your code
to process events. Your code runs in an environment that includes the Amazon SDK for Ruby, with
credentials from an Amazon Identity and Access Management (IAM) role that you manage. To learn
more about the SDK versions included with the Ruby runtimes, see the section called “Runtime-
included SDK versions”.

Lambda supports the following Ruby runtimes.

Ruby

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Ruby 3.3 ruby3.3 Amazon
Linux 2023

Ruby 3.2 ruby3.2 Amazon
Linux 2

To create a Ruby function

1. Open the Lambda console.

2. Choose Create function.

3. Configure the following settings:

• Function name: Enter a name for the function.

• Runtime: Choose Ruby 3.2.

4. Choose Create function.

5. To configure a test event, choose Test.

6. For Event name, enter test.

7. Choose Save changes.

8. To invoke the function, choose Test.

638

https://console.amazonaws.cn/lambda

Amazon Lambda Developer Guide

The console creates a Lambda function with a single source file named lambda_function.rb.
You can edit this file and add more files in the built-in code editor. To save your changes, choose
Save. Then, to run your code, choose Test.

Note

The Lambda console uses Amazon Cloud9 to provide an integrated development
environment in the browser. You can also use Amazon Cloud9 to develop Lambda functions
in your own environment. For more information, see Working with Amazon Lambda
functions using the Amazon Toolkit in the Amazon Cloud9 user guide.

The lambda_function.rb file exports a function named lambda_handler that takes an event
object and a context object. This is the handler function that Lambda calls when the function is
invoked. The Ruby function runtime gets invocation events from Lambda and passes them to the
handler. In the function configuration, the handler value is lambda_function.lambda_handler.

When you save your function code, the Lambda console creates a .zip file archive deployment
package. When you develop your function code outside of the console (using an IDE) you need to
create a deployment package to upload your code to the Lambda function.

Note

To get started with application development in your local environment, deploy one of the
sample applications available in this guide's GitHub repository.

Sample Lambda applications in Ruby

• blank-ruby – A Ruby function that shows the use of logging, environment variables,
Amazon X-Ray tracing, layers, unit tests and the Amazon SDK.

• Ruby Code Samples for Amazon Lambda – Code samples written in Ruby that
demonstrate how to interact with Amazon Lambda.

The function runtime passes a context object to the handler, in addition to the invocation event.
The context object contains additional information about the invocation, the function, and the
execution environment. More information is available from environment variables.

639

https://docs.amazonaws.cn/cloud9/latest/user-guide/lambda-toolkit.html
https://docs.amazonaws.cn/cloud9/latest/user-guide/lambda-toolkit.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby
https://docs.amazonaws.cn/code-samples/latest/catalog/code-catalog-ruby-example_code-lambda.html

Amazon Lambda Developer Guide

Your Lambda function comes with a CloudWatch Logs log group. The function runtime sends
details about each invocation to CloudWatch Logs. It relays any logs that your function outputs
during invocation. If your function returns an error, Lambda formats the error and returns it to the
invoker.

Topics

• Runtime-included SDK versions

• Enabling Yet Another Ruby JIT (YJIT)

• Amazon Lambda function handler in Ruby

• Working with .zip file archives for Ruby Lambda functions

• Deploy Ruby Lambda functions with container images

• Amazon Lambda context object in Ruby

• Amazon Lambda function logging in Ruby

• Amazon Lambda function errors in Ruby

• Instrumenting Ruby code in Amazon Lambda

Runtime-included SDK versions

The version of the Amazon SDK included in the Ruby runtime depends on the runtime version and
your Amazon Web Services Region. The Amazon SDK for Ruby is designed to be modular and is
separated by Amazon Web Service. To find the version number of a particular service gem included
in the runtime you're using, create a Lambda function with code in the following format. Replace
aws-sdk-s3 and Aws::S3with the name of the service gems your code uses.

require 'aws-sdk-s3'

def lambda_handler(event:, context:)
 puts "Service gem version: #{Aws::S3::GEM_VERSION}"
 puts "Core version: #{Aws::CORE_GEM_VERSION}"
end

Runtime-included SDK versions 640

Amazon Lambda Developer Guide

Enabling Yet Another Ruby JIT (YJIT)

The Ruby 3.2 runtime supports YJIT, a lightweight, minimalistic Ruby JIT compiler. YJIT provides
significantly higher performance, but also uses more memory than the Ruby interpreter. YJIT is
recommended for Ruby on Rails workloads.

YJIT is not enabled by default. To enable YJIT for a Ruby 3.2 function, set the RUBY_YJIT_ENABLE
environment variable to 1. To confirm that YJIT is enabled, print the result of the
RubyVM::YJIT.enabled? method.

Example — Confirm that YJIT is enabled

puts(RubyVM::YJIT.enabled?())
=> true

Enabling Yet Another Ruby JIT (YJIT) 641

https://github.com/ruby/ruby/blob/master/doc/yjit/yjit.md

Amazon Lambda Developer Guide

Amazon Lambda function handler in Ruby

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

In the following example, the file function.rb defines a handler method named handler. The
handler function takes two objects as input and returns a JSON document.

Example function.rb

require 'json'

def handler(event:, context:)
 { event: JSON.generate(event), context: JSON.generate(context.inspect) }
end

In your function configuration, the handler setting tells Lambda where to find the handler. For
the preceding example, the correct value for this setting is function.handler. It includes two
names separated by a dot: the name of the file and the name of the handler method.

You can also define your handler method in a class. The following example defines a handler
method named process on a class named Handler in a module named LambdaFunctions.

Example source.rb

module LambdaFunctions
 class Handler
 def self.process(event:,context:)
 "Hello!"
 end
 end
end

In this case, the handler setting is source.LambdaFunctions::Handler.process.

The two objects that the handler accepts are the invocation event and context. The event is a
Ruby object that contains the payload that's provided by the invoker. If the payload is a JSON
document, the event object is a Ruby hash. Otherwise, it's a string. The context object has methods
and properties that provide information about the invocation, the function, and the execution
environment.

Handler 642

Amazon Lambda Developer Guide

The function handler is executed every time your Lambda function is invoked. Static code outside
of the handler is executed once per instance of the function. If your handler uses resources like SDK
clients and database connections, you can create them outside of the handler method to reuse
them for multiple invocations.

Each instance of your function can process multiple invocation events, but it only processes
one event at a time. The number of instances processing an event at any given time is your
function's concurrency. For more information about the Lambda execution environment, see
Lambda execution environment.

Handler 643

Amazon Lambda Developer Guide

Working with .zip file archives for Ruby Lambda functions

Your Amazon Lambda function’s code comprises a .rb file containing your function’s handler code,
together with any additional dependencies (gems) your code depends on. To deploy this function
code to Lambda, you use a deployment package. This package may either be a .zip file archive or a
container image. For more information about using container images with Ruby, see Deploy Ruby
Lambda functions with container images.

To create your deployment package as .zip file archive, you can use your command-line tool’s
built-in .zip file archive utility, or any other .zip file utility such as 7zip. The examples shown in the
following sections assume you’re using a command-line zip tool in a Linux or MacOS environment.
To use the same commands in Windows, you can install the Windows Subsystem for Linux to get a
Windows-integrated version of Ubuntu and Bash.

Note that Lambda uses POSIX file permissions, so you may need to set permissions for the
deployment package folder before you create the .zip file archive.

The example commands in the following sections use the Bundler utility to add dependencies to
your deployment package. To install bundler, run the following command.

gem install bundler

Sections

• Dependencies in Ruby

• Creating a .zip deployment package with no dependencies

• Creating a .zip deployment packaged with dependencies

• Creating a Ruby layer for your dependencies

• Creating .zip deployment packages with native libraries

• Creating and updating Ruby Lambda functions using .zip files

Dependencies in Ruby

For Lambda functions that use the Ruby runtime, a dependency can be any Ruby gem. When
you deploy your function using a .zip archive, you can either add these dependencies to your .zip
file with your function code or use a Lambda layer. A layer is a separate .zip file that can contain
additional code and other content. To learn more about using Lambda layers, see Lambda layers.

Deploy .zip file archives 644

https://docs.amazonaws.cn/lambda/latest/dg/ruby-image.html
https://docs.amazonaws.cn/lambda/latest/dg/ruby-image.html
https://www.7-zip.org/download.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/
http://aws.amazon.com/premiumsupport/knowledge-center/lambda-deployment-package-errors/
https://bundler.io/

Amazon Lambda Developer Guide

The Ruby runtime includes the Amazon SDK for Ruby. If your function uses the SDK, you don't need
to bundle it with your code. However, to maintain full control of your dependencies, or to use a
specific version of the SDK, you can add it to your function's deployment package. You can either
include the SDK in your .zip file, or add it using a Lambda layer. Dependencies in your .zip file or in
Lambda layers take precedence over versions included in the runtime. To find out which version of
the SDK for Ruby is included in your runtime version, see the section called “Runtime-included SDK
versions”.

Under the Amazon shared responsibility model, you are responsible for the management of any
dependencies in your functions' deployment packages. This includes applying updates and security
patches. To update dependencies in your function's deployment package, first create a new .zip file
and then upload it to Lambda. See Creating a .zip deployment packaged with dependencies and
Creating and updating Ruby Lambda functions using .zip files for more information.

Creating a .zip deployment package with no dependencies

If your function code has no dependencies, your .zip file contains only the .rb file with your
function’s handler code. Use your preferred zip utility to create a .zip file with your .rb file at the
root. If the .rb file is not at the root of your .zip file, Lambda won’t be able to run your code.

To learn how to deploy your .zip file to create a new Lambda function or update an existing one,
see Creating and updating Ruby Lambda functions using .zip files.

Creating a .zip deployment packaged with dependencies

If your function code depends on additional Ruby gems, you can either add these dependencies
to your .zip file with your function code or use a Lambda layer. The instructions in this section
show you how to include dependencies in your .zip deployment package. For instructions on how
to include your dependencies in a layer, see the section called “Creating a Ruby layer for your
dependencies”.

Suppose your function code is saved in a file named lambda_function.rb in your
project directory. The following example CLI commands create a .zip file named
my_deployment_package.zip containing your function code and its dependencies.

To create the deployment package

1. In your project directory, create a Gemfile to specify your dependencies in.

Creating a .zip deployment package with no dependencies 645

Amazon Lambda Developer Guide

bundle init

2. Using your preferred text editor, edit the Gemfile to specify your function's dependencies. For
example, to use the TZInfo gem, edit your Gemfile to look like the following.

source "https://rubygems.org"
gem "tzinfo"

3. Run the following command to install the gems specified in your Gemfile in your project
directory. This command sets vendor/bundle as the default path for gem installations.

bundle config set --local path 'vendor/bundle' && bundle install

You should see output similar to the following.

Fetching gem metadata from https://rubygems.org/...........
Resolving dependencies...
Using bundler 2.4.13
Fetching tzinfo 2.0.6
Installing tzinfo 2.0.6
...

Note

To install gems globally again later, run the following command.

bundle config set --local system 'true'

4. Create a .zip file archive containing the lambda_function.rb file with your function's
handler code and the dependencies you installed in the previous step.

zip -r my_deployment_package.zip lambda_function.rb vendor

You should see output similar to the following.

adding: lambda_function.rb (deflated 37%)
 adding: vendor/ (stored 0%)
 adding: vendor/bundle/ (stored 0%)

Creating a .zip deployment packaged with dependencies 646

Amazon Lambda Developer Guide

 adding: vendor/bundle/ruby/ (stored 0%)
 adding: vendor/bundle/ruby/3.2.0/ (stored 0%)
 adding: vendor/bundle/ruby/3.2.0/build_info/ (stored 0%)
 adding: vendor/bundle/ruby/3.2.0/cache/ (stored 0%)
 adding: vendor/bundle/ruby/3.2.0/cache/aws-eventstream-1.0.1.gem (deflated 36%)
...

Creating a Ruby layer for your dependencies

The instructions in this section show you how to include your dependencies in a layer. For
instructions on how to include your dependencies in your deployment package, see the section
called “Creating a .zip deployment packaged with dependencies”.

When you add a layer to a function, Lambda loads the layer content into the /opt directory of
that execution environment. For each Lambda runtime, the PATH variable already includes specific
folder paths within the /opt directory. To ensure that the PATH variable picks up your layer
content, your layer .zip file should have its dependencies in the following folder paths:

• ruby/gems/2.7.0 (GEM_PATH)

• ruby/lib (RUBYLIB)

For example, your layer .zip file structure might look like the following:

json.zip
ruby/gems/2.7.0/
 | build_info
 | cache
 | doc
 | extensions
 | gems
 | # json-2.1.0
 # specifications
 # json-2.1.0.gemspec

In addition, Lambda automatically detects any libraries in the /opt/lib directory, and any binaries
in the /opt/bin directory. To ensure that Lambda properly finds your layer content, you can also
create a layer with the following structure:

custom-layer.zip

Creating a Ruby layer for your dependencies 647

Amazon Lambda Developer Guide

lib
 | lib_1
 | lib_2
bin
 | bin_1
 | bin_2

After you package your layer, see the section called “Creating and deleting layers” and the section
called “Adding layers” to complete your layer setup.

Creating .zip deployment packages with native libraries

Many common Ruby gems such as nokogiri, nio4r, and mysql contain native extensions written
in C. When you add libraries containing C code to your deployment package, you must build your
package correctly to ensure that it’s compatible with the Lambda execution environment.

For production applications, we recommend building and deploying your code using the Amazon
Serverless Application Model (Amazon SAM). In Amazon SAM use the sam build --use-
container option to build your function inside a Lambda-like Docker container. To learn more
about using Amazon SAM to deploy your function code, see Building applications in the Amazon
SAM Developer Guide.

To create a .zip deployment package containing gems with native extensions without using
Amazon SAM, you can alternatively use a container to bundle your dependencies in an
environment that is the same as the Lambda Ruby runtime environment. To complete these steps,
you must have Docker installed on your build machine. To learn more about installing Docker, see
Install Docker Engine.

To create a .zip deployment package in a Docker container

1. Create a folder on your local build machine to save your container in. Inside that folder, create
a file named dockerfile and paste the following code into it.

FROM public.ecr.aws/sam/build-ruby3.2:latest-x86_64
RUN gem update bundler
CMD "/bin/bash"

2. Inside the folder you created your dockerfile in, run the following command to create the
Docker container.

Creating .zip deployment packages with native libraries 648

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-using-build.html
https://docs.docker.com/engine/install/

Amazon Lambda Developer Guide

docker build -t awsruby32 .

3. Navigate to the project directory containing the .rb file with your function's handler code
and the Gemfile specifying your function's dependencies. From inside that directory, run the
following command to start the Lambda Ruby container.

Linux/MacOS

docker run --rm -it -v $PWD:/var/task -w /var/task awsruby32

Note

In MacOS, you might see a warning informing you that the requested image's
platform does not match the detected host platform. Ignore this warning.

Windows PowerShell

docker run --rm -it -v ${pwd}:var/task -w /var/task awsruby32

When your container starts, you should see a bash prompt.

bash-4.2#

4. Configure the bundle utility to install the gems specified in your Gemfile in a local vendor/
bundle directory and install your dependencies.

bash-4.2# bundle config set --local path 'vendor/bundle' && bundle install

5. Create the .zip deployment package with your function code and its dependencies. In this
example, the file containing your function's handler code is named lambda_function.rb.

bash-4.2# zip -r my_deployment_package.zip lambda_function.rb vendor

6. Exit the container and return to your local project directory.

bash-4.2# exit

Creating .zip deployment packages with native libraries 649

Amazon Lambda Developer Guide

You can now use the .zip file deployment package to create or update your Lambda function.
See Creating and updating Ruby Lambda functions using .zip files

Creating and updating Ruby Lambda functions using .zip files

Once you have created your .zip deployment package, you can use it to create a new Lambda
function or update an existing one. You can deploy your .zip package using the Lambda console,
the Amazon Command Line Interface, and the Lambda API. You can also create and update
Lambda functions using Amazon Serverless Application Model (Amazon SAM) and Amazon
CloudFormation.

The maximum size for a .zip deployment package for Lambda is 250 MB (unzipped). Note that this
limit applies to the combined size of all the files you upload, including any Lambda layers.

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give an executable file the correct permissions, run the
following command.

chmod 755 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object
in the Microsoft Windows documentation.

Creating and updating functions with .zip files using the console

To create a new function, you must first create the function in the console, then upload your .zip
archive. To update an existing function, open the page for your function, then follow the same
procedure to add your updated .zip file.

If your .zip file is less than 50MB, you can create or update a function by uploading the file directly
from your local machine. For .zip files greater than 50MB, you must upload your package to an
Amazon S3 bucket first. For instructions on how to upload a file to an Amazon S3 bucket using the
Amazon Web Services Management Console, see Getting started with Amazon S3. To upload files
using the Amazon CLI, see Move objects in the Amazon CLI User Guide.

Creating and updating Ruby Lambda functions using .zip files 650

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

Amazon Lambda Developer Guide

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

To create a new function (console)

1. Open the Functions page of the Lambda console and choose Create Function.

2. Choose Author from scratch.

3. Under Basic information, do the following:

a. For Function name, enter the name for your function.

b. For Runtime, select the runtime you want to use.

c. (Optional) For Architecture, choose the instruction set architecture for your function. The
default architecture is x86_64. Ensure that the .zip deployment package for your function
is compatible with the instruction set architecture you select.

4. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing one.

5. Choose Create function. Lambda creates a basic 'Hello world' function using your chosen
runtime.

To upload a .zip archive from your local machine (console)

1. In the Functions page of the Lambda console, choose the function you want to upload the .zip
file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose .zip file.

5. To upload the .zip file, do the following:

a. Select Upload, then select your .zip file in the file chooser.

b. Choose Open.

c. Choose Save.

Creating and updating Ruby Lambda functions using .zip files 651

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

To upload a .zip archive from an Amazon S3 bucket (console)

1. In the Functions page of the Lambda console, choose the function you want to upload a
new .zip file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose Amazon S3 location.

5. Paste the Amazon S3 link URL of your .zip file and choose Save.

Updating .zip file functions using the console code editor

For some functions with .zip deployment packages, you can use the Lambda console’s built-in
code editor to update your function code directly. To use this feature, your function must meet the
following criteria:

• Your function must use one of the interpreted language runtimes (Python, Node.js, or Ruby)

• Your function’s deployment package must be smaller than 3MB.

Function code for functions with container image deployment packages cannot be edited directly
in the console.

To update function code using the console code editor

1. Open the Functions page of the Lambda console and select your function.

2. Select the Code tab.

3. In the Code source pane, select your source code file and edit it in the integrated code editor.

4. When you have finished editing your code, choose Deploy to save your changes and update
your function.

Creating and updating functions with .zip files using the Amazon CLI

You can can use the Amazon CLI to create a new function or to update an existing one using a .zip
file. Use the create-function and update-function-code commands to deploy your .zip package.
If your .zip file is smaller than 50MB, you can upload the .zip package from a file location on your
local build machine. For larger files, you must upload your .zip package from an Amazon S3 bucket.

Creating and updating Ruby Lambda functions using .zip files 652

https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-function.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-function.html

Amazon Lambda Developer Guide

For instructions on how to upload a file to an Amazon S3 bucket using the Amazon CLI, see Move
objects in the Amazon CLI User Guide.

Note

If you upload your .zip file from an Amazon S3 bucket using the Amazon CLI, the bucket
must be located in the same Amazon Web Services Region as your function.

To create a new function using a .zip file with the Amazon CLI, you must specify the following:

• The name of your function (--function-name)
• Your function’s runtime (--runtime)
• The Amazon Resource Name (ARN) of your function’s execution role (--role)
• The name of the handler method in your function code (--handler)

You must also specify the location of your .zip file. If your .zip file is located in a folder on your
local build machine, use the --zip-file option to specify the file path, as shown in the following
example command.

aws lambda create-function --function-name myFunction \
--runtime ruby3.2 --handler lambda_function.lambda_handler \
--role arn:aws-cn:iam::111122223333:role/service-role/my-lambda-role \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --code option as shown in
the following example command. You only need to use the S3ObjectVersion parameter for
versioned objects.

aws lambda create-function --function-name myFunction \
--runtime ruby3.2 --handler lambda_function.lambda_handler \
--role arn:aws-cn:iam::111122223333:role/service-role/my-lambda-role \
--code S3Bucket=myBucketName,S3Key=myFileName.zip,S3ObjectVersion=myObjectVersion

To update an existing function using the CLI, you specify the the name of your function using the
--function-name parameter. You must also specify the location of the .zip file you want to use
to update your function code. If your .zip file is located in a folder on your local build machine, use
the --zip-file option to specify the file path, as shown in the following example command.

Creating and updating Ruby Lambda functions using .zip files 653

https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html

Amazon Lambda Developer Guide

aws lambda update-function-code --function-name myFunction \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --s3-bucket and --s3-key
options as shown in the following example command. You only need to use the --s3-object-
version parameter for versioned objects.

aws lambda update-function-code --function-name myFunction \
--s3-bucket myBucketName --s3-key myFileName.zip --s3-object-version myObject Version

Creating and updating functions with .zip files using the Lambda API

To create and update functions using a .zip file archive, use the following API operations:

• CreateFunction
• UpdateFunctionCode

Creating and updating functions with .zip files using Amazon SAM

The Amazon Serverless Application Model (Amazon SAM) is a toolkit that helps streamline the
process of building and running serverless applications on Amazon. You define the resources for
your application in a YAML or JSON template and use the Amazon SAM command line interface
(Amazon SAM CLI) to build, package, and deploy your applications. When you build a Lambda
function from an Amazon SAM template, Amazon SAM automatically creates a .zip deployment
package or container image with your function code and any dependencies you specify. To learn
more about using Amazon SAM to build and deploy Lambda functions, see Getting started with
Amazon SAM in the Amazon Serverless Application Model Developer Guide.

You can also use Amazon SAM to create a Lambda function using an existing .zip file archive. To
create a Lambda function using Amazon SAM, you can save your .zip file in an Amazon S3 bucket
or in a local folder on your build machine. For instructions on how to upload a file to an Amazon S3
bucket using the Amazon CLI, see Move objects in the Amazon CLI User Guide.

In your Amazon SAM template, the AWS::Serverless::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - set to Zip

Creating and updating Ruby Lambda functions using .zip files 654

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

Amazon Lambda Developer Guide

• CodeUri - set to the function code's Amazon S3 URI, path to local folder, or FunctionCode object
• Runtime - Set to your chosen runtime

With Amazon SAM, if your .zip file is larger than 50MB, you don’t need to upload it to an Amazon
S3 bucket first. Amazon SAM can upload .zip packages up to the maximum allowed size of 250MB
(unzipped) from a location on your local build machine.

To learn more about deploying functions using .zip file in Amazon SAM, see
AWS::Serverless::Function in the Amazon SAM Developer Guide.

Creating and updating functions with .zip files using Amazon CloudFormation

You can use Amazon CloudFormation to create a Lambda function using a .zip file archive. To
create a Lambda function from a .zip file, you must first upload your file to an Amazon S3 bucket.
For instructions on how to upload a file to an Amazon S3 bucket using the Amazon CLI, see Move
objects in the Amazon CLI User Guide.

In your Amazon CloudFormation template, the AWS::Lambda::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - Set to Zip
• Code - Enter the Amazon S3 bucket name and the .zip file name in the S3Bucket and S3Key

fields
• Runtime - Set to your chosen runtime

The .zip file that Amazon CloudFormation generates cannot exceed 4MB. To learn more about
deploying functions using .zip file in Amazon CloudFormation, see AWS::Lambda::Function in the
Amazon CloudFormation User Guide.

Creating and updating Ruby Lambda functions using .zip files 655

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-functioncode.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

Amazon Lambda Developer Guide

Deploy Ruby Lambda functions with container images

There are three ways to build a container image for a Ruby Lambda function:

• Using an Amazon base image for Ruby

The Amazon base images are preloaded with a language runtime, a runtime interface client
to manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an Amazon OS-only base image

Amazon OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include the runtime interface
client for Ruby in the image.

• Using a non-Amazon base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the runtime interface client for Ruby in the image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

Topics

• Amazon base images for Ruby

• Using an Amazon base image for Ruby

• Using an alternative base image with the runtime interface client

Deploy container images 656

https://gallery.ecr.aws/lambda/provided
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Amazon Lambda Developer Guide

Amazon base images for Ruby

Amazon provides the following base images for Ruby:

Tags Runtime Operating
system

Dockerfile Deprecation

3.3 Ruby 3.3 Amazon
Linux 2023

Dockerfile for Ruby 3.3 on
GitHub

3.2 Ruby 3.2 Amazon
Linux 2

Dockerfile for Ruby 3.2 on
GitHub

Amazon ECR repository: gallery.ecr.aws/lambda/ruby

Using an Amazon base image for Ruby

Prerequisites

To complete the steps in this section, you must have the following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Docker

• Ruby

Creating an image from a base image

To create a container image for Ruby

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Create a new file called Gemfile. This is where you list your application's required RubyGems
packages. The Amazon SDK for Ruby is available from RubyGems. You should choose specific
Amazon service gems to install. For example, to use the Ruby gem for Lambda, your Gemfile
should look like this:

Amazon base images for Ruby 657

https://github.com/aws/aws-lambda-base-images/blob/ruby3.3/Dockerfile.ruby3.3
https://github.com/aws/aws-lambda-base-images/blob/ruby3.3/Dockerfile.ruby3.3
https://github.com/aws/aws-lambda-base-images/blob/ruby3.2/Dockerfile.ruby3.2
https://github.com/aws/aws-lambda-base-images/blob/ruby3.2/Dockerfile.ruby3.2
https://gallery.ecr.aws/lambda/ruby
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://rubygems.org/gems/aws-sdk-lambda/

Amazon Lambda Developer Guide

source 'https://rubygems.org'

gem 'aws-sdk-lambda'

Alternatively, the aws-sdk gem contains every available Amazon service gem. This gem is very
large. We recommend that you use it only if you depend on many Amazon services.

3. Install the dependencies specified in the Gemfile using bundle install.

bundle install

4. Create a new file called lambda_function.rb. You can add the following sample function
code to the file for testing, or use your own.

Example Ruby function

module LambdaFunction
 class Handler
 def self.process(event:,context:)
 "Hello from Lambda!"
 end
 end
end

5. Create a new Dockerfile. The following is an example Dockerfile that uses an Amazon base
image. This Dockerfiles uses the following configuration:

• Set the FROM property to the URI of the base image.

• Use the COPY command to copy the function code and runtime dependencies to
{LAMBDA_TASK_ROOT}, a Lambda-defined environment variable.

• Set the CMD argument to the Lambda function handler.

Example Dockerfile

FROM public.ecr.aws/lambda/ruby:3.2

Copy Gemfile and Gemfile.lock
COPY Gemfile Gemfile.lock ${LAMBDA_TASK_ROOT}/

Using an Amazon base image 658

https://rubygems.org/gems/aws-sdk/
https://bundler.io/v2.4/man/bundle-install.1.html

Amazon Lambda Developer Guide

Install Bundler and the specified gems
RUN gem install bundler:2.4.20 && \
 bundle config set --local path 'vendor/bundle' && \
 bundle install

Copy function code
COPY lambda_function.rb ${LAMBDA_TASK_ROOT}/

Set the CMD to your handler (could also be done as a parameter override outside
 of the Dockerfile)
CMD ["lambda_function.LambdaFunction::Handler.process"]

6. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Using an Amazon base image 659

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

3. Get the container ID.

docker ps

Using an Amazon base image 660

Amazon Lambda Developer Guide

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the Amazon Web Services Region where you want to create the
Amazon ECR repository.

• Replace 111122223333 with your Amazon Web Services account ID.

aws ecr get-login-password --region cn-north-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region cn-north-1 --
image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same Amazon Web Services Region as the
Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:cn-north-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",

Using an Amazon base image 661

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

Amazon Lambda Developer Guide

 "repositoryUri": "111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• Replace docker-image:test with the name and tag of your Docker image.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.cn-
north-1.amazonaws.com.cn/hello-world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \

Using an Amazon base image 662

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

Amazon Lambda Developer Guide

 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different Amazon account, as long as
the image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Using an alternative base image with the runtime interface client

If you use an OS-only base image or an alternative base image, you must include the runtime
interface client in your image. The runtime interface client extends the Lambda runtime API, which
manages the interaction between Lambda and your function code.

Install the Lambda runtime interface client for Ruby using the RubyGems.org package manager:

gem install aws_lambda_ric

Using a non-Amazon base image 663

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://rubygems.org/gems/aws_lambda_ric

Amazon Lambda Developer Guide

You can also download the Ruby runtime interface client from GitHub. The runtime interface client
supports Ruby versions 2.5.x to 2.7.x.

The following example demonstrates how to build a container image for Ruby using a non-Amazon
base image. The example Dockerfile uses an official Ruby base image. The Dockerfile includes the
runtime interface client.

Prerequisites

To complete the steps in this section, you must have the following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Docker

• Ruby

Creating an image from an alternative base image

To create a container image for Ruby using an alternative base image

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Create a new file called Gemfile. This is where you list your application's required RubyGems
packages. The Amazon SDK for Ruby is available from RubyGems. You should choose specific
Amazon service gems to install. For example, to use the Ruby gem for Lambda, your Gemfile
should look like this:

source 'https://rubygems.org'

gem 'aws-sdk-lambda'

Alternatively, the aws-sdk gem contains every available Amazon service gem. This gem is very
large. We recommend that you use it only if you depend on many Amazon services.

3. Install the dependencies specified in the Gemfile using bundle install.

bundle install

Using a non-Amazon base image 664

https://github.com/aws/aws-lambda-ruby-runtime-interface-client
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.docker.com/get-docker
https://rubygems.org/gems/aws-sdk-lambda/
https://rubygems.org/gems/aws-sdk/
https://bundler.io/v2.4/man/bundle-install.1.html

Amazon Lambda Developer Guide

4. Create a new file called lambda_function.rb. You can add the following sample function
code to the file for testing, or use your own.

Example Ruby function

module LambdaFunction
 class Handler
 def self.process(event:,context:)
 "Hello from Lambda!"
 end
 end
end

5. Create a new Dockerfile. The following Dockerfile uses a Ruby base image instead of an
Amazon base image. The Dockerfile includes the runtime interface client for Ruby, which
makes the image compatible with Lambda. Alternatively, you can add the runtime interface
client to your application's Gemfile.

• Set the FROM property to the Ruby base image.

• Create a directory for the function code and an environment variable that points to that
directory. In this example, the directory is /var/task, which mirrors the Lambda execution
environment. However, you can choose any directory for the function code because the
Dockerfile doesn't use an Amazon base image.

• Set the ENTRYPOINT to the module that you want the Docker container to run when it
starts. In this case, the module is the runtime interface client.

• Set the CMD argument to the Lambda function handler.

Example Dockerfile

FROM ruby:2.7

Install the runtime interface client for Ruby
RUN gem install aws_lambda_ric

Add the runtime interface client to the PATH
ENV PATH="/usr/local/bundle/bin:${PATH}"

Create a directory for the Lambda function
ENV LAMBDA_TASK_ROOT=/var/task

Using a non-Amazon base image 665

https://github.com/aws/aws-lambda-ruby-runtime-interface-client

Amazon Lambda Developer Guide

RUN mkdir -p ${LAMBDA_TASK_ROOT}
WORKDIR ${LAMBDA_TASK_ROOT}

Copy Gemfile and Gemfile.lock
COPY Gemfile Gemfile.lock ${LAMBDA_TASK_ROOT}/

Install Bundler and the specified gems
RUN gem install bundler:2.4.20 && \
 bundle config set --local path 'vendor/bundle' && \
 bundle install

Copy function code
COPY lambda_function.rb ${LAMBDA_TASK_ROOT}/

Set runtime interface client as default command for the container runtime
ENTRYPOINT ["aws_lambda_ric"]

Set the CMD to your handler (could also be done as a parameter override outside
 of the Dockerfile)
CMD ["lambda_function.LambdaFunction::Handler.process"]

6. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

Use the runtime interface emulator to locally test the image. You can build the emulator into your
image or install it on your local machine.

Using a non-Amazon base image 666

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

To install and run the runtime interface emulator on your local machine

1. From your project directory, run the following command to download the runtime interface
emulator (x86-64 architecture) from GitHub and install it on your local machine.

Linux/macOS

mkdir -p ~/.aws-lambda-rie && \
 curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-
runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \
 chmod +x ~/.aws-lambda-rie/aws-lambda-rie

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

PowerShell

$dirPath = "$HOME\.aws-lambda-rie"
if (-not (Test-Path $dirPath)) {
 New-Item -Path $dirPath -ItemType Directory
}

$downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/
releases/latest/download/aws-lambda-rie"
$destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie"
Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

To install the arm64 emulator, replace the $downloadLink with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

2. Start the Docker image with the docker run command. Note the following:

• docker-image is the image name and test is the tag.

• aws_lambda_ric lambda_function.LambdaFunction::Handler.process is the
ENTRYPOINT followed by the CMD from your Dockerfile.

Using a non-Amazon base image 667

Amazon Lambda Developer Guide

Linux/macOS

docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p
 9000:8080 \
 --entrypoint /aws-lambda/aws-lambda-rie \
 docker-image:test \
 aws_lambda_ric lambda_function.LambdaFunction::Handler.process

PowerShell

docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p
 9000:8080 `
--entrypoint /aws-lambda/aws-lambda-rie `
docker-image:test `
 aws_lambda_ric lambda_function.LambdaFunction::Handler.process

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

3. Post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Using a non-Amazon base image 668

Amazon Lambda Developer Guide

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

4. Get the container ID.

docker ps

5. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the Amazon Web Services Region where you want to create the
Amazon ECR repository.

• Replace 111122223333 with your Amazon Web Services account ID.

Using a non-Amazon base image 669

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html

Amazon Lambda Developer Guide

aws ecr get-login-password --region cn-north-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region cn-north-1 --
image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same Amazon Web Services Region as the
Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:cn-north-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

Using a non-Amazon base image 670

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html
https://docs.docker.com/engine/reference/commandline/tag/

Amazon Lambda Developer Guide

• Replace docker-image:test with the name and tag of your Docker image.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.cn-
north-1.amazonaws.com.cn/hello-world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different Amazon account, as long as
the image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

Using a non-Amazon base image 671

https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

Amazon Lambda Developer Guide

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Using a non-Amazon base image 672

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

Amazon Lambda Developer Guide

Amazon Lambda context object in Ruby

When Lambda runs your function, it passes a context object to the handler. This object provides
methods and properties that provide information about the invocation, function, and execution
environment.

Context methods

• get_remaining_time_in_millis – Returns the number of milliseconds left before the
execution times out.

Context properties

• function_name – The name of the Lambda function.

• function_version – The version of the function.

• invoked_function_arn – The Amazon Resource Name (ARN) that's used to invoke the
function. Indicates if the invoker specified a version number or alias.

• memory_limit_in_mb – The amount of memory that's allocated for the function.

• aws_request_id – The identifier of the invocation request.

• log_group_name – The log group for the function.

• log_stream_name – The log stream for the function instance.

• deadline_ms– The date that the execution times out, in Unix time milliseconds.

• identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• client_context– (mobile apps) Client context that's provided to Lambda by the client
application.

Context 673

Amazon Lambda Developer Guide

Amazon Lambda function logging in Ruby

Amazon Lambda automatically monitors Lambda functions on your behalf and sends logs to
Amazon CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log
stream for each instance of your function. The Lambda runtime environment sends details about
each invocation to the log stream, and relays logs and other output from your function's code. For
more information, see Using Amazon CloudWatch logs with Amazon Lambda.

This page describes how to produce log output from your Lambda function's code, or access logs
using the Amazon Command Line Interface, the Lambda console, or the CloudWatch console.

Sections

• Creating a function that returns logs

• Using the Lambda console

• Using the CloudWatch console

• Using the Amazon Command Line Interface (Amazon CLI)

• Deleting logs

• Logger library

Creating a function that returns logs

To output logs from your function code, you can use puts statements, or any logging library that
writes to stdout or stderr. The following example logs the values of environment variables and
the event object.

Example lambda_function.rb

lambda_function.rb

def handler(event:, context:)
 puts "## ENVIRONMENT VARIABLES"
 puts ENV.to_a
 puts "## EVENT"
 puts event.to_a
end

Logging 674

Amazon Lambda Developer Guide

Example log format

START RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95 Version: $LATEST
ENVIRONMENT VARIABLES
environ({'AWS_LAMBDA_LOG_GROUP_NAME': '/aws/lambda/my-function',
 'AWS_LAMBDA_LOG_STREAM_NAME': '2020/01/31/[$LATEST]3893xmpl7fac4485b47bb75b671a283c',
 'AWS_LAMBDA_FUNCTION_NAME': 'my-function', ...})
EVENT
{'key': 'value'}
END RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95
REPORT RequestId: 8f507cfc-xmpl-4697-b07a-ac58fc914c95 Duration: 15.74 ms Billed
 Duration: 16 ms Memory Size: 128 MB Max Memory Used: 56 MB Init Duration: 130.49 ms
XRAY TraceId: 1-5e34a614-10bdxmplf1fb44f07bc535a1 SegmentId: 07f5xmpl2d1f6f85
 Sampled: true

The Ruby runtime logs the START, END, and REPORT lines for each invocation. The report line
provides the following details.

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the Amazon X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

For more detailed logs, use the the section called “Logger library”.

Using the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

Using the Lambda console 675

Amazon Lambda Developer Guide

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Using the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with Amazon X-Ray. X-Ray records details about the request and the log stream in the
trace.

To use a sample application that correlates logs and traces with X-Ray, see Error processor sample
application for Amazon Lambda.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

You can use the Amazon CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Using the CloudWatch console 676

https://console.amazonaws.cn/cloudwatch/home?#logs:
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html

Amazon Lambda Developer Guide

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Using the Amazon Command Line Interface (Amazon CLI) 677

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Lambda Developer Guide

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"

Using the Amazon Command Line Interface (Amazon CLI) 678

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Using the Amazon Command Line Interface (Amazon CLI) 679

Amazon Lambda Developer Guide

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Logger library

The Ruby logger library returns streamlined logs that are easily read. Use the logger utility to
output detailed information, messages, and errors codes related to your function.

lambda_function.rb

require 'logger'

def handler(event:, context:)
 logger = Logger.new($stdout)
 logger.info('## ENVIRONMENT VARIABLES')
 logger.info(ENV.to_a)
 logger.info('## EVENT')
 logger.info(event)
 event.to_a
end

The output from logger includes the log level, timestamp, and request ID.

START RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125 Version: $LATEST
[INFO] 2020-01-31T22:12:58.534Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 ##
 ENVIRONMENT VARIABLES

[INFO] 2020-01-31T22:12:58.534Z 1c8df7d3-xmpl-46da-9778-518e6eca8125
 environ({'AWS_LAMBDA_LOG_GROUP_NAME': '/aws/lambda/my-function',
 'AWS_LAMBDA_LOG_STREAM_NAME': '2020/01/31/[$LATEST]1bbe51xmplb34a2788dbaa7433b0aa4d',
 'AWS_LAMBDA_FUNCTION_NAME': 'my-function', ...})

[INFO] 2020-01-31T22:12:58.535Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 ## EVENT

[INFO] 2020-01-31T22:12:58.535Z 1c8df7d3-xmpl-46da-9778-518e6eca8125 {'key':
 'value'}

END RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125

Deleting logs 680

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://ruby-doc.org/stdlib-2.7.0/libdoc/logger/rdoc/index.html

Amazon Lambda Developer Guide

REPORT RequestId: 1c8df7d3-xmpl-46da-9778-518e6eca8125 Duration: 2.75 ms Billed
 Duration: 3 ms Memory Size: 128 MB Max Memory Used: 56 MB Init Duration: 113.51 ms
XRAY TraceId: 1-5e34a66a-474xmpl7c2534a87870b4370 SegmentId: 073cxmpl3e442861
 Sampled: true

Logger library 681

Amazon Lambda Developer Guide

Amazon Lambda function errors in Ruby

When your code raises an error, Lambda generates a JSON representation of the error. This error
document appears in the invocation log and, for synchronous invocations, in the output.

This page describes how to view Lambda function invocation errors for the Ruby runtime using the
Lambda console and the Amazon CLI.

Sections

• Syntax

• How it works

• Using the Lambda console

• Using the Amazon Command Line Interface (Amazon CLI)

• Error handling in other Amazon services

• Sample applications

• What's next?

Syntax

Example function.rb

def handler(event:, context:)
 puts "Processing event..."
 [1, 2, 3].first("two")
 "Success"
end

This code results in a type error. Lambda catches the error and generates a JSON document with
fields for the error message, the type, and the stack trace.

{
 "errorMessage": "no implicit conversion of String into Integer",
 "errorType": "Function<TypeError>",
 "stackTrace": [
 "/var/task/function.rb:3:in `first'",
 "/var/task/function.rb:3:in `handler'"
]

Errors 682

Amazon Lambda Developer Guide

}

How it works

When you invoke a Lambda function, Lambda receives the invocation request and validates the
permissions in your execution role, verifies that the event document is a valid JSON document, and
checks parameter values.

If the request passes validation, Lambda sends the request to a function instance. The Lambda
runtime environment converts the event document into an object, and passes it to your function
handler.

If Lambda encounters an error, it returns an exception type, message, and HTTP status code that
indicates the cause of the error. The client or service that invoked the Lambda function can handle
the error programmatically, or pass it along to an end user. The correct error handling behavior
depends on the type of application, the audience, and the source of the error.

The following list describes the range of status codes you can receive from Lambda.

2xx

A 2xx series error with a X-Amz-Function-Error header in the response indicates a Lambda
runtime or function error. A 2xx series status code indicates that Lambda accepted the request,
but instead of an error code, Lambda indicates the error by including the X-Amz-Function-
Error header in the response.

4xx

A 4xx series error indicates an error that the invoking client or service can fix by modifying the
request, requesting permission, or by retrying the request. 4xx series errors other than 429
generally indicate an error with the request.

5xx

A 5xx series error indicates an issue with Lambda, or an issue with the function's configuration
or resources. 5xx series errors can indicate a temporary condition that can be resolved without
any action by the user. These issues can't be addressed by the invoking client or service, but a
Lambda function's owner may be able to fix the issue.

For a complete list of invocation errors, see InvokeFunction errors.

How it works 683

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html#API_Invoke_Errors

Amazon Lambda Developer Guide

Using the Lambda console

You can invoke your function on the Lambda console by configuring a test event and viewing the
output. The output is captured in the function's execution logs and, when active tracing is enabled,
in Amazon X-Ray.

To invoke a function on the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose the function to test, and choose Test.

3. Under Test event, select New event.

4. Select a Template.

5. For Name, enter a name for the test. In the text entry box, enter the JSON test event.

6. Choose Save changes.

7. Choose Test.

The Lambda console invokes your function synchronously and displays the result. To see the
response, logs, and other information, expand the Details section.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

When you invoke a Lambda function in the Amazon CLI, the Amazon CLI splits the response into
two documents. The Amazon CLI response is displayed in your command prompt. If an error has
occurred, the response contains a FunctionError field. The invocation response or error returned
by the function is written to an output file. For example, output.json or output.txt.

The following invoke command example demonstrates how to invoke a function and write the
invocation response to an output.txt file.

aws lambda invoke \

Using the Lambda console 684

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/invoke.html

Amazon Lambda Developer Guide

 --function-name my-function \
 --cli-binary-format raw-in-base64-out \
 --payload '{"key1": "value1", "key2": "value2", "key3": "value3"}' output.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the Amazon CLI response in your command prompt:

{
 "StatusCode": 200,
 "FunctionError": "Unhandled",
 "ExecutedVersion": "$LATEST"
}

You should see the function invocation response in the output.txt file. In the same command
prompt, you can also view the output in your command prompt using:

cat output.txt

You should see the invocation response in your command prompt.

{"errorMessage":"no implicit conversion of String into
 Integer","errorType":"Function<TypeError>","stackTrace":["/var/task/function.rb:3:in
 `first'","/var/task/function.rb:3:in `handler'"]}

Error handling in other Amazon services

When another Amazon service invokes your function, the service chooses the invocation type
and retry behavior. Amazon services can invoke your function on a schedule, in response to a
lifecycle event on a resource, or to serve a request from a user. Some services invoke functions
asynchronously and let Lambda handle errors, while others retry or pass errors back to the user.

For example, API Gateway treats all invocation and function errors as internal errors. If the Lambda
API rejects the invocation request, API Gateway returns a 500 error code. If the function runs but
returns an error, or returns a response in the wrong format, API Gateway returns a 502 error code.
To customize the error response, you must catch errors in your code and format a response in the
required format.

Error handling in other Amazon services 685

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

We recommend using Amazon X-Ray to determine the source of an error and its cause. X-Ray
allows you to find out which component encountered an error, and see details about the errors.
The following example shows a function error that resulted in a 502 response from API Gateway.

For more information, see Instrumenting Ruby code in Amazon Lambda.

Sample applications

The following sample code is available for the Ruby runtime.

Sample Lambda applications in Ruby

• blank-ruby – A Ruby function that shows the use of logging, environment variables, Amazon X-
Ray tracing, layers, unit tests and the Amazon SDK.

• Ruby Code Samples for Amazon Lambda – Code samples written in Ruby that demonstrate how
to interact with Amazon Lambda.

What's next?

• Learn how to show logging events for your Lambda function on the the section called “Logging”
page.

Sample applications 686

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby
https://docs.amazonaws.cn/code-samples/latest/catalog/code-catalog-ruby-example_code-lambda.html

Amazon Lambda Developer Guide

Instrumenting Ruby code in Amazon Lambda

Lambda integrates with Amazon X-Ray to enable you to trace, debug, and optimize Lambda
applications. You can use X-Ray to trace a request as it traverses resources in your application, from
the frontend API to storage and database on the backend. By simply adding the X-Ray SDK library
to your build configuration, you can record errors and latency for any call that your function makes
to an Amazon service.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example from the error processor sample application shows an application with two
functions. The primary function processes events and sometimes returns errors. The second
function at the top processes errors that appear in the first's log group and uses the Amazon SDK
to call X-Ray, Amazon Simple Storage Service (Amazon S3), and Amazon CloudWatch Logs.

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Choose Edit.

5. Under X-Ray, toggle on Active tracing.

6. Choose Save.

Tracing 687

https://docs.amazonaws.cn/xray/latest/devguide/xray-concepts.html#xray-concepts-servicegraph
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the Amazon
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see Amazon X-Ray pricing.

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests.

Note

You cannot configure the X-Ray sampling rate for your functions.

When using active tracing, Lambda records 2 segments per trace, which creates two nodes on the
service graph. The following image highlights these two nodes for the primary function from the
error processor sample application.

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has origin AWS::Lambda::Function.

Tracing 688

https://www.amazonaws.cn/xray/pricing/
https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/AWSXRayDaemonWriteAccess

Amazon Lambda Developer Guide

This example expands the function segment to show its three subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

You can instrument your handler code to record metadata and trace downstream calls. To record
detail about calls that your handler makes to other resources and services, use the X-Ray SDK for
Ruby. To get the SDK, add the aws-xray-sdk package to your application's dependencies.

Example blank-ruby/function/Gemfile

Gemfile
source 'https://rubygems.org'

gem 'aws-xray-sdk', '0.11.4'
gem 'aws-sdk-lambda', '1.39.0'
gem 'test-unit', '3.3.5'

To instrument Amazon SDK clients, require the aws-xray-sdk/lambda module after creating a
client in initialization code.

Example blank-ruby/function/lambda_function.rb – Tracing an Amazon SDK client

lambda_function.rb
require 'logger'

Tracing 689

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby/function/Gemfile
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby/function/lambda_function.rb

Amazon Lambda Developer Guide

require 'json'
require 'aws-sdk-lambda'
$client = Aws::Lambda::Client.new()
$client.get_account_settings()

require 'aws-xray-sdk/lambda'

def lambda_handler(event:, context:)
 logger = Logger.new($stdout)
 ...

When using active tracing, Lambda records 2 segments per trace, which creates two nodes on the
service graph. The following image highlights these two nodes for the primary function from the
error processor sample application.

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has origin AWS::Lambda::Function.

Tracing 690

Amazon Lambda Developer Guide

This example expands the function segment to show its three subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see The X-Ray SDK for Ruby in the Amazon X-
Ray Developer Guide.

Sections

• Enabling active tracing with the Lambda API

• Enabling active tracing with Amazon CloudFormation

• Storing runtime dependencies in a layer

Enabling active tracing with the Lambda API

To manage tracing configuration with the Amazon CLI or Amazon SDK, use the following API
operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example Amazon CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Enabling active tracing with the Lambda API 691

https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-ruby.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html

Amazon Lambda Developer Guide

Enabling active tracing with Amazon CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an Amazon CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

For an Amazon Serverless Application Model (Amazon SAM) AWS::Serverless::Function
resource, use the Tracing property.

Example template.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Storing runtime dependencies in a layer

If you use the X-Ray SDK to instrument Amazon SDK clients your function code, your deployment
package can become quite large. To avoid uploading runtime dependencies every time you update
your function code, package the X-Ray SDK in a Lambda layer.

The following example shows an AWS::Serverless::LayerVersion resource that stores X-Ray
SDK for Ruby.

Example template.yml – Dependencies layer

Resources:
 function:
 Type: AWS::Serverless::Function

Enabling active tracing with Amazon CloudFormation 692

https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby/template.yml
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

 Properties:
 CodeUri: function/.
 Tracing: Active
 Layers:
 - !Ref libs
 ...
 libs:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: blank-ruby-lib
 Description: Dependencies for the blank-ruby sample app.
 ContentUri: lib/.
 CompatibleRuntimes:
 - ruby2.5

With this configuration, you update the library layer only if you change your runtime dependencies.
Since the function deployment package contains only your code, this can help reduce upload times.

Creating a layer for dependencies requires build changes to generate the layer archive prior to
deployment. For a working example, see the blank-ruby sample application.

Storing runtime dependencies in a layer 693

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-layerversion.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby

Amazon Lambda Developer Guide

Building Lambda functions with Java

You can run Java code in Amazon Lambda. Lambda provides runtimes for Java that run your
code to process events. Your code runs in an Amazon Linux environment that includes Amazon
credentials from an Amazon Identity and Access Management (IAM) role that you manage.

Lambda supports the following Java runtimes.

Java

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

Java 21 java21 Amazon
Linux 2023

Java 17 java17 Amazon
Linux 2

Java 11 java11 Amazon
Linux 2

Java 8 java8.al2 Amazon
Linux 2

Lambda provides the following libraries for Java functions:

• com.amazonaws:aws-lambda-java-core (required) – Defines handler method interfaces and the
context object that the runtime passes to the handler. If you define your own input types, this is
the only library that you need.

• com.amazonaws:aws-lambda-java-events – Input types for events from services that invoke
Lambda functions.

• com.amazonaws:aws-lambda-java-log4j2 – An appender library for Apache Log4j 2 that you can
use to add the request ID for the current invocation to your function logs.

• Amazon SDK for Java 2.0 – The official Amazon SDK for the Java programming language.

694

https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-core
https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-events
https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-log4j2
https://github.com/aws/aws-sdk-java-v2

Amazon Lambda Developer Guide

Important

Don't use private components of the JDK API, such as private fields, methods, or classes.
Non-public API components can change or be removed in any update, causing your
application to break.

To create a Java function

1. Open the Lambda console.

2. Choose Create function.

3. Configure the following settings:

• Function name: Enter a name for the function.

• Runtime: Choose Java 17.

4. Choose Create function.

5. To configure a test event, choose Test.

6. For Event name, enter test.

7. Choose Save changes.

8. To invoke the function, choose Test.

The console creates a Lambda function with a handler class named Hello. Since Java is a compiled
language, you can't view or edit the source code in the Lambda console, but you can modify its
configuration, invoke it, and configure triggers.

Note

To get started with application development in your local environment, deploy one of the
sample applications available in this guide's GitHub repository.

The Hello class has a function named handleRequest that takes an event object and a context
object. This is the handler function that Lambda calls when the function is invoked. The Java
function runtime gets invocation events from Lambda and passes them to the handler. In the
function configuration, the handler value is example.Hello::handleRequest.

695

https://console.amazonaws.cn/lambda

Amazon Lambda Developer Guide

To update the function's code, you create a deployment package, which is a .zip file archive that
contains your function code. As your function development progresses, you will want to store
your function code in source control, add libraries, and automate deployments. Start by creating a
deployment package and updating your code at the command line.

The function runtime passes a context object to the handler, in addition to the invocation event.
The context object contains additional information about the invocation, the function, and the
execution environment. More information is available from environment variables.

Your Lambda function comes with a CloudWatch Logs log group. The function runtime sends
details about each invocation to CloudWatch Logs. It relays any logs that your function outputs
during invocation. If your function returns an error, Lambda formats the error and returns it to the
invoker.

Topics

• Amazon Lambda function handler in Java

• Deploy Java Lambda functions with .zip or JAR file archives

• Deploy Java Lambda functions with container images

• Improving startup performance with Lambda SnapStart

• Java Lambda function customization settings

• Amazon Lambda context object in Java

• Amazon Lambda function logging in Java

• Amazon Lambda function errors in Java

• Instrumenting Java code in Amazon Lambda

• Java sample applications for Amazon Lambda

696

Amazon Lambda Developer Guide

Amazon Lambda function handler in Java

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

The GitHub repo for this guide provides easy-to-deploy sample applications that demonstrate a
variety of handler types. For details, see the end of this topic.

Sections

• Example handler: Java 17 runtimes

• Example handler: Java 11 runtimes and below

• Initialization code

• Choosing input and output types

• Handler interfaces

• Sample handler code

Example handler: Java 17 runtimes

In the following Java 17 example, a class named HandlerIntegerJava17 defines a handler
method named handleRequest. The handler method takes in the following inputs:

• An IntegerRecord, which is a custom Java record that represents event data. In this example,
we define IntegerRecord as follows:

record IntegerRecord(int x, int y, String message) {
}

• A context object, which provides methods and properties that provide information about the
invocation, function, and execution environment.

Suppose we want to write a function that logs the message from the input IntegerRecord, and
returns the sum of x and y. The following is the function code:

Example HandlerIntegerJava17.java

package example;

Handler 697

https://openjdk.org/jeps/395
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java17-examples/src/main/java/example/HandlerIntegerJava17.java

Amazon Lambda Developer Guide

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;

// Handler value: example.HandlerInteger
public class HandlerIntegerJava17 implements RequestHandler<IntegerRecord, Integer>{

 @Override
 /*
 * Takes in an InputRecord, which contains two integers and a String.
 * Logs the String, then returns the sum of the two Integers.
 */
 public Integer handleRequest(IntegerRecord event, Context context)
 {
 LambdaLogger logger = context.getLogger();
 logger.log("String found: " + event.message());
 return event.x() + event.y();
 }
}

record IntegerRecord(int x, int y, String message) {
}

You specify which method you want Lambda to invoke by setting the handler parameter on your
function's configuration. You can express the hander in the following formats:

• package.Class::method – Full format. For example: example.Handler::handleRequest.

• package.Class – Abbreviated format for classes that implement a handler interface. For
example: example.Handler.

When Lambda invokes your handler, the Lambda runtime receives an event as a JSON-formatted
string and converts it into an object. For the previous example, a sample event might look like the
following:

Example event.json

{
 "x": 1,
 "y": 20,
 "message": "Hello World!"

Example handler: Java 17 runtimes 698

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java17-examples/event.json

Amazon Lambda Developer Guide

}

You can save this file and test your function locally with the following Amazon Command Line
Interface (CLI) command:

aws lambda invoke --function-name function_name --payload file://event.json out.json

Example handler: Java 11 runtimes and below

Lambda supports records in Java 17 and later runtimes. In all Java runtimes, you can use a class to
represent event data. The following example takes a list of integers and a context object as input,
and returns the sum of all integers in the list.

Example Handler.java

In the following example, a class named Handler defines a handler method named
handleRequest. The handler method takes an event and context object as input and returns a
string.

Example HandlerList.java

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;

import java.util.List;

// Handler value: example.HandlerList
public class HandlerList implements RequestHandler<List<Integer>, Integer>{

 @Override
 /*
 * Takes a list of Integers and returns its sum.
 */
 public Integer handleRequest(List<Integer> event, Context context)
 {
 LambdaLogger logger = context.getLogger();
 logger.log("EVENT TYPE: " + event.getClass().toString());
 return event.stream().mapToInt(Integer::intValue).sum();

Example handler: Java 11 runtimes and below 699

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/Handler.java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/HandlerList.java

Amazon Lambda Developer Guide

 }
}

For more examples, see Sample handler code.

Initialization code

Lambda runs your static code and the class constructor during the initialization phase before
invoking your function for the first time. Resources created during initialization stay in memory
between invocations and can be reused by the handler thousands of times. Thus, you can add
initialization code outside of your main handler method to save compute time and reuse resources
across multiple invocations.

In the following example, the client initialization code is outside the main handler method. The
runtime initializes the client before the function serves its first event. Subsequent events are much
faster because Lambda doesn't need to initialize the client again.

Example Handler.java

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;

import java.util.Map;

import software.amazon.awssdk.services.lambda.LambdaClient;
import software.amazon.awssdk.services.lambda.model.GetAccountSettingsResponse;
import software.amazon.awssdk.services.lambda.model.LambdaException;

// Handler value: example.Handler
public class Handler implements RequestHandler<Map<String,String>, String> {

 private static final LambdaClient lambdaClient = LambdaClient.builder().build();

 @Override
 public String handleRequest(Map<String,String> event, Context context) {

 LambdaLogger logger = context.getLogger();
 logger.log("Handler invoked");

Initialization code 700

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/static-initialization
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/static-initialization
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-java/src/main/java/example/Handler.java

Amazon Lambda Developer Guide

 GetAccountSettingsResponse response = null;
 try {
 response = lambdaClient.getAccountSettings();
 } catch(LambdaException e) {
 logger.log(e.getMessage());
 }
 return response != null ? "Total code size for your account is " +
 response.accountLimit().totalCodeSize() + " bytes" : "Error";
 }
}

Choosing input and output types

You specify the type of object that the event maps to in the handler method's signature. In the
preceding example, the Java runtime deserializes the event into a type that implements the
Map<String,String> interface. String-to-string maps work for flat events like the following:

Example Event.json – Weather data

{
 "temperatureK": 281,
 "windKmh": -3,
 "humidityPct": 0.55,
 "pressureHPa": 1020
}

However, the value of each field must be a string or number. If the event includes a field that has
an object as a value, the runtime can't deserialize it and returns an error.

Choose an input type that works with the event data that your function processes. You can use a
basic type, a generic type, or a well-defined type.

Input types

• Integer, Long, Double, etc. – The event is a number with no additional formatting—for
example, 3.5. The runtime converts the value into an object of the specified type.

• String – The event is a JSON string, including quotes—for example, "My string.". The
runtime converts the value (without quotes) into a String object.

• Type, Map<String,Type> etc. – The event is a JSON object. The runtime deserializes it into an
object of the specified type or interface.

Choosing input and output types 701

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/event.json

Amazon Lambda Developer Guide

• List<Integer>, List<String>, List<Object>, etc. – The event is a JSON array. The runtime
deserializes it into an object of the specified type or interface.

• InputStream – The event is any JSON type. The runtime passes a byte stream of the document
to the handler without modification. You deserialize the input and write output to an output
stream.

• Library type – For events sent by Amazon services, use the types in the aws-lambda-java-events
library.

If you define your own input type, it should be a deserializable, mutable plain old Java object
(POJO), with a default constructor and properties for each field in the event. Keys in the event that
don't map to a property as well as properties that aren't included in the event are dropped without
error.

The output type can be an object or void. The runtime serializes return values into text. If the
output is an object with fields, the runtime serializes it into a JSON document. If it's a type that
wraps a primitive value, the runtime returns a text representation of that value.

Handler interfaces

The aws-lambda-java-core library defines two interfaces for handler methods. Use the provided
interfaces to simplify handler configuration and validate the handler method signature at compile
time.

• com.amazonaws.services.lambda.runtime.RequestHandler

• com.amazonaws.services.lambda.runtime.RequestStreamHandler

The RequestHandler interface is a generic type that takes two parameters: the input type
and the output type. Both types must be objects. When you use this interface, the Java runtime
deserializes the event into an object with the input type, and serializes the output into text. Use
this interface when the built-in serialization works with your input and output types.

Example Handler.java – Handler interface

// Handler value: example.Handler
public class Handler implements RequestHandler<Map<String,String>, String>{
 @Override
 public String handleRequest(Map<String,String> event, Context context)

Handler interfaces 702

https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-core
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/RequestHandler.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/RequestStreamHandler.java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/Handler.java

Amazon Lambda Developer Guide

To use your own serialization, implement the RequestStreamHandler interface. With this
interface, Lambda passes your handler an input stream and output stream. The handler reads bytes
from the input stream, writes to the output stream, and returns void.

The following example uses buffered reader and writer types to work with the input and output
streams.

Example HandlerStream.java

import com.amazonaws.services.lambda.runtime.Context
import com.amazonaws.services.lambda.runtime.LambdaLogger
import com.amazonaws.services.lambda.runtime.RequestStreamHandler
...
// Handler value: example.HandlerStream
public class HandlerStream implements RequestStreamHandler {
 @Override
 /*
 * Takes an InputStream and an OutputStream. Reads from the InputStream,
 * and copies all characters to the OutputStream.
 */
 public void handleRequest(InputStream inputStream, OutputStream outputStream, Context
 context) throws IOException
 {
 LambdaLogger logger = context.getLogger();
 BufferedReader reader = new BufferedReader(new InputStreamReader(inputStream,
 Charset.forName("US-ASCII")));
 PrintWriter writer = new PrintWriter(new BufferedWriter(new
 OutputStreamWriter(outputStream, Charset.forName("US-ASCII"))));
 int nextChar;
 try {
 while ((nextChar = reader.read()) != -1) {
 outputStream.write(nextChar);
 }
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 reader.close();
 String finalString = writer.toString();
 logger.log("Final string result: " + finalString);
 writer.close();
 }
 }
}

Handler interfaces 703

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/HandlerStream.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/Context.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/LambdaLogger.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/RequestStreamHandler.java

Amazon Lambda Developer Guide

Sample handler code

The GitHub repository for this guide includes sample applications that demonstrate the use of
various handler types and interfaces. Each sample application includes scripts for easy deployment
and cleanup, an Amazon SAM template, and supporting resources.

Sample Lambda applications in Java

• java17-examples – A Java function that demonstrates how to use a Java record to represent an
input event data object.

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the Amazon SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

• Use API Gateway to invoke a Lambda function – A Java function that scans a Amazon DynamoDB
table that contains employee information. It then uses Amazon Simple Notification Service to
send a text message to employees celebrating their work anniversaries. This example uses API
Gateway to invoke the function.

The java-events and s3-java applications take an Amazon service event as input and return a
string. The java-basic application includes several types of handlers:

• Handler.java – Takes a Map<String,String> as input.

• HandlerInteger.java – Takes an Integer as input.

• HandlerList.java – Takes a List<Integer> as input.

• HandlerStream.java – Takes an InputStream and OutputStream as input.

• HandlerString.java – Takes a String as input.

• HandlerWeatherData.java – Takes a custom type as input.

To test different handler types, just change the handler value in the Amazon SAM template. For
detailed instructions, see the sample application's readme file.

Sample handler code 704

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java17-examples
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://docs.amazonaws.cn/lambda/latest/dg/example_cross_LambdaAPIGateway_section.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/Handler.java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/HandlerInteger.java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/HandlerList.java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/HandlerStream.java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/HandlerString.java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/HandlerWeatherData.java

Amazon Lambda Developer Guide

Deploy Java Lambda functions with .zip or JAR file archives

Your Amazon Lambda function's code consists of scripts or compiled programs and their
dependencies. You use a deployment package to deploy your function code to Lambda. Lambda
supports two types of deployment packages: container images and .zip file archives.

This page describes how to create your deployment package as a .zip file or Jar file, and then use
the deployment package to deploy your function code to Amazon Lambda using the Amazon
Command Line Interface (Amazon CLI).

Sections

• Prerequisites

• Tools and libraries

• Building a deployment package with Gradle

• Creating a Java layer for your dependencies

• Building a deployment package with Maven

• Uploading a deployment package with the Lambda console

• Uploading a deployment package with the Amazon CLI

• Uploading a deployment package with Amazon SAM

Prerequisites

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

Tools and libraries

Lambda provides the following libraries for Java functions:

• com.amazonaws:aws-lambda-java-core (required) – Defines handler method interfaces and the
context object that the runtime passes to the handler. If you define your own input types, this is
the only library that you need.

Deploy .zip file archives 705

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-core

Amazon Lambda Developer Guide

• com.amazonaws:aws-lambda-java-events – Input types for events from services that invoke
Lambda functions.

• com.amazonaws:aws-lambda-java-log4j2 – An appender library for Apache Log4j 2 that you can
use to add the request ID for the current invocation to your function logs.

• Amazon SDK for Java 2.0 – The official Amazon SDK for the Java programming language.

These libraries are available through Maven Central Repository. Add them to your build definition
as follows:

Gradle

dependencies {
 implementation 'com.amazonaws:aws-lambda-java-core:1.2.2'
 implementation 'com.amazonaws:aws-lambda-java-events:3.11.1'
 runtimeOnly 'com.amazonaws:aws-lambda-java-log4j2:1.5.1'
}

Maven

 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.2</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-events</artifactId>
 <version>3.11.1</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-log4j2</artifactId>
 <version>1.5.1</version>
 </dependency>
 </dependencies>

To create a deployment package, compile your function code and dependencies into a single .zip
file or Java Archive (JAR) file. For Gradle, use the Zip build type. For Apache Maven, use the Maven

Tools and libraries 706

https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-events
https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-log4j2
https://github.com/aws/aws-sdk-java-v2
https://search.maven.org/search?q=g:com.amazonaws

Amazon Lambda Developer Guide

Shade plugin. To upload your deployment package, use the Lambda console, the Lambda API, or
Amazon Serverless Application Model (Amazon SAM).

Note

To keep your deployment package size small, package your function's dependencies in
layers. Layers enable you to manage your dependencies independently, can be used by
multiple functions, and can be shared with other accounts. For more information, see
Lambda layers.

Building a deployment package with Gradle

To create a deployment package with your function's code and dependencies in Gradle, use the Zip
build type. Here's an example from a complete sample build.gradle file:

Example build.gradle – Build task

task buildZip(type: Zip) {
 into('lib') {
 from(jar)
 from(configurations.runtimeClasspath)
 }
}

This build configuration produces a deployment package in the build/distributions directory.
Within the into('lib') statement, the jar task assembles a jar archive containing your main
classes into a folder named lib. Additionally, the configurations.runtimeClassPath task
copies dependency libraries from the build's classpath into the same lib folder.

Example build.gradle – Dependencies

dependencies {
 ...
 implementation 'com.amazonaws:aws-lambda-java-core:1.2.2'
 implementation 'com.amazonaws:aws-lambda-java-events:3.11.1'
 implementation 'org.apache.logging.log4j:log4j-api:2.17.1'
 implementation 'org.apache.logging.log4j:log4j-core:2.17.1'
 runtimeOnly 'org.apache.logging.log4j:log4j-slf4j18-impl:2.17.1'
 runtimeOnly 'com.amazonaws:aws-lambda-java-log4j2:1.5.1'

Building a deployment package with Gradle 707

https://github.com/awsdocs/aws-lambda-developer-guide/blob/main/sample-apps/s3-java/build.gradle

Amazon Lambda Developer Guide

 ...
}

Lambda loads JAR files in Unicode alphabetical order. If multiple JAR files in the lib directory
contain the same class, the first one is used. You can use the following shell script to identify
duplicate classes:

Example test-zip.sh

mkdir -p expanded
unzip path/to/my/function.zip -d expanded
find ./expanded/lib -name '*.jar' | xargs -n1 zipinfo -1 | grep '.*.class' | sort |
 uniq -c | sort

Creating a Java layer for your dependencies

Note

Using layers with functions in a compiled language like Java may not provide the same
amount of benefit as with an interpreted language like Python. Since Java is a compiled
language, your functions still have to manually load any shared assemblies into memory
during the init phase, which can increase cold start times. Instead, we recommend including
any shared code at compile time to take advantage of any built-in compiler optimizations.

The instructions in this section show you how to include your dependencies in a layer. For
instructions on how to include your dependencies in your deployment package, see the section
called “Building a deployment package with Gradle” or the section called “Building a deployment
package with Maven”.

When you add a layer to a function, Lambda loads the layer content into the /opt directory of
that execution environment. For each Lambda runtime, the PATH variable already includes specific
folder paths within the /opt directory. To ensure that the PATH variable picks up your layer
content, your layer .zip file should have its dependencies in the following folder paths:

• java/lib (CLASSPATH)

For example, your layer .zip file structure might look like the following:

Creating a Java layer for your dependencies 708

Amazon Lambda Developer Guide

jackson.zip
java/lib/jackson-core-2.2.3.jar

In addition, Lambda automatically detects any libraries in the /opt/lib directory, and any binaries
in the /opt/bin directory. To ensure that Lambda properly finds your layer content, you can also
create a layer with the following structure:

custom-layer.zip
lib
 | lib_1
 | lib_2
bin
 | bin_1
 | bin_2

After you package your layer, see the section called “Creating and deleting layers” and the section
called “Adding layers” to complete your layer setup.

Building a deployment package with Maven

To build a deployment package with Maven, use the Maven Shade plugin. The plugin creates a JAR
file that contains the compiled function code and all of its dependencies.

Example pom.xml – Plugin configuration

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.2.2</version>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

Building a deployment package with Maven 709

https://maven.apache.org/plugins/maven-shade-plugin/

Amazon Lambda Developer Guide

To build the deployment package, use the mvn package command.

[INFO] Scanning for projects...
[INFO] -----------------------< com.example:java-maven >-----------------------
[INFO] Building java-maven-function 1.0-SNAPSHOT
[INFO] --------------------------------[jar]---------------------------------
...
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ java-maven ---
[INFO] Building jar: target/java-maven-1.0-SNAPSHOT.jar
[INFO]
[INFO] --- maven-shade-plugin:3.2.2:shade (default) @ java-maven ---
[INFO] Including com.amazonaws:aws-lambda-java-core:jar:1.2.2 in the shaded jar.
[INFO] Including com.amazonaws:aws-lambda-java-events:jar:3.11.1 in the shaded jar.
[INFO] Including joda-time:joda-time:jar:2.6 in the shaded jar.
[INFO] Including com.google.code.gson:gson:jar:2.8.6 in the shaded jar.
[INFO] Replacing original artifact with shaded artifact.
[INFO] Replacing target/java-maven-1.0-SNAPSHOT.jar with target/java-maven-1.0-
SNAPSHOT-shaded.jar
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 8.321 s
[INFO] Finished at: 2020-03-03T09:07:19Z
[INFO] --

This command generates a JAR file in the target directory.

Note

If you're working with a multi-release JAR (MRJAR), you must include the MRJAR (i.e. the
shaded JAR produced by the Maven Shade plugin) in the lib directory and zip it before
uploading your deployment package to Lambda. Otherwise, Lambda may not properly
unpack your JAR file, causing your MANIFEST.MF file to be ignored.

If you use the appender library (aws-lambda-java-log4j2), you must also configure a
transformer for the Maven Shade plugin. The transformer library combines versions of a cache file
that appear in both the appender library and in Log4j.

Example pom.xml – Plugin configuration with Log4j 2 appender

 <plugin>

Building a deployment package with Maven 710

https://openjdk.org/jeps/238

Amazon Lambda Developer Guide

 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.2.2</version>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer
 implementation="com.github.edwgiz.maven_shade_plugin.log4j2_cache_transformer.PluginsCacheFileTransformer">
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>com.github.edwgiz</groupId>
 <artifactId>maven-shade-plugin.log4j2-cachefile-transformer</artifactId>
 <version>2.13.0</version>
 </dependency>
 </dependencies>
 </plugin>

Uploading a deployment package with the Lambda console

To create a new function, you must first create the function in the console, then upload your .zip
or JAR file. To update an existing function, open the page for your function, then follow the same
procedure to add your updated .zip or JAR file.

If your deployment package file is less than 50MB, you can create or update a function by
uploading the file directly from your local machine. For .zip or JAR files greater than 50MB, you
must upload your package to an Amazon S3 bucket first. For instructions on how to upload a file to
an Amazon S3 bucket using the Amazon Web Services Management Console, see Getting started
with Amazon S3. To upload files using the Amazon CLI, see Move objects in the Amazon CLI User
Guide.

Uploading a deployment package with the Lambda console 711

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

Amazon Lambda Developer Guide

Note

You cannot change the deployment package type (.zip or container image) for an existing
function. For example, you cannot convert a container image function to use a .zip file
archive. You must create a new function.

To create a new function (console)

1. Open the Functions page of the Lambda console and choose Create Function.

2. Choose Author from scratch.

3. Under Basic information, do the following:

a. For Function name, enter the name for your function.

b. For Runtime, select the runtime you want to use.

c. (Optional) For Architecture, choose the instruction set architecture for your function. The
default architecture is x86_64. Ensure that the .zip deployment package for your function
is compatible with the instruction set architecture you select.

4. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing one.

5. Choose Create function. Lambda creates a basic 'Hello world' function using your chosen
runtime.

To upload a .zip or JAR archive from your local machine (console)

1. In the Functions page of the Lambda console, choose the function you want to upload the .zip
or JAR file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose .zip or .jar file.

5. To upload the .zip or JAR file, do the following:

a. Select Upload, then select your .zip or JAR file in the file chooser.

b. Choose Open.

c. Choose Save.

Uploading a deployment package with the Lambda console 712

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html#lambda-CreateFunction-request-PackageType
https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

To upload a .zip or JAR archive from an Amazon S3 bucket (console)

1. In the Functions page of the Lambda console, choose the function you want to upload a
new .zip or JAR file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose Amazon S3 location.

5. Paste the Amazon S3 link URL of your .zip file and choose Save.

Uploading a deployment package with the Amazon CLI

You can can use the Amazon CLI to create a new function or to update an existing one using a .zip
or JAR file. Use the create-function and update-function-code commands to deploy your .zip or
JAR package. If your file is smaller than 50MB, you can upload the package from a file location
on your local build machine. For larger files, you must upload your .zip or JAR package from an
Amazon S3 bucket. For instructions on how to upload a file to an Amazon S3 bucket using the
Amazon CLI, see Move objects in the Amazon CLI User Guide.

Note

If you upload your .zip or JAR file from an Amazon S3 bucket using the Amazon CLI, the
bucket must be located in the same Amazon Web Services Region as your function.

To create a new function using a .zip or JAR file with the Amazon CLI, you must specify the
following:

• The name of your function (--function-name)
• Your function’s runtime (--runtime)
• The Amazon Resource Name (ARN) of your function’s execution role (--role)
• The name of the handler method in your function code (--handler)

You must also specify the location of your .zip or JAR file. If your .zip or JAR file is located in a
folder on your local build machine, use the --zip-file option to specify the file path, as shown
in the following example command.

aws lambda create-function --function-name myFunction \

Uploading a deployment package with the Amazon CLI 713

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-function.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-function.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html

Amazon Lambda Developer Guide

--runtime java21 --handler example.handler \
--role arn:aws:iam::123456789012:role/service-role/my-lambda-role \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --code option as shown in
the following example command. You only need to use the S3ObjectVersion parameter for
versioned objects.

aws lambda create-function --function-name myFunction \
--runtime java21 --handler example.handler \
--role arn:aws:iam::123456789012:role/service-role/my-lambda-role \
--code S3Bucket=myBucketName,S3Key=myFileName.zip,S3ObjectVersion=myObjectVersion

To update an existing function using the CLI, you specify the the name of your function using the
--function-name parameter. You must also specify the location of the .zip file you want to use
to update your function code. If your .zip file is located in a folder on your local build machine, use
the --zip-file option to specify the file path, as shown in the following example command.

aws lambda update-function-code --function-name myFunction \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --s3-bucket and --s3-key
options as shown in the following example command. You only need to use the --s3-object-
version parameter for versioned objects.

aws lambda update-function-code --function-name myFunction \
--s3-bucket myBucketName --s3-key myFileName.zip --s3-object-version myObject Version

Uploading a deployment package with Amazon SAM

You can use Amazon SAM to automate deployments of your function code, configuration, and
dependencies. Amazon SAM is an extension of Amazon CloudFormation that provides a simplified
syntax for defining serverless applications. The following example template defines a function with
a deployment package in the build/distributions directory that Gradle uses:

Example template.yml

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'

Uploading a deployment package with Amazon SAM 714

Amazon Lambda Developer Guide

Description: An Amazon Lambda application that calls the Lambda API.
Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: build/distributions/java-basic.zip
 Handler: example.Handler
 Runtime: java21
 Description: Java function
 MemorySize: 512
 Timeout: 10
 # Function's execution role
 Policies:
 - AWSLambdaBasicExecutionRole
 - AWSLambda_ReadOnlyAccess
 - AWSXrayWriteOnlyAccess
 - AWSLambdaVPCAccessExecutionRole
 Tracing: Active

To create the function, use the package and deploy commands. These commands are
customizations to the Amazon CLI. They wrap other commands to upload the deployment package
to Amazon S3, rewrite the template with the object URI, and update the function's code.

The following example script runs a Gradle build and uploads the deployment package that it
creates. It creates an Amazon CloudFormation stack the first time you run it. If the stack already
exists, the script updates it.

Example deploy.sh

#!/bin/bash
set -eo pipefail
aws cloudformation package --template-file template.yml --s3-bucket MY_BUCKET --output-
template-file out.yml
aws cloudformation deploy --template-file out.yml --stack-name java-basic --
capabilities CAPABILITY_NAMED_IAM

For a complete working example, see the following sample applications:

Sample Lambda applications in Java

• java17-examples – A Java function that demonstrates how to use a Java record to represent an
input event data object.

Uploading a deployment package with Amazon SAM 715

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java17-examples

Amazon Lambda Developer Guide

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the Amazon SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

• Use API Gateway to invoke a Lambda function – A Java function that scans a Amazon DynamoDB
table that contains employee information. It then uses Amazon Simple Notification Service to
send a text message to employees celebrating their work anniversaries. This example uses API
Gateway to invoke the function.

Uploading a deployment package with Amazon SAM 716

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://docs.amazonaws.cn/lambda/latest/dg/example_cross_LambdaAPIGateway_section.html

Amazon Lambda Developer Guide

Deploy Java Lambda functions with container images

There are three ways to build a container image for a Java Lambda function:

• Using an Amazon base image for Java

The Amazon base images are preloaded with a language runtime, a runtime interface client
to manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an Amazon OS-only base image

Amazon OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide a base
image for, such as Node.js 19. You can also use OS-only base images to implement a custom
runtime. To make the image compatible with Lambda, you must include the runtime interface
client for Java in the image.

• Using a non-Amazon base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the runtime interface client for Java in the image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

Topics

• Amazon base images for Java

• Using an Amazon base image for Java

• Using an alternative base image with the runtime interface client

Deploy container images 717

https://gallery.ecr.aws/lambda/provided
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Amazon Lambda Developer Guide

Amazon base images for Java

Amazon provides the following base images for Java:

Tags Runtime Operating
system

Dockerfile Deprecation

21 Java 21 Amazon
Linux 2023

Dockerfile for Java 21 on
GitHub

17 Java 17 Amazon
Linux 2

Dockerfile for Java 17 on
GitHub

11 Java 11 Amazon
Linux 2

Dockerfile for Java 11 on
GitHub

8.al2 Java 8 Amazon
Linux 2

Dockerfile for Java 8 on
GitHub

Amazon ECR repository: gallery.ecr.aws/lambda/java

The Java 21 and later base images are based on the Amazon Linux 2023 minimal container image.
Earlier base images use Amazon Linux 2. AL2023 provides several advantages over Amazon Linux 2,
including a smaller deployment footprint and updated versions of libraries such as glibc.

AL2023-based images use microdnf (symlinked as dnf) as the package manager instead
of yum, which is the default package manager in Amazon Linux 2. microdnf is a standalone
implementation of dnf. For a list of packages that are included in AL2023-based images, refer to
the Minimal Container columns in Comparing packages installed on Amazon Linux 2023 Container
Images. For more information about the differences between AL2023 and Amazon Linux 2, see
Introducing the Amazon Linux 2023 runtime for Amazon Lambda on the Amazon Compute Blog.

Note

To run AL2023-based images locally, including with Amazon Serverless Application Model
(Amazon SAM), you must use Docker version 20.10.10 or later.

Amazon base images for Java 718

https://github.com/aws/aws-lambda-base-images/blob/java21/Dockerfile.java21
https://github.com/aws/aws-lambda-base-images/blob/java21/Dockerfile.java21
https://github.com/aws/aws-lambda-base-images/blob/java17/Dockerfile.java17
https://github.com/aws/aws-lambda-base-images/blob/java17/Dockerfile.java17
https://github.com/aws/aws-lambda-base-images/blob/java11/Dockerfile.java11
https://github.com/aws/aws-lambda-base-images/blob/java11/Dockerfile.java11
https://github.com/aws/aws-lambda-base-images/blob/java8.al2/Dockerfile.java8.al2
https://github.com/aws/aws-lambda-base-images/blob/java8.al2/Dockerfile.java8.al2
https://gallery.ecr.aws/lambda/java
https://docs.amazonaws.cn/linux/al2023/ug/minimal-container.html
https://docs.amazonaws.cn/linux/al2023/ug/al2023-container-image-types.html
https://docs.amazonaws.cn/linux/al2023/ug/al2023-container-image-types.html
https://amazonaws-china.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/

Amazon Lambda Developer Guide

Using an Amazon base image for Java

Prerequisites

To complete the steps in this section, you must have the following:

• Java (for example, Amazon Corretto)

• Docker (minimum version 20.10.10 for Java 21 and later base images)

• Apache Maven or Gradle

• Amazon Command Line Interface (Amazon CLI) version 2

Creating an image from a base image

Maven

1. Run the following command to create a Maven project using the archetype for Lambda.
The following parameters are required:

• service – The Amazon Web Service client to use in the Lambda function. For a list of
available sources, see aws-sdk-java-v2/services on GitHub.

• region – The Amazon Web Services Region where you want to create the Lambda
function.

• groupId – The full package namespace of your application.

• artifactId – Your project name. This becomes the name of the directory for your project.

In Linux and macOS, run this command:

mvn -B archetype:generate \
 -DarchetypeGroupId=software.amazon.awssdk \
 -DarchetypeArtifactId=archetype-lambda -Dservice=s3 -Dregion=US_WEST_2 \
 -DgroupId=com.example.myapp \
 -DartifactId=myapp

In PowerShell, run this command:

mvn -B archetype:generate `
 "-DarchetypeGroupId=software.amazon.awssdk" `

Using an Amazon base image 719

https://aws.amazon.com/corretto
https://docs.docker.com/get-docker
https://maven.apache.org/
https://gradle.org/install/
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://github.com/aws/aws-sdk-java-v2/tree/master/archetypes/archetype-lambda
https://github.com/aws/aws-sdk-java-v2/tree/master/services

Amazon Lambda Developer Guide

 "-DarchetypeArtifactId=archetype-lambda" "-Dservice=s3" "-Dregion=US_WEST_2"
 `
 "-DgroupId=com.example.myapp" `
 "-DartifactId=myapp"

The Maven archetype for Lambda is preconfigured to compile with Java SE 8 and includes
a dependency to the Amazon SDK for Java. If you create your project with a different
archetype or by using another method, you must configure the Java compiler for Maven
and declare the SDK as a dependency.

2. Open the myapp/src/main/java/com/example/myapp directory, and find the
App.java file. This is the code for the Lambda function. You can use the provided sample
code for testing, or replace it with your own.

3. Navigate back to the project's root directory, and then create a new Dockerfile with the
following configuration:

• Set the FROM property to the URI of the base image.

• Set the CMD argument to the Lambda function handler.

Example Dockerfile

FROM public.ecr.aws/lambda/java:21

Copy function code and runtime dependencies from Maven layout
COPY target/classes ${LAMBDA_TASK_ROOT}
COPY target/dependency/* ${LAMBDA_TASK_ROOT}/lib/

Set the CMD to your handler (could also be done as a parameter override
 outside of the Dockerfile)
CMD ["com.example.myapp.App::handleRequest"]

4. Compile the project and collect the runtime dependencies.

mvn compile dependency:copy-dependencies -DincludeScope=runtime

5. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Using an Amazon base image 720

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup-project-maven.html#configure-maven-compiler
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup-project-maven.html#configure-maven-compiler
https://gallery.ecr.aws/lambda/java
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the
--platform linux/arm64 option instead.

Gradle

1. Create a directory for the project, and then switch to that directory.

mkdir example
cd example

2. Run the following command to have Gradle generate a new Java application project in the
example directory in your environment. For Select build script DSL, choose 2: Groovy.

gradle init --type java-application

3. Open the /example/app/src/main/java/example directory, and find the App.java
file. This is the code for the Lambda function. You can use the following sample code for
testing, or replace it with your own.

Example App.java

package com.example;
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
public class App implements RequestHandler<Object, String> {
 public String handleRequest(Object input, Context context) {
 return "Hello world!";
 }
}

4. Open the build.gradle file. If you're using the sample function code from the previous
step, replace the contents of build.gradle with the following. If you're using your own
function code, modify your build.gradle file as needed.

Using an Amazon base image 721

Amazon Lambda Developer Guide

Example build.gradle (Groovy DSL)

plugins {
 id 'java'
}
group 'com.example'
version '1.0-SNAPSHOT'
sourceCompatibility = 1.8
repositories {
 mavenCentral()
}
dependencies {
 implementation 'com.amazonaws:aws-lambda-java-core:1.2.1'
}
jar {
 manifest {
 attributes 'Main-Class': 'com.example.App'
 }
}

5. The gradle init command from step 2 also generated a dummy test case in the app/
test directory. For the purposes of this tutorial, skip running tests by deleting the /test
directory.

6. Build the project.

gradle build

7. In the project's root directory (/example), create a Dockerfile with the following
configuration:

• Set the FROM property to the URI of the base image.

• Use the COPY command to copy the function code and runtime dependencies to
{LAMBDA_TASK_ROOT}, a Lambda-defined environment variable.

• Set the CMD argument to the Lambda function handler.

Example Dockerfile

FROM public.ecr.aws/lambda/java:21

Using an Amazon base image 722

https://gallery.ecr.aws/lambda/java

Amazon Lambda Developer Guide

Copy function code and runtime dependencies from Gradle layout
COPY app/build/classes/java/main ${LAMBDA_TASK_ROOT}

Set the CMD to your handler (could also be done as a parameter override
 outside of the Dockerfile)
CMD ["com.example.App::handleRequest"]

8. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the
--platform linux/arm64 option instead.

(Optional) Test the image locally

1. Start the Docker image with the docker run command. In this example, docker-image is the
image name and test is the tag.

docker run --platform linux/amd64 -p 9000:8080 docker-image:test

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

2. From a new terminal window, post an event to the local endpoint.

Using an Amazon base image 723

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

3. Get the container ID.

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Using an Amazon base image 724

https://docs.docker.com/engine/reference/commandline/kill/

Amazon Lambda Developer Guide

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the Amazon Web Services Region where you want to create the
Amazon ECR repository.

• Replace 111122223333 with your Amazon Web Services account ID.

aws ecr get-login-password --region cn-north-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region cn-north-1 --
image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same Amazon Web Services Region as the
Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:cn-north-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true

Using an Amazon base image 725

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

Amazon Lambda Developer Guide

 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• Replace docker-image:test with the name and tag of your Docker image.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.cn-
north-1.amazonaws.com.cn/hello-world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Using an Amazon base image 726

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

Amazon Lambda Developer Guide

Note

You can create a function using an image in a different Amazon account, as long as
the image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Using an alternative base image with the runtime interface client

If you use an OS-only base image or an alternative base image, you must include the runtime
interface client in your image. The runtime interface client extends the Lambda runtime API, which
manages the interaction between Lambda and your function code.

Install the runtime interface client for Java in your Dockerfile, or as a dependency in your project.
For example, to install the runtime interface client using the Maven package manager, add the
following to your pom.xml file:

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-runtime-interface-client</artifactId>
 <version>2.3.2</version>
</dependency>

Using a non-Amazon base image 727

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

Amazon Lambda Developer Guide

For package details, see Amazon Lambda Java Runtime Interface Client in the Maven Central
Repository. You can also review the runtime interface client source code in the Amazon Lambda
Java Support Libraries GitHub repository.

The following example demonstrates how to build a container image for Java using an Amazon
Corretto image. Amazon Corretto is a no-cost, multiplatform, production-ready distribution of the
Open Java Development Kit (OpenJDK). The Maven project includes the runtime interface client as
a dependency.

Prerequisites

To complete the steps in this section, you must have the following:

• Java (for example, Amazon Corretto)

• Docker

• Apache Maven

• Amazon Command Line Interface (Amazon CLI) version 2

Creating an image from an alternative base image

1. Create a Maven project. The following parameters are required:

• groupId – The full package namespace of your application.

• artifactId – Your project name. This becomes the name of the directory for your project.

Linux/macOS

mvn -B archetype:generate \
 -DarchetypeArtifactId=maven-archetype-quickstart \
 -DgroupId=example \
 -DartifactId=myapp \
 -DinteractiveMode=false

PowerShell

mvn -B archetype:generate `
 -DarchetypeArtifactId=maven-archetype-quickstart `
 -DgroupId=example `
 -DartifactId=myapp `

Using a non-Amazon base image 728

https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-runtime-interface-client
https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-runtime-interface-client
https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-runtime-interface-client
https://gallery.ecr.aws/amazoncorretto/amazoncorretto
https://gallery.ecr.aws/amazoncorretto/amazoncorretto
https://aws.amazon.com/corretto
https://docs.docker.com/get-docker
https://maven.apache.org/
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html

Amazon Lambda Developer Guide

 -DinteractiveMode=false

2. Open the project directory.

cd myapp

3. Open the pom.xml file and replace the contents with the following. This file includes the
aws-lambda-java-runtime-interface-client as a dependency. Alternatively, you can install the
runtime interface client in the Dockerfile. However, the simplest approach is to include the
library as a dependency.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>example</groupId>
 <artifactId>hello-lambda</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>hello-lambda</name>
 <url>http://maven.apache.org</url>
 <properties>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 </properties>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-runtime-interface-client</artifactId>
 <version>2.3.2</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>3.1.2</version>
 <executions>
 <execution>
 <id>copy-dependencies</id>
 <phase>package</phase>

Using a non-Amazon base image 729

https://github.com/aws/aws-lambda-java-libs/tree/main/aws-lambda-java-runtime-interface-client

Amazon Lambda Developer Guide

 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

4. Open the myapp/src/main/java/com/example/myapp directory, and find the App.java
file. This is the code for the Lambda function. Replace the code with the following.

Example function handler

package example;

public class App {
 public static String sayHello() {
 return "Hello world!";
 }
}

5. The mvn -B archetype:generate command from step 1 also generated a dummy test case
in the src/test directory. For the purposes of this tutorial, skip over running tests by deleting
this entire generated /test directory.

6. Navigate back to the project's root directory, and then create a new Dockerfile. The
following example Dockerfile uses an Amazon Corretto image. Amazon Corretto is a no-cost,
multiplatform, production-ready distribution of the OpenJDK.

• Set the FROM property to the URI of the base image.

• Set the ENTRYPOINT to the module that you want the Docker container to run when it
starts. In this case, the module is the runtime interface client.

• Set the CMD argument to the Lambda function handler.

Example Dockerfile

FROM public.ecr.aws/amazoncorretto/amazoncorretto:21 as base

Configure the build environment

Using a non-Amazon base image 730

https://gallery.ecr.aws/amazoncorretto/amazoncorretto

Amazon Lambda Developer Guide

FROM base as build
RUN yum install -y maven
WORKDIR /src

Cache and copy dependencies
ADD pom.xml .
RUN mvn dependency:go-offline dependency:copy-dependencies

Compile the function
ADD . .
RUN mvn package

Copy the function artifact and dependencies onto a clean base
FROM base
WORKDIR /function

COPY --from=build /src/target/dependency/*.jar ./
COPY --from=build /src/target/*.jar ./

Set runtime interface client as default command for the container runtime
ENTRYPOINT ["/usr/bin/java", "-cp", "./*",
 "com.amazonaws.services.lambda.runtime.api.client.AWSLambda"]
Pass the name of the function handler as an argument to the runtime
CMD ["example.App::sayHello"]

7. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

Using a non-Amazon base image 731

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

(Optional) Test the image locally

Use the runtime interface emulator to locally test the image. You can build the emulator into your
image or install it on your local machine.

To install and run the runtime interface emulator on your local machine

1. From your project directory, run the following command to download the runtime interface
emulator (x86-64 architecture) from GitHub and install it on your local machine.

Linux/macOS

mkdir -p ~/.aws-lambda-rie && \
 curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-
runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \
 chmod +x ~/.aws-lambda-rie/aws-lambda-rie

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

PowerShell

$dirPath = "$HOME\.aws-lambda-rie"
if (-not (Test-Path $dirPath)) {
 New-Item -Path $dirPath -ItemType Directory
}

$downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/
releases/latest/download/aws-lambda-rie"
$destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie"
Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

To install the arm64 emulator, replace the $downloadLink with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

2. Start the Docker image with the docker run command. Note the following:

Using a non-Amazon base image 732

Amazon Lambda Developer Guide

• docker-image is the image name and test is the tag.

• /usr/bin/java -cp './*'
com.amazonaws.services.lambda.runtime.api.client.AWSLambda
example.App::sayHello is the ENTRYPOINT followed by the CMD from your Dockerfile.

Linux/macOS

docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p
 9000:8080 \
 --entrypoint /aws-lambda/aws-lambda-rie \
 docker-image:test \
 /usr/bin/java -cp './*'
 com.amazonaws.services.lambda.runtime.api.client.AWSLambda
 example.App::sayHello

PowerShell

docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p
 9000:8080 `
--entrypoint /aws-lambda/aws-lambda-rie `
docker-image:test `
 /usr/bin/java -cp './*'
 com.amazonaws.services.lambda.runtime.api.client.AWSLambda
 example.App::sayHello

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

3. Post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

Using a non-Amazon base image 733

Amazon Lambda Developer Guide

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

4. Get the container ID.

docker ps

5. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Using a non-Amazon base image 734

https://docs.docker.com/engine/reference/commandline/kill/

Amazon Lambda Developer Guide

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the Amazon Web Services Region where you want to create the
Amazon ECR repository.

• Replace 111122223333 with your Amazon Web Services account ID.

aws ecr get-login-password --region cn-north-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region cn-north-1 --
image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same Amazon Web Services Region as the
Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:cn-north-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true

Using a non-Amazon base image 735

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

Amazon Lambda Developer Guide

 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• Replace docker-image:test with the name and tag of your Docker image.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.cn-
north-1.amazonaws.com.cn/hello-world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Using a non-Amazon base image 736

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

Amazon Lambda Developer Guide

Note

You can create a function using an image in a different Amazon account, as long as
the image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Using a non-Amazon base image 737

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

Amazon Lambda Developer Guide

Improving startup performance with Lambda SnapStart

Lambda SnapStart for Java can improve startup performance for latency-sensitive applications by
up to 10x at no extra cost, typically with no changes to your function code. The largest contributor
to startup latency (often referred to as cold start time) is the time that Lambda spends initializing
the function, which includes loading the function's code, starting the runtime, and initializing the
function code.

With SnapStart, Lambda initializes your function when you publish a function version. Lambda
takes a Firecracker microVM snapshot of the memory and disk state of the initialized execution
environment, encrypts the snapshot, and caches it for low-latency access. When you invoke the
function version for the first time, and as the invocations scale up, Lambda resumes new execution
environments from the cached snapshot instead of initializing them from scratch, improving
startup latency.

Important

If your applications depend on uniqueness of state, you must evaluate your function code
and verify that it is resilient to snapshot operations. For more information, see Handling
uniqueness with Lambda SnapStart.

Topics

• Supported features and limitations

• Supported Regions

• Compatibility considerations

• SnapStart pricing

• Comparing Lambda SnapStart and provisioned concurrency

• Additional resources

• Activating and managing Lambda SnapStart

• Handling uniqueness with Lambda SnapStart

• Runtime hooks for Lambda SnapStart

• Monitoring for Lambda SnapStart

• Security model for Lambda SnapStart

• Best practices for working with Lambda SnapStart

Lambda SnapStart 738

https://www.amazonaws.cn/blogs/opensource/firecracker-open-source-secure-fast-microvm-serverless/

Amazon Lambda Developer Guide

Supported features and limitations

SnapStart supports Java 11 and later Java managed runtimes. Other managed runtimes (such as
nodejs20.x and python3.12), OS-only runtimes, and container images are not supported.

SnapStart does not support provisioned concurrency, the arm64 architecture, Amazon Elastic File
System (Amazon EFS), or ephemeral storage greater than 512 MB.

To work with SnapStart, you can use the Lambda console, the Amazon Command Line Interface
(Amazon CLI), the Lambda API, the Amazon SDK for Java, Amazon CloudFormation, Amazon
Serverless Application Model (Amazon SAM), and Amazon Cloud Development Kit (Amazon CDK).
For more information, see Activating and managing Lambda SnapStart.

Note

You can use SnapStart only on published function versions and aliases that point to
versions. You can't use SnapStart on a function's unpublished version ($LATEST).

Supported Regions

SnapStart is available in the following Amazon Web Services Regions:

• US East (N. Virginia)

• US East (Ohio)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

• Asia Pacific (Hyderabad)

• Asia Pacific (Tokyo)

• Asia Pacific (Seoul)

• Asia Pacific (Osaka)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

Supported features and limitations 739

Amazon Lambda Developer Guide

• Asia Pacific (Jakarta)

• Asia Pacific (Melbourne)

• Canada (Central)

• Europe (Stockholm)

• Europe (Frankfurt)

• Europe (Zurich)

• Europe (Ireland)

• Europe (London)

• Europe (Paris)

• Europe (Milan)

• Europe (Spain)

• Middle East (UAE)

• Middle East (Bahrain)

• South America (São Paulo)

Compatibility considerations

With SnapStart, Lambda uses a single snapshot as the initial state for multiple execution
environments. If your function uses any of the following during the initialization phase, then you
might need to make some changes before using SnapStart:

Uniqueness

If your initialization code generates unique content that is included in the snapshot, then the
content might not be unique when it is reused across execution environments. To maintain
uniqueness when using SnapStart, you must generate unique content after initialization. This
includes unique IDs, unique secrets, and entropy that's used to generate pseudorandomness. To
learn how to restore uniqueness, see Handling uniqueness with Lambda SnapStart.

Network connections

The state of connections that your function establishes during the initialization phase isn't
guaranteed when Lambda resumes your function from a snapshot. Validate the state of your
network connections and re-establish them as necessary. In most cases, network connections
that an Amazon SDK establishes automatically resume. For other connections, review the best
practices.

Compatibility considerations 740

Amazon Lambda Developer Guide

Temporary data

Some functions download or initialize ephemeral data, such as temporary credentials or cached
timestamps, during the initialization phase. Refresh ephemeral data in the function handler
before using it, even when not using SnapStart.

SnapStart pricing

There's no additional cost for SnapStart. You're charged based on the number of requests for your
functions, the time that it takes your code to run, and the memory configured for your function.
Duration is calculated from the time that your code begins running until it returns or otherwise
ends, rounded up to the nearest 1 ms.

Duration charges apply to code that runs in the function handler, initialization code that's declared
outside of the handler, the time it takes for the runtime (JVM) to load, and any code that runs in
a runtime hook. For more information about how Lambda calculates duration, see Monitoring for
Lambda SnapStart.

For functions configured with SnapStart, Lambda periodically recycles the execution environments
and re-runs your initialization code. For resiliency, Lambda creates snapshots in multiple
Availability Zones. Charges apply each time that Lambda re-runs your initialization code in another
Availability Zone. For more information about how Lambda calculates charges, see Amazon
Lambda Pricing.

Comparing Lambda SnapStart and provisioned concurrency

Both Lambda SnapStart and provisioned concurrency can reduce cold starts and outlier latencies
when a function scales up. SnapStart helps you improve startup performance by up to 10x at no
extra cost. Provisioned concurrency keeps functions initialized and ready to respond in double-digit
milliseconds. Configuring provisioned concurrency incurs charges to your Amazon Web Services
account. Use provisioned concurrency if your application has strict cold start latency requirements.
You can't use both SnapStart and provisioned concurrency on the same function version.

Note

SnapStart works best when used with function invocations at scale. Functions that are
invoked infrequently might not experience the same performance improvements.

Pricing 741

https://www.amazonaws.cn/lambda/pricing/
https://www.amazonaws.cn/lambda/pricing/

Amazon Lambda Developer Guide

Additional resources

In addition to reading the other topics in this chapter, we also recommend that you try the Starting
up faster with Amazon Lambda SnapStart workshop and watch the Fast cold starts for your Java
functions session from Amazon re:Invent 2022.

Additional resources 742

https://catalog.workshops.aws/java-on-aws-lambda/en-US/03-snapstart
https://catalog.workshops.aws/java-on-aws-lambda/en-US/03-snapstart
https://www.youtube.com/watch?v=ZbnAithBNYY
https://www.youtube.com/watch?v=ZbnAithBNYY

Amazon Lambda Developer Guide

Activating and managing Lambda SnapStart

To use SnapStart, activate SnapStart on a new or existing Lambda function. Then, publish and
invoke a function version.

Topics

• Activating SnapStart (console)

• Activating SnapStart (Amazon CLI)

• Activating SnapStart (API)

• Lambda SnapStart and function states

• Updating a snapshot

• Using SnapStart with the Amazon SDK for Java

• Using SnapStart with Amazon CloudFormation, Amazon SAM, and Amazon CDK

• Deleting snapshots

Activating SnapStart (console)

To activate SnapStart for a function

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose Configuration, and then choose General configuration.

4. On the General configuration pane, choose Edit.

5. On the Edit basic settings page, for SnapStart, choose Published versions.

6. Choose Save.

7. Publish a function version. Lambda initializes your code, creates a snapshot of the initialized
execution environment, and then caches the snapshot for low-latency access.

8. Invoke the function version.

Activating SnapStart 743

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Activating SnapStart (Amazon CLI)

To activate SnapStart for an existing function

1. Update the function configuration by running the update-function-configuration command
with the --snap-start option.

aws lambda update-function-configuration \
 --function-name my-function \
 --snap-start ApplyOn=PublishedVersions

2. Publish a function version with the publish-version command.

aws lambda publish-version \
 --function-name my-function

3. Confirm that SnapStart is activated for the function version by running the get-function-
configuration command and specifying the version number. The following example specifies
version 1.

aws lambda get-function-configuration \
 --function-name my-function:1

If the response shows that OptimizationStatus is On and State is Active, then SnapStart is
activated and a snapshot is available for the specified function version.

"SnapStart": {
 "ApplyOn": "PublishedVersions",
 "OptimizationStatus": "On"
 },
 "State": "Active",

4. Invoke the function version by running the invoke command and specifying the version. The
following example invokes version 1.

aws lambda invoke \
 --cli-binary-format raw-in-base64-out \
 --function-name my-function:1 \
 --payload '{ "name": "Bob" }' \
 response.json

Activating SnapStart 744

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-version.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-configuration.html
https://docs.amazonaws.cn/lambda/latest/api/API_SnapStartResponse.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html#lambda-GetFunctionConfiguration-response-State
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html

Amazon Lambda Developer Guide

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

To activate SnapStart when you create a new function

1. Create a function by running the create-function command with the --snap-start option. For --
role, specify the Amazon Resource Name (ARN) of your execution role.

aws lambda create-function \
 --function-name my-function \
 --runtime "java21" \
 --zip-file fileb://my-function.zip \
 --handler my-function.handler \
 --role arn:aws-cn:iam::111122223333:role/lambda-ex \
 --snap-start ApplyOn=PublishedVersions

2. Create a version with the publish-version command.

aws lambda publish-version \
 --function-name my-function

3. Confirm that SnapStart is activated for the function version by running the get-function-
configuration command and specifying the version number. The following example specifies
version 1.

aws lambda get-function-configuration \
 --function-name my-function:1

If the response shows that OptimizationStatus is On and State is Active, then SnapStart is
activated and a snapshot is available for the specified function version.

"SnapStart": {
 "ApplyOn": "PublishedVersions",
 "OptimizationStatus": "On"
 },
 "State": "Active",

Activating SnapStart 745

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-version.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-configuration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-configuration.html
https://docs.amazonaws.cn/lambda/latest/api/API_SnapStartResponse.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html#lambda-GetFunctionConfiguration-response-State

Amazon Lambda Developer Guide

4. Invoke the function version by running the invoke command and specifying the version. The
following example invokes version 1.

aws lambda invoke \
 --cli-binary-format raw-in-base64-out \
 --function-name my-function:1 \
 --payload '{ "name": "Bob" }' \
 response.json

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

Activating SnapStart (API)

To activate SnapStart

1. Do one of the following:

• Create a new function with SnapStart activated by using the CreateFunction API action
with the SnapStart parameter.

• Activate SnapStart for an existing function by using the UpdateFunctionConfiguration
action with the SnapStart parameter.

2. Publish a function version with the PublishVersion action. Lambda initializes your code, creates
a snapshot of the initialized execution environment, and then caches the snapshot for low-
latency access.

3. Confirm that SnapStart is activated for the function version by using the
GetFunctionConfiguration action. Specify a version number to confirm that SnapStart is
activated for that version. If the response shows that OptimizationStatus is On and State is
Active, then SnapStart is activated and a snapshot is available for the specified function
version.

"SnapStart": {
 "ApplyOn": "PublishedVersions",
 "OptimizationStatus": "On"
 },
 "State": "Active",

Activating SnapStart 746

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_SnapStart.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_SnapStart.html
https://docs.amazonaws.cn/lambda/latest/api/API_PublishVersion.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_SnapStartResponse.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html#lambda-GetFunctionConfiguration-response-State

Amazon Lambda Developer Guide

4. Invoke the function version with the Invoke action.

Lambda SnapStart and function states

The following function states can occur when you use SnapStart. They can also occur when
Lambda periodically recycles the execution environment and re-runs the initialization code for a
function that's configured with SnapStart.

• Pending – Lambda is initializing your code and taking a snapshot of the initialized execution
environment. Any invocations or other API actions that operate on the function version will fail.

• Active – Snapshot creation is complete and you can invoke the function. To use SnapStart, you
must invoke the published function version, not the unpublished version ($LATEST).

• Inactive – The function version hasn't been invoked for 14 days. When the function version
becomes Inactive, Lambda deletes the snapshot. If you invoke the function version after 14
days, Lambda returns a SnapStartNotReadyException response and begins initializing a new
snapshot. Wait until the function version reaches the Active state, and then invoke it again.

• Failed – Lambda encountered an error when running the initialization code or creating the
snapshot.

Updating a snapshot

Lambda creates a snapshot for each published function version. To update a snapshot, publish a
new function version. Lambda automatically updates your snapshots with the latest runtime and
security patches.

Using SnapStart with the Amazon SDK for Java

To make Amazon SDK calls from your function, Lambda generates an ephemeral set of credentials
by assuming your function's execution role. These credentials are available as environment
variables during your function's invocation. You don't need to provide credentials for the SDK
directly in code. By default, the credential provider chain sequentially checks each place where
you can set credentials and chooses the first available—usually the environment variables
(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN).

Activating SnapStart 747

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html

Amazon Lambda Developer Guide

Note

When SnapStart is activated, the Java runtime automatically uses the
container credentials (AWS_CONTAINER_CREDENTIALS_FULL_URI and
AWS_CONTAINER_AUTHORIZATION_TOKEN) instead of the access key environment
variables. This prevents credentials from expiring before the function is restored.

Using SnapStart with Amazon CloudFormation, Amazon SAM, and Amazon CDK

• Amazon CloudFormation: Declare the SnapStart entity in your template.

• Amazon Serverless Application Model (Amazon SAM): Declare the SnapStart property in your
template.

• Amazon Cloud Development Kit (Amazon CDK): Use the SnapStartProperty type.

Deleting snapshots

Lambda deletes snapshots when:

• You delete the function or function version.

• You don't invoke the function version for 14 days. After 14 days without an invocation, the
function version transitions to the Inactive state. If you invoke the function version after 14 days,
Lambda returns a SnapStartNotReadyException response and begins initializing a new
snapshot. Wait until the function version reaches the Active state, and then invoke it again.

Lambda removes all resources associated with deleted snapshots in compliance with the General
Data Protection Regulation (GDPR).

Activating SnapStart 748

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-lambda-function-snapstart.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html#sam-function-snapstart
https://docs.amazonaws.cn/cdk/api/v2/java/software/amazon/awscdk/services/lambda/CfnFunction.SnapStartProperty.html

Amazon Lambda Developer Guide

Handling uniqueness with Lambda SnapStart

When invocations scale up on a SnapStart function, Lambda uses a single initialized snapshot
to resume multiple execution environments. If your initialization code generates unique content
that is included in the snapshot, then the content might not be unique when it is reused across
execution environments. To maintain uniqueness when using SnapStart, you must generate unique
content after initialization. This includes unique IDs, unique secrets, and entropy that's used to
generate pseudorandomness.

We recommend the following best practices to help you maintain uniqueness in your code.
Lambda also provides an open-source SnapStart scanning tool to help check for code that assumes
uniqueness. If you generate unique data during the initialization phase, then you can use a runtime
hook to restore uniqueness. With runtime hooks, you can run specific code immediately before
Lambda takes a snapshot or immediately after Lambda resumes a function from a snapshot.

Avoid saving state that depends on uniqueness during initialization

During the initialization phase of your function, avoid caching data that's intended to be unique,
such as generating a unique ID for logging. Instead, we recommend that you generate unique data
inside your function handler or use a runtime hook.

Example – Generating a unique ID in function handler

The following example demonstrates how to generate a UUID in the function handler.

import java.util.UUID;
 public class Handler implements RequestHandler<String, String> {
 private static UUID uniqueSandboxId = null;
 @Override
 public String handleRequest(String event, Context context) {
 if (uniqueSandboxId == null)
 uniqueSandboxId = UUID.randomUUID();
 System.out.println("Unique Sandbox Id: " + uniqueSandboxId);
 return "Hello, World!";
 }
 }

Use cryptographically secure pseudorandom number generators (CSPRNGs)

If your application depends on randomness, we recommend that you use cryptographically secure
random number generators (CSPRNGs). The Lambda managed runtime for Java includes two built-

Handling uniqueness 749

Amazon Lambda Developer Guide

in CSPRNGs (OpenSSL 1.0.2 and java.security.SecureRandom) that automatically maintain
randomness with SnapStart. Software that always gets random numbers from /dev/random or /
dev/urandom also maintains randomness with SnapStart.

Example – java.security.SecureRandom

The following example uses java.security.SecureRandom, which generates unique number
sequences even when the function is restored from a snapshot.

import java.security.SecureRandom;
 public class Handler implements RequestHandler<String, String> {
 private static SecureRandom rng = new SecureRandom();
 @Override
 public String handleRequest(String event, Context context) {
 for (int i = 0; i < 10; i++) {
 System.out.println(rng.next());
 }
 return "Hello, World!";
 }
 }

SnapStart scanning tool

Lambda provides a scanning tool to help you check for code that assumes uniqueness. The
SnapStart scanning tool is an open-source SpotBugs plugin that runs a static analysis against a
set of rules. The scanning tool helps identify potential code implementations that might break
assumptions regarding uniqueness. For installation instructions and a list of checks that the
scanning tool performs, see the aws-lambda-snapstart-java-rules repository on GitHub.

To learn more about handling uniqueness with SnapStart, see Starting up faster with Amazon
Lambda SnapStart on the Amazon Compute Blog.

Handling uniqueness 750

https://spotbugs.github.io/
https://github.com/aws/aws-lambda-snapstart-java-rules
https://aws.amazon.com/blogs/compute/starting-up-faster-with-aws-lambda-snapstart/
https://aws.amazon.com/blogs/compute/starting-up-faster-with-aws-lambda-snapstart/

Amazon Lambda Developer Guide

Runtime hooks for Lambda SnapStart

You can use runtime hooks to implement code before Lambda creates a snapshot or after Lambda
resumes a function from a snapshot. Runtime hooks are available as part of the open-source
Coordinated Restore at Checkpoint (CRaC) project. CRaC is in development for the Open Java
Development Kit (OpenJDK). For an example of how to use CRaC with a reference application, see
the CRaC repository on GitHub. CRaC uses three main elements:

• Resource – An interface with two methods, beforeCheckpoint() and afterRestore().
Use these methods to implement the code that you want to run before a snapshot and after a
restore.

• Context <R extends Resource> – To receive notifications for checkpoints and restores, a
Resource must be registered with a Context.

• Core – The coordination service, which provides the default global Context via the static
method Core.getGlobalContext().

For more information about Context and Resource, see Package org.crac in the CRaC
documentation.

Use the following steps to implement runtime hooks with the org.crac package. The Lambda
runtime contains a customized CRaC context implementation that calls your runtime hooks before
checkpointing and after restoring.

Step 1: Update the build configuration

Add the org.crac dependency to the build configuration. The following example uses Gradle. For
examples for other build systems, see the Apache Maven documentation.

dependencies {
 compile group: 'com.amazonaws', name: 'aws-lambda-java-core', version: '1.2.1'
 # All other project dependecies go here:
 # ...
 # Then, add the org.crac dependency:
 implementation group: 'org.crac', name: 'crac', version: '1.4.0'
}

Runtime hooks 751

https://wiki.openjdk.org/display/crac
https://wiki.openjdk.org/display/crac
https://github.com/CRaC/docs/blob/master/STEP-BY-STEP.md
https://javadoc.io/doc/io.github.crac/org-crac/latest/index.html
https://github.com/CRaC/org.crac
https://search.maven.org/artifact/io.github.crac/org-crac/0.1.3/jar

Amazon Lambda Developer Guide

Step 2: Update the Lambda handler

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

For more information, see Amazon Lambda function handler in Java.

The following example handler shows how to run code before checkpointing
(beforeCheckpoint()) and after restoring (afterRestore()). This handler also registers the
Resource to the runtime-managed global Context.

Note

When Lambda creates a snapshot, your initialization code can run for up to 15 minutes.
The time limit is 130 seconds or the configured function timeout (maximum 900 seconds),
whichever is higher. Your beforeCheckpoint() runtime hooks count towards the
initialization code time limit. When Lambda restores a snapshot, the runtime (JVM) must
load and afterRestore() runtime hooks must complete within the timeout limit (10
seconds). Otherwise, you'll get a SnapStartTimeoutException.

...
 import org.crac.Resource;
 import org.crac.Core;
 ...
public class CRaCDemo implements RequestStreamHandler, Resource {
 public CRaCDemo() {
 Core.getGlobalContext().register(this);
 }
 public String handleRequest(String name, Context context) throws IOException {
 System.out.println("Handler execution");
 return "Hello " + name;
 }
 @Override
 public void beforeCheckpoint(org.crac.Context<? extends Resource> context)
 throws Exception {
 System.out.println("Before checkpoint");
 }
 @Override
 public void afterRestore(org.crac.Context<? extends Resource> context)

Runtime hooks 752

Amazon Lambda Developer Guide

 throws Exception {
 System.out.println("After restore");

Context maintains only a WeakReference to the registered object. If a Resource is garbage
collected, runtime hooks do not run. Your code must maintain a strong reference to the Resource
to guarantee that the runtime hook runs.

Here are two examples of patterns to avoid:

Example – Object without a strong reference

Core.getGlobalContext().register(new MyResource());

Example – Objects of anonymous classes

Core.getGlobalContext().register(new Resource() {

 @Override
 public void afterRestore(Context<? extends Resource> context) throws Exception {
 // ...
 }

 @Override
 public void beforeCheckpoint(Context<? extends Resource> context) throws Exception {
 // ...
 }

});

Instead, maintain a strong reference. In the following example, the registered resource isn't
garbage collected and runtime hooks run consistently.

Example – Object with a strong reference

Resource myResource = new MyResource(); // This reference must be maintained to prevent
 the registered resource from being garbage collected
Core.getGlobalContext().register(myResource);

Runtime hooks 753

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ref/WeakReference.html
https://javadoc.io/static/io.github.crac/org-crac/0.1.3/org/crac/Resource.html

Amazon Lambda Developer Guide

Monitoring for Lambda SnapStart

You can monitor your Lambda SnapStart functions using Amazon CloudWatch, Amazon X-Ray, and
the Lambda Telemetry API.

Note

The AWS_LAMBDA_LOG_GROUP_NAME and AWS_LAMBDA_LOG_STREAM_NAME environment
variables are not available in Lambda SnapStart functions.

CloudWatch for SnapStart

There are a few differences with the CloudWatch log stream format for SnapStart functions:

• Initialization logs – When a new execution environment is created, the REPORT doesn't include
the Init Duration field. That's because Lambda initializes SnapStart functions when you
create a version instead of during function invocation. For SnapStart functions, the Init
Duration field is in the INIT_REPORT record. This record shows duration details for the Init
phase, including the duration of any beforeCheckpoint runtime hooks.

• Invocation logs – When a new execution environment is created, the REPORT includes the
Restore Duration and Billed Restore Duration fields:

• Restore Duration: The time it takes for Lambda to restore a snapshot, load the runtime
(JVM), and run any afterRestore runtime hooks. The process of restoring snapshots can
include time spent on activities outside the MicroVM. This time is reported in Restore
Duration.

• Billed Restore Duration: The time it takes for Lambda to load the runtime (JVM) and
run any afterRestore hooks. You are not charged for the time it takes to restore a snapshot.

Note

Duration charges apply to code that runs in the function handler, initialization code that's
declared outside of the handler, the time it takes for the runtime (JVM) to load, and any
code that runs in a runtime hook. For more information, see SnapStart pricing.

The cold start duration is the sum of Restore Duration + Duration.

Monitoring 754

Amazon Lambda Developer Guide

The following example is a Lambda Insights query that returns the latency percentiles for
SnapStart functions. For more information about Lambda Insights queries, see Example workflow
using queries to troubleshoot a function.

filter @type = "REPORT"
 | parse @log /\d+:\/aws\/lambda\/(?<function>.*)/
 | parse @message /Restore Duration: (?<restoreDuration>.*?) ms/
 | stats
count(*) as invocations,
pct(@duration+coalesce(@initDuration,0)+coalesce(restoreDuration,0), 50) as p50,
pct(@duration+coalesce(@initDuration,0)+coalesce(restoreDuration,0), 90) as p90,
pct(@duration+coalesce(@initDuration,0)+coalesce(restoreDuration,0), 99) as p99,
pct(@duration+coalesce(@initDuration,0)+coalesce(restoreDuration,0), 99.9) as p99.9
group by function, (ispresent(@initDuration) or ispresent(restoreDuration)) as
 coldstart
 | sort by coldstart desc

X-Ray active tracing for SnapStart

You can use X-Ray to trace requests to Lambda SnapStart functions. There are a few differences
with the X-Ray subsegments for SnapStart functions:

• There is no Initialization subsegment for SnapStart functions.

• The Restore subsegment shows the time it takes for Lambda to restore a snapshot, load the
runtime (JVM), and run any afterRestore runtime hooks. The process of restoring snapshots
can include time spent on activities outside the MicroVM. This time is reported in the Restore
subsegment. You aren't charged for the time spent outside the microVM to restore a snapshot.

Telemetry API events for SnapStart

Lambda sends the following SnapStart events to the Telemetry API:

• platform.restoreStart – Shows the time when the Restore phase started.

• platform.restoreRuntimeDone – Shows whether the Restore phase was successful.
Lambda sends this message when the runtime sends a restore/next runtime API request.
There are three possible statuses: success, failure, and timeout.

• platform.restoreReport – Shows how long the Restore phase lasted and how many
milliseconds you were billed for during this phase.

Monitoring 755

Amazon Lambda Developer Guide

Amazon API Gateway and function URL metrics

If you create a web API using API Gateway, then you can use the IntegrationLatency metric to
measure end-to-end latency (the time between when API Gateway relays a request to the backend
and when it receives a response from the backend).

If you're using a Lambda function URL, then you can use the UrlRequestLatency metric to measure
end-to-end latency (the time between when the function URL receives a request and when the
function URL returns a response).

Monitoring 756

https://docs.amazonaws.cn/apigateway/latest/developerguide/api-gateway-metrics-and-dimensions.html

Amazon Lambda Developer Guide

Security model for Lambda SnapStart

Lambda SnapStart supports encryption at rest. Lambda encrypts snapshots with an Amazon KMS
key. By default, Lambda uses an Amazon managed key. If this default behavior suits your workflow,
then you don't need to set up anything else. Otherwise, you can use the --kms-key-arn option
in the create-function or update-function-configuration command to provide an Amazon KMS
customer managed key. You might do this to control rotation of the KMS key or to meet the
requirements of your organization for managing KMS keys. Customer managed keys incur standard
Amazon KMS charges. For more information, see Amazon Key Management Service pricing.

When you delete a SnapStart function or function version, all Invoke requests to that function
or function version fail. Lambda automatically deletes snapshots that are not invoked for 14 days.
Lambda removes all resources associated with deleted snapshots in compliance with the General
Data Protection Regulation (GDPR).

Security model 757

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://www.amazonaws.cn/kms/pricing/

Amazon Lambda Developer Guide

Best practices for working with Lambda SnapStart

Topics

• Network connections

• Performance tuning

Network connections

The state of connections that your function establishes during the initialization phase isn't
guaranteed when Lambda resumes your function from a snapshot. In most cases, network
connections that an Amazon SDK establishes automatically resume. For other connections, we
recommend the following best practices.

Re-establish network connections

Always re-establish your network connections when your function resumes from a snapshot. We
recommend that you re-establish network connections in the function handler. Alternatively, you
can use an afterRestore runtime hook.

Don't use hostname as a unique execution environment identifier

We recommend against using hostname to identify your execution environment as a unique node
or container in your applications. With SnapStart, a single snapshot is used as the initial state for
multiple execution environments, and all execution environments return the same hostname
value for InetAddress.getLocalHost(). For applications that require a unique execution
environment identity or hostname value, we recommend that you generate a unique ID in the
function handler. Or, use an afterRestore runtime hook to generate a unique ID, and then use
the unique ID as the identifier for the execution environment.

Avoid binding connections to fixed source ports

We recommend that you avoid binding network connections to fixed source ports. Connections are
re-established when a function resumes from a snapshot, and network connections that are bound
to a fixed source port might fail.

Avoid using Java DNS cache

Lambda functions already cache DNS responses. If you use another DNS cache with SnapStart, then
you might experience connection timeouts when the function resumes from a snapshot.

Best practices 758

Amazon Lambda Developer Guide

The java.util.logging.Logger class can indirectly enable the JVM DNS cache. To override the
default settings, set networkaddress.cache.ttl to 0 before initializing logger. Example:

public class MyHandler {
 // first set TTL property
 static{
 java.security.Security.setProperty("networkaddress.cache.ttl" , "0");
 }
 // then instantiate logger
 var logger = org.apache.logging.log4j.LogManager.getLogger(MyHandler.class);
}

To prevent UnknownHostException failures, we recommend setting
networkaddress.cache.negative.ttl to 0. You can set this property for a Lambda function
with the AWS_LAMBDA_JAVA_NETWORKADDRESS_CACHE_NEGATIVE_TTL=0 environment variable.

Disabling the JVM DNS cache does not disable Lambda's managed DNS caching.

Performance tuning

Note

SnapStart works best when used with function invocations at scale. Functions that are
invoked infrequently might not experience the same performance improvements.

To maximize the benefits of SnapStart, we recommend that you preload classes that contribute to
startup latency in your initialization code instead of in the function handler. This moves the latency
associated with heavy class loading out of the invocation path, optimizing startup performance
with SnapStart.

If you can't preload classes during initialization, then we recommend that you preload classes
with dummy invocations. To do this, update the function handler code, as shown in the following
example from the pet store function on the Amazon Labs GitHub repository.

private static SpringLambdaContainerHandler<AwsProxyRequest, AwsProxyResponse> handler;
 static {
 try {
 handler =
 SpringLambdaContainerHandler.getAwsProxyHandler(PetStoreSpringAppConfig.class);

Best practices 759

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/InetAddress.html#inetaddress-caching-heading
https://github.com/awslabs/aws-serverless-java-container/tree/main/samples/spring/pet-store

Amazon Lambda Developer Guide

 // Use the onStartup method of the handler to register the custom filter
 handler.onStartup(servletContext -> {
 FilterRegistration.Dynamic registration =
 servletContext.addFilter("CognitoIdentityFilter", CognitoIdentityFilter.class);
 registration.addMappingForUrlPatterns(EnumSet.of(DispatcherType.REQUEST),
 false, "/*");
 });

 // Send a fake Amazon API Gateway request to the handler to load classes
 ahead of time
 ApiGatewayRequestIdentity identity = new ApiGatewayRequestIdentity();
 identity.setApiKey("foo");
 identity.setAccountId("foo");
 identity.setAccessKey("foo");

 AwsProxyRequestContext reqCtx = new AwsProxyRequestContext();
 reqCtx.setPath("/pets");
 reqCtx.setStage("default");
 reqCtx.setAuthorizer(null);
 reqCtx.setIdentity(identity);

 AwsProxyRequest req = new AwsProxyRequest();
 req.setHttpMethod("GET");
 req.setPath("/pets");
 req.setBody("");
 req.setRequestContext(reqCtx);

 Context ctx = new TestContext();
 handler.proxy(req, ctx);

 } catch (ContainerInitializationException e) {
 // if we fail here. We re-throw the exception to force another cold start
 e.printStackTrace();
 throw new RuntimeException("Could not initialize Spring framework", e);
 }
 }

Best practices 760

Amazon Lambda Developer Guide

Java Lambda function customization settings

This page describes settings specific to Java functions in Amazon Lambda. You can use these
settings to customize Java runtime startup behavior. This can reduce overall function latency and
improve overall function performance, without having to modify any code.

Sections

• JAVA_TOOL_OPTIONS environment variable

JAVA_TOOL_OPTIONS environment variable

In Java, Lambda supports the JAVA_TOOL_OPTIONS environment variable to set additional
command-line variables in Lambda. You can use this environment variable in various ways, such
as to customize tiered-compilation settings. The next example demonstrates how to use the
JAVA_TOOL_OPTIONS environment variable for this use case.

Example: Customize tiered compilation settings

Tiered compilation is a feature of the Java virtual machine (JVM). You can use specific tiered
compilation settings to make best use of the JVM's just-in-time (JIT) compilers. Typically, the
C1 compiler is optimized for fast start-up time. The C2 compiler is optimized for best overall
performance, but it also uses more memory and takes a longer time to achieve it.

There are 5 different levels of tiered compilation. At Level 0, the JVM interprets Java byte code.
At Level 4, the JVM uses the C2 compiler to analyze profiling data collected during application
startup. Over time, it monitors code usage to identify the best optimizations.

Customizing the tiered compilation level can help you reduce Java function cold start latency. For
example, set the tiered compilation level to 1 to have the JVM use the C1 compiler. This compiler
quickly produces optimized native code but it doesn't generate any profiling data and never uses
the C2 compiler.

In the Java 17 runtime, the JVM flag for tiered compilation is set to stop at level 1 by default. For
the Java 11 runtime and below, you can set the tiered compilation level to 1 by doing the following
steps:

To customize tiered compilation settings (console)

1. Open the Functions page in the Lambda console.

Java customization 761

https://console.aws.amazon.com/lambda/home#/functions

Amazon Lambda Developer Guide

2. Choose a Java function that you want to customize tiered compilation for.

3. Choose the Configuration tab, then choose Environment variables in the left menu.

4. Choose Edit.

5. Choose Add environment variable.

6. For the key, enter JAVA_TOOL_OPTIONS. For the value, enter -XX:+TieredCompilation -
XX:TieredStopAtLevel=1.

7. Choose Save.

Note

You can also use Lambda SnapStart to mitigate cold start issues. SnapStart uses cached
snapshots of your execution environment to significantly improve start-up performance.
For more information about SnapStart features, limitations, and supported regions, see
Improving startup performance with Lambda SnapStart.

JAVA_TOOL_OPTIONS environment variable 762

Amazon Lambda Developer Guide

Example: Customizing GC behavior using JAVA_TOOL_OPTIONS

Java 11 runtimes use the Serial garbage collector (GC) for garbage collection. By default, Java 17
runtimes also use the Serial GC. However, with Java 17 you can also use the JAVA_TOOL_OPTIONS
environment variable to change the default GC. You can choose between the Parallel GC and
Shenandoah GC.

For example, if your workload uses more memory and multiple CPUs, consider using the Parallel
GC for better performance. You can do this by appending the following to the value of your
JAVA_TOOL_OPTIONS environment variable:

-XX:+UseParallelGC

JAVA_TOOL_OPTIONS environment variable 763

https://docs.oracle.com/en/java/javase/18/gctuning/available-collectors.html#GUID-45794DA6-AB96-4856-A96D-FDE5F7DEE498
https://wiki.openjdk.org/display/shenandoah/Main
https://wiki.openjdk.org/display/shenandoah/Main

Amazon Lambda Developer Guide

Amazon Lambda context object in Java

When Lambda runs your function, it passes a context object to the handler. This object provides
methods and properties that provide information about the invocation, function, and execution
environment.

Context methods

• getRemainingTimeInMillis() – Returns the number of milliseconds left before the
execution times out.

• getFunctionName() – Returns the name of the Lambda function.

• getFunctionVersion() – Returns the version of the function.

• getInvokedFunctionArn() – Returns the Amazon Resource Name (ARN) that's used to invoke
the function. Indicates if the invoker specified a version number or alias.

• getMemoryLimitInMB() – Returns the amount of memory that's allocated for the function.

• getAwsRequestId() – Returns the identifier of the invocation request.

• getLogGroupName() – Returns the log group for the function.

• getLogStreamName() – Returns the log stream for the function instance.

• getIdentity() – (mobile apps) Returns information about the Amazon Cognito identity that
authorized the request.

• getClientContext() – (mobile apps) Returns the client context that's provided to Lambda by
the client application.

• getLogger() – Returns the logger object for the function.

The following example shows a function that uses the context object to access the Lambda logger.

Example Handler.java

package example;
import com.amazonaws.services.lambda.runtime.Context
import com.amazonaws.services.lambda.runtime.RequestHandler
import com.amazonaws.services.lambda.runtime.LambdaLogger
...

// Handler value: example.Handler
public class Handler implements RequestHandler<Map<String,String>, String>{

Context 764

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/Handler.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/Context.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/RequestHandler.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/LambdaLogger.java

Amazon Lambda Developer Guide

 Gson gson = new GsonBuilder().setPrettyPrinting().create();
 @Override
 public String handleRequest(Map<String,String> event, Context context)
 {
 LambdaLogger logger = context.getLogger();
 String response = new String("200 OK");
 // log execution details
 logger.log("ENVIRONMENT VARIABLES: " + gson.toJson(System.getenv()));
 logger.log("CONTEXT: " + gson.toJson(context));
 // process event
 logger.log("EVENT: " + gson.toJson(event));
 logger.log("EVENT TYPE: " + event.getClass().toString());
 return response;
 }
}

The function serializes the context object into JSON and records it in its log stream.

Example log output

START RequestId: 6bc28136-xmpl-4365-b021-0ce6b2e64ab0 Version: $LATEST
...
CONTEXT:
{
 "memoryLimit": 512,
 "awsRequestId": "6bc28136-xmpl-4365-b021-0ce6b2e64ab0",
 "functionName": "java-console",
 ...
}
...
END RequestId: 6bc28136-xmpl-4365-b021-0ce6b2e64ab0
REPORT RequestId: 6bc28136-xmpl-4365-b021-0ce6b2e64ab0 Duration: 198.50 ms Billed
 Duration: 200 ms Memory Size: 512 MB Max Memory Used: 90 MB Init Duration: 524.75 ms

The interface for the context object is available in the aws-lambda-java-core library. You can
implement this interface to create a context class for testing. The following example shows a
context class that returns dummy values for most properties and a working test logger.

Example src/test/java/example/TestContext.java

package example;

Context 765

https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-core
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/test/java/example/TestContext.java

Amazon Lambda Developer Guide

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.CognitoIdentity;
import com.amazonaws.services.lambda.runtime.ClientContext;
import com.amazonaws.services.lambda.runtime.LambdaLogger

public class TestContext implements Context{
 public TestContext() {}
 public String getAwsRequestId(){
 return new String("495b12a8-xmpl-4eca-8168-160484189f99");
 }
 public String getLogGroupName(){
 return new String("/aws/lambda/my-function");
 }
 ...
 public LambdaLogger getLogger(){
 return new TestLogger();
 }

}

For more information on logging, see Amazon Lambda function logging in Java.

Context in sample applications

The GitHub repository for this guide includes sample applications that demonstrate the use of
the context object. Each sample application includes scripts for easy deployment and cleanup, an
Amazon Serverless Application Model (Amazon SAM) template, and supporting resources.

Sample Lambda applications in Java

• java17-examples – A Java function that demonstrates how to use a Java record to represent an
input event data object.

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the Amazon SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

Context in sample applications 766

https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/Context.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/CognitoIdentity.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/ClientContext.java
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-core/src/main/java/com/amazonaws/services/lambda/runtime/LambdaLogger.java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java17-examples
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java

Amazon Lambda Developer Guide

• Use API Gateway to invoke a Lambda function – A Java function that scans a Amazon DynamoDB
table that contains employee information. It then uses Amazon Simple Notification Service to
send a text message to employees celebrating their work anniversaries. This example uses API
Gateway to invoke the function.

All of the sample applications have a test context class for unit tests. The java-basic application
shows you how to use the context object to get a logger. It uses SLF4J and Log4J 2 to provide a
logger that works for local unit tests.

Context in sample applications 767

https://docs.amazonaws.cn/lambda/latest/dg/example_cross_LambdaAPIGateway_section.html

Amazon Lambda Developer Guide

Amazon Lambda function logging in Java

Amazon Lambda automatically monitors Lambda functions and sends log entries to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation and other output from your function's code to the log stream. For more information
about CloudWatch Logs, see Using Amazon CloudWatch logs with Amazon Lambda.

To output logs from your function code, you can use methods on java.lang.System, or any logging
module that writes to stdout or stderr.

Sections

• Creating a function that returns logs

• Using Lambda advanced logging controls with Java

• Advanced logging with Log4j2 and SLF4J

• Other tools and libraries

• Using Powertools for Amazon Lambda (Java) and Amazon SAM for structured logging

• Using the Lambda console

• Using the CloudWatch console

• Using the Amazon Command Line Interface (Amazon CLI)

• Deleting logs

• Sample logging code

Creating a function that returns logs

To output logs from your function code, you can use methods on java.lang.System, or any logging
module that writes to stdout or stderr. The aws-lambda-java-core library provides a logger class
named LambdaLogger that you can access from the context object. The logger class supports
multiline logs.

The following example uses the LambdaLogger logger provided by the context object.

Example Handler.java

// Handler value: example.Handler
public class Handler implements RequestHandler<Object, String>{

Logging 768

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html

Amazon Lambda Developer Guide

 Gson gson = new GsonBuilder().setPrettyPrinting().create();
 @Override
 public String handleRequest(Object event, Context context)
 {
 LambdaLogger logger = context.getLogger();
 String response = new String("SUCCESS");
 // log execution details
 logger.log("ENVIRONMENT VARIABLES: " + gson.toJson(System.getenv()));
 logger.log("CONTEXT: " + gson.toJson(context));
 // process event
 logger.log("EVENT: " + gson.toJson(event));
 return response;
 }
}

Example log format

START RequestId: 6bc28136-xmpl-4365-b021-0ce6b2e64ab0 Version: $LATEST
ENVIRONMENT VARIABLES:
{
 "_HANDLER": "example.Handler",
 "AWS_EXECUTION_ENV": "AWS_Lambda_java8",
 "AWS_LAMBDA_FUNCTION_MEMORY_SIZE": "512",
 ...
}
CONTEXT:
{
 "memoryLimit": 512,
 "awsRequestId": "6bc28136-xmpl-4365-b021-0ce6b2e64ab0",
 "functionName": "java-console",
 ...
}
EVENT:
{
 "records": [
 {
 "messageId": "19dd0b57-xmpl-4ac1-bd88-01bbb068cb78",
 "receiptHandle": "MessageReceiptHandle",
 "body": "Hello from SQS!",
 ...
 }
]
}

Creating a function that returns logs 769

Amazon Lambda Developer Guide

END RequestId: 6bc28136-xmpl-4365-b021-0ce6b2e64ab0
REPORT RequestId: 6bc28136-xmpl-4365-b021-0ce6b2e64ab0 Duration: 198.50 ms Billed
 Duration: 200 ms Memory Size: 512 MB Max Memory Used: 90 MB Init Duration: 524.75 ms

The Java runtime logs the START, END, and REPORT lines for each invocation. The report line
provides the following details:

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the Amazon X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

Using Lambda advanced logging controls with Java

To give you more control over how your functions’ logs are captured, processed, and consumed,
you can configure the following logging options for supported Java runtimes:

• Log format - select between plain text and structured JSON format for your function’s logs

• Log level - for logs in JSON format, choose the detail level of the logs Lambda sends to
CloudWatch, such as ERROR, DEBUG, or INFO

• Log group - choose the CloudWatch log group your function sends logs to

For more information about these logging options, and instructions on how to configure your
function to use them, see the section called “Configuring advanced logging controls for your
Lambda function”.

To use the log format and log level options with your Java Lambda functions, see the guidance in
the following sections.

Using Lambda advanced logging controls with Java 770

Amazon Lambda Developer Guide

Using structured JSON log format with Java

If you select JSON for your function's log format, Lambda will send logs output using the
LambdaLogger class as structured JSON. Each JSON log object contains at least four key value
pairs with the following keys:

• "timestamp" - the time the log message was generated

• "level" - the log level assigned to the message

• "message" - the contents of the log message

• "AWSrequestId" - the unique request ID for the function invocation

Depending on the logging method you use, log outputs from your function captured in JSON
format can also contain additional key value pairs.

To assign a level to logs you create using the LambdaLogger logger, you need to provide a
LogLevel argument in your logging command as shown in the following example.

Example Java logging code

LambdaLogger logger = context.getLogger();
logger.log("This is a debug log", LogLevel.DEBUG);

This log output by this example code would be captured in CloudWatch Logs as follows:

Example JSON log record

{
 "timestamp":"2023-11-01T00:21:51.358Z",
 "level":"DEBUG",
 "message":"This is a debug log",
 "AWSrequestId":"93f25699-2cbf-4976-8f94-336a0aa98c6f"
}

If you don't assign a level to your log output, Lambda will automatically assign it the level INFO.

If your code already uses another logging library to produce JSON structured logs, you don’t need
to make any changes. Lambda doesn’t double-encode any logs that are already JSON encoded.
Even if you configure your function to use the JSON log format, your logging outputs appear in
CloudWatch in the JSON structure you define.

Using Lambda advanced logging controls with Java 771

Amazon Lambda Developer Guide

Using log-level filtering with Java

For Amazon Lambda to filter your application logs according to their log level, your function must
use JSON formatted logs. You can achieve this in two ways:

• Create log outputs using the standard LambdaLogger and configure your function to use JSON
log formatting. Lambda then filters your log outputs using the “level” key value pair in the
JSON object described in the section called “Using structured JSON log format with Java”. To
learn how to configure your function’s log format, see the section called “Configuring advanced
logging controls for your Lambda function”.

• Use another logging library or method to create JSON structured logs in your code that include
a “level” key value pair defining the level of the log output. You can use any logging library that
can write JSON logs to stdout or stderr. For example, you can use Powertools for Amazon
Lambda or the Log4j2 package to generate JSON structured log outputs from your code. See
the section called “Using Powertools for Amazon Lambda (Java) and Amazon SAM for structured
logging” and the section called “Advanced logging with Log4j2 and SLF4J” to learn more.

When you configure your function to use log-level filtering, you must select from the following
options for the level of logs you want Lambda to send to CloudWatch Logs:

Log level Standard usage

TRACE (most detail) The most fine-grained information used to
trace the path of your code's execution

DEBUG Detailed information for system debugging

INFO Messages that record the normal operation of
your function

WARN Messages about potential errors that may lead
to unexpected behavior if unaddressed

ERROR Messages about problems that prevent the
code from performing as expected

FATAL (least detail) Messages about serious errors that cause the
application to stop functioning

Using Lambda advanced logging controls with Java 772

Amazon Lambda Developer Guide

For Lambda to filter your function's logs, you must also include a "timestamp" key value pair in
your JSON log output. The time must be specified in valid RFC 3339 timestamp format. If you don't
supply a valid timestamp, Lambda will assign the log the level INFO and add a timestamp for you.

Lambda sends logs of the selected level and lower to CloudWatch. For example, if you configure a
log level of WARN, Lambda will send logs corresponding to the WARN, ERROR, and FATAL levels.

Advanced logging with Log4j2 and SLF4J

Note

Amazon Lambda does not include Log4j2 in its managed runtimes or base container
images. These are therefore not affected by the issues described in CVE-2021-44228,
CVE-2021-45046, and CVE-2021-45105.
For cases where a customer function includes an impacted Log4j2 version, we have applied
a change to the Lambda Java managed runtimes and base container images that helps
to mitigate the issues in CVE-2021-44228, CVE-2021-45046, and CVE-2021-45105. As
a result of this change, customers using Log4J2 may see an additional log entry, similar
to "Transforming org/apache/logging/log4j/core/lookup/JndiLookup
(java.net.URLClassLoader@...)". Any log strings that reference the jndi mapper in
the Log4J2 output will be replaced with "Patched JndiLookup::lookup()".
Independent of this change, we strongly encourage all customers whose functions include
Log4j2 to update to the latest version. Specifically, customers using the aws-lambda-java-
log4j2 library in their functions should update to version 1.5.0 (or later), and redeploy
their functions. This version updates the underlying Log4j2 utility dependencies to version
2.17.0 (or later). The updated aws-lambda-java-log4j2 binary is available at the Maven
repository and its source code is available in Github.
Lastly, take note that any libraries related to aws-lambda-java-log4j (v1.0.0 or 1.0.1)
should not be used under any circumstance. These libraries are related to version 1.x of
log4j which went end of life in 2015. The libraries are not supported, not maintained, not
patched, and have known security vulnerabilities.

To customize log output, support logging during unit tests, and log Amazon SDK calls, use Apache
Log4j2 with SLF4J. Log4j is a logging library for Java programs that enables you to configure log
levels and use appender libraries. SLF4J is a facade library that lets you change which library you
use without changing your function code.

Advanced logging with Log4j2 and SLF4J 773

https://www.ietf.org/rfc/rfc3339.txt
https://repo1.maven.org/maven2/com/amazonaws/aws-lambda-java-log4j2/
https://repo1.maven.org/maven2/com/amazonaws/aws-lambda-java-log4j2/
https://github.com/aws/aws-lambda-java-libs/tree/master/aws-lambda-java-log4j2

Amazon Lambda Developer Guide

To add the request ID to your function's logs, use the appender in the aws-lambda-java-log4j2
library.

Example src/main/resources/log4j2.xml – Appender configuration

<Configuration>
 <Appenders>
 <Lambda name="Lambda" format="${env:AWS_LAMBDA_LOG_FORMAT:-TEXT}">
 <LambdaTextFormat>
 <PatternLayout>
 <pattern>%d{yyyy-MM-dd HH:mm:ss} %X{AWSRequestId} %-5p %c{1} - %m%n </
pattern>
 </PatternLayout>
 </LambdaTextFormat>
 <LambdaJSONFormat>
 <JsonTemplateLayout eventTemplateUri="classpath:LambdaLayout.json" />
 </LambdaJSONFormat>
 </Lambda>
 </Appenders>
 <Loggers>
 <Root level="${env:AWS_LAMBDA_LOG_LEVEL:-INFO}">
 <AppenderRef ref="Lambda"/>
 </Root>
 <Logger name="software.amazon.awssdk" level="WARN" />
 <Logger name="software.amazon.awssdk.request" level="DEBUG" />
 </Loggers>
 </Configuration>

You can decide how your Log4j2 logs are configured for either plain text or JSON outputs by
specifying a layout under the <LambdaTextFormat> and <LambdaJSONFormat> tags.

In this example, in text mode, each line is prepended with the date, time, request ID, log level, and
class name. In JSON mode, the <JsonTemplateLayout> is used with a configuration that ships
together with the aws-lambda-java-log4j2 library.

SLF4J is a facade library for logging in Java code. In your function code, you use the SLF4J logger
factory to retrieve a logger with methods for log levels like info() and warn(). In your build
configuration, you include the logging library and SLF4J adapter in the classpath. By changing the
libraries in the build configuration, you can change the logger type without changing your function
code. SLF4J is required to capture logs from the SDK for Java.

In the following example code, the handler class uses SLF4J to retrieve a logger.

Advanced logging with Log4j2 and SLF4J 774

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java/src/main/resources/log4j2.xml

Amazon Lambda Developer Guide

Example src/main/java/example/HandlerS3.java – Logging with SLF4J

package example;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.S3Event;

import static org.apache.logging.log4j.CloseableThreadContext.put;

public class HandlerS3 implements RequestHandler<S3Event, String>{
 private static final Logger logger = LoggerFactory.getLogger(HandlerS3.class);

 @Override
 public String handleRequest(S3Event event, Context context) {
 for(var record : event.getRecords()) {
 try (var loggingCtx = put("awsRegion", record.getAwsRegion())) {
 loggingCtx.put("eventName", record.getEventName());
 loggingCtx.put("bucket", record.getS3().getBucket().getName());
 loggingCtx.put("key", record.getS3().getObject().getKey());

 logger.info("Handling s3 event");
 }
 }

 return "Ok";
 }
}

This code produces log outputs like the following:

Example log format

{
 "timestamp": "2023-11-15T16:56:00.815Z",
 "level": "INFO",
 "message": "Handling s3 event",
 "logger": "example.HandlerS3",
 "AWSRequestId": "0bced576-3936-4e5a-9dcd-db9477b77f97",

Advanced logging with Log4j2 and SLF4J 775

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events/src/main/java/example/HandlerS3.java

Amazon Lambda Developer Guide

 "awsRegion": "eu-south-1",
 "bucket": "java-logging-test-input-bucket",
 "eventName": "ObjectCreated:Put",
 "key": "test-folder/"
}

The build configuration takes runtime dependencies on the Lambda appender and SLF4J adapter,
and implementation dependencies on Log4j2.

Example build.gradle – Logging dependencies

dependencies {
 ...
 'com.amazonaws:aws-lambda-java-log4j2:[1.6.0,)',
 'com.amazonaws:aws-lambda-java-events:[3.11.3,)',
 'org.apache.logging.log4j:log4j-layout-template-json:[2.17.1,)',
 'org.apache.logging.log4j:log4j-slf4j2-impl:[2.19.0,)',
 ...
}

When you run your code locally for tests, the context object with the Lambda logger is
not available, and there's no request ID for the Lambda appender to use. For example test
configurations, see the sample applications in the next section.

Other tools and libraries

Powertools for Amazon Lambda (Java) is a developer toolkit to implement Serverless best practices
and increase developer velocity. The Logging utility provides a Lambda optimized logger which
includes additional information about function context across all your functions with output
structured as JSON. Use this utility to do the following:

• Capture key fields from the Lambda context, cold start and structures logging output as JSON

• Log Lambda invocation events when instructed (disabled by default)

• Print all the logs only for a percentage of invocations via log sampling (disabled by default)

• Append additional keys to structured log at any point in time

• Use a custom log formatter (Bring Your Own Formatter) to output logs in a structure compatible
with your organization’s Logging RFC

Tools and libraries 776

https://docs.powertools.aws.dev/lambda/java/
https://docs.powertools.aws.dev/lambda/java/core/logging/

Amazon Lambda Developer Guide

Using Powertools for Amazon Lambda (Java) and Amazon SAM for
structured logging

Follow the steps below to download, build, and deploy a sample Hello World Java application
with integrated Powertools for Amazon Lambda (Java)~ modules using the Amazon SAM. This
application implements a basic API backend and uses Powertools for emitting logs, metrics, and
traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send a
GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Java 11

• Amazon CLI version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Deploy a sample Amazon SAM application

1. Initialize the application using the Hello World Java template.

sam init --app-template hello-world-powertools-java --name sam-app --package-type
 Zip --runtime java11 --no-tracing

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Using Powertools for Amazon Lambda (Java) and Amazon SAM for structured logging 777

https://docs.powertools.aws.dev/lambda-java
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the logs for the function, run sam logs. For more information, see Working with logs in
the Amazon Serverless Application Model Developer Guide.

sam logs --stack-name sam-app

The log output looks like this:

2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:34.095000
 INIT_START Runtime Version: java:11.v15 Runtime Version ARN: arn:aws:lambda:eu-
central-1::runtime:0a25e3e7a1cc9ce404bc435eeb2ad358d8fa64338e618d0c224fe509403583ca
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:34.114000
 Picked up JAVA_TOOL_OPTIONS: -XX:+TieredCompilation -XX:TieredStopAtLevel=1
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:34.793000
 Transforming org/apache/logging/log4j/core/lookup/JndiLookup
 (lambdainternal.CustomerClassLoader@1a6c5a9e)
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:35.252000
 START RequestId: 7fcf1548-d2d4-41cd-a9a8-6ae47c51f765 Version: $LATEST
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:36.531000 {
 "_aws": {
 "Timestamp": 1675416276051,
 "CloudWatchMetrics": [
 {

Using Powertools for Amazon Lambda (Java) and Amazon SAM for structured logging 778

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

Amazon Lambda Developer Guide

 "Namespace": "sam-app-powerools-java",
 "Metrics": [
 {
 "Name": "ColdStart",
 "Unit": "Count"
 }
],
 "Dimensions": [
 [
 "Service",
 "FunctionName"
]
]
 }
]
 },
 "function_request_id": "7fcf1548-d2d4-41cd-a9a8-6ae47c51f765",
 "traceId":
 "Root=1-63dcd2d1-25f90b9d1c753a783547f4dd;Parent=e29684c1be352ce4;Sampled=1",
 "FunctionName": "sam-app-HelloWorldFunction-y9Iu1FLJJBGD",
 "functionVersion": "$LATEST",
 "ColdStart": 1.0,
 "Service": "service_undefined",
 "logStreamId": "2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81",
 "executionEnvironment": "AWS_Lambda_java11"
}
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:36.974000 Feb
 03, 2023 9:24:36 AM com.amazonaws.xray.AWSXRayRecorder <init>
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:36.993000 Feb
 03, 2023 9:24:36 AM com.amazonaws.xray.config.DaemonConfiguration <init>
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:36.993000
 INFO: Environment variable AWS_XRAY_DAEMON_ADDRESS is set. Emitting to daemon on
 address XXXX.XXXX.XXXX.XXXX:2000.
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:37.331000
 09:24:37.294 [main] INFO helloworld.App - {"version":null,"resource":"/
hello","path":"/hello/","httpMethod":"GET","headers":{"Accept":"*/
*","CloudFront-Forwarded-Proto":"https","CloudFront-Is-Desktop-
Viewer":"true","CloudFront-Is-Mobile-Viewer":"false","CloudFront-Is-
SmartTV-Viewer":"false","CloudFront-Is-Tablet-Viewer":"false","CloudFront-
Viewer-ASN":"16509","CloudFront-Viewer-Country":"IE","Host":"XXXX.execute-
api.eu-central-1.amazonaws.com","User-Agent":"curl/7.86.0","Via":"2.0
 f0300a9921a99446a44423d996042050.cloudfront.net (CloudFront)","X-Amz-
Cf-Id":"t9W5ByT11HaY33NM8YioKECn_4eMpNsOMPfEVRczD7T1RdhbtiwV1Q==","X-
Amzn-Trace-Id":"Root=1-63dcd2d1-25f90b9d1c753a783547f4dd","X-Forwarded-

Using Powertools for Amazon Lambda (Java) and Amazon SAM for structured logging 779

Amazon Lambda Developer Guide

For":"XX.XXX.XXX.XX, XX.XXX.XXX.XX","X-Forwarded-Port":"443","X-
Forwarded-Proto":"https"},"multiValueHeaders":{"Accept":["*/
*"],"CloudFront-Forwarded-Proto":["https"],"CloudFront-Is-Desktop-Viewer":
["true"],"CloudFront-Is-Mobile-Viewer":["false"],"CloudFront-Is-SmartTV-
Viewer":["false"],"CloudFront-Is-Tablet-Viewer":["false"],"CloudFront-Viewer-
ASN":["16509"],"CloudFront-Viewer-Country":["IE"],"Host":["XXXX.execute-
api.eu-central-1.amazonaws.com"],"User-Agent":["curl/7.86.0"],"Via":["2.0
 f0300a9921a99446a44423d996042050.cloudfront.net (CloudFront)"],"X-Amz-
Cf-Id":["t9W5ByT11HaY33NM8YioKECn_4eMpNsOMPfEVRczD7T1RdhbtiwV1Q=="],"X-
Amzn-Trace-Id":["Root=1-63dcd2d1-25f90b9d1c753a783547f4dd"],"X-Forwarded-
For":["XXX, XXX"],"X-Forwarded-Port":["443"],"X-Forwarded-Proto":
["https"]},"queryStringParameters":null,"multiValueQueryStringParameters":null,"pathParameters":null,"stageVariables":null,"requestContext":
{"accountId":"XXX","stage":"Prod","resourceId":"at73a1","requestId":"ba09ecd2-
acf3-40f6-89af-fad32df67597","operationName":null,"identity":
{"cognitoIdentityPoolId":null,"accountId":null,"cognitoIdentityId":null,"caller":null,"apiKey":null,"principalOrgId":null,"sourceIp":"54.240.197.236","cognitoAuthenticationType":null,"cognitoAuthenticationProvider":null,"userArn":null,"userAgent":"curl/7.86.0","user":null,"accessKey":null},"resourcePath":"/
hello","httpMethod":"GET","apiId":"XXX","path":"/Prod/
hello/","authorizer":null},"body":null,"isBase64Encoded":false}
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:37.351000
 09:24:37.351 [main] INFO helloworld.App - Retrieving https://
checkip.amazonaws.com
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:39.313000 {
 "function_request_id": "7fcf1548-d2d4-41cd-a9a8-6ae47c51f765",
 "traceId":
 "Root=1-63dcd2d1-25f90b9d1c753a783547f4dd;Parent=e29684c1be352ce4;Sampled=1",
 "xray_trace_id": "1-63dcd2d1-25f90b9d1c753a783547f4dd",
 "functionVersion": "$LATEST",
 "Service": "service_undefined",
 "logStreamId": "2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81",
 "executionEnvironment": "AWS_Lambda_java11"
}
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:39.371000 END
 RequestId: 7fcf1548-d2d4-41cd-a9a8-6ae47c51f765
2023/02/03/[$LATEST]851411a899b545eea2cffeba4cfbec81 2023-02-03T09:24:39.371000
 REPORT RequestId: 7fcf1548-d2d4-41cd-a9a8-6ae47c51f765 Duration: 4118.98 ms
 Billed Duration: 4119 ms Memory Size: 512 MB Max Memory Used: 152 MB Init
 Duration: 1155.47 ms
XRAY TraceId: 1-63dcd2d1-25f90b9d1c753a783547f4dd SegmentId: 3a028fee19b895cb
 Sampled: true

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Using Powertools for Amazon Lambda (Java) and Amazon SAM for structured logging 780

Amazon Lambda Developer Guide

Managing log retention

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which CloudWatch
automatically deletes the logs. To set up log retention, add the following to your Amazon SAM
template:

Resources:
 HelloWorldFunction:
 Type: AWS::Serverless::Function
 Properties:
 # Omitting other properties

 LogGroup:
 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: !Sub "/aws/lambda/${HelloWorldFunction}"
 RetentionInDays: 7

Using the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Using the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple

Using the Lambda console 781

https://console.amazonaws.cn/cloudwatch/home?#logs:

Amazon Lambda Developer Guide

concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with Amazon X-Ray. X-Ray records details about the request and the log stream in the
trace.

To use a sample application that correlates logs and traces with X-Ray, see Error processor sample
application for Amazon Lambda.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

You can use the Amazon CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

Using the Amazon Command Line Interface (Amazon CLI) 782

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html

Amazon Lambda Developer Guide

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15

Using the Amazon Command Line Interface (Amazon CLI) 783

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353

Using the Amazon Command Line Interface (Amazon CLI) 784

Amazon Lambda Developer Guide

 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Sample logging code

The GitHub repository for this guide includes sample applications that demonstrate the use of
various logging configurations. Each sample application includes scripts for easy deployment and
cleanup, an Amazon SAM template, and supporting resources.

Sample Lambda applications in Java

• java17-examples – A Java function that demonstrates how to use a Java record to represent an
input event data object.

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the Amazon SDK as a dependency.

Deleting logs 785

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java17-examples
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events

Amazon Lambda Developer Guide

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

• Use API Gateway to invoke a Lambda function – A Java function that scans a Amazon DynamoDB
table that contains employee information. It then uses Amazon Simple Notification Service to
send a text message to employees celebrating their work anniversaries. This example uses API
Gateway to invoke the function.

The java-basic sample application shows a minimal logging configuration that supports logging
tests. The handler code uses the LambdaLogger logger provided by the context object. For tests,
the application uses a custom TestLogger class that implements the LambdaLogger interface
with a Log4j2 logger. It uses SLF4J as a facade for compatibility with the Amazon SDK. Logging
libraries are excluded from build output to keep the deployment package small.

Sample logging code 786

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://docs.amazonaws.cn/lambda/latest/dg/example_cross_LambdaAPIGateway_section.html

Amazon Lambda Developer Guide

Amazon Lambda function errors in Java

When your code raises an error, Lambda generates a JSON representation of the error. This error
document appears in the invocation log and, for synchronous invocations, in the output.

This page describes how to view Lambda function invocation errors for the Java runtime using the
Lambda console and the Amazon CLI.

Sections

• Syntax

• How it works

• Creating a function that returns exceptions

• Using the Lambda console

• Using the Amazon Command Line Interface (Amazon CLI)

• Error handling in other Amazon services

• Sample applications

• What's next?

Syntax

In the following example, the runtime fails to deserialize the event into an object. The input is a
valid JSON type, but it doesn't match the type expected by the handler method.

Example Lambda runtime error

{
 "errorMessage": "An error occurred during JSON parsing",
 "errorType": "java.lang.RuntimeException",
 "stackTrace": [],
 "cause": {
 "errorMessage": "com.fasterxml.jackson.databind.exc.InvalidFormatException: Can
 not construct instance of java.lang.Integer from String value '1000,10': not a valid
 Integer value\n at [Source: lambdainternal.util.NativeMemoryAsInputStream@35fc6dc4;
 line: 1, column: 1] (through reference chain: java.lang.Object[0])",
 "errorType": "java.io.UncheckedIOException",
 "stackTrace": [],
 "cause": {

Errors 787

Amazon Lambda Developer Guide

 "errorMessage": "Can not construct instance of java.lang.Integer
 from String value '1000,10': not a valid Integer value\n at [Source:
 lambdainternal.util.NativeMemoryAsInputStream@35fc6dc4; line: 1, column: 1] (through
 reference chain: java.lang.Object[0])",
 "errorType": "com.fasterxml.jackson.databind.exc.InvalidFormatException",
 "stackTrace": [

 "com.fasterxml.jackson.databind.exc.InvalidFormatException.from(InvalidFormatException.java:55)",

 "com.fasterxml.jackson.databind.DeserializationContext.weirdStringException(DeserializationContext.java:907)",
 ...
]
 }
 }
}

How it works

When you invoke a Lambda function, Lambda receives the invocation request and validates the
permissions in your execution role, verifies that the event document is a valid JSON document, and
checks parameter values.

If the request passes validation, Lambda sends the request to a function instance. The Lambda
runtime environment converts the event document into an object, and passes it to your function
handler.

If Lambda encounters an error, it returns an exception type, message, and HTTP status code that
indicates the cause of the error. The client or service that invoked the Lambda function can handle
the error programmatically, or pass it along to an end user. The correct error handling behavior
depends on the type of application, the audience, and the source of the error.

The following list describes the range of status codes you can receive from Lambda.

2xx

A 2xx series error with a X-Amz-Function-Error header in the response indicates a Lambda
runtime or function error. A 2xx series status code indicates that Lambda accepted the request,
but instead of an error code, Lambda indicates the error by including the X-Amz-Function-
Error header in the response.

How it works 788

Amazon Lambda Developer Guide

4xx

A 4xx series error indicates an error that the invoking client or service can fix by modifying the
request, requesting permission, or by retrying the request. 4xx series errors other than 429
generally indicate an error with the request.

5xx

A 5xx series error indicates an issue with Lambda, or an issue with the function's configuration
or resources. 5xx series errors can indicate a temporary condition that can be resolved without
any action by the user. These issues can't be addressed by the invoking client or service, but a
Lambda function's owner may be able to fix the issue.

For a complete list of invocation errors, see InvokeFunction errors.

Creating a function that returns exceptions

You can create a Lambda function that displays human-readable error messages to users.

Note

To test this code, you need to include InputLengthException.java in your project src folder.

Example src/main/java/example/HandlerDivide.java – Runtime exception

import java.util.List;

 // Handler value: example.HandlerDivide
 public class HandlerDivide implements RequestHandler<List<Integer>, Integer>{
 Gson gson = new GsonBuilder().setPrettyPrinting().create();
 @Override
 public Integer handleRequest(List<Integer> event, Context context)
 {
 LambdaLogger logger = context.getLogger();
 // process event
 if (event.size() != 2)
 {
 throw new InputLengthException("Input must be a list that contains 2
 numbers.");
 }

Creating a function that returns exceptions 789

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html#API_Invoke_Errors
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/InputLengthException.java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/HandlerDivide.java

Amazon Lambda Developer Guide

 int numerator = event.get(0);
 int denominator = event.get(1);
 logger.log("EVENT: " + gson.toJson(event));
 logger.log("EVENT TYPE: " + event.getClass().toString());
 return numerator/denominator;
 }
 }

When the function throws InputLengthException, the Java runtime serializes it into the
following document.

Example error document (whitespace added)

{
 "errorMessage":"Input must be a list that contains 2 numbers.",
 "errorType":"java.lang.InputLengthException",
 "stackTrace": [
 "example.HandlerDivide.handleRequest(HandlerDivide.java:23)",
 "example.HandlerDivide.handleRequest(HandlerDivide.java:14)"
]
 }

In this example, InputLengthException is a RuntimeException. The RequestHandler interface
does not allow checked exceptions. The RequestStreamHandler interface supports throwing
IOException errors.

The return statement in the previous example can also throw a runtime exception.

 return numerator/denominator;

This code can return an arithmetic error.

{"errorMessage":"/ by zero","errorType":"java.lang.ArithmeticException","stackTrace":
["example.HandlerDivide.handleRequest(HandlerDivide.java:28)","example.HandlerDivide.handleRequest(HandlerDivide.java:13)"]}

Using the Lambda console

You can invoke your function on the Lambda console by configuring a test event and viewing the
output. The output is captured in the function's execution logs and, when active tracing is enabled,
in Amazon X-Ray.

Using the Lambda console 790

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic/src/main/java/example/InputLengthException.java

Amazon Lambda Developer Guide

To invoke a function on the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose the function to test, and choose Test.

3. Under Test event, select New event.

4. Select a Template.

5. For Name, enter a name for the test. In the text entry box, enter the JSON test event.

6. Choose Save changes.

7. Choose Test.

The Lambda console invokes your function synchronously and displays the result. To see the
response, logs, and other information, expand the Details section.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

When you invoke a Lambda function in the Amazon CLI, the Amazon CLI splits the response into
two documents. The Amazon CLI response is displayed in your command prompt. If an error has
occurred, the response contains a FunctionError field. The invocation response or error returned
by the function is written to an output file. For example, output.json or output.txt.

The following invoke command example demonstrates how to invoke a function and write the
invocation response to an output.txt file.

aws lambda invoke \
 --function-name my-function \
 --cli-binary-format raw-in-base64-out \
 --payload '{"key1": "value1", "key2": "value2", "key3": "value3"}' output.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.

Using the Amazon Command Line Interface (Amazon CLI) 791

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/invoke.html

Amazon Lambda Developer Guide

For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the Amazon CLI response in your command prompt:

{
 "StatusCode": 200,
 "FunctionError": "Unhandled",
 "ExecutedVersion": "$LATEST"
}

You should see the function invocation response in the output.txt file. In the same command
prompt, you can also view the output in your command prompt using:

cat output.txt

You should see the invocation response in your command prompt.

{"errorMessage":"Input must contain 2
 numbers.","errorType":"java.lang.InputLengthException","stackTrace":
 ["example.HandlerDivide.handleRequest(HandlerDivide.java:23)","example.HandlerDivide.handleRequest(HandlerDivide.java:14)"]}

Lambda also records up to 256 KB of the error object in the function's logs. For more information,
see Amazon Lambda function logging in Java.

Error handling in other Amazon services

When another Amazon service invokes your function, the service chooses the invocation type
and retry behavior. Amazon services can invoke your function on a schedule, in response to a
lifecycle event on a resource, or to serve a request from a user. Some services invoke functions
asynchronously and let Lambda handle errors, while others retry or pass errors back to the user.

For example, API Gateway treats all invocation and function errors as internal errors. If the Lambda
API rejects the invocation request, API Gateway returns a 500 error code. If the function runs but
returns an error, or returns a response in the wrong format, API Gateway returns a 502 error code.
To customize the error response, you must catch errors in your code and format a response in the
required format.

Error handling in other Amazon services 792

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

We recommend using Amazon X-Ray to determine the source of an error and its cause. X-Ray
allows you to find out which component encountered an error, and see details about the errors.
The following example shows a function error that resulted in a 502 response from API Gateway.

For more information, see Instrumenting Java code in Amazon Lambda.

Sample applications

The GitHub repository for this guide includes sample applications that demonstrate the use of
the errors. Each sample application includes scripts for easy deployment and cleanup, an Amazon
Serverless Application Model (Amazon SAM) template, and supporting resources.

Sample Lambda applications in Java

• java17-examples – A Java function that demonstrates how to use a Java record to represent an
input event data object.

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the Amazon SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

• Use API Gateway to invoke a Lambda function – A Java function that scans a Amazon DynamoDB
table that contains employee information. It then uses Amazon Simple Notification Service to
send a text message to employees celebrating their work anniversaries. This example uses API
Gateway to invoke the function.

Sample applications 793

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java17-examples
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://docs.amazonaws.cn/lambda/latest/dg/example_cross_LambdaAPIGateway_section.html

Amazon Lambda Developer Guide

The java-basic function includes a handler (HandlerDivide) that returns a custom runtime
exception. The HandlerStream handler implements the RequestStreamHandler and can throw
an IOException checked exception.

What's next?

• Learn how to show logging events for your Lambda function on the the section called “Logging”
page.

What's next? 794

Amazon Lambda Developer Guide

Instrumenting Java code in Amazon Lambda

Lambda integrates with Amazon X-Ray to help you trace, debug, and optimize Lambda
applications. You can use X-Ray to trace a request as it traverses resources in your application,
which may include Lambda functions and other Amazon services.

To send tracing data to X-Ray, you can use one of two SDK libraries:

• Amazon Distro for OpenTelemetry (ADOT) – A secure, production-ready, Amazon-supported
distribution of the OpenTelemetry (OTel) SDK.

• Amazon X-Ray SDK for Java – An SDK for generating and sending trace data to X-Ray.

• Powertools for Amazon Lambda (Java) – A developer toolkit to implement Serverless best
practices and increase developer velocity.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for Amazon Lambda SDKs are part of a tightly integrated
instrumentation solution offered by Amazon. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
Amazon Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using Powertools for Amazon Lambda (Java) and Amazon SAM for tracing

• Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing

• Using ADOT to instrument your Java functions

• Using the X-Ray SDK to instrument your Java functions

• Activating tracing with the Lambda console

• Activating tracing with the Lambda API

Tracing 795

https://www.amazonaws.cn/otel
https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-java.html
https://docs.powertools.aws.dev/lambda-java/
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

Amazon Lambda Developer Guide

• Activating tracing with Amazon CloudFormation

• Interpreting an X-Ray trace

• Storing runtime dependencies in a layer (X-Ray SDK)

• X-Ray tracing in sample applications (X-Ray SDK)

Using Powertools for Amazon Lambda (Java) and Amazon SAM for
tracing

Follow the steps below to download, build, and deploy a sample Hello World Java application
with integrated Powertools for Amazon Lambda (Java) modules using the Amazon SAM. This
application implements a basic API backend and uses Powertools for emitting logs, metrics, and
traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send a
GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Java 11

• Amazon CLI version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Deploy a sample Amazon SAM application

1. Initialize the application using the Hello World Java template.

sam init --app-template hello-world-powertools-java --name sam-app --package-type
 Zip --runtime java11 --no-tracing

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

Using Powertools for Amazon Lambda (Java) and Amazon SAM for tracing 796

https://docs.powertools.aws.dev/lambda-java
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the traces for the function, run sam traces.

sam traces

The trace output looks like this:

New XRay Service Graph
 Start time: 2023-02-03 14:31:48+01:00
 End time: 2023-02-03 14:31:48+01:00
 Reference Id: 0 - (Root) AWS::Lambda - sam-app-HelloWorldFunction-y9Iu1FLJJBGD -
 Edges: []
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0

Using Powertools for Amazon Lambda (Java) and Amazon SAM for tracing 797

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

Amazon Lambda Developer Guide

 - total response time: 5.587
 Reference Id: 1 - client - sam-app-HelloWorldFunction-y9Iu1FLJJBGD - Edges: [0]
 Summary_statistics:
 - total requests: 0
 - ok count(2XX): 0
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0

XRay Event [revision 3] at (2023-02-03T14:31:48.500000) with id
 (1-63dd0cc4-3c869dec72a586875da39777) and duration (5.603s)
 - 5.587s - sam-app-HelloWorldFunction-y9Iu1FLJJBGD [HTTP: 200]
 - 4.053s - sam-app-HelloWorldFunction-y9Iu1FLJJBGD
 - 1.181s - Initialization
 - 4.037s - Invocation
 - 1.981s - ## handleRequest
 - 1.840s - ## getPageContents
 - 0.000s - Overhead

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for
tracing

Follow the steps below to download, build, and deploy a sample Hello World Java application
with integrated Powertools for Amazon Lambda (Java) modules using the Amazon CDK. This
application implements a basic API backend and uses Powertools for emitting logs, metrics, and
traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send a
GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• Java 11

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 798

https://docs.powertools.aws.dev/lambda-java

Amazon Lambda Developer Guide

• Amazon CLI version 2

• Amazon CDK version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Deploy a sample Amazon CDK application

1. Create a project directory for your new application.

mkdir hello-world
cd hello-world

2. Initialize the app.

cdk init app --language java

3. Create a maven project with the following command:

mkdir app
cd app
mvn archetype:generate -DgroupId=helloworld -DartifactId=Function -
DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

4. Open pom.xml in the hello-world\app\Function directory and replace the existing code
with the following code that includes dependencies and maven plugins for Powertools.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>helloworld</groupId>
 <artifactId>Function</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>Function</name>
 <url>http://maven.apache.org</url>
<properties>
 <maven.compiler.source>11</maven.compiler.source>
 <maven.compiler.target>11</maven.compiler.target>
 <log4j.version>2.17.2</log4j.version>

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 799

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cdk/v2/guide/getting_started.html#getting_started_prerequisites
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

</properties>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>software.amazon.lambda</groupId>
 <artifactId>powertools-tracing</artifactId>
 <version>1.3.0</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.lambda</groupId>
 <artifactId>powertools-metrics</artifactId>
 <version>1.3.0</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.lambda</groupId>
 <artifactId>powertools-logging</artifactId>
 <version>1.3.0</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.2</version>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-events</artifactId>
 <version>3.11.1</version>
 </dependency>
 </dependencies>
<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>aspectj-maven-plugin</artifactId>
 <version>1.14.0</version>
 <configuration>
 <source>${maven.compiler.source}</source>
 <target>${maven.compiler.target}</target>
 <complianceLevel>${maven.compiler.target}</complianceLevel>

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 800

Amazon Lambda Developer Guide

 <aspectLibraries>
 <aspectLibrary>
 <groupId>software.amazon.lambda</groupId>
 <artifactId>powertools-tracing</artifactId>
 </aspectLibrary>
 <aspectLibrary>
 <groupId>software.amazon.lambda</groupId>
 <artifactId>powertools-metrics</artifactId>
 </aspectLibrary>
 <aspectLibrary>
 <groupId>software.amazon.lambda</groupId>
 <artifactId>powertools-logging</artifactId>
 </aspectLibrary>
 </aspectLibraries>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>3.4.1</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer

 implementation="com.github.edwgiz.maven_shade_plugin.log4j2_cache_transformer.PluginsCacheFileTransformer">
 </transformer>
 </transformers>
 <createDependencyReducedPom>false</
createDependencyReducedPom>
 <finalName>function</finalName>

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 801

Amazon Lambda Developer Guide

 </configuration>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>com.github.edwgiz</groupId>
 <artifactId>maven-shade-plugin.log4j2-cachefile-
transformer</artifactId>
 <version>2.15</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
</build>
</project>

5. Create the hello-world\app\src\main\resource directory and create log4j.xml for
the log configuration.

mkdir -p src/main/resource
cd src/main/resource
touch log4j.xml

6. Open log4j.xml and add the following code.

<?xml version="1.0" encoding="UTF-8"?>
<Configuration>
 <Appenders>
 <Console name="JsonAppender" target="SYSTEM_OUT">
 <JsonTemplateLayout
 eventTemplateUri="classpath:LambdaJsonLayout.json" />
 </Console>
 </Appenders>
 <Loggers>
 <Logger name="JsonLogger" level="INFO" additivity="false">
 <AppenderRef ref="JsonAppender"/>
 </Logger>
 <Root level="info">
 <AppenderRef ref="JsonAppender"/>
 </Root>
 </Loggers>
</Configuration>

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 802

Amazon Lambda Developer Guide

7. Open App.java from the hello-world\app\Function\src\main\java\helloworld
directory and replace the existing code with the following code. This is the code for the
Lambda function.

package helloworld;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URL;
import java.util.HashMap;
import java.util.Map;
import java.util.stream.Collectors;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.APIGatewayProxyRequestEvent;
import com.amazonaws.services.lambda.runtime.events.APIGatewayProxyResponseEvent;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import software.amazon.lambda.powertools.logging.Logging;
import software.amazon.lambda.powertools.metrics.Metrics;
import software.amazon.lambda.powertools.tracing.CaptureMode;
import software.amazon.lambda.powertools.tracing.Tracing;

import static software.amazon.lambda.powertools.tracing.CaptureMode.*;

/**
 * Handler for requests to Lambda function.
 */
public class App implements RequestHandler<APIGatewayProxyRequestEvent,
 APIGatewayProxyResponseEvent> {
 Logger log = LogManager.getLogger(App.class);

 @Logging(logEvent = true)
 @Tracing(captureMode = DISABLED)
 @Metrics(captureColdStart = true)
 public APIGatewayProxyResponseEvent handleRequest(final
 APIGatewayProxyRequestEvent input, final Context context) {
 Map<String, String> headers = new HashMap<>();
 headers.put("Content-Type", "application/json");
 headers.put("X-Custom-Header", "application/json");

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 803

Amazon Lambda Developer Guide

 APIGatewayProxyResponseEvent response = new APIGatewayProxyResponseEvent()
 .withHeaders(headers);
 try {
 final String pageContents = this.getPageContents("https://
checkip.amazonaws.com");
 String output = String.format("{ \"message\": \"hello world\",
 \"location\": \"%s\" }", pageContents);

 return response
 .withStatusCode(200)
 .withBody(output);
 } catch (IOException e) {
 return response
 .withBody("{}")
 .withStatusCode(500);
 }
 }
 @Tracing(namespace = "getPageContents")
 private String getPageContents(String address) throws IOException {
 log.info("Retrieving {}", address);
 URL url = new URL(address);
 try (BufferedReader br = new BufferedReader(new
 InputStreamReader(url.openStream()))) {
 return br.lines().collect(Collectors.joining(System.lineSeparator()));
 }
 }
}

8. Open HelloWorldStack.java from the hello-world\src\main\java\com\myorg
directory and replace the existing code with the following code. This code uses Lambda
Constructorand the ApiGatewayv2 Constructor to create a REST API and a Lambda function.

package com.myorg;

import software.amazon.awscdk.*;
import software.amazon.awscdk.services.apigatewayv2.alpha.*;
import
 software.amazon.awscdk.services.apigatewayv2.integrations.alpha.HttpLambdaIntegration;
import
 software.amazon.awscdk.services.apigatewayv2.integrations.alpha.HttpLambdaIntegrationProps;
import software.amazon.awscdk.services.lambda.Code;
import software.amazon.awscdk.services.lambda.Function;

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 804

https://docs.amazonaws.cn/cdk/api/v1/java/aws_cdk.aws_lambda.html
https://docs.amazonaws.cn/cdk/api/v1/java/aws_cdk.aws_lambda.html
https://docs.amazonaws.cn/cdk/api/v2/docs/aws-cdk-lib.aws_apigatewayv2-readme.html

Amazon Lambda Developer Guide

import software.amazon.awscdk.services.lambda.FunctionProps;
import software.amazon.awscdk.services.lambda.Runtime;
import software.amazon.awscdk.services.lambda.Tracing;
import software.amazon.awscdk.services.logs.RetentionDays;
import software.amazon.awscdk.services.s3.assets.AssetOptions;
import software.constructs.Construct;

import java.util.Arrays;
import java.util.List;

import static java.util.Collections.singletonList;
import static software.amazon.awscdk.BundlingOutput.ARCHIVED;

public class HelloWorldStack extends Stack {
 public HelloWorldStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public HelloWorldStack(final Construct scope, final String id, final StackProps
 props) {
 super(scope, id, props);

 List<String> functionPackagingInstructions = Arrays.asList(
 "/bin/sh",
 "-c",
 "cd Function " +
 "&& mvn clean install " +
 "&& cp /asset-input/Function/target/function.jar /asset-
output/"
);
 BundlingOptions.Builder builderOptions = BundlingOptions.builder()
 .command(functionPackagingInstructions)
 .image(Runtime.JAVA_11.getBundlingImage())
 .volumes(singletonList(
 // Mount local .m2 repo to avoid download all the
 dependencies again inside the container
 DockerVolume.builder()
 .hostPath(System.getProperty("user.home") +
 "/.m2/")
 .containerPath("/root/.m2/")
 .build()
))
 .user("root")
 .outputType(ARCHIVED);

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 805

Amazon Lambda Developer Guide

 Function function = new Function(this, "Function", FunctionProps.builder()
 .runtime(Runtime.JAVA_11)
 .code(Code.fromAsset("app", AssetOptions.builder()
 .bundling(builderOptions
 .command(functionPackagingInstructions)
 .build())
 .build()))
 .handler("helloworld.App::handleRequest")
 .memorySize(1024)
 .tracing(Tracing.ACTIVE)
 .timeout(Duration.seconds(10))
 .logRetention(RetentionDays.ONE_WEEK)
 .build());

 HttpApi httpApi = new HttpApi(this, "sample-api", HttpApiProps.builder()
 .apiName("sample-api")
 .build());

 httpApi.addRoutes(AddRoutesOptions.builder()
 .path("/")
 .methods(singletonList(HttpMethod.GET))
 .integration(new HttpLambdaIntegration("function", function,
 HttpLambdaIntegrationProps.builder()
 .payloadFormatVersion(PayloadFormatVersion.VERSION_2_0)
 .build()))
 .build());

 new CfnOutput(this, "HttpApi", CfnOutputProps.builder()
 .description("Url for Http Api")
 .value(httpApi.getApiEndpoint())
 .build());
 }
}

9. Open pom.xml from the hello-world directory and replace the existing code with the
following code.

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 806

Amazon Lambda Developer Guide

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.myorg</groupId>
 <artifactId>hello-world</artifactId>
 <version>0.1</version>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <cdk.version>2.70.0</cdk.version>
 <constructs.version>[10.0.0,11.0.0)</constructs.version>
 <junit.version>5.7.1</junit.version>
 </properties>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.8.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>3.0.0</version>
 <configuration>
 <mainClass>com.myorg.HelloWorldApp</mainClass>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <!-- AWS Cloud Development Kit -->
 <dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>aws-cdk-lib</artifactId>
 <version>${cdk.version}</version>
 </dependency>
 <dependency>

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 807

Amazon Lambda Developer Guide

 <groupId>software.constructs</groupId>
 <artifactId>constructs</artifactId>
 <version>${constructs.version}</version>
 </dependency>
 <dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter</artifactId>
 <version>${junit.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>apigatewayv2-alpha</artifactId>
 <version>${cdk.version}-alpha.0</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>apigatewayv2-integrations-alpha</artifactId>
 <version>${cdk.version}-alpha.0</version>
 </dependency>
 </dependencies>
</project>

10. Make sure you’re in the hello-world directory and deploy your application.

cdk deploy

11. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name HelloWorldStack --query
 'Stacks[0].Outputs[?OutputKey==`HttpApi`].OutputValue' --output text

12. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

13. To get the traces for the function, run sam traces.

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 808

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

Amazon Lambda Developer Guide

sam traces

The trace output looks like this:

New XRay Service Graph
 Start time: 2023-02-03 14:59:50+00:00
 End time: 2023-02-03 14:59:50+00:00
 Reference Id: 0 - (Root) AWS::Lambda - sam-app-HelloWorldFunction-YBg8yfYtOc9j -
 Edges: [1]
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.924
 Reference Id: 1 - AWS::Lambda::Function - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - Edges: []
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0.016
 Reference Id: 2 - client - sam-app-HelloWorldFunction-YBg8yfYtOc9j - Edges: [0]
 Summary_statistics:
 - total requests: 0
 - ok count(2XX): 0
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0

XRay Event [revision 1] at (2023-02-03T14:59:50.204000) with id
 (1-63dd2166-434a12c22e1307ff2114f299) and duration (0.924s)
 - 0.924s - sam-app-HelloWorldFunction-YBg8yfYtOc9j [HTTP: 200]
 - 0.016s - sam-app-HelloWorldFunction-YBg8yfYtOc9j
 - 0.739s - Initialization
 - 0.016s - Invocation
 - 0.013s - ## lambda_handler
 - 0.000s - ## app.hello
 - 0.000s - Overhead

Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing 809

Amazon Lambda Developer Guide

14. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

cdk destroy

Using ADOT to instrument your Java functions

ADOT provides fully managed Lambda layers that package everything you need to collect
telemetry data using the OTel SDK. By consuming this layer, you can instrument your Lambda
functions without having to modify any function code. You can also configure your layer to do
custom initialization of OTel. For more information, see Custom configuration for the ADOT
Collector on Lambda in the ADOT documentation.

For Java runtimes, you can choose between two layers to consume:

• Amazon managed Lambda layer for ADOT Java (Auto-instrumentation Agent) – This layer
automatically transforms your function code at startup to collect tracing data. For detailed
instructions on how to consume this layer together with the ADOT Java agent, see Amazon
Distro for OpenTelemetry Lambda Support for Java (Auto-instrumentation Agent) in the ADOT
documentation.

• Amazon managed Lambda layer for ADOT Java – This layer also provides built-in
instrumentation for Lambda functions, but it requires a few manual code changes to initialize
the OTel SDK. For detailed instructions on how to consume this layer, see Amazon Distro for
OpenTelemetry Lambda Support for Java in the ADOT documentation.

Using the X-Ray SDK to instrument your Java functions

To record data about calls that your function makes to other resources and services in your
application, you can add the X-Ray SDK for Java to your build configuration. The following
example shows a Gradle build configuration that includes the libraries that activate automatic
instrumentation of Amazon SDK for Java 2.x clients.

Example build.gradle – Tracing dependencies

dependencies {
 implementation platform('software.amazon.awssdk:bom:2.15.0')
 implementation platform('com.amazonaws:aws-xray-recorder-sdk-bom:2.11.0')

Using ADOT to instrument your Java functions 810

https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda/lambda-java-auto-instr
https://aws-otel.github.io/docs/getting-started/lambda/lambda-java-auto-instr
https://aws-otel.github.io/docs/getting-started/lambda/lambda-java
https://aws-otel.github.io/docs/getting-started/lambda/lambda-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java/build.gradle

Amazon Lambda Developer Guide

 ...
 implementation 'com.amazonaws:aws-xray-recorder-sdk-core'
 implementation 'com.amazonaws:aws-xray-recorder-sdk-aws-sdk'
 implementation 'com.amazonaws:aws-xray-recorder-sdk-aws-sdk-instrumentor'
 ...
}

After you add the correct dependencies and make the necessary code changes, activate tracing in
your function's configuration via the Lambda console or the API.

Activating tracing with the Lambda console

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Choose Edit.

5. Under X-Ray, toggle on Active tracing.

6. Choose Save.

Activating tracing with the Lambda API

Configure tracing on your Lambda function with the Amazon CLI or Amazon SDK, use the following
API operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example Amazon CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \

Activating tracing with the Lambda console 811

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html

Amazon Lambda Developer Guide

--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Activating tracing with Amazon CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an Amazon CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

For an Amazon Serverless Application Model (Amazon SAM) AWS::Serverless::Function
resource, use the Tracing property.

Example template.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Interpreting an X-Ray trace

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example from the error processor sample application shows an application with two

Activating tracing with Amazon CloudFormation 812

https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.amazonaws.cn/xray/latest/devguide/xray-concepts.html#xray-concepts-servicegraph

Amazon Lambda Developer Guide

functions. The primary function processes events and sometimes returns errors. The second
function at the top processes errors that appear in the first's log group and uses the Amazon SDK
to call X-Ray, Amazon Simple Storage Service (Amazon S3), and Amazon CloudWatch Logs.

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests.

Note

You cannot configure the X-Ray sampling rate for your functions.

When using active tracing, Lambda records 2 segments per trace, which creates two nodes on the
service graph. The following image highlights these two nodes for the primary function from the
error processor sample application.

Interpreting an X-Ray trace 813

Amazon Lambda Developer Guide

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has origin AWS::Lambda::Function.

This example expands the function segment to show its three subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

Note

Lambda SnapStart functions also include a Restore subsegment. The Restore
subsegment shows the time it takes for Lambda to restore a snapshot, load the runtime
(JVM), and run any afterRestore runtime hooks. The process of restoring snapshots can
include time spent on activities outside the MicroVM. This time is reported in the Restore
subsegment. You aren't charged for the time spent outside the microVM to restore a
snapshot.

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see Amazon X-Ray SDK for Java in the Amazon
X-Ray Developer Guide.

Interpreting an X-Ray trace 814

https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-java.html

Amazon Lambda Developer Guide

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the Amazon
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see Amazon X-Ray pricing.

Storing runtime dependencies in a layer (X-Ray SDK)

If you use the X-Ray SDK to instrument Amazon SDK clients your function code, your deployment
package can become quite large. To avoid uploading runtime dependencies every time you update
your function code, package the X-Ray SDK in a Lambda layer.

The following example shows an AWS::Serverless::LayerVersion resource that stores the
Amazon SDK for Java and X-Ray SDK for Java.

Example template.yml – Dependencies layer

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: build/distributions/blank-java.zip
 Tracing: Active
 Layers:
 - !Ref libs
 ...
 libs:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: blank-java-lib
 Description: Dependencies for the blank-java sample app.
 ContentUri: build/blank-java-lib.zip
 CompatibleRuntimes:
 - java21

With this configuration, you update the library layer only if you change your runtime dependencies.
Since the function deployment package contains only your code, this can help reduce upload times.

Storing runtime dependencies in a layer (X-Ray SDK) 815

https://www.amazonaws.cn/xray/pricing/
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-java/template.yml
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-layerversion.html

Amazon Lambda Developer Guide

Creating a layer for dependencies requires build configuration changes to generate the layer
archive prior to deployment. For a working example, see the java-basic sample application on
GitHub.

X-Ray tracing in sample applications (X-Ray SDK)

The GitHub repository for this guide includes sample applications that demonstrate the use of X-
Ray tracing. Each sample application includes scripts for easy deployment and cleanup, an Amazon
SAM template, and supporting resources.

Sample Lambda applications in Java

• java17-examples – A Java function that demonstrates how to use a Java record to represent an
input event data object.

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the Amazon SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

• Use API Gateway to invoke a Lambda function – A Java function that scans a Amazon DynamoDB
table that contains employee information. It then uses Amazon Simple Notification Service to
send a text message to employees celebrating their work anniversaries. This example uses API
Gateway to invoke the function.

All of the sample applications have active tracing enabled for Lambda functions. For example,
the s3-java application shows automatic instrumentation of Amazon SDK for Java 2.x clients,
segment management for tests, custom subsegments, and the use of Lambda layers to store
runtime dependencies.

X-Ray tracing in sample applications (X-Ray SDK) 816

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java17-examples
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://docs.amazonaws.cn/lambda/latest/dg/example_cross_LambdaAPIGateway_section.html

Amazon Lambda Developer Guide

Java sample applications for Amazon Lambda

The GitHub repository for this guide provides sample applications that demonstrate the use of Java
in Amazon Lambda. Each sample application includes scripts for easy deployment and cleanup, an
Amazon CloudFormation template, and supporting resources.

Sample Lambda applications in Java

• java17-examples – A Java function that demonstrates how to use a Java record to represent an
input event data object.

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle events
from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis. These
functions use the latest version of the aws-lambda-java-events library (3.0.0 and newer). These
examples do not require the Amazon SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the Java
Class Library (JCL) to create thumbnails from uploaded image files.

• Use API Gateway to invoke a Lambda function – A Java function that scans a Amazon DynamoDB
table that contains employee information. It then uses Amazon Simple Notification Service to
send a text message to employees celebrating their work anniversaries. This example uses API
Gateway to invoke the function.

Running popular Java frameworks on Lambda

• spring-cloud-function-samples – An example from Spring that shows how to use the Spring
Cloud Function framework to create Amazon Lambda functions.

• Serverless Spring Boot Application Demo – An example that shows how to set up a typical Spring
Boot application in a managed Java runtime with and without SnapStart, or as a GraalVM native
image with a custom runtime.

• Serverless Micronaut Application Demo – An example that shows how to use Micronaut in a
managed Java runtime with and without SnapStart, or as a GraalVM native image with a custom
runtime. Learn more in the Micronaut/Lambda guides.

• Serverless Quarkus Application Demo – An example that shows how to use Quarkus in a
managed Java runtime with and without SnapStart, or as a GraalVM native image with a custom
runtime. Learn more in the Quarkus/Lambda guide and Quarkus/SnapStart guide.

Sample apps 817

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java17-examples
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://docs.amazonaws.cn/lambda/latest/dg/example_cross_LambdaAPIGateway_section.html
https://github.com/spring-cloud/spring-cloud-function/tree/3.2.x/spring-cloud-function-samples/function-sample-aws
https://spring.io/projects/spring-cloud-function
https://spring.io/projects/spring-cloud-function
https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/springboot
https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/micronaut
https://guides.micronaut.io/latest/tag-lambda.html
https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/quarkus
https://quarkus.io/guides/aws-lambda
https://quarkus.io/guides/aws-lambda-snapstart

Amazon Lambda Developer Guide

If you're new to Lambda functions in Java, start with the java-basic examples. To get started
with Lambda event sources, see the java-events examples. Both of these example sets show the
use of Lambda's Java libraries, environment variables, the Amazon SDK, and the Amazon X-Ray
SDK. Each example uses a Lambda layer to package its dependencies separately from the function
code, which speeds up deployment times. These examples require minimal setup and you can
deploy them from the command line in less than a minute.

Sample apps 818

Amazon Lambda Developer Guide

Building Lambda functions with Go

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only runtime (the
provided runtime family) to deploy Go functions to Lambda.

Topics

• Go runtime support

• Tools and libraries

• Amazon Lambda function handler in Go

• Amazon Lambda context object in Go

• Deploy Go Lambda functions with .zip file archives

• Deploy Go Lambda functions with container images

• Amazon Lambda function logging in Go

• Amazon Lambda function errors in Go

• Instrumenting Go code in Amazon Lambda

• Using environment variables

Go runtime support

The Go 1.x managed runtime for Lambda is deprecated. If you have functions that use the Go
1.x runtime, you must migrate your functions to provided.al2023 or provided.al2. The
provided.al2023 and provided.al2 runtimes offer several advantages over go1.x, including
support for the arm64 architecture (Amazon Graviton2 processors), smaller binaries, and slightly
faster invoke times.

No code changes are required for this migration. The only required changes relate to how you
build your deployment package and which runtime you use to create your function. For more
information, see Migrating Amazon Lambda functions from the Go1.x runtime to the custom
runtime on Amazon Linux 2 on the Amazon Compute Blog.

Go runtime support 819

https://amazonaws-china.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/
https://amazonaws-china.com/blogs/compute/migrating-aws-lambda-functions-from-the-go1-x-runtime-to-the-custom-runtime-on-amazon-linux-2/

Amazon Lambda Developer Guide

OS-only

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

OS-only
Runtime

provided.
al2023

Amazon
Linux 2023

OS-only
Runtime

provided.
al2

Amazon
Linux 2

Tools and libraries

Lambda provides the following tools and libraries for the Go runtime:

• Amazon SDK for Go: the official Amazon SDK for the Go programming language.

• github.com/aws/aws-lambda-go/lambda: The implementation of the Lambda programming
model for Go. This package is used by Amazon Lambda to invoke your handler.

• github.com/aws/aws-lambda-go/lambdacontext: Helpers for accessing context information from
the context object.

• github.com/aws/aws-lambda-go/events: This library provides type definitions for common event
source integrations.

• github.com/aws/aws-lambda-go/cmd/build-lambda-zip: This tool can be used to create a .zip
file archive on Windows.

For more information, see aws-lambda-go on GitHub.

Lambda provides the following sample applications for the Go runtime:

Sample Lambda applications in Go

• go-al2 – A hello world function that returns the public IP address. This app uses the
provided.al2 custom runtime.

• blank-go – A Go function that shows the use of Lambda's Go libraries, logging, environment
variables, and the Amazon SDK. This app uses the go1.x runtime.

Tools and libraries 820

https://github.com/aws/aws-sdk-go
https://github.com/aws/aws-lambda-go/tree/master/lambda
https://github.com/aws/aws-lambda-go/tree/master/lambdacontext
https://github.com/aws/aws-lambda-go/tree/master/events
https://github.com/aws/aws-lambda-go/tree/master/cmd/build-lambda-zip
https://github.com/aws/aws-lambda-go
https://github.com/aws-samples/sessions-with-aws-sam/tree/master/go-al2
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-go

Amazon Lambda Developer Guide

Tools and libraries 821

Amazon Lambda Developer Guide

Amazon Lambda function handler in Go

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

A Lambda function written in Go is authored as a Go executable. In your Lambda function code,
you need to include the github.com/aws/aws-lambda-go/lambda package, which implements the
Lambda programming model for Go. In addition, you need to implement handler function code
and a main() function.

Example Go Lambda function

package main

import (
 "context"
 "fmt"
 "github.com/aws/aws-lambda-go/lambda"
)

type MyEvent struct {
 Name string `json:"name"`
}

func HandleRequest(ctx context.Context, event *MyEvent) (*string, error) {
 if event == nil {
 return nil, fmt.Errorf("received nil event")
 }
 message := fmt.Sprintf("Hello %s!", event.Name)
 return &message, nil
}

func main() {
 lambda.Start(HandleRequest)
}

Here is a sample input for this function:

{
 "name": "Jane"

Handler 822

https://golang.org/
https://github.com/aws/aws-lambda-go/tree/master/lambda

Amazon Lambda Developer Guide

}

Note the following:

• package main: In Go, the package containing func main() must always be named main.

• import: Use this to include the libraries your Lambda function requires. In this instance, it
includes:

• context: Amazon Lambda context object in Go.

• fmt: The Go Formatting object used to format the return value of your function.

• github.com/aws/aws-lambda-go/lambda: As mentioned previously, implements the Lambda
programming model for Go.

• func HandleRequest(ctx context.Context, event *MyEvent) (*string, error): This is the signature
of your Lambda handler. It's the entry point for your Lambda function and contains the logic
that is executed when your function is invoked. In addition, the parameters included denote the
following:

• ctx context.Context: Provides runtime information for your Lambda function invocation. ctx
is the variable you declare to leverage the information available via Amazon Lambda context
object in Go.

• event *MyEvent: This is a parameter named event that points to MyEvent. It represents the
input to the Lambda function.

• *string, error: The handler returns two values. The first is a pointer to a string which contains
the result of the Lambda function. The second is an error type, which is nil if there's no error
and contains standard error information if something goes wrong. For more information on
custom error handling, see Amazon Lambda function errors in Go.

• return &message, nil: Returns two values. The first is a pointer to a string message, which
is a greeting constructed using the Name field from the input event. The second value, nil,
indicates that the function didn't encounter any errors.

• func main(): The entry point that runs your Lambda function code. This is required.

By adding lambda.Start(HandleRequest) between func main(){} code brackets, your
Lambda function will be executed. Per Go language standards, the opening bracket, { must be
placed directly at the end of the main function signature.

Handler 823

https://golang.org/pkg/fmt/
https://golang.org/pkg/builtin/#error

Amazon Lambda Developer Guide

Naming

provided.al2 and provided.al2023 runtimes

For Go functions that use the provided.al2 or provided.al2023 runtime in a .zip
deployment package, the executable file that contains your function code must be named
bootstrap. If you're deploying the function with a .zip file, the bootstrap file must be at
the root of the .zip file. For Go functions that use the provided.al2 or provided.al2023
runtime in a container image, you can use any name for the executable file.

You can use any name for the handler. To reference the handler value in your code, you can use
the _HANDLER environment variable.

go1.x runtime

For Go functions that use the go1.x runtime, the executable file and the handler can share
any name. For example, if you set the value of the handler to Handler, Lambda will call the
main() function in the Handler executable file.

To change the function handler name in the Lambda console, on the Runtime settings pane,
choose Edit.

Lambda function handler using structured types

In the example above, the input type was a simple string. But you can also pass in structured events
to your function handler:

package main

import (
 "fmt"
 "github.com/aws/aws-lambda-go/lambda"
)

type MyEvent struct {
 Name string `json:"What is your name?"`
 Age int `json:"How old are you?"`
}

type MyResponse struct {
 Message string `json:"Answer"`

Naming 824

Amazon Lambda Developer Guide

}

func HandleLambdaEvent(event *MyEvent) (*MyResponse, error) {
 if event == nil {
 return nil, fmt.Errorf("received nil event")
 }
 return &MyResponse{Message: fmt.Sprintf("%s is %d years old!", event.Name,
 event.Age)}, nil
}

func main() {
 lambda.Start(HandleLambdaEvent)
}

Here is a sample input for this function:

{
 "What is your name?": "Jim",
 "How old are you?": 33
}

The response looks like this:

{
 "Answer": "Jim is 33 years old!"
}

To be exported, field names in the event struct must be capitalized. For more information on
handling events from Amazon event sources, see aws-lambda-go/events.

Valid handler signatures

You have several options when building a Lambda function handler in Go, but you must adhere to
the following rules:

• The handler must be a function.

• The handler may take between 0 and 2 arguments. If there are two arguments, the first
argument must implement context.Context.

• The handler may return between 0 and 2 arguments. If there is a single return value, it must
implement error. If there are two return values, the second value must implement error. For

Lambda function handler using structured types 825

https://github.com/aws/aws-lambda-go/tree/master/events

Amazon Lambda Developer Guide

more information on implementing error-handling information, see Amazon Lambda function
errors in Go.

The following lists valid handler signatures. TIn and TOut represent types compatible with the
encoding/json standard library. For more information, see func Unmarshal to learn how these types
are deserialized.

• func ()

• func () error

• func (TIn) error

• func () (TOut, error)

• func (context.Context) error

• func (context.Context, TIn) error

• func (context.Context) (TOut, error)

• func (context.Context, TIn) (TOut, error)

Using global state

You can declare and modify global variables that are independent of your Lambda function's
handler code. In addition, your handler may declare an init function that is executed when your
handler is loaded. This behaves the same in Amazon Lambda as it does in standard Go programs. A
single instance of your Lambda function will never handle multiple events simultaneously.

Example Go function with global variables

Note

This code uses the Amazon SDK for Go V2. For more information, see Getting Started with
the Amazon SDK for Go V2.

Using global state 826

https://golang.org/pkg/encoding/json/#Unmarshal
https://aws.github.io/aws-sdk-go-v2/docs/getting-started/
https://aws.github.io/aws-sdk-go-v2/docs/getting-started/

Amazon Lambda Developer Guide

package main

import (
 "context"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/s3"
 "github.com/aws/aws-sdk-go-v2/service/s3/types"
 "log"
)

var invokeCount int
var myObjects []types.Object

func init() {
 // Load the SDK configuration
 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 log.Fatalf("Unable to load SDK config: %v", err)
 }

 // Initialize an S3 client
 svc := s3.NewFromConfig(cfg)

 // Define the bucket name as a variable so we can take its address
 bucketName := "examplebucket"
 input := &s3.ListObjectsV2Input{
 Bucket: &bucketName,
 }

 // List objects in the bucket
 result, err := svc.ListObjectsV2(context.TODO(), input)
 if err != nil {
 log.Fatalf("Failed to list objects: %v", err)
 }
 myObjects = result.Contents
}

func LambdaHandler(ctx context.Context) (int, error) {
 invokeCount++
 for i, obj := range myObjects {
 log.Printf("object[%d] size: %d key: %s", i, obj.Size, *obj.Key)
 }

Using global state 827

Amazon Lambda Developer Guide

 return invokeCount, nil
}

func main() {
 lambda.Start(LambdaHandler)
}

Using global state 828

Amazon Lambda Developer Guide

Amazon Lambda context object in Go

When Lambda runs your function, it passes a context object to the handler. This object provides
methods and properties with information about the invocation, function, and execution
environment.

The Lambda context library provides the following global variables, methods, and properties.

Global variables

• FunctionName – The name of the Lambda function.

• FunctionVersion – The version of the function.

• MemoryLimitInMB – The amount of memory that's allocated for the function.

• LogGroupName – The log group for the function.

• LogStreamName – The log stream for the function instance.

Context methods

• Deadline – Returns the date that the execution times out, in Unix time milliseconds.

Context properties

• InvokedFunctionArn – The Amazon Resource Name (ARN) that's used to invoke the function.
Indicates if the invoker specified a version number or alias.

• AwsRequestID – The identifier of the invocation request.

• Identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• ClientContext – (mobile apps) Client context that's provided to Lambda by the client
application.

Accessing invoke context information

Lambda functions have access to metadata about their environment and the invocation request.
This can be accessed at Package context. Should your handler include context.Context
as a parameter, Lambda will insert information about your function into the context's Value

Context 829

https://golang.org/pkg/context/

Amazon Lambda Developer Guide

property. Note that you need to import the lambdacontext library to access the contents of the
context.Context object.

package main

import (
 "context"
 "log"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-lambda-go/lambdacontext"
)

func CognitoHandler(ctx context.Context) {
 lc, _ := lambdacontext.FromContext(ctx)
 log.Print(lc.Identity.CognitoIdentityPoolID)
}

func main() {
 lambda.Start(CognitoHandler)
}

In the example above, lc is the variable used to consume the information that the context object
captured and log.Print(lc.Identity.CognitoIdentityPoolID) prints that information, in
this case, the CognitoIdentityPoolID.

The following example introduces how to use the context object to monitor how long your Lambda
function takes to complete. This allows you to analyze performance expectations and adjust your
function code accordingly, if needed.

package main

import (
 "context"
 "log"
 "time"
 "github.com/aws/aws-lambda-go/lambda"
)

func LongRunningHandler(ctx context.Context) (string, error) {

 deadline, _ := ctx.Deadline()
 deadline = deadline.Add(-100 * time.Millisecond)

Accessing invoke context information 830

Amazon Lambda Developer Guide

 timeoutChannel := time.After(time.Until(deadline))

 for {

 select {

 case <- timeoutChannel:
 return "Finished before timing out.", nil

 default:
 log.Print("hello!")
 time.Sleep(50 * time.Millisecond)
 }
 }
}

func main() {
 lambda.Start(LongRunningHandler)
}

Accessing invoke context information 831

Amazon Lambda Developer Guide

Deploy Go Lambda functions with .zip file archives

Your Amazon Lambda function's code consists of scripts or compiled programs and their
dependencies. You use a deployment package to deploy your function code to Lambda. Lambda
supports two types of deployment packages: container images and .zip file archives.

This page describes how to create a .zip file as your deployment package for the Go runtime, and
then use the .zip file to deploy your function code to Amazon Lambda using the Amazon Web
Services Management Console, Amazon Command Line Interface (Amazon CLI), and Amazon
Serverless Application Model (Amazon SAM).

Note that Lambda uses POSIX file permissions, so you may need to set permissions for the
deployment package folder before you create the .zip file archive.

Sections

• Creating a .zip file on macOS and Linux

• Creating a .zip file on Windows

• Creating and updating Go Lambda functions using .zip files

• Creating a Go layer for your dependencies

Creating a .zip file on macOS and Linux

The following steps show how to compile your executable using the go build command and
create a .zip file deployment package for Lambda. Before compiling your code, make sure you
have installed the lambda package from GitHub. This module provides an implementation of the
runtime interface, which manages the interaction between Lambda and your function code. To
download this library, run the following command.

go get github.com/aws/aws-lambda-go/lambda

If your function uses the Amazon SDK for Go, download the standard set of SDK modules, along
with any Amazon service API clients required by your application. To learn how to install the SDK
for Go, see Getting Started with the Amazon SDK for Go V2.

Deploy .zip file archives 832

http://www.amazonaws.cn/premiumsupport/knowledge-center/lambda-deployment-package-errors/
http://www.amazonaws.cn/premiumsupport/knowledge-center/lambda-deployment-package-errors/
https://github.com/aws/aws-lambda-go/tree/master/lambda
https://aws.github.io/aws-sdk-go-v2/docs/getting-started/

Amazon Lambda Developer Guide

Using the provided runtime family

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only runtime (the
provided runtime family) to deploy Go functions to Lambda.

To create a .zip deployment package (macOS/Linux)

1. In the project directory that contains your application's main.go file, compile your executable.
Note the following:

• The executable must be named bootstrap. For more information, see Naming.

• Set your target instruction set architecture. OS-only runtimes support both arm64 and
x86_64.

• You can use the optional lambda.norpc tag to exclude the Remote Procedure Call (RPC)
component of the lambda library. The RPC component is only required if you are using the
deprecated Go 1.x runtime. Excluding the RPC reduces the size of the deployment package.

For the arm64 architecture:

GOOS=linux GOARCH=arm64 go build -tags lambda.norpc -o bootstrap main.go

For the x86_64 architecture:

GOOS=linux GOARCH=amd64 go build -tags lambda.norpc -o bootstrap main.go

2. (Optional) You may need to compile packages with CGO_ENABLED=0 set on Linux:

GOOS=linux GOARCH=arm64 CGO_ENABLED=0 go build -o bootstrap -tags lambda.norpc
 main.go

This command creates a stable binary package for standard C library (libc) versions, which
may be different on Lambda and other devices.

3. Create a deployment package by packaging the executable in a .zip file.

zip myFunction.zip bootstrap

Creating a .zip file on macOS and Linux 833

https://github.com/aws/aws-lambda-go/tree/master/lambda

Amazon Lambda Developer Guide

Note

The bootstrap file must be at the root of the .zip file.

4. Create the function. Note the following:

• The binary must be named bootstrap, but the handler name can be anything. For more
information, see Naming.

• The --architectures option is only required if you're using arm64. The default value is
x86_64.

• For --role, specify the Amazon Resource Name (ARN) of the execution role.

aws lambda create-function --function-name myFunction \
--runtime provided.al2023 --handler bootstrap \
--architectures arm64 \
--role arn:aws-cn:iam::111122223333:role/lambda-ex \
--zip-file fileb://myFunction.zip

Creating a .zip file on Windows

The following steps show how to download the build-lambda-zip tool for Windows from GitHub,
compile your executable, and create a .zip deployment package.

Note

If you have not already done so, you must install git and then add the git executable to
your Windows %PATH% environment variable.

Before compiling your code, make sure you have installed the lambda library from GitHub. To
download this library, run the following command.

go get github.com/aws/aws-lambda-go/lambda

Creating a .zip file on Windows 834

https://github.com/aws/aws-lambda-go/tree/main/cmd/build-lambda-zip
https://git-scm.com/
https://github.com/aws/aws-lambda-go/tree/master/lambda

Amazon Lambda Developer Guide

If your function uses the Amazon SDK for Go, download the standard set of SDK modules, along
with any Amazon service API clients required by your application. To learn how to install the SDK
for Go, see Getting Started with the Amazon SDK for Go V2.

Using the provided runtime family

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only runtime (the
provided runtime family) to deploy Go functions to Lambda.

To create a .zip deployment package (Windows)

1. Download the build-lambda-zip tool from GitHub.

go install github.com/aws/aws-lambda-go/cmd/build-lambda-zip@latest

2. Use the tool from your GOPATH to create a .zip file. If you have a default installation of Go, the
tool is typically in %USERPROFILE%\Go\bin. Otherwise, navigate to where you installed the
Go runtime and do one of the following:

cmd.exe

In cmd.exe, run one of the following, depending on your target instruction set architecture.
OS-only runtimes support both arm64 and x86_64.

You can use the optional lambda.norpc tag to exclude the Remote Procedure Call (RPC)
component of the lambda library. The RPC component is only required if you are using the
deprecated Go 1.x runtime. Excluding the RPC reduces the size of the deployment package.

Example — For the x86_64 architecture

set GOOS=linux
set GOARCH=amd64
set CGO_ENABLED=0
go build -tags lambda.norpc -o bootstrap main.go
%USERPROFILE%\Go\bin\build-lambda-zip.exe -o myFunction.zip bootstrap

Example — For the arm64 architecture

set GOOS=linux
set GOARCH=arm64

Creating a .zip file on Windows 835

https://aws.github.io/aws-sdk-go-v2/docs/getting-started/
https://github.com/aws/aws-lambda-go/tree/master/lambda

Amazon Lambda Developer Guide

set CGO_ENABLED=0
go build -tags lambda.norpc -o bootstrap main.go
%USERPROFILE%\Go\bin\build-lambda-zip.exe -o myFunction.zip bootstrap

PowerShell

In PowerShell, run one of the following, depending on your target instruction set
architecture. OS-only runtimes support both arm64 and x86_64.

You can use the optional lambda.norpc tag to exclude the Remote Procedure Call (RPC)
component of the lambda library. The RPC component is only required if you are using the
deprecated Go 1.x runtime. Excluding the RPC reduces the size of the deployment package.

For the x86_64 architecture:

$env:GOOS = "linux"
$env:GOARCH = "amd64"
$env:CGO_ENABLED = "0"
go build -tags lambda.norpc -o bootstrap main.go
~\Go\Bin\build-lambda-zip.exe -o myFunction.zip bootstrap

For the arm64 architecture:

$env:GOOS = "linux"
$env:GOARCH = "arm64"
$env:CGO_ENABLED = "0"
go build -tags lambda.norpc -o bootstrap main.go
~\Go\Bin\build-lambda-zip.exe -o myFunction.zip bootstrap

3. Create the function. Note the following:

• The binary must be named bootstrap, but the handler name can be anything. For more
information, see Naming.

• The --architectures option is only required if you're using arm64. The default value is
x86_64.

• For --role, specify the Amazon Resource Name (ARN) of the execution role.

aws lambda create-function --function-name myFunction \
--runtime provided.al2023 --handler bootstrap \

Creating a .zip file on Windows 836

https://github.com/aws/aws-lambda-go/tree/master/lambda

Amazon Lambda Developer Guide

--architectures arm64 \
--role arn:aws-cn:iam::111122223333:role/lambda-ex \
--zip-file fileb://myFunction.zip

Creating and updating Go Lambda functions using .zip files

Once you have created your .zip deployment package, you can use it to create a new Lambda
function or update an existing one. You can deploy your .zip package using the Lambda console,
the Amazon Command Line Interface, and the Lambda API. You can also create and update
Lambda functions using Amazon Serverless Application Model (Amazon SAM) and Amazon
CloudFormation.

The maximum size for a .zip deployment package for Lambda is 250 MB (unzipped). Note that this
limit applies to the combined size of all the files you upload, including any Lambda layers.

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give an executable file the correct permissions, run the
following command.

chmod 755 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object
in the Microsoft Windows documentation.

Creating and updating functions with .zip files using the console

To create a new function, you must first create the function in the console, then upload your .zip
archive. To update an existing function, open the page for your function, then follow the same
procedure to add your updated .zip file.

If your .zip file is less than 50MB, you can create or update a function by uploading the file directly
from your local machine. For .zip files greater than 50MB, you must upload your package to an
Amazon S3 bucket first. For instructions on how to upload a file to an Amazon S3 bucket using the
Amazon Web Services Management Console, see Getting started with Amazon S3. To upload files
using the Amazon CLI, see Move objects in the Amazon CLI User Guide.

Creating and updating Go Lambda functions using .zip files 837

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

Amazon Lambda Developer Guide

Note

You cannot convert an existing container image function to use a .zip archive. You must
create a new function.

To create a new function (console)

1. Open the Functions page of the Lambda console and choose Create Function.

2. Choose Author from scratch.

3. Under Basic information, do the following:

a. For Function name, enter the name for your function.

b. For Runtime, choose provided.al2023.

4. (Optional) Under Permissions, expand Change default execution role. You can create a new
Execution role or use an existing one.

5. Choose Create function. Lambda creates a basic 'Hello world' function using your chosen
runtime.

To upload a .zip archive from your local machine (console)

1. In the Functions page of the Lambda console, choose the function you want to upload the .zip
file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose .zip file.

5. To upload the .zip file, do the following:

a. Select Upload, then select your .zip file in the file chooser.

b. Choose Open.

c. Choose Save.

Creating and updating Go Lambda functions using .zip files 838

https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

To upload a .zip archive from an Amazon S3 bucket (console)

1. In the Functions page of the Lambda console, choose the function you want to upload a
new .zip file for.

2. Select the Code tab.

3. In the Code source pane, choose Upload from.

4. Choose Amazon S3 location.

5. Paste the Amazon S3 link URL of your .zip file and choose Save.

Creating and updating functions with .zip files using the Amazon CLI

You can can use the Amazon CLI to create a new function or to update an existing one using a .zip
file. Use the create-function and update-function-code commands to deploy your .zip package.
If your .zip file is smaller than 50MB, you can upload the .zip package from a file location on your
local build machine. For larger files, you must upload your .zip package from an Amazon S3 bucket.
For instructions on how to upload a file to an Amazon S3 bucket using the Amazon CLI, see Move
objects in the Amazon CLI User Guide.

Note

If you upload your .zip file from an Amazon S3 bucket using the Amazon CLI, the bucket
must be located in the same Amazon Web Services Region as your function.

To create a new function using a .zip file with the Amazon CLI, you must specify the following:

• The name of your function (--function-name)
• Your function’s runtime (--runtime)
• The Amazon Resource Name (ARN) of your function’s execution role (--role)
• The name of the handler method in your function code (--handler)

You must also specify the location of your .zip file. If your .zip file is located in a folder on your
local build machine, use the --zip-file option to specify the file path, as shown in the following
example command.

aws lambda create-function --function-name myFunction \
--runtime provided.al2023 --handler bootstrap \

Creating and updating Go Lambda functions using .zip files 839

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-function.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-function.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html

Amazon Lambda Developer Guide

--role arn:aws-cn:iam::111122223333:role/service-role/my-lambda-role \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --code option as shown in
the following example command. You only need to use the S3ObjectVersion parameter for
versioned objects.

aws lambda create-function --function-name myFunction \
--runtime provided.al2023 --handler bootstrap \
--role arn:aws-cn:iam::111122223333:role/service-role/my-lambda-role \
--code S3Bucket=myBucketName,S3Key=myFileName.zip,S3ObjectVersion=myObjectVersion

To update an existing function using the CLI, you specify the the name of your function using the
--function-name parameter. You must also specify the location of the .zip file you want to use
to update your function code. If your .zip file is located in a folder on your local build machine, use
the --zip-file option to specify the file path, as shown in the following example command.

aws lambda update-function-code --function-name myFunction \
--zip-file fileb://myFunction.zip

To specify the location of .zip file in an Amazon S3 bucket, use the --s3-bucket and --s3-key
options as shown in the following example command. You only need to use the --s3-object-
version parameter for versioned objects.

aws lambda update-function-code --function-name myFunction \
--s3-bucket myBucketName --s3-key myFileName.zip --s3-object-version myObject Version

Creating and updating functions with .zip files using the Lambda API

To create and update functions using a .zip file archive, use the following API operations:

• CreateFunction
• UpdateFunctionCode

Creating and updating functions with .zip files using Amazon SAM

The Amazon Serverless Application Model (Amazon SAM) is a toolkit that helps streamline the
process of building and running serverless applications on Amazon. You define the resources for

Creating and updating Go Lambda functions using .zip files 840

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html

Amazon Lambda Developer Guide

your application in a YAML or JSON template and use the Amazon SAM command line interface
(Amazon SAM CLI) to build, package, and deploy your applications. When you build a Lambda
function from an Amazon SAM template, Amazon SAM automatically creates a .zip deployment
package or container image with your function code and any dependencies you specify. To learn
more about using Amazon SAM to build and deploy Lambda functions, see Getting started with
Amazon SAM in the Amazon Serverless Application Model Developer Guide.

You can also use Amazon SAM to create a Lambda function using an existing .zip file archive. To
create a Lambda function using Amazon SAM, you can save your .zip file in an Amazon S3 bucket
or in a local folder on your build machine. For instructions on how to upload a file to an Amazon S3
bucket using the Amazon CLI, see Move objects in the Amazon CLI User Guide.

In your Amazon SAM template, the AWS::Serverless::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - set to Zip

• CodeUri - set to the function code's Amazon S3 URI, path to local folder, or FunctionCode object

• Runtime - Set to your chosen runtime

With Amazon SAM, if your .zip file is larger than 50MB, you don’t need to upload it to an Amazon
S3 bucket first. Amazon SAM can upload .zip packages up to the maximum allowed size of 250MB
(unzipped) from a location on your local build machine.

To learn more about deploying functions using .zip file in Amazon SAM, see
AWS::Serverless::Function in the Amazon SAM Developer Guide.

Example: Using Amazon SAM to build a Go function with provided.al2023

1. Create an Amazon SAM template with the following properties:

• BuildMethod: Specifies the compiler for your application. Use go1.x.

• Runtime: Use provided.al2023.

• CodeUri: Enter the path to your code.

• Architectures: Use [arm64] for the arm64 architecture. For the x86_64 instruction set
architecture, use [amd64] or remove the Architectures property.

Creating and updating Go Lambda functions using .zip files 841

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-function-functioncode.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Resources:
 HelloWorldFunction:
 Type: AWS::Serverless::Function
 Metadata:
 BuildMethod: go1.x
 Properties:
 CodeUri: hello-world/ # folder where your main program resides
 Handler: bootstrap
 Runtime: provided.al2023
 Architectures: [arm64]

2. Use the sam build command to compile the executable.

sam build

3. Use the sam deploy command to deploy the function to Lambda.

sam deploy --guided

Creating and updating functions with .zip files using Amazon CloudFormation

You can use Amazon CloudFormation to create a Lambda function using a .zip file archive. To
create a Lambda function from a .zip file, you must first upload your file to an Amazon S3 bucket.
For instructions on how to upload a file to an Amazon S3 bucket using the Amazon CLI, see Move
objects in the Amazon CLI User Guide.

In your Amazon CloudFormation template, the AWS::Lambda::Function resource specifies your
Lambda function. In this resource, set the following properties to create a function using a .zip file
archive:

• PackageType - Set to Zip

• Code - Enter the Amazon S3 bucket name and the .zip file name in the S3Bucket and S3Key
fields

• Runtime - Set to your chosen runtime

Creating and updating Go Lambda functions using .zip files 842

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-build.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move
https://docs.amazonaws.cn/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-objects-move

Amazon Lambda Developer Guide

The .zip file that Amazon CloudFormation generates cannot exceed 4MB. To learn more about
deploying functions using .zip file in Amazon CloudFormation, see AWS::Lambda::Function in the
Amazon CloudFormation User Guide.

Creating a Go layer for your dependencies

Note

Using layers with functions in a compiled language like Go may not provide the same
amount of benefit as with an interpreted language like Python. Since Go is a compiled
language, your functions still have to manually load any shared assemblies into memory
during the init phase, which can increase cold start times. Instead, we recommend including
any shared code at compile time to take advantage of any built-in compiler optimizations.

The instructions in this section show you how to include your dependencies in a layer.

Lambda automatically detects any libraries in the /opt/lib directory, and any binaries in the /
opt/bin directory. To ensure that Lambda properly finds your layer content, create a layer with
the following structure:

custom-layer.zip
lib
 | lib_1
 | lib_2
bin
 | bin_1
 | bin_2

After you package your layer, see the section called “Creating and deleting layers” and the section
called “Adding layers” to complete your layer setup.

Creating a Go layer for your dependencies 843

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

Amazon Lambda Developer Guide

Deploy Go Lambda functions with container images

There are two ways to build a container image for a Go Lambda function:

• Using an Amazon OS-only base image

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only base image
to build Go images for Lambda. To make the image compatible with Lambda, you must include
the aws-lambda-go/lambda package in the image.

• Using a non-Amazon base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the aws-lambda-go/lambda package in the image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

Amazon base images for deploying Go functions

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only base image to
deploy Go functions to Lambda.

Deploy container images 844

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Amazon Lambda Developer Guide

OS-only

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

OS-only
Runtime

provided.
al2023

Amazon
Linux 2023

OS-only
Runtime

provided.
al2

Amazon
Linux 2

Amazon Elastic Container Registry Public Gallery: gallery.ecr.aws/lambda/provided

Go runtime interface client

The aws-lambda-go/lambda package includes an implementation of the runtime interface. For
examples of how to use aws-lambda-go/lambda in your image, see Using an Amazon OS-only
base image or Using a non-Amazon base image.

Using an Amazon OS-only base image

Go is implemented differently than other managed runtimes. Because Go compiles natively to an
executable binary, it doesn't require a dedicated language runtime. Use an OS-only base image to
build container images for Go functions.

Tags Runtime Operating
system

Dockerfile Deprecation

al2023 OS-only
Runtime

Amazon
Linux 2023

Dockerfile for OS-only
Runtime on GitHub

al2 OS-only
Runtime

Amazon
Linux 2

Dockerfile for OS-only
Runtime on GitHub

For more information about these base images, see provided in the Amazon ECR public gallery.

Go runtime interface client 845

https://gallery.ecr.aws/lambda/provided
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023
https://github.com/aws/aws-lambda-base-images/blob/provided.al2023/Dockerfile.provided.al2023
https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://github.com/aws/aws-lambda-base-images/blob/provided.al2/Dockerfile.provided.al2
https://gallery.ecr.aws/lambda/provided

Amazon Lambda Developer Guide

You must include the aws-lambda-go/lambda package with your Go handler. This package
implements the programming model for Go, including the runtime interface.

Prerequisites

To complete the steps in this section, you must have the following:

• Go

• Docker

• Amazon Command Line Interface (Amazon CLI) version 2

Creating an image from the provided.al2023 base image

To build and deploy a Go function with the provided.al2023 base image

1. Create a directory for the project, and then switch to that directory.

mkdir hello
cd hello

2. Initialize a new Go module.

go mod init example.com/hello-world

3. Add the lambda library as a dependency of your new module.

go get github.com/aws/aws-lambda-go/lambda

4. Create a file named main.go and then open it in a text editor. This is the code for the Lambda
function. You can use the following sample code for testing, or replace it with your own.

package main

import (
 "context"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, event events.APIGatewayProxyRequest)
 (events.APIGatewayProxyResponse, error) {

Using an Amazon OS-only base image 846

https://github.com/aws/aws-lambda-go
https://docs.docker.com/get-docker
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html

Amazon Lambda Developer Guide

 response := events.APIGatewayProxyResponse{
 StatusCode: 200,
 Body: "\"Hello from Lambda!\"",
 }
 return response, nil
}

func main() {
 lambda.Start(handler)
}

5. Use a text editor to create a Dockerfile in your project directory. The following example
Dockerfile uses a multi-stage build. This allows you to use a different base image in each
step. You can use one image, such as a Go base image, to compile your code and build the
executable binary. You can then use a different image, such as provided.al2023, in the
final FROM statement to define the image that you deploy to Lambda. The build process is
separated from the final deployment image, so the final image only contains the files needed
to run the application.

You can use the optional lambda.norpc tag to exclude the Remote Procedure Call (RPC)
component of the lambda library. The RPC component is only required if you are using the
deprecated Go 1.x runtime. Excluding the RPC reduces the size of the deployment package.

Example — Multi-stage build Dockerfile

Note

Make sure that the version of Go that you specify in your Dockerfile (for example,
golang:1.20) is the same version of Go that you used to create your application.

FROM golang:1.20 as build
WORKDIR /helloworld
Copy dependencies list
COPY go.mod go.sum ./
Build with optional lambda.norpc tag
COPY main.go .
RUN go build -tags lambda.norpc -o main main.go
Copy artifacts to a clean image
FROM public.ecr.aws/lambda/provided:al2023
COPY --from=build /helloworld/main ./main

Using an Amazon OS-only base image 847

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#use-multi-stage-builds
https://hub.docker.com/_/golang
https://github.com/aws/aws-lambda-go/tree/master/lambda

Amazon Lambda Developer Guide

ENTRYPOINT ["./main"]

6. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

Use the runtime interface emulator to locally test your image. The runtime interface emulator is
included in the provided.al2023 base image.

To run the runtime interface emulator on your local machine

1. Start the Docker image with the docker run command. Note the following:

• docker-image is the image name and test is the tag.

• ./main is the ENTRYPOINT from your Dockerfile.

docker run -d -p 9000:8080 \
--entrypoint /usr/local/bin/aws-lambda-rie \
docker-image:test ./main

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

2. From a new terminal window, post an event to the following endpoint using a curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

Using an Amazon OS-only base image 848

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

This command invokes the function with an empty event and returns a response. Some
functions might require a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

3. Get the container ID.

docker ps

4. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the Amazon Web Services Region where you want to create the
Amazon ECR repository.

• Replace 111122223333 with your Amazon Web Services account ID.

aws ecr get-login-password --region cn-north-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region cn-north-1 --
image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Using an Amazon OS-only base image 849

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

Amazon Lambda Developer Guide

Note

The Amazon ECR repository must be in the same Amazon Web Services Region as the
Lambda function.

If successful, you see a response like this:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:cn-north-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• Replace docker-image:test with the name and tag of your Docker image.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

Using an Amazon OS-only base image 850

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

docker tag docker-image:test 111122223333.dkr.ecr.cn-
north-1.amazonaws.com.cn/hello-world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different Amazon account, as long as
the image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

Using an Amazon OS-only base image 851

https://docs.docker.com/engine/reference/commandline/push/

Amazon Lambda Developer Guide

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Using a non-Amazon base image

You can build a container image for Go from a non-Amazon base image. The example Dockerfile in
the following steps uses an Alpine base image.

You must include the aws-lambda-go/lambda package with your Go handler. This package
implements the programming model for Go, including the runtime interface.

Prerequisites

To complete the steps in this section, you must have the following:

• Go

• Docker

• Amazon Command Line Interface (Amazon CLI) version 2

Creating an image from an alternative base image

To build and deploy a Go function with an Alpine base image

1. Create a directory for the project, and then switch to that directory.

mkdir hello
cd hello

2. Initialize a new Go module.

go mod init example.com/hello-world

3. Add the lambda library as a dependency of your new module.

go get github.com/aws/aws-lambda-go/lambda

4. Create a file named main.go and then open it in a text editor. This is the code for the Lambda
function. You can use the following sample code for testing, or replace it with your own.

package main

Using a non-Amazon base image 852

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://hub.docker.com/_/golang/
https://github.com/aws/aws-lambda-go
https://docs.docker.com/get-docker
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html

Amazon Lambda Developer Guide

import (
 "context"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, event events.APIGatewayProxyRequest)
 (events.APIGatewayProxyResponse, error) {
 response := events.APIGatewayProxyResponse{
 StatusCode: 200,
 Body: "\"Hello from Lambda!\"",
 }
 return response, nil
}

func main() {
 lambda.Start(handler)
}

5. Use a text editor to create a Dockerfile in your project directory. The following example
Dockerfile uses an Alpine base image.

Example Dockerfile

Note

Make sure that the version of Go that you specify in your Dockerfile (for example,
golang:1.20) is the same version of Go that you used to create your application.

FROM golang:1.20.2-alpine3.16 as build
WORKDIR /helloworld
Copy dependencies list
COPY go.mod go.sum ./
Build
COPY main.go .
RUN go build -o main main.go
Copy artifacts to a clean image
FROM alpine:3.16
COPY --from=build /helloworld/main /main
ENTRYPOINT ["/main"]

Using a non-Amazon base image 853

https://hub.docker.com/_/golang/

Amazon Lambda Developer Guide

6. Build the Docker image with the docker build command. The following example names the
image docker-image and gives it the test tag.

docker build --platform linux/amd64 -t docker-image:test .

Note

The command specifies the --platform linux/amd64 option to ensure that your
container is compatible with the Lambda execution environment regardless of the
architecture of your build machine. If you intend to create a Lambda function using
the ARM64 instruction set architecture, be sure to change the command to use the --
platform linux/arm64 option instead.

(Optional) Test the image locally

Use the runtime interface emulator to locally test the image. You can build the emulator into your
image or install it on your local machine.

To install and run the runtime interface emulator on your local machine

1. From your project directory, run the following command to download the runtime interface
emulator (x86-64 architecture) from GitHub and install it on your local machine.

Linux/macOS

mkdir -p ~/.aws-lambda-rie && \
 curl -Lo ~/.aws-lambda-rie/aws-lambda-rie https://github.com/aws/aws-lambda-
runtime-interface-emulator/releases/latest/download/aws-lambda-rie && \
 chmod +x ~/.aws-lambda-rie/aws-lambda-rie

To install the arm64 emulator, replace the GitHub repository URL in the previous command
with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

Using a non-Amazon base image 854

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/#tag

Amazon Lambda Developer Guide

PowerShell

$dirPath = "$HOME\.aws-lambda-rie"
if (-not (Test-Path $dirPath)) {
 New-Item -Path $dirPath -ItemType Directory
}

$downloadLink = "https://github.com/aws/aws-lambda-runtime-interface-emulator/
releases/latest/download/aws-lambda-rie"
$destinationPath = "$HOME\.aws-lambda-rie\aws-lambda-rie"
Invoke-WebRequest -Uri $downloadLink -OutFile $destinationPath

To install the arm64 emulator, replace the $downloadLink with the following:

https://github.com/aws/aws-lambda-runtime-interface-emulator/releases/latest/
download/aws-lambda-rie-arm64

2. Start the Docker image with the docker run command. Note the following:

• docker-image is the image name and test is the tag.

• /main is the ENTRYPOINT from your Dockerfile.

Linux/macOS

docker run --platform linux/amd64 -d -v ~/.aws-lambda-rie:/aws-lambda -p
 9000:8080 \
 --entrypoint /aws-lambda/aws-lambda-rie \
 docker-image:test \
 /main

PowerShell

docker run --platform linux/amd64 -d -v "$HOME\.aws-lambda-rie:/aws-lambda" -p
 9000:8080 `
--entrypoint /aws-lambda/aws-lambda-rie `
docker-image:test `
 /main

Using a non-Amazon base image 855

Amazon Lambda Developer Guide

This command runs the image as a container and creates a local endpoint at
localhost:9000/2015-03-31/functions/function/invocations.

Note

If you built the Docker image for the ARM64 instruction set architecture, be sure to use
the --platform linux/arm64 option instead of --platform linux/amd64.

3. Post an event to the local endpoint.

Linux/macOS

In Linux and macOS, run the following curl command:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{}'

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

curl "http://localhost:9000/2015-03-31/functions/function/invocations" -d
 '{"payload":"hello world!"}'

PowerShell

In PowerShell, run the following Invoke-WebRequest command:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{}' -ContentType "application/json"

This command invokes the function with an empty event and returns a response. If you're
using your own function code rather than the sample function code, you might want to
invoke the function with a JSON payload. Example:

Invoke-WebRequest -Uri "http://localhost:9000/2015-03-31/functions/function/
invocations" -Method Post -Body '{"payload":"hello world!"}' -ContentType
 "application/json"

Using a non-Amazon base image 856

Amazon Lambda Developer Guide

4. Get the container ID.

docker ps

5. Use the docker kill command to stop the container. In this command, replace 3766c4ab331c
with the container ID from the previous step.

docker kill 3766c4ab331c

Deploying the image

To upload the image to Amazon ECR and create the Lambda function

1. Run the get-login-password command to authenticate the Docker CLI to your Amazon ECR
registry.

• Set the --region value to the Amazon Web Services Region where you want to create the
Amazon ECR repository.

• Replace 111122223333 with your Amazon Web Services account ID.

aws ecr get-login-password --region cn-north-1 | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn

2. Create a repository in Amazon ECR using the create-repository command.

aws ecr create-repository --repository-name hello-world --region cn-north-1 --
image-scanning-configuration scanOnPush=true --image-tag-mutability MUTABLE

Note

The Amazon ECR repository must be in the same Amazon Web Services Region as the
Lambda function.

If successful, you see a response like this:

{

Using a non-Amazon base image 857

https://docs.docker.com/engine/reference/commandline/kill/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/get-login-password.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ecr/create-repository.html

Amazon Lambda Developer Guide

 "repository": {
 "repositoryArn": "arn:aws:ecr:cn-north-1:111122223333:repository/hello-
world",
 "registryId": "111122223333",
 "repositoryName": "hello-world",
 "repositoryUri": "111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world",
 "createdAt": "2023-03-09T10:39:01+00:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": true
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

3. Copy the repositoryUri from the output in the previous step.

4. Run the docker tag command to tag your local image into your Amazon ECR repository as the
latest version. In this command:

• Replace docker-image:test with the name and tag of your Docker image.

• Replace <ECRrepositoryUri> with the repositoryUri that you copied. Make sure to
include :latest at the end of the URI.

docker tag docker-image:test <ECRrepositoryUri>:latest

Example:

docker tag docker-image:test 111122223333.dkr.ecr.cn-
north-1.amazonaws.com.cn/hello-world:latest

5. Run the docker push command to deploy your local image to the Amazon ECR repository.
Make sure to include :latest at the end of the repository URI.

docker push 111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-world:latest

6. Create an execution role for the function, if you don't already have one. You need the Amazon
Resource Name (ARN) of the role in the next step.

Using a non-Amazon base image 858

https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/build/#tag
https://docs.docker.com/engine/reference/commandline/push/

Amazon Lambda Developer Guide

7. Create the Lambda function. For ImageUri, specify the repository URI from earlier. Make sure
to include :latest at the end of the URI.

aws lambda create-function \
 --function-name hello-world \
 --package-type Image \
 --code ImageUri=111122223333.dkr.ecr.cn-north-1.amazonaws.com.cn/hello-
world:latest \
 --role arn:aws:iam::111122223333:role/lambda-ex

Note

You can create a function using an image in a different Amazon account, as long as
the image is in the same Region as the Lambda function. For more information, see
Amazon ECR cross-account permissions.

8. Invoke the function.

aws lambda invoke --function-name hello-world response.json

You should see a response like this:

{
 "ExecutedVersion": "$LATEST",
 "StatusCode": 200
}

9. To see the output of the function, check the response.json file.

To update the function code, you must build the image again, upload the new image to the
Amazon ECR repository, and then use the update-function-code command to deploy the image to
the Lambda function.

Using a non-Amazon base image 859

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html

Amazon Lambda Developer Guide

Amazon Lambda function logging in Go

Amazon Lambda automatically monitors Lambda functions on your behalf and sends logs to
Amazon CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log
stream for each instance of your function. The Lambda runtime environment sends details about
each invocation to the log stream, and relays logs and other output from your function's code. For
more information, see Using Amazon CloudWatch logs with Amazon Lambda.

This page describes how to produce log output from your Lambda function's code, or access logs
using the Amazon Command Line Interface, the Lambda console, or the CloudWatch console.

Sections

• Creating a function that returns logs

• Using the Lambda console

• Using the CloudWatch console

• Using the Amazon Command Line Interface (Amazon CLI)

• Deleting logs

Creating a function that returns logs

To output logs from your function code, you can use methods on the fmt package, or any logging
library that writes to stdout or stderr. The following example uses the log package.

Example main.go – Logging

func handleRequest(ctx context.Context, event events.SQSEvent) (string, error) {
 // event
 eventJson, _ := json.MarshalIndent(event, "", " ")
 log.Printf("EVENT: %s", eventJson)
 // environment variables
 log.Printf("REGION: %s", os.Getenv("AWS_REGION"))
 log.Println("ALL ENV VARS:")
 for _, element := range os.Environ() {
 log.Println(element)
 }

Example log format

START RequestId: dbda340c-xmpl-4031-8810-11bb609b4c71 Version: $LATEST

Logging 860

https://golang.org/pkg/fmt/
https://golang.org/pkg/log/
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-go/function/main.go

Amazon Lambda Developer Guide

2020/03/27 03:40:05 EVENT: {
 "Records": [
 {
 "messageId": "19dd0b57-b21e-4ac1-bd88-01bbb068cb78",
 "receiptHandle": "MessageReceiptHandle",
 "body": "Hello from SQS!",
 "md5OfBody": "7b27xmplb47ff90a553787216d55d91d",
 "md5OfMessageAttributes": "",
 "attributes": {
 "ApproximateFirstReceiveTimestamp": "1523232000001",
 "ApproximateReceiveCount": "1",
 "SenderId": "123456789012",
 "SentTimestamp": "1523232000000"
 },
 ...
2020/03/27 03:40:05 AWS_LAMBDA_LOG_STREAM_NAME=2020/03/27/
[$LATEST]569cxmplc3c34c7489e6a97ad08b4419
2020/03/27 03:40:05 AWS_LAMBDA_FUNCTION_NAME=blank-go-function-9DV3XMPL6XBC
2020/03/27 03:40:05 AWS_LAMBDA_FUNCTION_MEMORY_SIZE=128
2020/03/27 03:40:05 AWS_LAMBDA_FUNCTION_VERSION=$LATEST
2020/03/27 03:40:05 AWS_EXECUTION_ENV=AWS_Lambda_go1.x
END RequestId: dbda340c-xmpl-4031-8810-11bb609b4c71
REPORT RequestId: dbda340c-xmpl-4031-8810-11bb609b4c71 Duration: 38.66 ms Billed
 Duration: 39 ms Memory Size: 128 MB Max Memory Used: 54 MB Init Duration: 203.69 ms
XRAY TraceId: 1-5e7d7595-212fxmpl9ee07c4884191322 SegmentId: 42ffxmpl0645f474 Sampled:
 true

The Go runtime logs the START, END, and REPORT lines for each invocation. The report line
provides the following details.

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the Amazon X-Ray trace ID.

Creating a function that returns logs 861

Amazon Lambda Developer Guide

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

Using the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Using the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with Amazon X-Ray. X-Ray records details about the request and the log stream in the
trace.

To use a sample application that correlates logs and traces with X-Ray, see Error processor sample
application for Amazon Lambda.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

Using the Lambda console 862

https://console.amazonaws.cn/cloudwatch/home?#logs:
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html

Amazon Lambda Developer Guide

You can use the Amazon CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",

Using the Amazon Command Line Interface (Amazon CLI) 863

https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

Using the Amazon Command Line Interface (Amazon CLI) 864

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",

Using the Amazon Command Line Interface (Amazon CLI) 865

Amazon Lambda Developer Guide

 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Deleting logs 866

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

Amazon Lambda Developer Guide

Amazon Lambda function errors in Go

When your code raises an error, Lambda generates a JSON representation of the error. This error
document appears in the invocation log and, for synchronous invocations, in the output.

This page describes how to view Lambda function invocation errors for the Go runtime using the
Lambda console and the Amazon CLI.

Sections

• Creating a function that returns exceptions

• How it works

• Using the Lambda console

• Using the Amazon Command Line Interface (Amazon CLI)

• Error handling in other Amazon services

• What's next?

Creating a function that returns exceptions

The following code sample demonstrates custom error handling that raises an exception directly
from a Lambda function and handles it directly. Note that custom errors in Go must import the
errors module.

package main

import (
 "errors"
 "github.com/aws/aws-lambda-go/lambda"
)

func OnlyErrors() error {
 return errors.New("something went wrong!")
}

func main() {
 lambda.Start(OnlyErrors)
}

Which returns the following:

Errors 867

Amazon Lambda Developer Guide

{
 "errorMessage": "something went wrong!",
 "errorType": "errorString"
}

How it works

When you invoke a Lambda function, Lambda receives the invocation request and validates the
permissions in your execution role, verifies that the event document is a valid JSON document, and
checks parameter values.

If the request passes validation, Lambda sends the request to a function instance. The Lambda
runtime environment converts the event document into an object, and passes it to your function
handler.

If Lambda encounters an error, it returns an exception type, message, and HTTP status code that
indicates the cause of the error. The client or service that invoked the Lambda function can handle
the error programmatically, or pass it along to an end user. The correct error handling behavior
depends on the type of application, the audience, and the source of the error.

The following list describes the range of status codes you can receive from Lambda.

2xx

A 2xx series error with a X-Amz-Function-Error header in the response indicates a Lambda
runtime or function error. A 2xx series status code indicates that Lambda accepted the request,
but instead of an error code, Lambda indicates the error by including the X-Amz-Function-
Error header in the response.

4xx

A 4xx series error indicates an error that the invoking client or service can fix by modifying the
request, requesting permission, or by retrying the request. 4xx series errors other than 429
generally indicate an error with the request.

5xx

A 5xx series error indicates an issue with Lambda, or an issue with the function's configuration
or resources. 5xx series errors can indicate a temporary condition that can be resolved without
any action by the user. These issues can't be addressed by the invoking client or service, but a
Lambda function's owner may be able to fix the issue.

How it works 868

Amazon Lambda Developer Guide

For a complete list of invocation errors, see InvokeFunction errors.

Using the Lambda console

You can invoke your function on the Lambda console by configuring a test event and viewing the
output. The output is captured in the function's execution logs and, when active tracing is enabled,
in Amazon X-Ray.

To invoke a function on the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose the function to test, and choose Test.

3. Under Test event, select New event.

4. Select a Template.

5. For Name, enter a name for the test. In the text entry box, enter the JSON test event.

6. Choose Save changes.

7. Choose Test.

The Lambda console invokes your function synchronously and displays the result. To see the
response, logs, and other information, expand the Details section.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

When you invoke a Lambda function in the Amazon CLI, the Amazon CLI splits the response into
two documents. The Amazon CLI response is displayed in your command prompt. If an error has
occurred, the response contains a FunctionError field. The invocation response or error returned
by the function is written to an output file. For example, output.json or output.txt.

The following invoke command example demonstrates how to invoke a function and write the
invocation response to an output.txt file.

Using the Lambda console 869

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html#API_Invoke_Errors
https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/invoke.html

Amazon Lambda Developer Guide

aws lambda invoke \
 --function-name my-function \
 --cli-binary-format raw-in-base64-out \
 --payload '{"key1": "value1", "key2": "value2", "key3": "value3"}' output.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the Amazon CLI response in your command prompt:

{
 "StatusCode": 200,
 "FunctionError": "Unhandled",
 "ExecutedVersion": "$LATEST"
}

You should see the function invocation response in the output.txt file. In the same command
prompt, you can also view the output in your command prompt using:

cat output.txt

You should see the invocation response in your command prompt.

Error handling in other Amazon services

When another Amazon service invokes your function, the service chooses the invocation type
and retry behavior. Amazon services can invoke your function on a schedule, in response to a
lifecycle event on a resource, or to serve a request from a user. Some services invoke functions
asynchronously and let Lambda handle errors, while others retry or pass errors back to the user.

For example, API Gateway treats all invocation and function errors as internal errors. If the Lambda
API rejects the invocation request, API Gateway returns a 500 error code. If the function runs but
returns an error, or returns a response in the wrong format, API Gateway returns a 502 error code.
To customize the error response, you must catch errors in your code and format a response in the
required format.

Error handling in other Amazon services 870

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

We recommend using Amazon X-Ray to determine the source of an error and its cause. X-Ray
allows you to find out which component encountered an error, and see details about the errors.
The following example shows a function error that resulted in a 502 response from API Gateway.

For more information, see Instrumenting Go code in Amazon Lambda.

What's next?

• Learn how to show logging events for your Lambda function on the the section called “Logging”
page.

What's next? 871

Amazon Lambda Developer Guide

Instrumenting Go code in Amazon Lambda

Lambda integrates with Amazon X-Ray to help you trace, debug, and optimize Lambda
applications. You can use X-Ray to trace a request as it traverses resources in your application,
which may include Lambda functions and other Amazon services.

To send tracing data to X-Ray, you can use one of two SDK libraries:

• Amazon Distro for OpenTelemetry (ADOT) – A secure, production-ready, Amazon-supported
distribution of the OpenTelemetry (OTel) SDK.

• Amazon X-Ray SDK for Go – An SDK for generating and sending trace data to X-Ray.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for Amazon Lambda SDKs are part of a tightly integrated
instrumentation solution offered by Amazon. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
Amazon Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using ADOT to instrument your Go functions

• Using the X-Ray SDK to instrument your Go functions

• Activating tracing with the Lambda console

• Activating tracing with the Lambda API

• Activating tracing with Amazon CloudFormation

• Interpreting an X-Ray trace

Tracing 872

https://www.amazonaws.cn/otel
https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-go.html
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

Amazon Lambda Developer Guide

Using ADOT to instrument your Go functions

ADOT provides fully managed Lambda layers that package everything you need to collect
telemetry data using the OTel SDK. By consuming this layer, you can instrument your Lambda
functions without having to modify any function code. You can also configure your layer to do
custom initialization of OTel. For more information, see Custom configuration for the ADOT
Collector on Lambda in the ADOT documentation.

For Go runtimes, you can add the Amazon managed Lambda layer for ADOT Go to automatically
instrument your functions. For detailed instructions on how to add this layer, see Amazon Distro for
OpenTelemetry Lambda Support for Go in the ADOT documentation.

Using the X-Ray SDK to instrument your Go functions

To record details about calls that your Lambda function makes to other resources in your
application, you can also use the Amazon X-Ray SDK for Go. To get the SDK, download the SDK
from its GitHub repository with go get:

go get github.com/aws/aws-xray-sdk-go

To instrument Amazon SDK clients, pass the client to the xray.AWS() method. You can then trace
calls by using the WithContext version of the method.

svc := s3.New(session.New())
xray.AWS(svc.Client)
...
svc.ListBucketsWithContext(ctx aws.Context, input *ListBucketsInput)

After you add the correct dependencies and make the necessary code changes, activate tracing in
your function's configuration via the Lambda console or the API.

Activating tracing with the Lambda console

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

Using ADOT to instrument your Go functions 873

https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda#custom-configuration-for-the-adot-collector-on-lambda
https://aws-otel.github.io/docs/getting-started/lambda/lambda-go
https://aws-otel.github.io/docs/getting-started/lambda/lambda-go
https://github.com/aws/aws-xray-sdk-go
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Choose Edit.

5. Under X-Ray, toggle on Active tracing.

6. Choose Save.

Activating tracing with the Lambda API

Configure tracing on your Lambda function with the Amazon CLI or Amazon SDK, use the following
API operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example Amazon CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Activating tracing with Amazon CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an Amazon CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active

Activating tracing with the Lambda API 874

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

Amazon Lambda Developer Guide

 ...

For an Amazon Serverless Application Model (Amazon SAM) AWS::Serverless::Function
resource, use the Tracing property.

Example template.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Interpreting an X-Ray trace

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example from the error processor sample application shows an application with two
functions. The primary function processes events and sometimes returns errors. The second
function at the top processes errors that appear in the first's log group and uses the Amazon SDK
to call X-Ray, Amazon Simple Storage Service (Amazon S3), and Amazon CloudWatch Logs.

Interpreting an X-Ray trace 875

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.amazonaws.cn/xray/latest/devguide/xray-concepts.html#xray-concepts-servicegraph

Amazon Lambda Developer Guide

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests.

Note

You cannot configure the X-Ray sampling rate for your functions.

When using active tracing, Lambda records 2 segments per trace, which creates two nodes on the
service graph. The following image highlights these two nodes for the primary function from the
error processor sample application.

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has origin AWS::Lambda::Function.

Interpreting an X-Ray trace 876

Amazon Lambda Developer Guide

This example expands the function segment to show its three subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see the Amazon X-Ray SDK for Go in the Amazon
X-Ray Developer Guide.

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the Amazon
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see Amazon X-Ray pricing.

Interpreting an X-Ray trace 877

https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-python.html
https://www.amazonaws.cn/xray/pricing/

Amazon Lambda Developer Guide

Using environment variables

To access environment variables in Go, use the Getenv function.

The following explains how to do this. Note that the function imports the fmt package to format
the printed results and the os package, a platform-independent system interface that allows you to
access environment variables.

package main

import (
 "fmt"
 "os"
 "github.com/aws/aws-lambda-go/lambda"
)

func main() {
 fmt.Printf("%s is %s. years old\n", os.Getenv("NAME"), os.Getenv("AGE"))

}

For a list of environment variables that are set by the Lambda runtime, see Defined runtime
environment variables.

Environment variables 878

https://golang.org/pkg/os/#Getenv
https://golang.org/pkg/fmt/
https://golang.org/pkg/os/

Amazon Lambda Developer Guide

Building Lambda functions with C#

The following sections explain how common programming patterns and core concepts apply when
authoring Lambda function code in C#.

You can run your .NET application in Lambda using the managed .NET 6 or .NET 8 runtimes, a
custom runtime, or a container image. After your application code is compiled, you can deploy it to
Lambda either as a .zip file or a container image.

Lambda provides the following runtimes for .NET languages:

.NET

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

.NET 8 dotnet8 Amazon
Linux 2023

.NET 7
(container
only)

dotnet7 Amazon
Linux 2

May 14, 2024

.NET 6 dotnet6 Amazon
Linux 2

Nov 12, 2024 Jan 11, 2025 Feb 11, 2025

Note

For end of support information about .NET Core 3.1, see the section called “Runtime
deprecation policy”.

Topics

• Setting up your .NET development environment

• Lambda function handler in C#

• Build and deploy C# Lambda functions with .zip file archives

879

Amazon Lambda Developer Guide

• Deploy .NET Lambda functions with container images

• .NET functions with native AOT compilation

• Amazon Lambda context object in C#

• Lambda function logging in C#

• Amazon Lambda function errors in C#

• Instrumenting C# code in Amazon Lambda

• Amazon Lambda function testing in C#

880

Amazon Lambda Developer Guide

Setting up your .NET development environment

To develop and build your Lambda functions, you can use any of the commonly available .NET
integrated development environments (IDEs), including Microsoft Visual Studio, Visual Studio
Code, and JetBrains Rider. To simplify your development experience, Amazon provides a set of .NET
project templates, as well as the Amazon.Lambda.Tools command line interface (CLI).

Run the following .NET CLI commands to install these project templates and command line tools.

Installing the .NET project templates

To install the project templates (.NET 7 and .NET 8):

dotnet new install Amazon.Lambda.Templates

To install the project templates (.NET 6):

dotnet new --install Amazon.Lambda.Templates

Note

If you're using the .NET 6 managed Lambda runtime, we recommend that you upgrade
to use .NET 8. To learn more, see Managing Amazon Lambda runtime upgrades and
Introducing the .NET 8 runtime for Amazon Lambda on the Amazon Compute Blog.

Installing and updating the CLI tools

Run the following commands to install, update, and uninstall the Amazon.Lambda.Tools CLI.

To install the command line tools:

dotnet tool install -g Amazon.Lambda.Tools

To update the command line tools:

dotnet tool update -g Amazon.Lambda.Tools

Development environment 881

https://amazonaws-china.com/blogs/compute/managing-aws-lambda-runtime-upgrades/
https://amazonaws-china.com/blogs/compute/introducing-the-net-8-runtime-for-aws-lambda/

Amazon Lambda Developer Guide

To uninstall the command line tools:

dotnet tool uninstall -g Amazon.Lambda.Tools

Installing and updating the CLI tools 882

Amazon Lambda Developer Guide

Lambda function handler in C#

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

When your function is invoked and Lambda runs your function's handler method, it passes two
arguments to your function. The first argument is the event object. When another Amazon Web
Service invokes your function, the event object contains data about the event that caused your
function to be invoked. For example, an event object from API Gateway contains information
about the path, HTTP method, and HTTP headers. The exact event structure varies according to the
Amazon Web Service invoking your function. See Integrating other services for more information
about event formats for individual services.

Lambda also passes a context object to your function. This object contains information about
the invocation, function, and execution environment. For more information, see the section called
“Context”.

The native format for all Lambda events is streams of bytes representing the JSON formatted
event. Unless your function input and output parameters are of type System.IO.Stream, you
must serialize them. Specify the serializer you want to use by setting the LambdaSerializer
assembly attribute. For more information, see the section called “Serialization in Lambda
functions”.

Topics

• .NET execution models for Lambda

• Class library handlers

• Executable assembly handlers

• Serialization in Lambda functions

• Simplify function code with the Lambda Annotations framework

• Lambda function handler restrictions

.NET execution models for Lambda

There are two different execution models for running Lambda functions in .NET: the class library
approach and the executable assembly approach.

Handler 883

Amazon Lambda Developer Guide

In the class library approach, you provide Lambda with a string indicating the AssemblyName,
ClassName, and Method of the function to be invoked. For more information about the format of
this string, see the section called “Class library handlers”. During the function's initialization phase,
your function's class is initialized, and any code in the constructor is run.

In the executable assembly approach, you use C# 9's top-level statements feature. This approach
generates an executable assembly which Lambda runs whenever it receives an invoke command for
your function. You provide Lambda only with the name of the executable assembly to run.

The following sections give example function code for these two approaches.

Class library handlers

The following Lambda function code shows an example of a handler method (FunctionHandler)
for a Lambda function which uses the class library approach. In this example funtion, Lambda
receives an event from API Gateway that invokes the function. The function reads a record from a
database and returns the record as part of the API Gateway response.

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace GetProductHandler;

public class Function
{
 private readonly IDatabaseRepository _repo;

 public Function()
 {
 this._repo = new DatabaseRepository();
 }

 public async Task<APIGatewayProxyResponse> FunctionHandler(APIGatewayProxyRequest
 request)
 {
 var id = request.PathParameters["id"];

 var databaseRecord = await this._repo.GetById(id);

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,

Class library handlers 884

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/tutorials/top-level-statements

Amazon Lambda Developer Guide

 Body = JsonSerializer.Serialize(databaseRecord)
 };
 }
}

When you create a Lambda function, you need to provide Lambda with information about your
function's handler in the form of a handler string. This tells Lambda which method in your code
to run when your function is invoked. In C#, the format of the handler string when using the class
library approach is as follows:

ASSEMBLY::TYPE::METHOD, where:

• ASSEMBLY is the name of the .NET assembly file for your application. If you use the
Amazon.Lambda.Tools CLI to build your application and you don't set the assembly name
using the AssemblyName property in the .csproj file, then ASSEMBLY is simply the name of
your .csproj file.

• TYPE is the full name of the handler type, which consists of the Namespace and the ClassName.

• METHOD is the name of the function handler method in your code.

For the example code shown, if the assembly is named GetProductHandler, then the handler
string would be GetProductHandler::GetProductHandler.Function::FunctionHandler.

Executable assembly handlers

In the following example, the Lambda function is defined as an executable assembly. The handler
method in this code is named Handler. When using executable assemblies, the Lambda runtime
must be bootstrapped. To do this, you use the LambdaBootstrapBuilder.Create method. This
method takes as inputs the method your function uses as the handler and the Lambda serializer to
use.

For more information about using top-level statements, see Introducing the .NET 6 runtime for
Amazon Lambda on the Amazon compute blog.

namespace GetProductHandler;

IDatabaseRepository repo = new DatabaseRepository();

await LambdaBootstrapBuilder.Create<APIGatewayProxyRequest>(Handler, new
 DefaultLambdaJsonSerializer())

Executable assembly handlers 885

https://amazonaws-china.com/blogs/compute/introducing-the-net-6-runtime-for-aws-lambda/
https://amazonaws-china.com/blogs/compute/introducing-the-net-6-runtime-for-aws-lambda/

Amazon Lambda Developer Guide

 .Build()
 .RunAsync();

async Task<APIGatewayProxyResponse> Handler(APIGatewayProxyRequest apigProxyEvent,
 ILambdaContext context)
{
 var id = input.PathParameters["id"];

 var databaseRecord = await this.repo.GetById(id);

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,
 Body = JsonSerializer.Serialize(databaseRecord)
 };
};

When using executable assemblies, the handler string that tells Lambda how to run your code is
the name of the assembly. In this example, that would be GetProductHandler.

Serialization in Lambda functions

If your Lambda function uses input or output types other than a Stream object, you must add a
serialization library to your application. You can implement serialization either using the standard
reflection based serialization provided by System.Text.Json and Newtonsoft.Json, or by
using source generated serialization.

Using source generated serialization

Source generated serialization is a feature of .NET versions 6 and later that allows serialization
code to be generated at compile time. It removes the need for reflection and can improve the
performance of your function. To use source generated serialization in your function, do the
following:

• Create a new partial class that inherits from JsonSerializerContext, adding
JsonSerializable attributes for all types that require serialization or deserialization.

• Configure the LambdaSerializer to use a SourceGeneratorLambdaJsonSerializer<T>.

• Update any manual serialization or deserialization in your application code to use the newly
created class.

Serialization in Lambda functions 886

https://learn.microsoft.com/en-us/dotnet/standard/serialization/system-text-json/source-generation

Amazon Lambda Developer Guide

An example function using source generated serialization is shown in the following code.

[assembly:
 LambdaSerializer(typeof(SourceGeneratorLambdaJsonSerializer<CustomSerializer>))]

public class Function
{
 private readonly IDatabaseRepository _repo;

 public Function()
 {
 this._repo = new DatabaseRepository();
 }

 public async Task<APIGatewayProxyResponse> FunctionHandler(APIGatewayProxyRequest
 request)
 {
 var id = request.PathParameters["id"];

 var databaseRecord = await this._repo.GetById(id);

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,
 Body = JsonSerializer.Serialize(databaseRecord,
 CustomSerializer.Default.Product)
 };
 }
}

[JsonSerializable(typeof(APIGatewayProxyRequest))]
[JsonSerializable(typeof(APIGatewayProxyResponse))]
[JsonSerializable(typeof(Product))]
public partial class CustomSerializer : JsonSerializerContext
{

}

Note

If you want to use native ahead of time compilation (AOT) with Lambda, you must use
source generated serialization.

Serialization in Lambda functions 887

Amazon Lambda Developer Guide

Using reflection-based serialization

Amazon provides pre-built libraries to let you quickly add serialization to your application.
You configure this using either the Amazon.Lambda.Serialization.SystemTextJson
or Amazon.Lambda.Serialization.Json NuGet packages. Behind the scenes,
Amazon.Lambda.Serialization.SystemTextJson uses System.Text.Json to perform
serialization tasks, and Amazon.Lambda.Serialization.Json uses the Newtonsoft.Json
package.

You can also create your own serialization library by implementing the ILambdaSerializer
interface, which is available as part of the Amazon.Lambda.Core library. This interface defines
two methods:

• T Deserialize<T>(Stream requestStream);

You implement this method to deserialize the request payload from the Invoke API into the
object that is passed to your Lambda function handler.

• T Serialize<T>(T response, Stream responseStream);

You implement this method to serialize the result returned from your Lambda function handler
into the response payload that the Invoke API operation returns.

Simplify function code with the Lambda Annotations framework

Lambda Annotations is a framework for .NET 6 and .NET 8 which simplifies writing Lambda
functions using C#. With the Annotations framework, you can replace much of the code in a
Lambda function written using the regular programming model. Code written using the framework
uses simpler expressions that allow you to focus on your business logic.

The following example code shows how using the annotations framework can simplify writing
Lambda functions. The first example shows code written using the regular Lambda program model,
and the second shows the equivalent using the Annotations framework.

public APIGatewayHttpApiV2ProxyResponse LambdaMathAdd(APIGatewayHttpApiV2ProxyRequest
 request, ILambdaContext context)
{
 if (!request.PathParameters.TryGetValue("x", out var xs))
 {
 return new APIGatewayHttpApiV2ProxyResponse

Simplify function code with the Lambda Annotations framework 888

Amazon Lambda Developer Guide

 {
 StatusCode = (int)HttpStatusCode.BadRequest
 };
 }
 if (!request.PathParameters.TryGetValue("y", out var ys))
 {
 return new APIGatewayHttpApiV2ProxyResponse
 {
 StatusCode = (int)HttpStatusCode.BadRequest
 };
 }
 var x = int.Parse(xs);
 var y = int.Parse(ys);
 return new APIGatewayHttpApiV2ProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,
 Body = (x + y).ToString(),
 Headers = new Dictionary#string, string> { { "Content-Type", "text/plain" } }
 };
}

[LambdaFunction]
[HttpApi(LambdaHttpMethod.Get, "/add/{x}/{y}")]
public int Add(int x, int y)
{
 return x + y;
}

For another example of how using Lambda Annotations can simplify your code, see this cross-
service example application in the awsdocs/aws-doc-sdk-examples GitHub repository.
The folder PamApiAnnotations uses Lambda Annotations in the main function.cs file.
For comparison, the PamApi folder has equivalent files written using the regular Lambda
programming model.

The Annotations framework uses source generators to generate code that translates from the
Lambda programming model to the code seen in the second example.

For more information about how to use Lambda Annotations for .NET, see the following resources:

• The aws/aws-lambda-dotnet GitHub repository.

Simplify function code with the Lambda Annotations framework 889

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/source-generators-overview
https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.Annotations/README.md

Amazon Lambda Developer Guide

• Introducing .NET Annotations Lambda Framework (Preview) on the Amazon Developer Tools
Blog.

• The Amazon.Lambda.Annotations NuGet package.

Dependency injection with Lambda Annotations framework

You can also use the Lambda Annotations framework to add dependency injection to your Lambda
functions using syntax you are familiar with. When you add a [LambdaStartup] attribute to a
Startup.cs file, the Lambda Annotations framework will generate the required code at compile
time.

[LambdaStartup]
public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddSingleton<IDatabaseRepository, DatabaseRepository>();
 }
}

Your Lambda function can inject services using either constructor injection or by injecting into
individual methods using the [FromServices] attribute.

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace GetProductHandler;

public class Function
{
 private readonly IDatabaseRepository _repo;

 public Function(IDatabaseRepository repo)
 {
 this._repo = repo;
 }

 [LambdaFunction]
 [HttpApi(LambdaHttpMethod.Get, "/product/{id}")]

Simplify function code with the Lambda Annotations framework 890

https://amazonaws-china.com/blogs/developer/introducing-net-annotations-lambda-framework-preview/
https://www.nuget.org/packages/Amazon.Lambda.Annotations

Amazon Lambda Developer Guide

 public async Task<Product> FunctionHandler([FromServices] IDatabaseRepository
 repository, string id)
 {
 return await this._repo.GetById(id);
 }
}

Lambda function handler restrictions

Note that there are some restrictions on the handler signature.

• It may not be unsafe and use pointer types in the handler signature, though you can use
unsafe context inside the handler method and its dependencies. For more information, see
unsafe (C# Reference) on the Microsoft Docs website.

• It may not pass a variable number of parameters using the params keyword, or use
ArgIterator as an input or a return parameter, which is used to support a variable number of
parameters.

• The handler may not be a generic method, for example, IList<T> Sort<T>(IList<T> input).

• Async handlers with signature async void are not supported.

Lambda function handler restrictions 891

https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx

Amazon Lambda Developer Guide

Build and deploy C# Lambda functions with .zip file archives

A .NET deployment package (.zip file archive) contains your function's compiled
assembly along with all of its assembly dependencies. The package also contains a
proj.deps.json file. This signals to the .NET runtime all of your function's dependencies and a
proj.runtimeconfig.json file, which is used to configure the runtime.

To deploy individual Lambda functions, you can use the Amazon.Lambda.Tools .NET Lambda
Global CLI. Using the dotnet lambda deploy-function command automatically creates a .zip
deployment package and deploys it to Lambda. However, we recommend that you use frameworks
like the Amazon Serverless Application Model (Amazon SAM) or the Amazon Cloud Development
Kit (Amazon CDK) to deploy your .NET applications to Amazon.

Serverless applications usually comprise a combination of Lambda functions and other managed
Amazon Web Services working together to perform a particular business task. Amazon SAM and
Amazon CDK simplify building and deploying Lambda functions with other Amazon Web Services
at scale. The Amazon SAM template specification provides a simple and clean syntax to describe
Lambda functions, APIs, permissions, configurations, and other Amazon resources that make up
your serverless application. With the Amazon CDK you define cloud infrastructure as code to help
you build reliable, scalable, cost-effective applications in the cloud using modern programming
languages and frameworks like .NET. Both the Amazon CDK and the Amazon SAM use the .NET
Lambda Global CLI to package your functions.

While it's possible to use Lambda layers with functions in C# by using the .NET Core CLI, we
recommend against it. Functions in C# that use layers manually load the shared assemblies into
memory during the Init phase, which can increase cold start times. Instead, include all shared code
at compile time to take advantage of the built-in optimizations of the .NET compiler.

You can find instructions for building and deploying .NET Lambda functions using the Amazon
SAM, the Amazon CDK, and the .NET Lambda Global CLI in the following sections.

Topics

• Using the .NET Lambda Global CLI

• Using the Amazon Serverless Application Model (Amazon SAM)

• Using the Amazon Cloud Development Kit (Amazon CDK)

• Deploy ASP.NET applications

Deployment package 892

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-specification.html
https://docs.amazonaws.cn/cdk/v2/guide/home.html

Amazon Lambda Developer Guide

Using the .NET Lambda Global CLI

The .NET CLI and the .NET Lambda Global Tools extension (Amazon.Lambda.Tools) offer a
cross-platform way to create .NET-based Lambda applications, package them, and deploy them to
Lambda. In this section, you learn how to create new Lambda .NET projects using the .NET CLI and
Amazon Lambda templates, and to package and deploy them using Amazon.Lambda.Tools

Topics

• Prerequisites

• Creating .NET projects using the .NET CLI

• Deploying .NET projects using the .NET CLI

• Using Lambda layers with the .NET CLI

Prerequisites

.NET 8 SDK

If you haven't already done so, install the .NET 8 SDK and Runtime.

Amazon Amazon.Lambda.Templates .NET project templates

To generate your Lambda function code, use the Amazon.Lambda.Templates NuGet package. To
install this template package, run the following command:

dotnet new install Amazon.Lambda.Templates

Amazon Amazon.Lambda.Tools .NET Global CLI tools

To create your Lambda functions, you use the Amazon.Lambda.Tools .NET Global Tools
extension. To install Amazon.Lambda.Tools, run the following command:

dotnet tool install -g Amazon.Lambda.Tools

For more information about the Amazon.Lambda.Tools .NET CLI extension, see the Amazon
Extensions for .NET CLI repository on GitHub.

Using the .NET Lambda Global CLI 893

https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://www.nuget.org/packages/Amazon.Lambda.Templates
https://www.nuget.org/packages/Amazon.Lambda.Tools
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://github.com/aws/aws-extensions-for-dotnet-cli
https://github.com/aws/aws-extensions-for-dotnet-cli

Amazon Lambda Developer Guide

Creating .NET projects using the .NET CLI

In the .NET CLI, you use the dotnet new command to create .NET projects from the command
line. Lambda offers additional templates using the Amazon.Lambda.Templates NuGet package.

After installing this package, run the following command to see a list of the available templates.

dotnet new list

To examine details about a template, use the help option. For example, to see details about the
lambda.EmptyFunction template, run the following command.

dotnet new lambda.EmptyFunction --help

To create a basic template for a .NET Lambda function, use the lambda.EmptyFunction
template. This creates a simple function that takes a string as input and converts it to upper case
using the ToUpper method. This template supports the following options:

• --name – The name of the function.

• --region – The Amazon Region to create the function in.

• --profile – The name of a profile in your Amazon SDK for .NET credentials file. To learn more
about credential profiles in .NET, see Configure Amazon credentials in the Amazon SDK for .NET
Developer Guide.

In this example, we create a new empty function named myDotnetFunction using the default
profile and Amazon Web Services Region settings:

dotnet new lambda.EmptyFunction --name myDotnetFunction

This command creates the following files and directories in your project directory.

myDotnetFunction
 ### src
 # ### myDotnetFunction
 # ### Function.cs
 # ### Readme.md
 # ### aws-lambda-tools-defaults.json
 # ### myDotnetFunction.csproj

Using the .NET Lambda Global CLI 894

https://www.nuget.org/packages/Amazon.Lambda.Templates
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/net-dg-config-creds.html

Amazon Lambda Developer Guide

 ### test
 ### myDotnetFunction.Tests
 ### FunctionTest.cs
 ### myDotnetFunction.Tests.csproj

Under the src/myDotnetFunction directory, examine the following files:

• aws-lambda-tools-defaults.json: This is where you specify the command line options when
deploying your Lambda function. For example:

 "profile" : "default",
 "region" : "us-east-2",
 "configuration" : "Release",
 "function-architecture": "x86_64",
 "function-runtime":"dotnet8",
 "function-memory-size" : 256,
 "function-timeout" : 30,
 "function-handler" : "myDotnetFunction::myDotnetFunction.Function::FunctionHandler"

• Function.cs: Your Lambda handler function code. It's a C# template that includes the default
Amazon.Lambda.Core library and a default LambdaSerializer attribute. For more
information on serialization requirements and options, see Serialization in Lambda functions. It
also includes a sample function that you can edit to apply your Lambda function code.

using Amazon.Lambda.Core;

// Assembly attribute to enable the Lambda function's JSON input to be converted into
 a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace myDotnetFunction;

public class Function
{

 /// <summary>
 /// A simple function that takes a string and does a ToUpper
 /// </summary#
 /// <param name="input"></param>
 /// <param name="context"></param>
 /// <returns></returns>

Using the .NET Lambda Global CLI 895

Amazon Lambda Developer Guide

 public string FunctionHandler(string input, ILambdaContext context)
 {
 return input.ToUpper();
 }
}

• myDotnetFunction.csproj: An MSBuild file that lists the files and assemblies that comprise your
application.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>net8.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <GenerateRuntimeConfigurationFiles>true</GenerateRuntimeConfigurationFiles>
 <AWSProjectType>Lambda</AWSProjectType>
 <!-- This property makes the build directory similar to a publish directory and
 helps the AWS .NET Lambda Mock Test Tool find project dependencies. -->
 <CopyLocalLockFileAssemblies>true</CopyLocalLockFileAssemblies>
 <!-- Generate ready to run images during publishing to improve cold start time.
 -->
 <PublishReadyToRun>true</PublishReadyToRun>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Amazon.Lambda.Core" Version="2.2.0" />
 <PackageReference Include="Amazon.Lambda.Serialization.SystemTextJson"
 Version="2.4.0" />
 </ItemGroup>
</Project>

• Readme: Use this file to document your Lambda function.

Under the myfunction/test directory, examine the following files:

• myDotnetFunction.Tests.csproj: As noted previously, this is an MSBuild file that lists
the files and assemblies that comprise your test project. Note also that it includes the
Amazon.Lambda.Core library, so you can seamlessly integrate any Lambda templates required
to test your function.

<Project Sdk="Microsoft.NET.Sdk">
 ...

Using the .NET Lambda Global CLI 896

https://msdn.microsoft.com/en-us/library/dd393574.aspx
https://msdn.microsoft.com/en-us/library/dd393574.aspx

Amazon Lambda Developer Guide

 <PackageReference Include="Amazon.Lambda.Core" Version="2.2.0 " />
 ...

• FunctionTest.cs: The same C# code template file that it is included in the src directory. Edit this
file to mirror your function's production code and test it before uploading your Lambda function
to a production environment.

using Xunit;
using Amazon.Lambda.Core;
using Amazon.Lambda.TestUtilities;

using MyFunction;

namespace MyFunction.Tests
{
 public class FunctionTest
 {
 [Fact]
 public void TestToUpperFunction()
 {

 // Invoke the lambda function and confirm the string was upper cased.
 var function = new Function();
 var context = new TestLambdaContext();
 var upperCase = function.FunctionHandler("hello world", context);

 Assert.Equal("HELLO WORLD", upperCase);
 }
 }
}

Deploying .NET projects using the .NET CLI

To build your deployment package and deploy it to Lambda, you use the Amazon.Lambda.Tools
CLI tools. To deploy your function from the files you created in the previous steps, first navigate
into the folder containing your function's .csproj file.

cd myDotnetFunction/src/myDotnetFunction

To deploy your code to Lambda as a .zip deployment package, run the following command. Choose
your own function name.

Using the .NET Lambda Global CLI 897

Amazon Lambda Developer Guide

dotnet lambda deploy-function myDotnetFunction

During the deployment, the wizard asks you to select a the section called “Execution role”. For this
example, select the lambda_basic_role.

After you have deployed your function, you can test it in the cloud using the dotnet lambda
invoke-function command. For the example code in the lambda.EmptyFunction template,
you can test your function by passing in a string using the --payload option.

dotnet lambda invoke-function myDotnetFunction --payload "Just checking if everything
 is OK"

If your function has been successfully deployed, you should see output similar to the following.

dotnet lambda invoke-function myDotnetFunction --payload "Just checking if everything
 is OK"
Amazon Lambda Tools for .NET Core applications (5.8.0)
Project Home: https://github.com/aws/aws-extensions-for-dotnet-cli, https://github.com/
aws/aws-lambda-dotnet

Payload:
"JUST CHECKING IF EVERYTHING IS OK"

Log Tail:
START RequestId: id Version: $LATEST
END RequestId: id
REPORT RequestId: id Duration: 0.99 ms Billed Duration: 1 ms Memory
 Size: 256 MB Max Memory Used: 12 MB

Using Lambda layers with the .NET CLI

Note

Using layers with functions in a compiled language like C# may not provide the same
amount of benefit as with an interpreted language like Python. Since C# is a compiled
language, your functions still have to manually load any shared assemblies into memory
during the init phase, which can increase cold start times. Instead, we recommend including
any shared code at compile time to take advantage of any built-in compiler optimizations.

Using the .NET Lambda Global CLI 898

Amazon Lambda Developer Guide

The .NET CLI supports commands to help you publish layers and deploy C# functions that consume
layers. To publish a layer to a specified Amazon S3 bucket, run the following command in the same
directory as your .csproj file:

dotnet lambda publish-layer <layer_name> --layer-type runtime-package-store --s3-
bucket <s3_bucket_name>

Then, when you deploy your function using the .NET CLI, specify the layer ARN the consume in the
following command:

dotnet lambda deploy-function <function_name> --function-layers arn:aws:lambda:us-
east-1:123456789012:layer:layer-name:1

For a complete example of a Hello World function, see the blank-csharp-with-layer sample.

Using the Amazon Serverless Application Model (Amazon SAM)

The Amazon Serverless Application Model (Amazon SAM) is a toolkit that helps streamline the
process of building and running serverless applications on Amazon. You define the resources for
your application in a YAML or JSON template and use the Amazon SAM command line interface
(Amazon SAM CLI) to build, package, and deploy your applications. When you build a Lambda
function from an Amazon SAM template, Amazon SAM automatically creates a .zip deployment
package or container image with your function code and any dependencies you specify. Amazon
SAM then deploys your function using an Amazon CloudFormation stack. To learn more about
using Amazon SAM to build and deploy Lambda functions, see Getting started with Amazon SAM
in the Amazon Serverless Application Model Developer Guide.

The following steps show you how to download, build, and deploy a sample .NET Hello World
application using Amazon SAM. This sample application uses a Lambda function and an Amazon
API Gateway endpoint to implement a basic API backend. When you send an HTTP GET request to
your API Gateway endpoint, API Gateway invokes your Lambda function. The function returns a
"hello world" message, along with the IP address of the Lambda function instance that processes
your request.

When you build and deploy your application using Amazon SAM, behind the scenes the Amazon
SAM CLI uses the dotnet lambda package command to package the individual Lambda
function code bundles.

Using the Amazon Serverless Application Model (Amazon SAM) 899

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-csharp-with-layer
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html

Amazon Lambda Developer Guide

Prerequisites

.NET 8 SDK

Install the .NET 8 SDK and Runtime.

Amazon SAM CLI version 1.39 or later

To learn how to install the latest version of the Amazon SAM CLI, see Installing the Amazon
SAM CLI.

Deploy a sample Amazon SAM application

1. Initialize the application using the Hello world .NET template using the following command.

sam init --app-template hello-world --name sam-app \
--package-type Zip --runtime dotnet8

This command creates the following files and directories in your project directory.

sam-app
 ### README.md
 ### events
 # ### event.json
 ### omnisharp.json
 ### samconfig.toml
 ### src
 # ### HelloWorld
 # ### Function.cs
 # ### HelloWorld.csproj
 # ### aws-lambda-tools-defaults.json
 ### template.yaml
 ### test
 ### HelloWorld.Test
 ### FunctionTest.cs
 ### HelloWorld.Tests.csproj

2. Navigate into the directory containing the template.yaml file. This file is a tempate that
defines the Amazon resources for your application, including your Lambda function and an API
Gateway API.

Using the Amazon Serverless Application Model (Amazon SAM) 900

https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/install-sam-cli.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/install-sam-cli.html

Amazon Lambda Developer Guide

cd sam-app

3. To build the source of your application, run the following command.

sam build

4. To deploy your application to Amazon, run the following command.

sam deploy --guided

This command packages and deploys your application with the following series of prompts. To
accept the default options, press Enter.

Note

For HelloWorldFunction may not have authorization defined, is this okay?, be sure
to enter y.

• Stack Name: The name of the stack to deploy to Amazon CloudFormation. This name must
be unique to your Amazon Web Services account and Amazon Web Services Region.

• Amazon Web Services Region: The Amazon Web Services Region you want to deploy your
app to.

• Confirm changes before deploy: Select yes to manually review any change sets before
Amazon SAM deploys application changes. If you select no, the Amazon SAM CLI
automatically deploys application changes.

• Allow SAM CLI IAM role creation: Many Amazon SAM templates, including the Hello world
one in this example, create Amazon Identity and Access Management (IAM) roles to give
your Lambda functions permission to access other Amazon Web Services. Select Yes to
provide permission to deploy a Amazon CloudFormation stack that creates or modifies IAM
roles.

• Disable rollback: By default, if Amazon SAM encounters an error during creation or
deployment of your stack, it rolls the stack back to the previous version. Select No to accept
this default.

• HelloWorldFunction may not have authorization defined, is this okay: Enter y.

Using the Amazon Serverless Application Model (Amazon SAM) 901

Amazon Lambda Developer Guide

• Save arguments to samconfig.toml: Select yes to save your configuration choices. In
the future, you can re-run sam deploy without parameters to deploy changes to your
application.

5. When the deployment of your application is complete, the CLI returns the Amazon Resource
Name (ARN) of the Hello World Lambda function and the IAM role created for it. It also
displays the endpoint of your API Gateway API. To test your application, open the endpoint in
a browser. You should see a response similar to the following.

{"message":"hello world","location":"34.244.135.203"}

6. To delete your resources, run the following command. Note that the API endpoint you created
is a public endpoint accessible over the internet. We recommend that you delete this endpoint
after testing.

sam delete

Next steps

To learn more about using Amazon SAM to build and deploy Lambda functions using .NET, see the
following resources:

• The Amazon Serverless Application Model (Amazon SAM) Developer Guide

• Building Serverless .NET Applications with Amazon Lambda and the SAM CLI

Using the Amazon Cloud Development Kit (Amazon CDK)

The Amazon Cloud Development Kit (Amazon CDK) is an open-source software development
framework for defining cloud infrastructure as code with modern programming languages and
frameworks like .NET. Amazon CDK projects are executed to generate Amazon CloudFormation
templates which are then used to deploy your code.

To build and deploy an example Hello world .NET application using the Amazon CDK, follow the
instructions in the following sections. The sample application implements a basic API backend
consisting of an API Gateway endpoint and a Lambda function. API Gateway invokes the Lambda
function when you send an HTTP GET request to the endpoint. The function returns a Hello world
message, along with the IP address of the Lambda instance that processes your request.

Using the Amazon Cloud Development Kit (Amazon CDK) 902

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/what-is-sam.html
https://amazonaws-china.com/blogs/dotnet/building-serverless-net-applications-with-aws-lambda-and-the-sam-cli/

Amazon Lambda Developer Guide

Prerequisites

.NET 8 SDK

Install the .NET 8 SDK and Runtime.

Amazon CDK version 2

To learn how to install the latest version of the Amazon CDK see Getting started with the
Amazon CDK in the Amazon Cloud Development Kit (Amazon CDK) v2 Developer Guide.

Deploy a sample Amazon CDK application

1. Create a project directory for the sample application and navigate into it.

mkdir hello-world
cd hello-world

2. Initialize a new Amazon CDK application by running the following command.

cdk init app --language csharp

The command creates the following files and directories in your project directory

README.md
cdk.json
src
 ### HelloWorld
 # ### GlobalSuppressions.cs
 # ### HelloWorld.csproj
 # ### HelloWorldStack.cs
 # ### Program.cs
 ### HelloWorld.sln

3. Open the src directory and create a new Lambda function using the .NET CLI. This is the
function you will deploy using the Amazon CDK. In this example, you create a Hello world
function named HelloWorldLambdausing the lambda.EmptyFunction template.

cd src
dotnet new lambda.EmptyFunction -n HelloWorldLambda

Using the Amazon Cloud Development Kit (Amazon CDK) 903

https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://docs.amazonaws.cn/cdk/v2/guide/getting_started.html
https://docs.amazonaws.cn/cdk/v2/guide/getting_started.html

Amazon Lambda Developer Guide

After this step, your directory structure inside your project directory should look like the
following.

README.md
cdk.json
src
 ### HelloWorld
 # ### GlobalSuppressions.cs
 # ### HelloWorld.csproj
 # ### HelloWorldStack.cs
 # ### Program.cs
 ### HelloWorld.sln
 ### HelloWorldLambda
 ### src
 # ### HelloWorldLambda
 # ### Function.cs
 # ### HelloWorldLambda.csproj
 # ### Readme.md
 # ### aws-lambda-tools-defaults.json
 ### test
 ### HelloWorldLambda.Tests
 ### FunctionTest.cs
 ### HelloWorldLambda.Tests.csproj

4. Open the HelloWorldStack.cs file from the src/HelloWorld directory. Replace the
contents of the file with the following code.

using Amazon.CDK;
using Amazon.CDK.AWS.Lambda;
using Amazon.CDK.AWS.Logs;
using Constructs;

namespace CdkTest
{
 public class HelloWorldStack : Stack
 {
 internal HelloWorldStack(Construct scope, string id, IStackProps props =
 null) : base(scope, id, props)
 {
 var buildOption = new BundlingOptions()
 {
 Image = Runtime.DOTNET_8.BundlingImage,

Using the Amazon Cloud Development Kit (Amazon CDK) 904

Amazon Lambda Developer Guide

 User = "root",
 OutputType = BundlingOutput.ARCHIVED,
 Command = new string[]{
 "/bin/sh",
 "-c",
 " dotnet tool install -g Amazon.Lambda.Tools"+
 " && dotnet build"+
 " && dotnet lambda package --output-package /asset-output/
function.zip"
 }
 };

 var helloWorldLambdaFunction = new Function(this,
 "HelloWorldFunction", new FunctionProps
 {
 Runtime = Runtime.DOTNET_8,
 MemorySize = 1024,
 LogRetention = RetentionDays.ONE_DAY,
 Handler =
 "HelloWorldLambda::HelloWorldLambda.Function::FunctionHandler",
 Code = Code.FromAsset("./src/HelloWorldLambda/src/
HelloWorldLambda", new Amazon.CDK.AWS.S3.Assets.AssetOptions
 {
 Bundling = buildOption
 }),
 });
 }
 }
}

This is the code to compile and bundle the application code, as well as the definition of the
Lambda function itself. the BundlingOptions object allows a zip file to be created, along
with a set of commands that are used to generate the contents of the zip file. In this instance,
the dotnet lambda package command is used to compile and generate the zip file.

5. To deploy your application, run the following command.

cdk deploy

6. Invoke your deployed Lambda function using the .NET Lambda CLI.

dotnet lambda invoke-function HelloWorldFunction -p "hello world"

Using the Amazon Cloud Development Kit (Amazon CDK) 905

Amazon Lambda Developer Guide

7. After you've finished testing, you can delete the resources you created, unless you want to
retain them. Run the following command to delete your resources.

cdk destroy

Next steps

To learn more about using Amazon CDK to build and deploy Lambda functions using .NET, see the
following resources:

• Working with the Amazon CDK in C#

• Build, package, and publish .NET C# Lambda functions with the Amazon CDK

Deploy ASP.NET applications

As well as hosting event-driven functions, you can also use .NET with Lambda to host
lightweight ASP.NET applications. You can build and deploy ASP.NET applications using the
Amazon.Lambda.AspNetCoreServer NuGet package. In this section, you learn how to deploy an
ASP.NET web API to Lambda using the .NET Lambda CLI tooling.

Topics

• Prerequisites

• Deploying an ASP.NET Web API to Lambda

• Deploying ASP.NET minimal APIs to Lambda

Prerequisites

.NET 8 SDK

Install the .NET 8 SDK and ASP.NET Core Runtime.

Amazon.Lambda.Tools

To create your Lambda functions, you use the Amazon.Lambda.Tools .NET Global Tools
extension. To install Amazon.Lambda.Tools, run the following command:

dotnet tool install -g Amazon.Lambda.Tools

Deploy ASP.NET applications 906

https://docs.amazonaws.cn/cdk/v2/guide/work-with-cdk-csharp.html
https://amazonaws-china.com/blogs/modernizing-with-aws/build-package-publish-dotnet-csharp-lambda-functions-aws-cdk/
https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://www.nuget.org/packages/Amazon.Lambda.Tools
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/

Amazon Lambda Developer Guide

For more information about the Amazon.Lambda.Tools .NET CLI extension, see the Amazon
Extensions for .NET CLI repository on GitHub.

Amazon.Lambda.Templates

To generate your Lambda function code, use the Amazon.Lambda.Templates NuGet package. To
install this template package, run the following command:

dotnet new --install Amazon.Lambda.Templates

Deploying an ASP.NET Web API to Lambda

To deploy a web API using ASP.NET, you can use the .NET Lambda templates to create a new
web API project. Use the following command to initialize a new ASP.NET web API project. In the
example command, we name the project AspNetOnLambda.

dotnet new serverless.AspNetCoreWebAPI -n AspNetOnLambda

This command creates the following files and directories in your project directory.

.
AspNetOnLambda
 ### src
 # ### AspNetOnLambda
 # ### AspNetOnLambda.csproj
 # ### Controllers
 # # ### ValuesController.cs
 # ### LambdaEntryPoint.cs
 # ### LocalEntryPoint.cs
 # ### Readme.md
 # ### Startup.cs
 # ### appsettings.Development.json
 # ### appsettings.json
 # ### aws-lambda-tools-defaults.json
 # ### serverless.template
 ### test
 ### AspNetOnLambda.Tests
 ### AspNetOnLambda.Tests.csproj
 ### SampleRequests
 # ### ValuesController-Get.json
 ### ValuesControllerTests.cs

Deploy ASP.NET applications 907

https://github.com/aws/aws-extensions-for-dotnet-cli
https://github.com/aws/aws-extensions-for-dotnet-cli
https://www.nuget.org/packages/Amazon.Lambda.Templates

Amazon Lambda Developer Guide

 ### appsettings.json

When Lambda invokes your function, the entry point it uses is the LambdaEntryPoint.cs file.
The file created by the .NET Lambda template contains the following code.

namespace AspNetOnLambda;

public class LambdaEntryPoint : Amazon.Lambda.AspNetCoreServer.APIGatewayProxyFunction
{
 protected override void Init(IWebHostBuilder builder)
 {
 builder
 .UseStartup#Startup#();
 }

 protected override void Init(IHostBuilder builder)
 {
 }
}

The entry point used by Lambda must inherit from one of the three base classes in the
Amazon.Lambda.AspNetCoreServer package. These three base classes are:

• APIGatewayProxyFunction

• APIGatewayHttpApiV2ProxyFunction

• ApplicationLoadBalancerFunction

The default class used when you create your LambdaEntryPoint.cs file using the provided .NET
Lambda template is APIGatewayProxyFunction. The base class you use in your function
depends on which API layer sits in front of your Lambda function.

Each of the three base classes contains a public method named FunctionHandlerAsync. The
name of this method will form part of the handler string Lambda uses to invoke your function.
The FunctionHandlerAsync method transforms the inbound event payload into the correct
ASP.NET format and the ASP.NET response back to a Lambda response payload. For the example
AspNetOnLambda project shown, the handler string would be as follows.

AspNetOnLambda::AspNetOnLambda.LambdaEntryPoint::FunctionHandlerAsync

Deploy ASP.NET applications 908

Amazon Lambda Developer Guide

To deploy the API to Lambda, run the following commands to navigate into the directory
containing your source code file and deploy your function using Amazon CloudFormation.

cd AspNetOnLambda/src/AspNetOnLambda
dotnet lambda deploy-serverless

Tip

When you deploy an API using the dotnet lambda deploy-serverless command,
Amazon CloudFormation gives your Lambda function a name based on the stack
name you specify during the deployment. To give your Lambda function a custom
name, edit the serverless.template file to add a FunctionName property to the
AWS::Serverless::Function resource. See Name type in the Amazon CloudFormation
User Guide to learn more.

Deploying ASP.NET minimal APIs to Lambda

To deploy an ASP.NET minimal API to Lambda, you can use the .NET Lambda templates to create
a new minimal API project. Use the following command to initialize a new minimal API project. In
this example, we name the project MinimalApiOnLambda.

dotnet new serverless.AspNetCoreMinimalAPI -n MinimalApiOnLambda

The command creates the following files and directories in your project directory.

MinimalApiOnLambda
 ### src
 ### MinimalApiOnLambda
 ### Controllers
 # ### CalculatorController.cs
 ### MinimalApiOnLambda.csproj
 ### Program.cs
 ### Readme.md
 ### appsettings.Development.json
 ### appsettings.json
 ### aws-lambda-tools-defaults.json
 ### serverless.template

The Program.cs file contains the following code.

Deploy ASP.NET applications 909

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-name.html

Amazon Lambda Developer Guide

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddControllers();

// Add AWS Lambda support. When application is run in Lambda Kestrel is swapped out as
 the web server with Amazon.Lambda.AspNetCoreServer. This
// package will act as the webserver translating request and responses between the
 Lambda event source and ASP.NET Core.
builder.Services.AddAWSLambdaHosting(LambdaEventSource.RestApi);

var app = builder.Build();

app.UseHttpsRedirection();
app.UseAuthorization();
app.MapControllers();

app.MapGet("/", () => "Welcome to running ASP.NET Core Minimal API on AWS Lambda");

app.Run();

To configure your minimal API to run on Lambda, you may need to edit this code so that requests
and responses between Lambda and ASP.NET Core are properly translated. By default, the function
is configured for a REST API event source. For an HTTP API or application load balancer, replace
(LambdaEventSource.RestApi) with one of the following options:

• (LambdaEventSource.HttpAPi)

• (LambdaEventSource.ApplicationLoadBalancer)

To deploy your minimal API to Lambda, run the following commands to navigate into the directory
containing your source code file and deploy your function using Amazon CloudFormation.

cd MinimalApiOnLambda/src/MinimalApiOnLambda
dotnet lambda deploy-serverless

Deploy ASP.NET applications 910

Amazon Lambda Developer Guide

Deploy .NET Lambda functions with container images

There are three ways to build a container image for a .NET Lambda function:

• Using an Amazon base image for .NET

The Amazon base images are preloaded with a language runtime, a runtime interface client
to manage the interaction between Lambda and your function code, and a runtime interface
emulator for local testing.

• Using an Amazon OS-only base image

Amazon OS-only base images contain an Amazon Linux distribution and the runtime interface
emulator. These images are commonly used to create container images for compiled languages,
such as Go and Rust, and for a language or language version that Lambda doesn't provide
a base image for, such as Node.js 19. You can also use OS-only base images to implement a
custom runtime. To make the image compatible with Lambda, you must include the the runtime
interface client for .NET in the image.

• Using a non-Amazon base image

You can use an alternative base image from another container registry, such as Alpine Linux
or Debian. You can also use a custom image created by your organization. To make the image
compatible with Lambda, you must include the the runtime interface client for .NET in the
image.

Tip

To reduce the time it takes for Lambda container functions to become active, see Use
multi-stage builds in the Docker documentation. To build efficient container images, follow
the Best practices for writing Dockerfiles.

This page explains how to build, test, and deploy container images for Lambda.

Topics

• Amazon base images for .NET

• Using an Amazon base image for .NET

• Using an alternative base image with the runtime interface client

Deploy container images 911

https://gallery.ecr.aws/lambda/provided
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Amazon Lambda Developer Guide

Amazon base images for .NET

Amazon provides the following base images for .NET:

Tags Runtime Operating
system

Dockerfile Deprecation

8 .NET 8 Amazon
Linux 2023

Dockerfile for .NET 8 on
GitHub

7 .NET 7 Amazon
Linux 2

Dockerfile for .NET 7 on
GitHub

May 14, 2024

6 .NET 6 Amazon
Linux 2

Dockerfile for .NET 6 on
GitHub

Nov 12, 2024

Amazon ECR repository: gallery.ecr.aws/lambda/dotnet

Using an Amazon base image for .NET

Prerequisites

To complete the steps in this section, you must have the following:

• .NET SDK – The following steps use the .NET 8 base image. Make sure that your .NET version
matches the version of the base image that you specify in your Dockerfile.

• Docker

Creating and deploying an image using a base image

In the following steps, you use Amazon.Lambda.Templates and Amazon.Lambda.Tools to create
a .NET project. Then, you build a Docker image, upload the image to Amazon ECR, and deploy it to
a Lambda function.

1. Install the Amazon.Lambda.Templates NuGet package.

dotnet new install Amazon.Lambda.Templates

2. Create a .NET project using the lambda.image.EmptyFunction template.

Amazon base images for .NET 912

https://github.com/aws/aws-lambda-base-images/blob/dotnet8/Dockerfile.dotnet8
https://github.com/aws/aws-lambda-base-images/blob/dotnet8/Dockerfile.dotnet8
https://github.com/aws/aws-lambda-base-images/blob/dotnet7/Dockerfile.dotnet7
https://github.com/aws/aws-lambda-base-images/blob/dotnet7/Dockerfile.dotnet7
https://github.com/aws/aws-lambda-base-images/blob/dotnet6/Dockerfile.dotnet6
https://github.com/aws/aws-lambda-base-images/blob/dotnet6/Dockerfile.dotnet6
https://gallery.ecr.aws/lambda/dotnet
https://dotnet.microsoft.com/download
https://gallery.ecr.aws/lambda/dotnet
https://docs.docker.com/get-docker
https://github.com/aws/aws-lambda-dotnet#dotnet-cli-templates
aws-extensions-for-dotnet-cli#aws-lambda-amazonlambdatools
aws-lambda-dotnet#dotnet-cli-templates

Amazon Lambda Developer Guide

dotnet new lambda.image.EmptyFunction --name MyFunction --region us-east-1

3. Navigate to the MyFunction/src/MyFunction directory. This is where the project files are
stored. Examine the following files:

• aws-lambda-tools-defaults.json – This file is where you specify the command line options
when deploying your Lambda function.

• Function.cs – Your Lambda handler function code. This is a C# template that includes the
default Amazon.Lambda.Core library and a default LambdaSerializer attribute. For
more information about serialization requirements and options, see Serialization in Lambda
functions. You can use the provided code for testing, or replace it with your own.

• MyFunction.csproj – A .NET project file, which lists the files and assemblies that comprise
your application.

• Readme.md – This file contains more information about the sample Lambda function.

4. Examine the Dockerfile in the src/MyFunction directory. You can use the provided
Dockerfile for testing, or replace it with your own. If you use your own, make sure to:

• Set the FROM property to the URI of the base image. Your .NET version must match the
version of the base image.

• Set the CMD argument to the Lambda function handler. This should match the image-
command in aws-lambda-tools-defaults.json.

Example Dockerfile

You can also pull these images from DockerHub amazon/aws-lambda-dotnet:8
FROM public.ecr.aws/lambda/dotnet:8

Copy function code to Lambda-defined environment variable
COPY publish/* ${LAMBDA_TASK_ROOT}

Set the CMD to your handler (could also be done as a parameter override outside
 of the Dockerfile)
CMD ["MyFunction::MyFunction.Function::FunctionHandler"]

5. Install the Amazon.Lambda.Tools .NET Global Tool.

dotnet tool install -g Amazon.Lambda.Tools

Using an Amazon base image 913

https://learn.microsoft.com/en-us/dotnet/core/project-sdk/overview#project-files
https://gallery.ecr.aws/lambda/dotnet
https://amazonaws-china.com/blogs/developer/net-core-global-tools-for-aws/

Amazon Lambda Developer Guide

If Amazon.Lambda.Tools is already installed, make sure that you have the latest version.

dotnet tool update -g Amazon.Lambda.Tools

6. Change the directory to MyFunction/src/MyFunction, if you're not there already.

cd src/MyFunction

7. Use Amazon.Lambda.Tools to build the Docker image, push it to a new Amazon ECR repository,
and deploy the Lambda function.

For --function-role, specify the role name—not the Amazon Resource Name (ARN)—of
the execution role for the function. For example, lambda-role.

dotnet lambda deploy-function MyFunction --function-role lambda-role

For more information about the Amazon.Lambda.Tools .NET Global Tool, see the Amazon
Extensions for .NET CLI repository on GitHub.

8. Invoke the function.

dotnet lambda invoke-function MyFunction --payload "Testing the function"

If everything is successful, you see the following:

Payload:
"TESTING THE FUNCTION"

Log Tail:
START RequestId: id Version: $LATEST
END RequestId: id
REPORT RequestId: id Duration: 0.99 ms Billed Duration: 1 ms Memory
 Size: 256 MB Max Memory Used: 12 MB

9. Delete the Lambda function.

dotnet lambda delete-function MyFunction

Using an Amazon base image 914

aws-extensions-for-dotnet-cli
aws-extensions-for-dotnet-cli

Amazon Lambda Developer Guide

Using an alternative base image with the runtime interface client

If you use an OS-only base image or an alternative base image, you must include the runtime
interface client in your image. The runtime interface client extends the Lambda runtime API, which
manages the interaction between Lambda and your function code.

The following example demonstrates how to build a container image for .NET using a non-Amazon
base image, and how to add the Amazon.Lambda.RuntimeSupport package, which is the Lambda
runtime interface client for .NET. The example Dockerfile uses the Microsoft .NET 8 base image.

Prerequisites

To complete the steps in this section, you must have the following:

• .NET SDK – The following steps use a .NET 8 base image. Make sure that your .NET version
matches the version of the base image that you specify in your Dockerfile.

• Docker

Creating and deploying an image using an alternative base image

1. Install the Amazon.Lambda.Templates NuGet package.

dotnet new install Amazon.Lambda.Templates

2. Create a .NET project using the lambda.CustomRuntimeFunction template. This template
includes the Amazon.Lambda.RuntimeSupport package.

dotnet new lambda.CustomRuntimeFunction --name MyFunction --region us-east-1

3. Navigate to the MyFunction/src/MyFunction directory. This is where the project files are
stored. Examine the following files:

• aws-lambda-tools-defaults.json – This file is where you specify the command line options
when deploying your Lambda function.

• Function.cs – The code contains a class with a Main method that initializes the
Amazon.Lambda.RuntimeSupport library as the bootstrap. The Main method
is the entry point for the function's process. The Main method wraps the function
handler in a wrapper that the bootstrap can work with. For more information, see Using
Amazon.Lambda.RuntimeSupport as a class library in the GitHub repository.

Using a non-Amazon base image 915

https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.RuntimeSupport/README.md#using-amazonlambdaruntimesupport-as-a-class-library
https://dotnet.microsoft.com/download
https://gallery.ecr.aws/lambda/dotnet
https://docs.docker.com/get-docker
aws-lambda-dotnet#dotnet-cli-templates
https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.RuntimeSupport/README.md#using-amazonlambdaruntimesupport-as-a-class-library
https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.RuntimeSupport/README.md#using-amazonlambdaruntimesupport-as-a-class-library
https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.RuntimeSupport/README.md#using-amazonlambdaruntimesupport-as-a-class-library

Amazon Lambda Developer Guide

• MyFunction.csproj – A .NET project file, which lists the files and assemblies that comprise
your application.

• Readme.md – This file contains more information about the sample Lambda function.

4. Open the aws-lambda-tools-defaults.json file and Add the following lines:

 "package-type": "image",
 "docker-host-build-output-dir": "./bin/Release/lambda-publish"

• package-type: Defines the deployment package as a container image.

• docker-host-build-output-dir: Sets the output directory for the build process.

Example aws-lambda-tools-defaults.json

{
 "Information": [
 "This file provides default values for the deployment wizard inside Visual
 Studio and the AWS Lambda commands added to the .NET Core CLI.",
 "To learn more about the Lambda commands with the .NET Core CLI execute the
 following command at the command line in the project root directory.",
 "dotnet lambda help",
 "All the command line options for the Lambda command can be specified in this
 file."
],
 "profile": "",
 "region": "us-east-1",
 "configuration": "Release",
 "function-runtime": "provided.al2023",
 "function-memory-size": 256,
 "function-timeout": 30,
 "function-handler": "bootstrap",
 "msbuild-parameters": "--self-contained true",
 "package-type": "image",
 "docker-host-build-output-dir": "./bin/Release/lambda-publish"
}

5. Create a Dockerfile in the MyFunction/src/MyFunction directory. The following example
Dockerfile uses a Microsoft .NET base image instead of an Amazon base image.

• Set the FROM property to the base image identifier. Your .NET version must match the
version of the base image.

Using a non-Amazon base image 916

https://learn.microsoft.com/en-us/dotnet/core/project-sdk/overview#project-files

Amazon Lambda Developer Guide

• Use the COPY command to copy the function into the /var/task directory.

• Set the ENTRYPOINT to the module that you want the Docker container to run
when it starts. In this case, the module is the bootstrap, which initializes the
Amazon.Lambda.RuntimeSupport library.

Example Dockerfile

You can also pull these images from DockerHub amazon/aws-lambda-dotnet:8
FROM mcr.microsoft.com/dotnet/runtime:8.0

Set the image's internal work directory
WORKDIR /var/task

Copy function code to Lambda-defined environment variable
COPY "bin/Release/net8.0/linux-x64" .

Set the entrypoint to the bootstrap
ENTRYPOINT ["/usr/bin/dotnet", "exec", "/var/task/bootstrap.dll"]

6. Install the Amazon.Lambda.Tools .NET Global Tools extension.

dotnet tool install -g Amazon.Lambda.Tools

If Amazon.Lambda.Tools is already installed, make sure that you have the latest version.

dotnet tool update -g Amazon.Lambda.Tools

7. Use Amazon.Lambda.Tools to build the Docker image, push it to a new Amazon ECR repository,
and deploy the Lambda function.

For --function-role, specify the role name—not the Amazon Resource Name (ARN)—of
the execution role for the function. For example, lambda-role.

dotnet lambda deploy-function MyFunction --function-role lambda-role

For more information about the Amazon.Lambda.Tools .NET CLI extension, see the Amazon
Extensions for .NET CLI repository on GitHub.

8. Invoke the function.

Using a non-Amazon base image 917

https://amazonaws-china.com/blogs/developer/net-core-global-tools-for-aws/
aws-extensions-for-dotnet-cli
aws-extensions-for-dotnet-cli

Amazon Lambda Developer Guide

dotnet lambda invoke-function MyFunction --payload "Testing the function"

If everything is successful, you see the following:

Payload:
"TESTING THE FUNCTION"

Log Tail:
START RequestId: id Version: $LATEST
END RequestId: id
REPORT RequestId: id Duration: 0.99 ms Billed Duration: 1 ms Memory
 Size: 256 MB Max Memory Used: 12 MB

9. Delete the Lambda function.

dotnet lambda delete-function MyFunction

Using a non-Amazon base image 918

Amazon Lambda Developer Guide

.NET functions with native AOT compilation

.NET 8 supports native ahead-of-time (AOT) compilation. With native AOT, you can compile your
Lambda function code to a native runtime format, which removes the need to compile .NET code
at runtime. Native AOT compilation can reduce the cold start time for Lambda functions that you
write in .NET. For more information, see Introducing the .NET 8 runtime for Amazon Lambda on the
Amazon Compute Blog.

Sections

• Lambda runtime

• Prerequisites

• Getting started

• Serialization

• Trimming

• Troubleshooting

Lambda runtime

To deploy a Lambda function build with native AOT compilation, use the managed .NET 8 Lambda
runtime. This runtime supports the use of both x86_64 and arm64 architectures.

When you deploy a .NET Lambda function without using AOT, your application is first compiled
into Intermediate Language (IL) code. At runtime, the just-in-time (JIT) compiler in the Lambda
runtime takes the IL code and compiles it into machine code as needed. With a Lambda function
that is compiled ahead of time with native AOT, you compile your code into machine code when
you deploy your function, so you're not dependent on the .NET runtime or SDK in the Lambda
runtime to compile your code before it runs.

One limitation of AOT is that your application code must be compiled in an environment with
the same Amazon Linux 2023 (AL2023) operating system that the .NET 8 runtime uses. The .NET
Lambda CLI provides functionality to compile your application in a Docker container using an
AL2023 image.

To avoid potential issues with cross-architecture compatibility, we strongly recommend that you
compile your code in an environment with the same processor architecture that you configure for
your function. To learn more about the limitations of cross-architecture compilation, see Cross-
compilation in the Microsoft .NET documentation.

Native AOT compilation 919

https://amazonaws-china.com/blogs/compute/introducing-the-net-8-runtime-for-aws-lambda/
https://learn.microsoft.com/en-us/dotnet/core/deploying/native-aot/cross-compile
https://learn.microsoft.com/en-us/dotnet/core/deploying/native-aot/cross-compile

Amazon Lambda Developer Guide

Prerequisites

Docker

To use native AOT, your function code must be compiled in an environment with the same
AL2023 operating system as the .NET 8 runtime. The .NET CLI commands in the following
sections use Docker to develop and build Lambda functions in an AL2023 environment.

.NET 8 SDK

Native AOT compilation is a feature of .NET 8. You must install the .NET 8 SDK on your build
machine, not only the runtime.

Amazon.Lambda.Tools

To create your Lambda functions, you use the Amazon.Lambda.Tools .NET Global Tools
extension. To install Amazon.Lambda.Tools, run the following command:

dotnet tool install -g Amazon.Lambda.Tools

For more information about the Amazon.Lambda.Tools .NET CLI extension, see the Amazon
Extensions for .NET CLI repository on GitHub.

Amazon.Lambda.Templates

To generate your Lambda function code, use the Amazon.Lambda.Templates NuGet package. To
install this template package, run the following command:

dotnet new install Amazon.Lambda.Templates

Getting started

Both the .NET Global CLI and the Amazon Serverless Application Model (Amazon SAM) provide
getting started templates for building applications using native AOT. To build your first native AOT
Lambda function, carry out the steps in the following instructions.

To initialize and deploy a native AOT compiled Lambda function

1. Initialize a new project using the native AOT template and then navigate into the directory
containing the created .cs and .csproj files. In this example, we name our function
NativeAotSample.

Prerequisites 920

https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://www.nuget.org/packages/Amazon.Lambda.Tools
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://aws.amazon.com/blogs/developer/net-core-global-tools-for-aws/
https://github.com/aws/aws-extensions-for-dotnet-cli
https://github.com/aws/aws-extensions-for-dotnet-cli
https://www.nuget.org/packages/Amazon.Lambda.Templates

Amazon Lambda Developer Guide

dotnet new lambda.NativeAOT -n NativeAotSample
cd ./NativeAotSample/src/NativeAotSample

The Function.cs file created by the native AOT template contains the following function
code.

using Amazon.Lambda.Core;
using Amazon.Lambda.RuntimeSupport;
using Amazon.Lambda.Serialization.SystemTextJson;
using System.Text.Json.Serialization;

namespace NativeAotSample;

public class Function
{
 /// <summary>
 /// The main entry point for the Lambda function. The main function is called
 once during the Lambda init phase. It
 /// initializes the .NET Lambda runtime client passing in the function handler
 to invoke for each Lambda event and
 /// the JSON serializer to use for converting Lambda JSON format to the .NET
 types.
 /// </summary>
 private static async Task Main()
 {
 Func<string, ILambdaContext, string> handler = FunctionHandler;
 await LambdaBootstrapBuilder.Create(handler, new
 SourceGeneratorLambdaJsonSerializer<LambdaFunctionJsonSerializerContext>())
 .Build()
 .RunAsync();
 }

 /// <summary>
 /// A simple function that takes a string and does a ToUpper.
 ///
 /// To use this handler to respond to an AWS event, reference the appropriate
 package from
 /// https://github.com/aws/aws-lambda-dotnet#events
 /// and change the string input parameter to the desired event type. When the
 event type
 /// is changed, the handler type registered in the main method needs to be
 updated and the LambdaFunctionJsonSerializerContext

Getting started 921

Amazon Lambda Developer Guide

 /// defined below will need the JsonSerializable updated. If the return type
 and event type are different then the
 /// LambdaFunctionJsonSerializerContext must have two JsonSerializable
 attributes, one for each type.
 ///
 // When using Native AOT extra testing with the deployed Lambda functions is
 required to ensure
 // the libraries used in the Lambda function work correctly with Native AOT. If
 a runtime
 // error occurs about missing types or methods the most likely solution will be
 to remove references to trim-unsafe
 // code or configure trimming options. This sample defaults to partial TrimMode
 because currently the AWS
 // SDK for .NET does not support trimming. This will result in a larger
 executable size, and still does not
 // guarantee runtime trimming errors won't be hit.
 /// </summary>
 /// <param name="input"></param>
 /// <param name="context"></param>
 /// <returns></returns>
 public static string FunctionHandler(string input, ILambdaContext context)
 {
 return input.ToUpper();
 }
}

/// <summary>
/// This class is used to register the input event and return type for the
 FunctionHandler method with the System.Text.Json source generator.
/// There must be a JsonSerializable attribute for each type used as the input and
 return type or a runtime error will occur
/// from the JSON serializer unable to find the serialization information for
 unknown types.
/// </summary>
[JsonSerializable(typeof(string))]
public partial class LambdaFunctionJsonSerializerContext : JsonSerializerContext
{
 // By using this partial class derived from JsonSerializerContext, we can
 generate reflection free JSON Serializer code at compile time
 // which can deserialize our class and properties. However, we must attribute
 this class to tell it what types to generate serialization code for.
 // See https://docs.microsoft.com/en-us/dotnet/standard/serialization/system-
text-json-source-generation

Getting started 922

Amazon Lambda Developer Guide

Native AOT compiles your application into a single, native binary. The entrypoint
of that binary is the static Main method. Within static Main, the Lambda
runtime is bootstrapped and the FunctionHandler method set up. As part
of the runtime bootstrap, a source generated serializer is configured using new
SourceGeneratorLambdaJsonSerializer<LambdaFunctionJsonSerializerContext>()

2. To deploy your application to Lambda, ensure that Docker is running in your local environment
and run the following command.

dotnet lambda deploy-function

Behind the scenes, the .NET global CLI downloads an AL2023 Docker image and compiles your
application code inside a running container. The compiled binary is output back to your local
filesystem before being deployed to Lambda.

3. Test your function by running the following command. Replace <FUNCTION_NAME> with the
name you chose for your function in the deployment wizard.

dotnet lambda invoke-function <FUNCTION_NAME> --payload "hello world"

The response from the CLI includes performance details for the cold start (initialization
duration) and total run time for your function invocation.

4. To delete the Amazon resources you created by following the preceding steps, run the
following command. Replace <FUNCTION_NAME> with the name you chose for your function in
the deployment wizard. By deleting Amazon resources that you're no longer using, you prevent
unnecessary charges being billed to your Amazon Web Services account.

dotnet lambda delete-function <FUNCTION_NAME>

Serialization

To deploy functions to Lambda using native AOT, your function code must use source generated
serialization. Instead of using run-time reflection to gather the metadata needed to access object
properties for serialization, source generators generate C# source files that are compiled when
you build your application. To configure your source generated serializer correctly, ensure that
you include any input and output objects your function uses, as well as any custom types. For

Serialization 923

https://learn.microsoft.com/en-us/dotnet/standard/serialization/system-text-json/source-generation-modes?pivots=dotnet-8-0
https://learn.microsoft.com/en-us/dotnet/standard/serialization/system-text-json/source-generation-modes?pivots=dotnet-8-0

Amazon Lambda Developer Guide

example, a Lambda function that receives events from an API Gateway REST API and returns a
custom Product type would include a serializer defined as follows.

[JsonSerializable(typeof(APIGatewayProxyRequest))]
[JsonSerializable(typeof(APIGatewayProxyResponse))]
[JsonSerializable(typeof(Product))]
public partial class CustomSerializer : JsonSerializerContext
{
}

Trimming

Native AOT trims your application code as part of the compilation to ensure that the binary is as
small as possible. .NET 8 for Lambda provides improved trimming support compared to previous
versions of .NET. Support has been added to the Lambda runtime libraries, Amazon .NET SDK, .NET
Lambda Annotations, and .NET 8 itself.

These improvements offer the potential to eliminate build-time trimming warnings, but .NET
will never be completely trim safe. This means that parts of libraries that your function relies
on may be trimmed out as part of the compilation step. You can manage this by defining
TrimmerRootAssemblies as part of your .csproj file as shown in the following example.

<ItemGroup>
 <TrimmerRootAssembly Include="AWSSDK.Core" />
 <TrimmerRootAssembly Include="AWSXRayRecorder.Core" />
 <TrimmerRootAssembly Include="AWSXRayRecorder.Handlers.AwsSdk" />
 <TrimmerRootAssembly Include="Amazon.Lambda.APIGatewayEvents" />
 <TrimmerRootAssembly Include="bootstrap" />
 <TrimmerRootAssembly Include="Shared" />
</ItemGroup>

Note that when you receive a trim warning, adding the class that generates the warning to
TrimmerRootAssembly might not resolve the issue. A trim warning indicates that the class is
trying to access some other class that can't be determined until runtime. To avoid runtime errors,
add this second class to TrimmerRootAssembly.

To learn more about managing trim warnings, see Introduction to trim warnings in the
Microsoft .NET documentation.

Trimming 924

https://github.com/aws/aws-lambda-dotnet/pull/1596
https://github.com/aws/aws-sdk-net/pulls?q=is%3Apr+trimming
https://github.com/aws/aws-lambda-dotnet/pull/1610
https://github.com/aws/aws-lambda-dotnet/pull/1610
https://learn.microsoft.com/en-us/dotnet/core/deploying/trimming/fixing-warnings

Amazon Lambda Developer Guide

Troubleshooting

Error: Cross-OS native compilation is not supported.

Your version of the Amazon.Lambda.Tools .NET Core global tool is out of date. Update to the
latest version and try again.

Docker: image operating system "linux" cannot be used on this platform.

Docker on your system is configured to use Windows containers. Swap to Linux containers to
run the native AOT build environment.

For more information about common errors, see the Amazon NativeAOT for .NET repository on
GitHub.

Troubleshooting 925

https://github.com/awslabs/dotnet-nativeaot-labs#common-errors

Amazon Lambda Developer Guide

Amazon Lambda context object in C#

When Lambda runs your function, it passes a context object to the handler. This object provides
properties with information about the invocation, function, and execution environment.

Context properties

• FunctionName – The name of the Lambda function.

• FunctionVersion – The version of the function.

• InvokedFunctionArn – The Amazon Resource Name (ARN) that's used to invoke the function.
Indicates if the invoker specified a version number or alias.

• MemoryLimitInMB – The amount of memory that's allocated for the function.

• AwsRequestId – The identifier of the invocation request.

• LogGroupName – The log group for the function.

• LogStreamName – The log stream for the function instance.

• RemainingTime (TimeSpan) – The number of milliseconds left before the execution times out.

• Identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• ClientContext – (mobile apps) Client context that's provided to Lambda by the client
application.

• Logger The logger object for the function.

You can use information in the ILambdaContext object to output information about your
function's invocation for monitoring purposes. The following code provides an example of how
to add context information to a structured logging framework. In this example, the function adds
AwsRequestId to the log outputs. The function also uses the RemainingTime property to cancel
an inflight task if the Lambda function timeout is about to be reached.

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace GetProductHandler;

public class Function
{
 private readonly IDatabaseRepository _repo;

Context 926

Amazon Lambda Developer Guide

 public Function()
 {
 this._repo = new DatabaseRepository();
 }

 public async Task<APIGatewayProxyResponse> FunctionHandler(APIGatewayProxyRequest
 request, ILambdaContext context)
 {
 Logger.AppendKey("AwsRequestId", context.AwsRequestId);

 var id = request.PathParameters["id"];

 using var cts = new CancellationTokenSource();

 try
 {
 cts.CancelAfter(context.RemainingTime.Add(TimeSpan.FromSeconds(-1)));

 var databaseRecord = await this._repo.GetById(id, cts.Token);

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,
 Body = JsonSerializer.Serialize(databaseRecord)
 };
 }
 finally
 {
 cts.Cancel();

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.InternalServerError,
 Body = JsonSerializer.Serialize(databaseRecord)
 };
 }
 }
}

Context 927

Amazon Lambda Developer Guide

Lambda function logging in C#

Amazon Lambda automatically monitors Lambda functions and sends log entries to Amazon
CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log stream
for each instance of your function. The Lambda runtime environment sends details about each
invocation and other output from your function's code to the log stream. For more information
about CloudWatch Logs, see Using Amazon CloudWatch logs with Amazon Lambda.

Sections

• Creating a function that returns logs

• Tools and libraries

• Using Powertools for Amazon Lambda (.NET) and Amazon SAM for structured logging

• Using the Lambda console

• Using the CloudWatch console

• Using the Amazon Command Line Interface (Amazon CLI)

• Deleting logs

Creating a function that returns logs

To output logs from your function code, you can use methods on the Console class, or any logging
library that writes to stdout or stderr.

The .NET runtime logs the START, END, and REPORT lines for each invocation. The report line
provides the following details.

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function.

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the Amazon X-Ray trace ID.

Logging 928

https://docs.microsoft.com/en-us/dotnet/api/system.console

Amazon Lambda Developer Guide

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

Tools and libraries

Powertools for Amazon Lambda (.NET) is a developer toolkit to implement Serverless best
practices and increase developer velocity. The Logging utility provides a Lambda optimized logger
which includes additional information about function context across all your functions with output
structured as JSON. Use this utility to do the following:

• Capture key fields from the Lambda context, cold start and structures logging output as JSON

• Log Lambda invocation events when instructed (disabled by default)

• Print all the logs only for a percentage of invocations via log sampling (disabled by default)

• Append additional keys to structured log at any point in time

• Use a custom log formatter (Bring Your Own Formatter) to output logs in a structure compatible
with your organization’s Logging RFC

Using Powertools for Amazon Lambda (.NET) and Amazon SAM for
structured logging

Follow the steps below to download, build, and deploy a sample Hello World C# application
with integrated Powertools for Amazon Lambda (.NET) modules using the Amazon SAM. This
application implements a basic API backend and uses Powertools for emitting logs, metrics, and
traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send a
GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• .NET 6 or .NET 8

• Amazon CLI version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Tools and libraries 929

https://docs.powertools.aws.dev/lambda/dotnet/
https://docs.powertools.aws.dev/lambda/dotnet/core/logging/
https://docs.powertools.aws.dev/lambda-dotnet
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

Deploy a sample Amazon SAM application

1. Initialize the application using the Hello World TypeScript template.

sam init --app-template hello-world-powertools-dotnet --name sam-app --package-type
 Zip --runtime dotnet6 --no-tracing

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl -X GET <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the logs for the function, run sam logs. For more information, see Working with logs in
the Amazon Serverless Application Model Developer Guide.

sam logs --stack-name sam-app

Using Powertools for Amazon Lambda (.NET) and Amazon SAM for structured logging 930

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-logs.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-logging.html

Amazon Lambda Developer Guide

The log output looks like this:

2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8
 2023-02-20T14:15:27.988000 INIT_START Runtime Version:
 dotnet:6.v13 Runtime Version ARN: arn:aws:lambda:ap-
southeast-2::runtime:699f346a05dae24c58c45790bc4089f252bf17dae3997e79b17d939a288aa1ec
2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:28.229000
 START RequestId: bed25b38-d012-42e7-ba28-f272535fb80e Version: $LATEST
2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:29.259000
 2023-02-20T14:15:29.201Z bed25b38-d012-42e7-ba28-f272535fb80e info
 {"_aws":{"Timestamp":1676902528962,"CloudWatchMetrics":[{"Namespace":"sam-
app-logging","Metrics":[{"Name":"ColdStart","Unit":"Count"}],"Dimensions":
[["FunctionName"],["Service"]]}]},"FunctionName":"sam-app-HelloWorldFunction-
haKIoVeose2p","Service":"PowertoolsHelloWorld","ColdStart":1}
2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:30.479000
 2023-02-20T14:15:30.479Z bed25b38-d012-42e7-ba28-f272535fb80e info
 {"ColdStart":true,"XrayTraceId":"1-63f3807f-5dbcb9910c96f50742707542","CorrelationId":"d3d4de7f-4ccc-411a-
a549-4d67b2fdc015","FunctionName":"sam-app-HelloWorldFunction-
haKIoVeose2p","FunctionVersion":"$LATEST","FunctionMemorySize":256,"FunctionArn":"arn:aws:lambda:ap-
southeast-2:123456789012:function:sam-app-HelloWorldFunction-
haKIoVeose2p","FunctionRequestId":"bed25b38-d012-42e7-ba28-
f272535fb80e","Timestamp":"2023-02-20T14:15:30.4602970Z","Level":"Information","Service":"PowertoolsHelloWorld","Name":"AWS.Lambda.Powertools.Logging.Logger","Message":"Hello
 world API - HTTP 200"}
2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:30.599000
 2023-02-20T14:15:30.599Z bed25b38-d012-42e7-ba28-f272535fb80e info
 {"_aws":{"Timestamp":1676902528922,"CloudWatchMetrics":[{"Namespace":"sam-
app-logging","Metrics":[{"Name":"ApiRequestCount","Unit":"Count"}],"Dimensions":
[["Service"]]}]},"Service":"PowertoolsHelloWorld","ApiRequestCount":1}
2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:30.680000 END
 RequestId: bed25b38-d012-42e7-ba28-f272535fb80e
2023/02/20/[$LATEST]4eaf8445ba7a4a93b999cb17fbfbecd8 2023-02-20T14:15:30.680000
 REPORT RequestId: bed25b38-d012-42e7-ba28-f272535fb80e Duration: 2450.99 ms
 Billed Duration: 2451 ms Memory Size: 256 MB Max Memory Used: 74 MB Init
 Duration: 240.05 ms
XRAY TraceId: 1-63f3807f-5dbcb9910c96f50742707542 SegmentId: 16b362cd5f52cba0

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

Using Powertools for Amazon Lambda (.NET) and Amazon SAM for structured logging 931

Amazon Lambda Developer Guide

Managing log retention

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which CloudWatch
automatically deletes the logs. To set up log retention, add the following to your Amazon SAM
template:

Resources:
 HelloWorldFunction:
 Type: AWS::Serverless::Function
 Properties:
 # Omitting other properties

 LogGroup:
 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: !Sub "/aws/lambda/${HelloWorldFunction}"
 RetentionInDays: 7

Using the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Using the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple

Using the Lambda console 932

https://console.amazonaws.cn/cloudwatch/home?#logs:

Amazon Lambda Developer Guide

concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with Amazon X-Ray. X-Ray records details about the request and the log stream in the
trace.

To use a sample application that correlates logs and traces with X-Ray, see Error processor sample
application for Amazon Lambda.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

You can use the Amazon CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

Using the Amazon Command Line Interface (Amazon CLI) 933

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html

Amazon Lambda Developer Guide

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out

Using the Amazon Command Line Interface (Amazon CLI) 934

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",

Using the Amazon Command Line Interface (Amazon CLI) 935

Amazon Lambda Developer Guide

 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Deleting logs 936

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

Amazon Lambda Developer Guide

Amazon Lambda function errors in C#

When your code raises an error, Lambda generates a JSON representation of the error. This error
document appears in the invocation log and, for synchronous invocations, in the output.

This page describes how to view Lambda function invocation errors for the C# runtime using the
Lambda console and the Amazon CLI.

Sections

• Syntax

• How it works

• Using the Lambda console

• Using the Amazon Command Line Interface (Amazon CLI)

• Error handling in other Amazon services

• What's next?

Syntax

In the initialization phase, exceptions can be thrown for invalid handler strings, a rule-breaking
type or method (see Lambda function handler restrictions), or any other validation method (such
as forgetting the serializer attribute and having a POCO as your input or output type). These
exceptions are of type LambdaException. For example:

{
 "errorType": "LambdaException",
 "errorMessage": "Invalid lambda function handler: 'http://
this.is.not.a.valid.handler/'.
 The valid format is 'ASSEMBLY::TYPE::METHOD'."
}

If your constructor throws an exception, the error type is also of type LambdaException, but the
exception thrown during construction is provided in the cause property, which is itself a modeled
exception object:

{
 "errorType": "LambdaException",
 "errorMessage": "An exception was thrown when the constructor for type
 'LambdaExceptionTestFunction.ThrowExceptionInConstructor'

Errors 937

Amazon Lambda Developer Guide

 was invoked. Check inner exception for more details.",
 "cause": {
 "errorType": "TargetInvocationException",
 "errorMessage": "Exception has been thrown by the target of an invocation.",
 "stackTrace": [
 "at System.RuntimeTypeHandle.CreateInstance(RuntimeType type, Boolean publicOnly,
 Boolean noCheck, Boolean&canBeCached,
 RuntimeMethodHandleInternal&ctor, Boolean& bNeedSecurityCheck)",
 "at System.RuntimeType.CreateInstanceSlow(Boolean publicOnly, Boolean
 skipCheckThis, Boolean fillCache, StackCrawlMark& stackMark)",
 "at System.Activator.CreateInstance(Type type, Boolean nonPublic)",
 "at System.Activator.CreateInstance(Type type)"
],
 "cause": {
 "errorType": "ArithmeticException",
 "errorMessage": "Sorry, 2 + 2 = 5",
 "stackTrace": [
 "at LambdaExceptionTestFunction.ThrowExceptionInConstructor..ctor()"
]
 }
 }
}

As the example shows, the inner exceptions are always preserved (as the cause property), and can
be deeply nested.

Exceptions can also occur during invocation. In this case, the exception type is preserved and the
exception is returned directly as the payload and in the CloudWatch logs. For example:

{
 "errorType": "AggregateException",
 "errorMessage": "One or more errors occurred. (An unknown web exception occurred!)",
 "stackTrace": [
 "at System.Threading.Tasks.Task.ThrowIfExceptional(Boolean
 includeTaskCanceledExceptions)",
 "at System.Threading.Tasks.Task`1.GetResultCore(Boolean
 waitCompletionNotification)",
 "at lambda_method(Closure , Stream , Stream , ContextInfo)"
],
 "cause": {
 "errorType": "UnknownWebException",
 "errorMessage": "An unknown web exception occurred!",
 "stackTrace": [

Syntax 938

Amazon Lambda Developer Guide

 "at LambdaDemo107.LambdaEntryPoint.<GetUriResponse>d__1.MoveNext()",
 "--- End of stack trace from previous location where exception was thrown ---",
 "at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task
 task)",
 "at System.Runtime.CompilerServices.TaskAwaiter`1.GetResult()",
 "at LambdaDemo107.LambdaEntryPoint.<CheckWebsiteStatus>d__0.MoveNext()"
],
 "cause": {
 "errorType": "WebException",
 "errorMessage": "An error occurred while sending the request. SSL peer
 certificate or SSH remote key was not OK",
 "stackTrace": [
 "at System.Net.HttpWebRequest.EndGetResponse(IAsyncResult asyncResult)",
 "at System.Threading.Tasks.TaskFactory`1.FromAsyncCoreLogic(IAsyncResult
 iar, Func`2 endFunction, Action`1 endAction, Task`1 promise, Boolean
 requiresSynchronization)",
 "--- End of stack trace from previous location where exception was thrown ---",
 "at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task
 task)",
 "at System.Runtime.CompilerServices.TaskAwaiter`1.GetResult()",
 "at LambdaDemo107.LambdaEntryPoint.<GetUriResponse>d__1.MoveNext()"
],
 "cause": {
 "errorType": "HttpRequestException",
 "errorMessage": "An error occurred while sending the request.",
 "stackTrace": [
 "at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task
 task)",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task
 task)",
 "at System.Net.Http.HttpClient.<FinishSendAsync>d__58.MoveNext()",
 "--- End of stack trace from previous location where exception was thrown
 ---",
 "at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task
 task)",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task
 task)",
 "at System.Net.HttpWebRequest.<SendRequest>d__63.MoveNext()",

Syntax 939

Amazon Lambda Developer Guide

 "--- End of stack trace from previous location where exception was thrown
 ---",
 "at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task
 task)",
 "at
 System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebuggerNotification(Task
 task)",
 "at System.Net.HttpWebRequest.EndGetResponse(IAsyncResult asyncResult)"
],
 "cause": {
 "errorType": "CurlException",
 "errorMessage": "SSL peer certificate or SSH remote key was not OK",
 "stackTrace": [
 "at System.Net.Http.CurlHandler.ThrowIfCURLEError(CURLcode error)",
 "at
 System.Net.Http.CurlHandler.MultiAgent.FinishRequest(StrongToWeakReference`1
 easyWrapper, CURLcode messageResult)"
]
 }
 }
 }
 }
}

The method in which error information is conveyed depends on the invocation type:

• RequestResponse invocation type (that is, synchronous execution): In this case, you get the
error message back.

For example, if you invoke a Lambda function using the Lambda console, the RequestResponse
is always the invocation type and the console displays the error information returned by Amazon
Lambda in the Execution result section of the console.

• Event invocation type (that is, asynchronous execution): In this case Amazon Lambda does
not return anything. Instead, it logs the error information in CloudWatch Logs and CloudWatch
metrics.

How it works

When you invoke a Lambda function, Lambda receives the invocation request and validates the
permissions in your execution role, verifies that the event document is a valid JSON document, and
checks parameter values.

How it works 940

Amazon Lambda Developer Guide

If the request passes validation, Lambda sends the request to a function instance. The Lambda
runtime environment converts the event document into an object, and passes it to your function
handler.

If Lambda encounters an error, it returns an exception type, message, and HTTP status code that
indicates the cause of the error. The client or service that invoked the Lambda function can handle
the error programmatically, or pass it along to an end user. The correct error handling behavior
depends on the type of application, the audience, and the source of the error.

The following list describes the range of status codes you can receive from Lambda.

2xx

A 2xx series error with a X-Amz-Function-Error header in the response indicates a Lambda
runtime or function error. A 2xx series status code indicates that Lambda accepted the request,
but instead of an error code, Lambda indicates the error by including the X-Amz-Function-
Error header in the response.

4xx

A 4xx series error indicates an error that the invoking client or service can fix by modifying the
request, requesting permission, or by retrying the request. 4xx series errors other than 429
generally indicate an error with the request.

5xx

A 5xx series error indicates an issue with Lambda, or an issue with the function's configuration
or resources. 5xx series errors can indicate a temporary condition that can be resolved without
any action by the user. These issues can't be addressed by the invoking client or service, but a
Lambda function's owner may be able to fix the issue.

For a complete list of invocation errors, see InvokeFunction errors.

Using the Lambda console

You can invoke your function on the Lambda console by configuring a test event and viewing the
output. The output is captured in the function's execution logs and, when active tracing is enabled,
in Amazon X-Ray.

To invoke a function on the Lambda console

1. Open the Functions page of the Lambda console.

Using the Lambda console 941

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html#API_Invoke_Errors
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

2. Choose the function to test, and choose Test.

3. Under Test event, select New event.

4. Select a Template.

5. For Name, enter a name for the test. In the text entry box, enter the JSON test event.

6. Choose Save changes.

7. Choose Test.

The Lambda console invokes your function synchronously and displays the result. To see the
response, logs, and other information, expand the Details section.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

When you invoke a Lambda function in the Amazon CLI, the Amazon CLI splits the response into
two documents. The Amazon CLI response is displayed in your command prompt. If an error has
occurred, the response contains a FunctionError field. The invocation response or error returned
by the function is written to an output file. For example, output.json or output.txt.

The following invoke command example demonstrates how to invoke a function and write the
invocation response to an output.txt file.

aws lambda invoke \
 --function-name my-function \
 --cli-binary-format raw-in-base64-out \
 --payload '{"key1": "value1", "key2": "value2", "key3": "value3"}' output.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

Using the Amazon Command Line Interface (Amazon CLI) 942

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/invoke.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

You should see the Amazon CLI response in your command prompt:

{
 "StatusCode": 200,
 "FunctionError": "Unhandled",
 "ExecutedVersion": "$LATEST"
}

You should see the function invocation response in the output.txt file. In the same command
prompt, you can also view the output in your command prompt using:

cat output.txt

You should see the invocation response in your command prompt.

Lambda also records up to 256 KB of the error object in the function's logs. For more information,
see Lambda function logging in C#.

Error handling in other Amazon services

When another Amazon service invokes your function, the service chooses the invocation type
and retry behavior. Amazon services can invoke your function on a schedule, in response to a
lifecycle event on a resource, or to serve a request from a user. Some services invoke functions
asynchronously and let Lambda handle errors, while others retry or pass errors back to the user.

For example, API Gateway treats all invocation and function errors as internal errors. If the Lambda
API rejects the invocation request, API Gateway returns a 500 error code. If the function runs but
returns an error, or returns a response in the wrong format, API Gateway returns a 502 error code.
To customize the error response, you must catch errors in your code and format a response in the
required format.

We recommend using Amazon X-Ray to determine the source of an error and its cause. X-Ray
allows you to find out which component encountered an error, and see details about the errors.
The following example shows a function error that resulted in a 502 response from API Gateway.

Error handling in other Amazon services 943

Amazon Lambda Developer Guide

For more information, see Instrumenting C# code in Amazon Lambda.

What's next?

• Learn how to show logging events for your Lambda function on the the section called “Logging”
page.

What's next? 944

Amazon Lambda Developer Guide

Instrumenting C# code in Amazon Lambda

Lambda integrates with Amazon X-Ray to help you trace, debug, and optimize Lambda
applications. You can use X-Ray to trace a request as it traverses resources in your application,
which may include Lambda functions and other Amazon services.

To send tracing data to X-Ray, you can use one of three SDK libraries:

• Amazon Distro for OpenTelemetry (ADOT) – A secure, production-ready, Amazon-supported
distribution of the OpenTelemetry (OTel) SDK.

• Amazon X-Ray SDK for .NET – An SDK for generating and sending trace data to X-Ray.

• Powertools for Amazon Lambda (.NET) – A developer toolkit to implement Serverless best
practices and increase developer velocity.

Each of the SDKs offer ways to send your telemetry data to the X-Ray service. You can then use X-
Ray to view, filter, and gain insights into your application's performance metrics to identify issues
and opportunities for optimization.

Important

The X-Ray and Powertools for Amazon Lambda SDKs are part of a tightly integrated
instrumentation solution offered by Amazon. The ADOT Lambda Layers are part of an
industry-wide standard for tracing instrumentation that collect more data in general, but
may not be suited for all use cases. You can implement end-to-end tracing in X-Ray using
either solution. To learn more about choosing between them, see Choosing between the
Amazon Distro for Open Telemetry and X-Ray SDKs.

Sections

• Using Powertools for Amazon Lambda (.NET) and Amazon SAM for tracing

• Using the X-Ray SDK to instrument your .NET functions

• Activating tracing with the Lambda console

• Activating tracing with the Lambda API

• Activating tracing with Amazon CloudFormation

• Interpreting an X-Ray trace

Tracing 945

https://www.amazonaws.cn/otel
https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-dotnet.html
https://docs.powertools.aws.dev/lambda-dotnet/
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing
https://docs.amazonaws.cn/xray/latest/devguide/xray-instrumenting-your-app.html#xray-instrumenting-choosing

Amazon Lambda Developer Guide

Using Powertools for Amazon Lambda (.NET) and Amazon SAM for
tracing

Follow the steps below to download, build, and deploy a sample Hello World C# application
with integrated Powertools for Amazon Lambda (.NET) modules using the Amazon SAM. This
application implements a basic API backend and uses Powertools for emitting logs, metrics, and
traces. It consists of an Amazon API Gateway endpoint and a Lambda function. When you send a
GET request to the API Gateway endpoint, the Lambda function invokes, sends logs and metrics
using Embedded Metric Format to CloudWatch, and sends traces to Amazon X-Ray. The function
returns a hello world message.

Prerequisites

To complete the steps in this section, you must have the following:

• .NET 6 or .NET 8

• Amazon CLI version 2

• Amazon SAM CLI version 1.75 or later. If you have an older version of the Amazon SAM CLI, see
Upgrading the Amazon SAM CLI.

Deploy a sample Amazon SAM application

1. Initialize the application using the Hello World TypeScript template.

sam init --app-template hello-world-powertools-dotnet --name sam-app --package-type
 Zip --runtime dotnet6 --no-tracing

2. Build the app.

cd sam-app && sam build

3. Deploy the app.

sam deploy --guided

4. Follow the on-screen prompts. To accept the default options provided in the interactive
experience, press Enter.

Using Powertools for Amazon Lambda (.NET) and Amazon SAM for tracing 946

https://docs.powertools.aws.dev/lambda-dotnet
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/manage-sam-cli-versions.html#manage-sam-cli-versions-upgrade

Amazon Lambda Developer Guide

Note

For HelloWorldFunction may not have authorization defined, Is this okay?, make
sure to enter y.

5. Get the URL of the deployed application:

aws cloudformation describe-stacks --stack-name sam-app --query
 'Stacks[0].Outputs[?OutputKey==`HelloWorldApi`].OutputValue' --output text

6. Invoke the API endpoint:

curl <URL_FROM_PREVIOUS_STEP>

If successful, you'll see this response:

{"message":"hello world"}

7. To get the traces for the function, run sam traces.

sam traces

The trace output looks like this:

New XRay Service Graph
 Start time: 2023-02-20 23:05:16+08:00
 End time: 2023-02-20 23:05:16+08:00
 Reference Id: 0 - AWS::Lambda - sam-app-HelloWorldFunction-pNjujb7mEoew - Edges:
 [1]
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 2.814
 Reference Id: 1 - AWS::Lambda::Function - sam-app-HelloWorldFunction-pNjujb7mEoew
 - Edges: []
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1

Using Powertools for Amazon Lambda (.NET) and Amazon SAM for tracing 947

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-traces.html

Amazon Lambda Developer Guide

 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 2.429
 Reference Id: 2 - (Root) AWS::ApiGateway::Stage - sam-app/Prod - Edges: [0]
 Summary_statistics:
 - total requests: 1
 - ok count(2XX): 1
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 2.839
 Reference Id: 3 - client - sam-app/Prod - Edges: [2]
 Summary_statistics:
 - total requests: 0
 - ok count(2XX): 0
 - error count(4XX): 0
 - fault count(5XX): 0
 - total response time: 0

XRay Event [revision 3] at (2023-02-20T23:05:16.521000) with id
 (1-63f38c2c-270200bf1d292a442c8e8a00) and duration (2.877s)
 - 2.839s - sam-app/Prod [HTTP: 200]
 - 2.836s - Lambda [HTTP: 200]
 - 2.814s - sam-app-HelloWorldFunction-pNjujb7mEoew [HTTP: 200]
 - 2.429s - sam-app-HelloWorldFunction-pNjujb7mEoew
 - 0.230s - Initialization
 - 2.389s - Invocation
 - 0.600s - ## FunctionHandler
 - 0.517s - Get Calling IP
 - 0.039s - Overhead

8. This is a public API endpoint that is accessible over the internet. We recommend that you
delete the endpoint after testing.

sam delete

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests.

Using Powertools for Amazon Lambda (.NET) and Amazon SAM for tracing 948

Amazon Lambda Developer Guide

Note

You cannot configure the X-Ray sampling rate for your functions.

Using the X-Ray SDK to instrument your .NET functions

You can instrument your function code to record metadata and trace downstream calls. To record
detail about calls that your function makes to other resources and services, use the Amazon X-Ray
SDK for .NET. To get the SDK, add the AWSXRayRecorder packages to your project file.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>net8.0</TargetFramework>
 <GenerateRuntimeConfigurationFiles>true</GenerateRuntimeConfigurationFiles>
 <AWSProjectType>Lambda</AWSProjectType>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Amazon.Lambda.Core" Version="2.1.0" />
 <PackageReference Include="Amazon.Lambda.SQSEvents" Version="2.1.0" />
 <PackageReference Include="Amazon.Lambda.Serialization.Json" Version="2.1.0" />
 <PackageReference Include="AWSSDK.Core" Version="3.7.103.24" />
 <PackageReference Include="AWSSDK.Lambda" Version="3.7.104.3" />
 <PackageReference Include="AWSXRayRecorder.Core" Version="2.13.0" />
 <PackageReference Include="AWSXRayRecorder.Handlers.AwsSdk" Version="2.11.0" />
 </ItemGroup>
</Project>

There are a range of Nuget packages that provide auto-instrumentation for Amazon SDKs, Entity
Framework and HTTP requests. To see the complete set of configuration options refer to Amazon
X-Ray SDK for .NET in the Amazon X-Ray Developer Guide.

Once you have added the desired Nuget packages, configure auto-instrumentation. Best practice is
to perform this configuration outside of your function's handler function. This allows you to take
advantage of execution environment re-use to improve the performance of your function. In the
following code example, the RegisterXRayForAllServices method is called in the function
constructor to add instrumentation for all Amazon SDK calls.

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

Using the X-Ray SDK to instrument your .NET functions 949

https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-dotnet.html
https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-dotnet.html

Amazon Lambda Developer Guide

namespace GetProductHandler;

public class Function
{
 private readonly IDatabaseRepository _repo;

 public Function()
 {
 // Add auto instrumentation for all AWS SDK calls
 // It is important to call this method before initializing any SDK clients
 AWSSDKHandler.RegisterXRayForAllServices();
 this._repo = new DatabaseRepository();
 }

 public async Task<APIGatewayProxyResponse> FunctionHandler(APIGatewayProxyRequest
 request)
 {
 var id = request.PathParameters["id"];

 var databaseRecord = await this._repo.GetById(id);

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,
 Body = JsonSerializer.Serialize(databaseRecord)
 };
 }
}

Activating tracing with the Lambda console

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Choose Edit.

5. Under X-Ray, toggle on Active tracing.

6. Choose Save.

Activating tracing with the Lambda console 950

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Activating tracing with the Lambda API

Configure tracing on your Lambda function with the Amazon CLI or Amazon SDK, use the following
API operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example Amazon CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Activating tracing with Amazon CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an Amazon CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

For an Amazon Serverless Application Model (Amazon SAM) AWS::Serverless::Function
resource, use the Tracing property.

Example template.yml – Tracing configuration

Resources:

Activating tracing with the Lambda API 951

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml

Amazon Lambda Developer Guide

 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Interpreting an X-Ray trace

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

After you've configured active tracing, you can observe specific requests through your application.
The X-Ray service graph shows information about your application and all its components. The
following example from the error processor sample application shows an application with two
functions. The primary function processes events and sometimes returns errors. The second
function at the top processes errors that appear in the first's log group and uses the Amazon SDK
to call X-Ray, Amazon Simple Storage Service (Amazon S3), and Amazon CloudWatch Logs.

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests.

Note

You cannot configure the X-Ray sampling rate for your functions.

Interpreting an X-Ray trace 952

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.amazonaws.cn/xray/latest/devguide/xray-concepts.html#xray-concepts-servicegraph

Amazon Lambda Developer Guide

When using active tracing, Lambda records 2 segments per trace, which creates two nodes on the
service graph. The following image highlights these two nodes for the primary function from the
error processor sample application.

The first node on the left represents the Lambda service, which receives the invocation request.
The second node represents your specific Lambda function. The following example shows a trace
with these two segments. Both are named my-function, but one has an origin of AWS::Lambda
and the other has origin AWS::Lambda::Function.

This example expands the function segment to show its three subsegments:

• Initialization – Represents time spent loading your function and running initialization code. This
subsegment only appears for the first event that each instance of your function processes.

• Invocation – Represents the time spent running your handler code.

• Overhead – Represents the time the Lambda runtime spends preparing to handle the next event.

Interpreting an X-Ray trace 953

Amazon Lambda Developer Guide

You can also instrument HTTP clients, record SQL queries, and create custom subsegments with
annotations and metadata. For more information, see the Amazon X-Ray SDK for .NET in the
Amazon X-Ray Developer Guide.

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the Amazon
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see Amazon X-Ray pricing.

Interpreting an X-Ray trace 954

https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-dotnet.html
https://www.amazonaws.cn/xray/pricing/

Amazon Lambda Developer Guide

Amazon Lambda function testing in C#

Note

See the Testing functions chapter for a complete introduction to techniques and best
practices for testing serverless solutions.

Testing serverless functions uses traditional test types and techniques, but you must also consider
testing serverless applications as a whole. Cloud-based tests will provide the most accurate
measure of quality of both your functions and serverless applications.

A serverless application architecture includes managed services that provide critical application
functionality through API calls. For this reason, your development cycle should include automated
tests that verify functionality when your function and services interact.

If you do not create cloud-based tests, you could encounter issues due to differences between your
local environment and the deployed environment. Your continuous integration process should run
tests against a suite of resources provisioned in the cloud before promoting your code to the next
deployment environment, such as QA, Staging, or Production.

Continue reading this short guide to learn about testing strategies for serverless applications, or
visit the Serverless Test Samples repository to dive in with practical examples, specific to your
chosen language and runtime.

Testing 955

https://github.com/aws-samples/serverless-test-samples

Amazon Lambda Developer Guide

For serverless testing, you will still write unit, integration and end-to-end tests.

• Unit tests - Tests that run against an isolated block of code. For example, verifying the business
logic to calculate the delivery charge given a particular item and destination.

• Integration tests - Tests involving two or more components or services that interact, typically in
a cloud environment. For example, verifying a function processes events from a queue.

• End-to-end tests - Tests that verify behavior across an entire application. For example, ensuring
infrastructure is set up correctly and that events flow between services as expected to record a
customer's order.

Testing your serverless applications

You will generally use a mix of approaches to test your serverless application code, including
testing in the cloud, testing with mocks, and occasionally testing with emulators.

Testing in the cloud

Testing in the cloud is valuable for all phases of testing, including unit tests, integration tests, and
end-to-end tests. You run tests against code deployed in the cloud and interacting with cloud-
based services. This approach provides the most accurate measure of quality of your code.

A convenient way to debug your Lambda function in the cloud is through the console with a test
event. A test event is a JSON input to your function. If your function does not require input, the
event can be an empty JSON document ({}). The console provides sample events for a variety
of service integrations. After creating an event in the console, you can share it with your team to
make testing easier and consistent.

Note

Testing a function in the console is a quick way to get started, but automating your test
cycles ensures application quality and development speed.

Testing tools

To accelerate your development cycle, there are a number of tools and techniques you can use
when testing your functions. For example, Amazon SAM Accelerate and Amazon CDK watch mode
both decrease the time required to update cloud environments.

Testing your serverless applications 956

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/using-sam-cli-sync.html
https://docs.amazonaws.cn/cdk/v2/guide/cli.html#cli-deploy-watch

Amazon Lambda Developer Guide

The way you define your Lambda function code makes it simple to add unit tests. Lambda
requires a public, parameterless constructor to initialize your class. Introducing a second, internal
constructor gives you control of the dependencies your application uses.

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace GetProductHandler;

public class Function
{
 private readonly IDatabaseRepository _repo;

 public Function(): this(null)
 {
 }

 internal Function(IDatabaseRepository repo)
 {
 this._repo = repo ?? new DatabaseRepository();
 }

 public async Task<APIGatewayProxyResponse> FunctionHandler(APIGatewayProxyRequest
 request)
 {
 var id = request.PathParameters["id"];

 var databaseRecord = await this._repo.GetById(id);

 return new APIGatewayProxyResponse
 {
 StatusCode = (int)HttpStatusCode.OK,
 Body = JsonSerializer.Serialize(databaseRecord)
 };
 }
}

To write a test for this function, you can initialize a new instance of your Function class and pass
in a mocked implementation of the IDatabaseRepository. The below examples uses XUnit,
Moq, and FluentAssertions to write a simple test ensuring the FunctionHandler returns a
200 status code.

Testing your serverless applications 957

Amazon Lambda Developer Guide

using Xunit;
using Moq;
using FluentAssertions;

public class FunctionTests
{
 [Fact]
 public async Task TestLambdaHandler_WhenInputIsValid_ShouldReturn200StatusCode()
 {
 // Arrange
 var mockDatabaseRepository = new Mock<IDatabaseRepository>();

 var functionUnderTest = new Function(mockDatabaseRepository.Object);

 // Act
 var response = await functionUnderTest.FunctionHandler(new
 APIGatewayProxyRequest());

 // Assert
 response.StatusCode.Should().Be(200);
 }
}

For more detailed examples, including examples of asynchronous tests, see the .NET testing
samples repository on GitHub.

Testing your serverless applications 958

https://github.com/aws-samples/serverless-test-samples/tree/main/dotnet-test-samples
https://github.com/aws-samples/serverless-test-samples/tree/main/dotnet-test-samples

Amazon Lambda Developer Guide

Building Lambda functions with PowerShell

The following sections explain how common programming patterns and core concepts apply when
you author Lambda function code in PowerShell.

Lambda provides the following sample applications for PowerShell:

• blank-powershell – A PowerShell function that shows the use of logging, environment variables,
and the Amazon SDK.

Before you get started, you must first set up a PowerShell development environment. For
instructions on how to do this, see Setting Up a PowerShell Development Environment.

To learn about how to use the AWSLambdaPSCore module to download sample PowerShell
projects from templates, create PowerShell deployment packages, and deploy PowerShell
functions to the Amazon Cloud, see Deploy PowerShell Lambda functions with .zip file archives.

Lambda provides the following runtimes for .NET languages:

.NET

Name Identifier Operating
system

Deprecation
date

Block
function
create

Block
function
update

.NET 8 dotnet8 Amazon
Linux 2023

.NET 7
(container
only)

dotnet7 Amazon
Linux 2

May 14, 2024

.NET 6 dotnet6 Amazon
Linux 2

Nov 12, 2024 Jan 11, 2025 Feb 11, 2025

Topics

• Setting Up a PowerShell Development Environment

• Deploy PowerShell Lambda functions with .zip file archives

959

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-powershell

Amazon Lambda Developer Guide

• Amazon Lambda function handler in PowerShell

• Amazon Lambda context object in PowerShell

• Amazon Lambda function logging in PowerShell

• Amazon Lambda function errors in PowerShell

960

Amazon Lambda Developer Guide

Setting Up a PowerShell Development Environment

Lambda provides a set of tools and libraries for the PowerShell runtime. For installation
instructions, see Lambda tools for PowerShell on GitHub.

The AWSLambdaPSCore module includes the following cmdlets to help author and publish
PowerShell Lambda functions:

• Get-AWSPowerShellLambdaTemplate – Returns a list of getting started templates.

• New-AWSPowerShellLambda – Creates an initial PowerShell script based on a template.

• Publish-AWSPowerShellLambda – Publishes a given PowerShell script to Lambda.

• New-AWSPowerShellLambdaPackage – Creates a Lambda deployment package that you can
use in a CI/CD system for deployment.

Development Environment 961

https://github.com/aws/aws-lambda-dotnet/tree/master/PowerShell

Amazon Lambda Developer Guide

Deploy PowerShell Lambda functions with .zip file archives

A deployment package for the PowerShell runtime contains your PowerShell script, PowerShell
modules that are required for your PowerShell script, and the assemblies needed to host
PowerShell Core.

Creating the Lambda function

To get started writing and invoking a PowerShell script with Lambda, you can use the New-
AWSPowerShellLambda cmdlet to create a starter script based on a template. You can use the
Publish-AWSPowerShellLambda cmdlet to deploy your script to Lambda. Then you can test
your script either through the command line or the Lambda console.

To create a new PowerShell script, upload it, and test it, do the following:

1. To view the list of available templates, run the following command:

PS C:\> Get-AWSPowerShellLambdaTemplate

Template Description
-------- -----------
Basic Bare bones script
CodeCommitTrigger Script to process Amazon CodeCommit Triggers
...

2. To create a sample script based on the Basic template, run the following command:

New-AWSPowerShellLambda -ScriptName MyFirstPSScript -Template Basic

A new file named MyFirstPSScript.ps1 is created in a new subdirectory of the current
directory. The name of the directory is based on the -ScriptName parameter. You can use the
-Directory parameter to choose an alternative directory.

You can see that the new file has the following contents:

PowerShell script file to run as a Lambda function

When executing in Lambda the following variables are predefined.
$LambdaInput - A PSObject that contains the Lambda function input data.
$LambdaContext - An Amazon.Lambda.Core.ILambdaContext object that contains
 information about the currently running Lambda environment.

Deployment package 962

Amazon Lambda Developer Guide

#
The last item in the PowerShell pipeline is returned as the result of the Lambda
 function.
#
To include PowerShell modules with your Lambda function, like the
 AWSPowerShell.NetCore module, add a "#Requires" statement
indicating the module and version.

#Requires -Modules @{ModuleName='AWSPowerShell.NetCore';ModuleVersion='3.3.618.0'}

Uncomment to send the input to CloudWatch Logs
Write-Host (ConvertTo-Json -InputObject $LambdaInput -Compress -Depth 5)

3. To see how log messages from your PowerShell script are sent to Amazon CloudWatch Logs,
uncomment the Write-Host line of the sample script.

To demonstrate how you can return data back from your Lambda functions, add a new line
at the end of the script with $PSVersionTable. This adds the $PSVersionTable to the
PowerShell pipeline. After the PowerShell script is complete, the last object in the PowerShell
pipeline is the return data for the Lambda function. $PSVersionTable is a PowerShell global
variable that also provides information about the running environment.

After making these changes, the last two lines of the sample script look like this:

Write-Host (ConvertTo-Json -InputObject $LambdaInput -Compress -Depth 5)
$PSVersionTable

4. After editing the MyFirstPSScript.ps1 file, change the directory to the script's location.
Then run the following command to publish the script to Lambda:

Publish-AWSPowerShellLambda -ScriptPath .\MyFirstPSScript.ps1 -Name
 MyFirstPSScript -Region us-east-2

Note that the -Name parameter specifies the Lambda function name, which appears in the
Lambda console. You can use this function to invoke your script manually.

5. Invoke your function using the Amazon Command Line Interface (Amazon CLI) invoke
command.

> aws lambda invoke --function-name MyFirstPSScript out

Creating a Lambda function 963

Amazon Lambda Developer Guide

Creating a Lambda function 964

Amazon Lambda Developer Guide

Amazon Lambda function handler in PowerShell

When a Lambda function is invoked, the Lambda handler invokes the PowerShell script.

When the PowerShell script is invoked, the following variables are predefined:

• $LambdaInput – A PSObject that contains the input to the handler. This input can be event data
(published by an event source) or custom input that you provide, such as a string or any custom
data object.

• $LambdaContext – An Amazon.Lambda.Core.ILambdaContext object that you can use to
access information about the current invocation—such as the name of the current function, the
memory limit, execution time remaining, and logging.

For example, consider the following PowerShell example code.

#Requires -Modules @{ModuleName='AWSPowerShell.NetCore';ModuleVersion='3.3.618.0'}
Write-Host 'Function Name:' $LambdaContext.FunctionName

This script returns the FunctionName property that's obtained from the $LambdaContext variable.

Note

You're required to use the #Requires statement within your PowerShell scripts to indicate
the modules that your scripts depend on. This statement performs two important tasks. 1)
It communicates to other developers which modules the script uses, and 2) it identifies the
dependent modules that Amazon PowerShell tools need to package with the script, as part
of the deployment. For more information about the #Requires statement in PowerShell,
see About requires. For more information about PowerShell deployment packages, see
Deploy PowerShell Lambda functions with .zip file archives.
When your PowerShell Lambda function uses the Amazon PowerShell cmdlets, be
sure to set a #Requires statement that references the AWSPowerShell.NetCore
module, which supports PowerShell Core—and not the AWSPowerShell module, which
only supports Windows PowerShell. Also, be sure to use version 3.3.270.0 or newer of
AWSPowerShell.NetCore which optimizes the cmdlet import process. If you use an older
version, you'll experience longer cold starts. For more information, see Amazon Tools for
PowerShell.

Handler 965

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_requires?view=powershell-6
https://www.amazonaws.cn/powershell/?track=sdk
https://www.amazonaws.cn/powershell/?track=sdk

Amazon Lambda Developer Guide

Returning data

Some Lambda invocations are meant to return data back to their caller. For example, if an
invocation was in response to a web request coming from API Gateway, then our Lambda function
needs to return back the response. For PowerShell Lambda, the last object that's added to the
PowerShell pipeline is the return data from the Lambda invocation. If the object is a string, the
data is returned as is. Otherwise the object is converted to JSON by using the ConvertTo-Json
cmdlet.

For example, consider the following PowerShell statement, which adds $PSVersionTable to the
PowerShell pipeline:

$PSVersionTable

After the PowerShell script is finished, the last object in the PowerShell pipeline is the return data
for the Lambda function. $PSVersionTable is a PowerShell global variable that also provides
information about the running environment.

Returning data 966

Amazon Lambda Developer Guide

Amazon Lambda context object in PowerShell

When Lambda runs your function, it passes context information by making a $LambdaContext
variable available to the handler. This variable provides methods and properties with information
about the invocation, function, and execution environment.

Context properties

• FunctionName – The name of the Lambda function.

• FunctionVersion – The version of the function.

• InvokedFunctionArn – The Amazon Resource Name (ARN) that's used to invoke the function.
Indicates if the invoker specified a version number or alias.

• MemoryLimitInMB – The amount of memory that's allocated for the function.

• AwsRequestId – The identifier of the invocation request.

• LogGroupName – The log group for the function.

• LogStreamName – The log stream for the function instance.

• RemainingTime – The number of milliseconds left before the execution times out.

• Identity – (mobile apps) Information about the Amazon Cognito identity that authorized the
request.

• ClientContext – (mobile apps) Client context that's provided to Lambda by the client
application.

• Logger – The logger object for the function.

The following PowerShell code snippet shows a simple handler function that prints some of the
context information.

#Requires -Modules @{ModuleName='AWSPowerShell.NetCore';ModuleVersion='3.3.618.0'}
Write-Host 'Function name:' $LambdaContext.FunctionName
Write-Host 'Remaining milliseconds:' $LambdaContext.RemainingTime.TotalMilliseconds
Write-Host 'Log group name:' $LambdaContext.LogGroupName
Write-Host 'Log stream name:' $LambdaContext.LogStreamName

Context 967

Amazon Lambda Developer Guide

Amazon Lambda function logging in PowerShell

Amazon Lambda automatically monitors Lambda functions on your behalf and sends logs to
Amazon CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log
stream for each instance of your function. The Lambda runtime environment sends details about
each invocation to the log stream, and relays logs and other output from your function's code. For
more information, see Using Amazon CloudWatch logs with Amazon Lambda.

This page describes how to produce log output from your Lambda function's code, or access logs
using the Amazon Command Line Interface, the Lambda console, or the CloudWatch console.

Sections

• Creating a function that returns logs

• Using the Lambda console

• Using the CloudWatch console

• Using the Amazon Command Line Interface (Amazon CLI)

• Deleting logs

Creating a function that returns logs

To output logs from your function code, you can use cmdlets on Microsoft.PowerShell.Utility , or
any logging module that writes to stdout or stderr. The following example uses Write-Host.

Example function/Handler.ps1 – Logging

#Requires -Modules @{ModuleName='AWSPowerShell.NetCore';ModuleVersion='3.3.618.0'}
Write-Host `## Environment variables
Write-Host AWS_LAMBDA_FUNCTION_VERSION=$Env:AWS_LAMBDA_FUNCTION_VERSION
Write-Host AWS_LAMBDA_LOG_GROUP_NAME=$Env:AWS_LAMBDA_LOG_GROUP_NAME
Write-Host AWS_LAMBDA_LOG_STREAM_NAME=$Env:AWS_LAMBDA_LOG_STREAM_NAME
Write-Host AWS_EXECUTION_ENV=$Env:AWS_EXECUTION_ENV
Write-Host AWS_LAMBDA_FUNCTION_NAME=$Env:AWS_LAMBDA_FUNCTION_NAME
Write-Host PATH=$Env:PATH
Write-Host `## Event
Write-Host (ConvertTo-Json -InputObject $LambdaInput -Compress -Depth 3)

Example log format

START RequestId: 56639408-xmpl-435f-9041-ac47ae25ceed Version: $LATEST

Logging 968

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-powershell/function/Handler.ps1

Amazon Lambda Developer Guide

Importing module ./Modules/AWSPowerShell.NetCore/3.3.618.0/AWSPowerShell.NetCore.psd1
[Information] - ## Environment variables
[Information] - AWS_LAMBDA_FUNCTION_VERSION=$LATEST
[Information] - AWS_LAMBDA_LOG_GROUP_NAME=/aws/lambda/blank-powershell-
function-18CIXMPLHFAJJ
[Information] - AWS_LAMBDA_LOG_STREAM_NAME=2020/04/01/
[$LATEST]53c5xmpl52d64ed3a744724d9c201089
[Information] - AWS_EXECUTION_ENV=AWS_Lambda_dotnet6_powershell_1.0.0
[Information] - AWS_LAMBDA_FUNCTION_NAME=blank-powershell-function-18CIXMPLHFAJJ
[Information] - PATH=/var/lang/bin:/usr/local/bin:/usr/bin/:/bin:/opt/bin
[Information] - ## Event
[Information] -
{
 "Records": [
 {
 "messageId": "19dd0b57-b21e-4ac1-bd88-01bbb068cb78",
 "receiptHandle": "MessageReceiptHandle",
 "body": "Hello from SQS!",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1523232000000",
 "SenderId": "123456789012",
 "ApproximateFirstReceiveTimestamp": "1523232000001"
 },
 ...
END RequestId: 56639408-xmpl-435f-9041-ac47ae25ceed
REPORT RequestId: 56639408-xmpl-435f-9041-ac47ae25ceed Duration: 3906.38 ms Billed
 Duration: 4000 ms Memory Size: 512 MB Max Memory Used: 367 MB Init Duration: 5960.19
 ms
XRAY TraceId: 1-5e843da6-733cxmple7d0c3c020510040 SegmentId: 3913xmpl20999446 Sampled:
 true

The .NET runtime logs the START, END, and REPORT lines for each invocation. The report line
provides the following details.

REPORT line data fields

• RequestId – The unique request ID for the invocation.

• Duration – The amount of time that your function's handler method spent processing the event.

• Billed Duration – The amount of time billed for the invocation.

• Memory Size – The amount of memory allocated to the function.

• Max Memory Used – The amount of memory used by the function.

Creating a function that returns logs 969

Amazon Lambda Developer Guide

• Init Duration – For the first request served, the amount of time it took the runtime to load the
function and run code outside of the handler method.

• XRAY TraceId – For traced requests, the Amazon X-Ray trace ID.

• SegmentId – For traced requests, the X-Ray segment ID.

• Sampled – For traced requests, the sampling result.

Using the Lambda console

You can use the Lambda console to view log output after you invoke a Lambda function.

If your code can be tested from the embedded Code editor, you will find logs in the execution
results. When you use the console test feature to invoke a function, you'll find Log output in the
Details section.

Using the CloudWatch console

You can use the Amazon CloudWatch console to view logs for all Lambda function invocations.

To view logs on the CloudWatch console

1. Open the Log groups page on the CloudWatch console.

2. Choose the log group for your function (/aws/lambda/your-function-name).

3. Choose a log stream.

Each log stream corresponds to an instance of your function. A log stream appears when you
update your Lambda function, and when additional instances are created to handle multiple
concurrent invocations. To find logs for a specific invocation, we recommend instrumenting your
function with Amazon X-Ray. X-Ray records details about the request and the log stream in the
trace.

To use a sample application that correlates logs and traces with X-Ray, see Error processor sample
application for Amazon Lambda.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

Using the Lambda console 970

https://console.amazonaws.cn/cloudwatch/home?#logs:

Amazon Lambda Developer Guide

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

You can use the Amazon CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",
 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the following output:

Using the Amazon Command Line Interface (Amazon CLI) 971

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Using the Amazon Command Line Interface (Amazon CLI) 972

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",

Using the Amazon Command Line Interface (Amazon CLI) 973

Amazon Lambda Developer Guide

 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Deleting logs

Log groups aren't deleted automatically when you delete a function. To avoid storing logs
indefinitely, delete the log group, or configure a retention period after which logs are deleted
automatically.

Deleting logs 974

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#SettingLogRetention

Amazon Lambda Developer Guide

Amazon Lambda function errors in PowerShell

When your code raises an error, Lambda generates a JSON representation of the error. This error
document appears in the invocation log and, for synchronous invocations, in the output.

This page describes how to view Lambda function invocation errors for the PowerShell runtime
using the Lambda console and the Amazon CLI.

Sections

• Syntax

• How it works

• Using the Lambda console

• Using the Amazon Command Line Interface (Amazon CLI)

• Error handling in other Amazon services

• What's next?

Syntax

Consider the following PowerShell script example statement:

throw 'The Account is not found'

When you invoke this Lambda function, it throws a terminating error, and Amazon Lambda returns
the following error message:

{
 "errorMessage": "The Account is not found",
 "errorType": "RuntimeException"
}

Note the errorType is RuntimeException, which is the default exception thrown by PowerShell.
You can use custom error types by throwing the error like this:

throw @{'Exception'='AccountNotFound';'Message'='The Account is not found'}

The error message is serialized with errorType set to AccountNotFound:

Errors 975

Amazon Lambda Developer Guide

{
 "errorMessage": "The Account is not found",
 "errorType": "AccountNotFound"
}

If you don't need an error message, you can throw a string in the format of an error code. The error
code format requires that the string starts with a character and only contain letters and digits
afterwards, with no spaces or symbols.

For example, if your Lambda function contains the following:

throw 'AccountNotFound'

The error is serialized like this:

{
 "errorMessage": "AccountNotFound",
 "errorType": "AccountNotFound"
}

How it works

When you invoke a Lambda function, Lambda receives the invocation request and validates the
permissions in your execution role, verifies that the event document is a valid JSON document, and
checks parameter values.

If the request passes validation, Lambda sends the request to a function instance. The Lambda
runtime environment converts the event document into an object, and passes it to your function
handler.

If Lambda encounters an error, it returns an exception type, message, and HTTP status code that
indicates the cause of the error. The client or service that invoked the Lambda function can handle
the error programmatically, or pass it along to an end user. The correct error handling behavior
depends on the type of application, the audience, and the source of the error.

The following list describes the range of status codes you can receive from Lambda.

How it works 976

Amazon Lambda Developer Guide

2xx

A 2xx series error with a X-Amz-Function-Error header in the response indicates a Lambda
runtime or function error. A 2xx series status code indicates that Lambda accepted the request,
but instead of an error code, Lambda indicates the error by including the X-Amz-Function-
Error header in the response.

4xx

A 4xx series error indicates an error that the invoking client or service can fix by modifying the
request, requesting permission, or by retrying the request. 4xx series errors other than 429
generally indicate an error with the request.

5xx

A 5xx series error indicates an issue with Lambda, or an issue with the function's configuration
or resources. 5xx series errors can indicate a temporary condition that can be resolved without
any action by the user. These issues can't be addressed by the invoking client or service, but a
Lambda function's owner may be able to fix the issue.

For a complete list of invocation errors, see InvokeFunction errors.

Using the Lambda console

You can invoke your function on the Lambda console by configuring a test event and viewing the
output. The output is captured in the function's execution logs and, when active tracing is enabled,
in Amazon X-Ray.

To invoke a function on the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose the function to test, and choose Test.

3. Under Test event, select New event.

4. Select a Template.

5. For Name, enter a name for the test. In the text entry box, enter the JSON test event.

6. Choose Save changes.

7. Choose Test.

Using the Lambda console 977

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html#API_Invoke_Errors
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

The Lambda console invokes your function synchronously and displays the result. To see the
response, logs, and other information, expand the Details section.

Using the Amazon Command Line Interface (Amazon CLI)

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

When you invoke a Lambda function in the Amazon CLI, the Amazon CLI splits the response into
two documents. The Amazon CLI response is displayed in your command prompt. If an error has
occurred, the response contains a FunctionError field. The invocation response or error returned
by the function is written to an output file. For example, output.json or output.txt.

The following invoke command example demonstrates how to invoke a function and write the
invocation response to an output.txt file.

aws lambda invoke \
 --function-name my-function \
 --cli-binary-format raw-in-base64-out \
 --payload '{"key1": "value1", "key2": "value2", "key3": "value3"}' output.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the Amazon CLI response in your command prompt:

{
 "StatusCode": 200,
 "FunctionError": "Unhandled",
 "ExecutedVersion": "$LATEST"
}

Using the Amazon Command Line Interface (Amazon CLI) 978

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/invoke.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

You should see the function invocation response in the output.txt file. In the same command
prompt, you can also view the output in your command prompt using:

cat output.txt

You should see the invocation response in your command prompt.

Lambda also records up to 256 KB of the error object in the function's logs. For more information,
see Amazon Lambda function logging in PowerShell.

Error handling in other Amazon services

When another Amazon service invokes your function, the service chooses the invocation type
and retry behavior. Amazon services can invoke your function on a schedule, in response to a
lifecycle event on a resource, or to serve a request from a user. Some services invoke functions
asynchronously and let Lambda handle errors, while others retry or pass errors back to the user.

For example, API Gateway treats all invocation and function errors as internal errors. If the Lambda
API rejects the invocation request, API Gateway returns a 500 error code. If the function runs but
returns an error, or returns a response in the wrong format, API Gateway returns a 502 error code.
To customize the error response, you must catch errors in your code and format a response in the
required format.

We recommend using Amazon X-Ray to determine the source of an error and its cause. X-Ray
allows you to find out which component encountered an error, and see details about the errors.
The following example shows a function error that resulted in a 502 response from API Gateway.

For more information, see Using Amazon Lambda with Amazon X-Ray.

What's next?

• Learn how to show logging events for your Lambda function on the the section called “Logging”
page.

Error handling in other Amazon services 979

Amazon Lambda Developer Guide

Building Lambda functions with Rust

Because Rust compiles to native code, you don't need a dedicated runtime to run Rust code
on Lambda. Instead, use the Rust runtime client to build your project locally, and then deploy
it to Lambda using the provided.al2023 or provided.al2 runtime. When you use
provided.al2023 or provided.al2, Lambda automatically keeps the operating system up to
date with the latest patches.

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

Tools and libraries for Rust

• Amazon SDK for Rust: The Amazon SDK for Rust provides Rust APIs to interact with Amazon Web
Services infrastructure services.

• Rust runtime client for Lambda: The Rust runtime client is an experimental package. It is subject
to breaking changes and not recommended for production.

• Cargo Lambda: This library provides a command line application to work with Lambda functions
built with Rust.

• Lambda HTTP: This library provides a wrapper to work with HTTP events.

• Lambda Extension: This library provides support to write Lambda Extensions with Rust.

• Amazon Lambda Events: This library provides type definitions for common event source
integrations.

Sample Lambda applications for Rust

• Basic Lambda function: A Rust function that shows how to process basic events.

• Lambda function with error handling: A Rust function that shows how to handle custom Rust
errors in Lambda.

• Lambda function with shared resources: A Rust project that initializes shared resources before
creating the Lambda function.

• Lambda HTTP events: A Rust function that handles HTTP events.

980

https://github.com/awslabs/aws-lambda-rust-runtime
https://github.com/awslabs/aws-lambda-rust-runtime
https://docs.amazonaws.cn/sdk-for-rust/latest/dg/getting-started.html
https://github.com/awslabs/aws-lambda-rust-runtime
https://www.cargo-lambda.info/guide/what-is-cargo-lambda.html
https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/lambda-http
https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/lambda-extension
https://crates.io/crates/aws_lambda_events
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/basic-lambda
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/basic-error-handling
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/basic-shared-resource
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/http-basic-lambda

Amazon Lambda Developer Guide

• Lambda HTTP events with CORS headers: A Rust function that uses Tower to inject CORS
headers.

• Lambda REST API: A REST API that uses Axum and Diesel to connect to a PostgreSQL database.

• Serverless Rust demo: A Rust project that shows the use of Lambda's Rust libraries, logging,
environment variables, and the Amazon SDK.

• Basic Lambda Extension: A Rust extension that shows how to process basic extension events.

• Lambda Logs Amazon Data Firehose Extension: A Rust extension that shows how to send
Lambda logs to Firehose.

Topics

• Lambda function handler in Rust

• Lambda context object in Rust

• Processing HTTP events with Rust

• Deploy Rust Lambda functions with .zip file archives

• Lambda function logging in Rust

• Lambda function errors in Rust

981

https://github.com/awslabs/aws-lambda-rust-runtime/blob/main//examples/http-cors
https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/examples/http-axum-diesel
https://github.com/aws-samples/serverless-rust-demo/
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/extension-basic
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/extension-logs-kinesis-firehose

Amazon Lambda Developer Guide

Lambda function handler in Rust

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

The Lambda function handler is the method in your function code that processes events. When
your function is invoked, Lambda runs the handler method. Your function runs until the handler
returns a response, exits, or times out.

Write your Lambda function code as a Rust executable. Implement the handler function code and a
main function and include the following:

• The lambda_runtime crate from crates.io, which implements the Lambda programming model
for Rust.

• Include Tokio in your dependencies. The Rust runtime client for Lambda uses Tokio to handle
asynchronous calls.

Example — Rust handler that processes JSON events

The following example uses the serde_json crate to process basic JSON events:

use lambda_runtime::{service_fn, LambdaEvent, Error};
use serde_json::{json, Value};

async fn handler(event: LambdaEvent<Value>) -> Result<Value, Error> {
 let payload = event.payload;
 let first_name = payload["firstName"].as_str().unwrap_or("world");
 Ok(json!({ "message": format!("Hello, {first_name}!") }))
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 lambda_runtime::run(service_fn(handler)).await
}

Note the following:

Handler 982

https://github.com/awslabs/aws-lambda-rust-runtime
https://crates.io/crates/lambda_runtime
https://crates.io/crates/tokio
https://github.com/awslabs/aws-lambda-rust-runtime
https://crates.io/crates/serde_json

Amazon Lambda Developer Guide

• use: Imports the libraries that your Lambda function requires.

• async fn main: The entry point that runs the Lambda function code. The Rust runtime client
uses Tokio as an async runtime, so you must annotate the main function with #[tokio::main].

• async fn handler(event: LambdaEvent<Value>) -> Result<Value,Error>: This is
the Lambda handler signature. It includes the code that runs when the function is invoked.

• LambdaEvent<Value>: This is a generic type that describes the event received by the Lambda
runtime as well as the Lambda function context.

• Result<Value, Error>: The function returns a Resulttype. If the function is successful,
the result is a JSON value. If the function is not successful, the result is an error.

Using shared state

You can declare shared variables that are independent of your Lambda function's handler code.
These variables can help you load state information during the Init phase, before your function
receives any events.

Example — Share Amazon S3 client across function instances

Note the following:

• use aws_sdk_s3::Client: This example requires you to add aws-sdk-s3 = "0.26.0" to
the list of dependencies in your Cargo.toml file.

• aws_config::from_env: This example requires you to add aws-config = "0.55.1" to the
list of dependencies in your Cargo.toml file.

use aws_sdk_s3::Client;
use lambda_runtime::{service_fn, Error, LambdaEvent};
use serde::{Deserialize, Serialize};

#[derive(Deserialize)]
struct Request {
 bucket: String,
}

#[derive(Serialize)]
struct Response {
 keys: Vec<String>,
}

Using shared state 983

https://tokio.rs/

Amazon Lambda Developer Guide

async fn handler(client: &Client, event: LambdaEvent<Request>) -> Result<Response,
 Error> {
 let bucket = event.payload.bucket;
 let objects = client.list_objects_v2().bucket(bucket).send().await?;
 let keys = objects
 .contents()
 .map(|s| s.iter().flat_map(|o| o.key().map(String::from)).collect())
 .unwrap_or_default();
 Ok(Response { keys })
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 let shared_config = aws_config::from_env().load().await;
 let client = Client::new(&shared_config);
 let shared_client = &client;
 lambda_runtime::run(service_fn(move |event: LambdaEvent<Request>| async move {
 handler(&shared_client, event).await
 }))
 .await
}

Using shared state 984

Amazon Lambda Developer Guide

Lambda context object in Rust

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

When Lambda runs your function, it adds a context object to the LambdaEvent that the handler
receives. This object provides properties with information about the invocation, function, and
execution environment.

Context properties

• request_id: The Amazon request ID generated by the Lambda service.

• deadline: The execution deadline for the current invocation in milliseconds.

• invoked_function_arn: The Amazon Resource Name (ARN) of the Lambda function being
invoked.

• xray_trace_id: The Amazon X-Ray trace ID for the current invocation.

• client_content: The client context object sent by the Amazon mobile SDK. This field is empty
unless the function is invoked using an Amazon mobile SDK.

• identity: The Amazon Cognito identity that invoked the function. This field is empty unless the
invocation request to the Lambda APIs was made using Amazon credentials issued by Amazon
Cognito identity pools.

• env_config: The Lambda function configuration from the local environment variables. This
property includes information such as the function name, memory allocation, version, and log
streams.

Accessing invoke context information

Lambda functions have access to metadata about their environment and the invocation request.
The LambaEvent object that your function handler receives includes the context metadata:

use lambda_runtime::{service_fn, LambdaEvent, Error};
use serde_json::{json, Value};

Context 985

https://github.com/awslabs/aws-lambda-rust-runtime

Amazon Lambda Developer Guide

async fn handler(event: LambdaEvent<Value>) -> Result<Value, Error> {
 let invoked_function_arn = event.context.invoked_function_arn;
 Ok(json!({ "message": format!("Hello, this is function
 {invoked_function_arn}!") }))
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 lambda_runtime::run(service_fn(handler)).await
}

Accessing invoke context information 986

Amazon Lambda Developer Guide

Processing HTTP events with Rust

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

Amazon API Gateway APIs, Application Load Balancers, and Lambda function URLs can send HTTP
events to Lambda. You can use the aws_lambda_events crate from crates.io to process events from
these sources.

Example — Handle API Gateway proxy request

Note the following:

• use aws_lambda_events::apigw::{ApiGatewayProxyRequest,
ApiGatewayProxyResponse}: The aws_lambda_events crate includes many Lambda events.
To reduce compilation time, use feature flags to activate the events you need. Example:
aws_lambda_events = { version = "0.8.3", default-features = false,
features = ["apigw"] }.

• use http::HeaderMap: This import requires you to add the http crate to your dependencies.

use aws_lambda_events::apigw::{ApiGatewayProxyRequest, ApiGatewayProxyResponse};
use http::HeaderMap;
use lambda_runtime::{service_fn, Error, LambdaEvent};

async fn handler(
 event: LambdaEvent<ApiGatewayProxyRequest>,
) -> Result<ApiGatewayProxyResponse, Error> {
 let mut headers = HeaderMap::new();
 headers.insert("content-type", "text/html".parse().unwrap());
 let resp = ApiGatewayProxyResponse {
 status_code: 200,
 multi_value_headers: headers.clone(),
 is_base64_encoded: Some(false),
 body: Some("Hello Amazon Lambda HTTP request".into()),
 headers,
 };

HTTP events 987

https://github.com/awslabs/aws-lambda-rust-runtime
https://crates.io/crates/aws_lambda_events
https://crates.io/crates/aws-lambda-events
https://crates.io/crates/http

Amazon Lambda Developer Guide

 Ok(resp)
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 lambda_runtime::run(service_fn(handler)).await
}

The Rust runtime client for Lambda also provides an abstraction over these event types that allows
you to work with native HTTP types, regardless of which service sends the events. The following
code is equivalent to the previous example, and it works out of the box with Lambda function
URLs, Application Load Balancers, and API Gateway.

Note

The lambda_http crate uses the lambda_runtime crate underneath. You don't have to
import lambda_runtime separately.

Example — Handle HTTP requests

use lambda_http::{service_fn, Error, IntoResponse, Request, RequestExt, Response};

async fn handler(event: Request) -> Result<impl IntoResponse, Error> {
 let resp = Response::builder()
 .status(200)
 .header("content-type", "text/html")
 .body("Hello Amazon Lambda HTTP request")
 .map_err(Box::new)?;
 Ok(resp)
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 lambda_http::run(service_fn(handler)).await
}

For another example of how to use lambda_http, see the http-axum code sample on the Amazon
Labs GitHub repository.

HTTP events 988

https://github.com/awslabs/aws-lambda-rust-runtime
https://crates.io/crates/lambda_http
https://crates.io/crates/lambda_runtime
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/http-axum/src/main.rs

Amazon Lambda Developer Guide

Sample HTTP Lambda events for Rust

• Lambda HTTP events: A Rust function that handles HTTP events.

• Lambda HTTP events with CORS headers: A Rust function that uses Tower to inject CORS
headers.

• Lambda HTTP events with shared resources: A Rust function that uses shared resources
initialized before the function handler is created.

HTTP events 989

https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/examples/http-basic-lambda
https://github.com/awslabs/aws-lambda-rust-runtime/blob/main/examples/http-cors
https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/examples/basic-shared-resource

Amazon Lambda Developer Guide

Deploy Rust Lambda functions with .zip file archives

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

This page describes how to compile your Rust function, and then deploy the compiled binary to
Amazon Lambda using Cargo Lambda. It also shows how to deploy the compiled binary with the
Amazon Command Line Interface and the Amazon Serverless Application Model CLI.

Sections

• Prerequisites

• Building Rust functions on macOS, Windows, or Linux

• Deploying the Rust function binary with Cargo Lambda

• Invoking your Rust function with Cargo Lambda

Prerequisites

• Rust

• Amazon Command Line Interface (Amazon CLI) version 2

Building Rust functions on macOS, Windows, or Linux

The following steps demonstrate how to create the project for your first Lambda function with
Rust and compile it with Cargo Lambda.

1. Install Cargo Lambda, a Cargo subcommand, that compiles Rust functions for Lambda on
macOS, Windows, and Linux.

To install Cargo Lambda on any system that has Python 3 installed, use pip:

pip3 install cargo-lambda

To install Cargo Lambda on macOS or Linux, use Homebrew:

Deploy .zip file archives 990

https://github.com/awslabs/aws-lambda-rust-runtime
https://www.cargo-lambda.info/guide/what-is-cargo-lambda.html
https://www.rust-lang.org/tools/install
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://www.cargo-lambda.info/

Amazon Lambda Developer Guide

brew tap cargo-lambda/cargo-lambda
brew install cargo-lambda

To install Cargo Lambda on Windows, use Scoop:

scoop bucket add cargo-lambda
scoop install cargo-lambda/cargo-lambda

For other options, see Installation in the Cargo Lambda documentation.

2. Create the package structure. This command creates some basic function code in src/
main.rs. You can use this code for testing or replace it with your own.

cargo lambda new my-function

3. Inside the package's root directory, run the build subcommand to compile the code in your
function.

cargo lambda build --release

(Optional) If you want to use Amazon Graviton2 on Lambda, add the --arm64 flag to compile
your code for ARM CPUs.

cargo lambda build --release --arm64

4. Before deploying your Rust function, configure Amazon credentials on your machine.

aws configure

Deploying the Rust function binary with Cargo Lambda

Use the deploy subcommand to deploy the compiled binary to Lambda. This command creates an
execution role and then creates the Lambda function. To specify an existing execution role, use the
--iam-role flag.

cargo lambda deploy my-function

Deploying the function 991

https://scoop.sh/
https://www.cargo-lambda.info/guide/installation.html
https://www.cargo-lambda.info/commands/build.html
https://www.cargo-lambda.info/commands/deploy.html
https://www.cargo-lambda.info/commands/deploy.html#iam-roles

Amazon Lambda Developer Guide

Deploying your Rust function binary with the Amazon CLI

You can also deploy your binary with the Amazon CLI.

1. Use the build subcommand to build the .zip deployment package.

cargo lambda build --release --output-format zip

2. Deploy the .zip package to Lambda. For --role, specify the ARN of the execution role.

aws lambda create-function --function-name my-function \
 --runtime provided.al2023 \
 --role arn:aws-cn:iam::111122223333:role/lambda-role \
 --handler rust.handler \
 --zip-file fileb://target/lambda/my-function/bootstrap.zip

Deploying your Rust function binary with the Amazon SAM CLI

You can also deploy your binary with the Amazon SAM CLI.

1. Create an Amazon SAM template with the resource and property definition. For more
information, see AWS::Serverless::Function in the Amazon Serverless Application Model
Developer Guide.

Example SAM resource and property definition for a Rust binary

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: SAM template for Rust binaries
Resources:
 RustFunction:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: target/lambda/my-function/
 Handler: rust.handler
 Runtime: provided.al2023
Outputs:
 RustFunction:
 Description: "Lambda Function ARN"
 Value: !GetAtt RustFunction.Arn

Deploying the function 992

https://www.cargo-lambda.info/commands/build.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

2. Use the build subcommand to compile the function.

cargo lambda build --release

3. Use the sam deploy command to deploy the function to Lambda.

sam deploy --guided

For more information about building Rust functions with the Amazon SAM CLI, see Building Rust
Lambda functions with Cargo Lambda in the Amazon Serverless Application Model Developer Guide.

Invoking your Rust function with Cargo Lambda

Use the invoke subcommand to test your function with a payload.

cargo lambda invoke --remote --data-ascii '{"command": "Hello world"}' my-function

Invoking your Rust function with the Amazon CLI

You can also use the Amazon CLI to invoke the function.

aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"command": "Hello world"}' /tmp/out.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

Invoking the function 993

https://www.cargo-lambda.info/commands/build.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-deploy.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/building-rust.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/building-rust.html
https://www.cargo-lambda.info/commands/invoke.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

Lambda function logging in Rust

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

Amazon Lambda automatically monitors Lambda functions on your behalf and sends logs to
Amazon CloudWatch. Your Lambda function comes with a CloudWatch Logs log group and a log
stream for each instance of your function. The Lambda runtime environment sends details about
each invocation to the log stream, and relays logs and other output from your function's code. For
more information, see Using Amazon CloudWatch logs with Amazon Lambda. This page describes
how to produce log output from your Lambda function's code.

Creating a function that writes logs

To output logs from your function code, you can use any logging function that writes to stdout or
stderr, such as the println! macro. The following example uses println! to print a message
when the function handler starts and before it finishes.

use lambda_runtime::{service_fn, LambdaEvent, Error};
use serde_json::{json, Value};
async fn handler(event: LambdaEvent<Value>) -> Result<Value, Error> {
 println!("Rust function invoked");
 let payload = event.payload;
 let first_name = payload["firstName"].as_str().unwrap_or("world");
 println!("Rust function responds to {}", &first_name);
 Ok(json!({ "message": format!("Hello, {first_name}!") }))
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 lambda_runtime::run(service_fn(handler)).await
}

Advanced logging with the Tracing crate

Tracing is a framework for instrumenting Rust programs to collect structured, event-based
diagnostic information. This framework provides utilities to customize logging output levels and

Logging 994

https://github.com/awslabs/aws-lambda-rust-runtime
https://crates.io/crates/tracing

Amazon Lambda Developer Guide

formats, like creating structured JSON log messages. To use this framework, you must initialize
a subscriber before implementing the function handler. Then, you can use tracing macros like
debug, info, and error, to specify the level of logging that you want for each scenario.

Example — Using the Tracing crate

Note the following:

• tracing_subscriber::fmt().json(): When this option is included, logs are formatted
in JSON. To use this option, you must include the json feature in the tracing-subscriber
dependency (for example,tracing-subscriber = { version = "0.3.11", features =
["json"] }).

• #[tracing::instrument(skip(event), fields(req_id =
%event.context.request_id))]: This annotation generates a span every time the handler is
invoked. The span adds the request ID to each log line.

• { %first_name }: This construct adds the first_name field to the log line where it's used.
The value for this field corresponds to the variable with the same name.

use lambda_runtime::{service_fn, Error, LambdaEvent};
use serde_json::{json, Value};
#[tracing::instrument(skip(event), fields(req_id = %event.context.request_id))]
async fn handler(event: LambdaEvent<Value>) -> Result<Value, Error> {
 tracing::info!("Rust function invoked");
 let payload = event.payload;
 let first_name = payload["firstName"].as_str().unwrap_or("world");
 tracing::info!({ %first_name }, "Rust function responds to event");
 Ok(json!({ "message": format!("Hello, {first_name}!") }))
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt().json()
 .with_max_level(tracing::Level::INFO)
 // this needs to be set to remove duplicated information in the log.
 .with_current_span(false)
 // this needs to be set to false, otherwise ANSI color codes will
 // show up in a confusing manner in CloudWatch logs.
 .with_ansi(false)
 // disabling time is handy because CloudWatch will add the ingestion time.
 .without_time()

Advanced logging with the Tracing crate 995

Amazon Lambda Developer Guide

 // remove the name of the function from every log entry
 .with_target(false)
 .init();
 lambda_runtime::run(service_fn(handler)).await
}

When this Rust function is invoked, it prints two log lines similar to the following:

{"level":"INFO","fields":{"message":"Rust function invoked"},"spans":
[{"req_id":"45daaaa7-1a72-470c-9a62-e79860044bb5","name":"handler"}]}
{"level":"INFO","fields":{"message":"Rust function responds to
 event","first_name":"David"},"spans":[{"req_id":"45daaaa7-1a72-470c-9a62-
e79860044bb5","name":"handler"}]}

Advanced logging with the Tracing crate 996

Amazon Lambda Developer Guide

Lambda function errors in Rust

Note

The Rust runtime client is an experimental package. It is subject to change and intended
only for evaluation purposes.

When your code raises an error, Lambda generates a JSON representation of the error. This error
document appears in the invocation log and, for synchronous invocations, in the output. The Rust
runtime client also writes the error in the log. The error appears in Amazon CloudWatch Logs by
default. This page demonstrates how to return errors in your Lambda function's output.

Creating a function that returns errors

The following code sample shows a Lambda function that returns an error. The Rust Runtime
handles this error directly.

Example

use lambda_runtime::{service_fn, Error, LambdaEvent};
use serde_json::{json, Value};
async fn handler(_event: LambdaEvent<Value>) -> Result<Value, String> {
 Err("something went wrong!".into())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 lambda_runtime::run(service_fn(handler)).await
}

This code returns the following error payload:

{
 "errorType": "&alloc::string::String",
 "errorMessage": "something went wrong!"
}

For a more advanced error handling example, see the sample application in the Amazon Labs
GitHub repository.

Errors 997

https://github.com/awslabs/aws-lambda-rust-runtime
https://github.com/awslabs/aws-lambda-rust-runtime
https://github.com/awslabs/aws-lambda-rust-runtime
https://github.com/awslabs/aws-lambda-rust-runtime/tree/main/examples/basic-error-handling

Amazon Lambda Developer Guide

Using Amazon Lambda with other services

Amazon Lambda integrates with other Amazon services to invoke functions or take other actions.
These are some common use cases:

• Invoke a function in response to resource lifecycle events, such as with Amazon Simple Storage
Service (Amazon S3). For more information, see Using Amazon Lambda with Amazon S3.

• Respond to incoming HTTP requests. For more information, see Tutorial: Using Lambda with API
Gateway.

• Consume events from a queue. For more information, see Using Lambda with Amazon SQS.

• Run a function on a schedule. For more information, see Using Amazon Lambda with Amazon
EventBridge (CloudWatch Events).

Depending on which service you're using with Lambda, the invocation generally works in one of
two ways. An event drives the invocation or Lambda polls a queue or data stream and invokes
the function in response to activity in the queue or data stream. Lambda integrates with Amazon
Elastic File System and Amazon X-Ray in a way that doesn't involve invoking functions.

For more information, see Event-driven invocation and Lambda polling. Or, look up the service
that you want to work with in the following section to find a link to information about using that
service with Lambda.

You can also use Lambda functions to interact programmatically with other Amazon Web Services
using one of the Amazon Software Development Kits (SDKs). For example, you can have a Lambda
function create an Amazon S3 bucket or write data to a DynamoDB table using an API call from
within your function. To learn more about Amazon SDKs, see Tools to build on Amazon.

Listing of services and links to more information

Find the service that you want to work with in the following table, to determine which method of
invocation you should use. Follow the link from the service name to find information about how to
set up the integration between the services. These topics also include example events that you can
use to test your function.

Listing of services and links to more information 998

https://www.amazonaws.cn/developer/tools/

Amazon Lambda Developer Guide

Tip

Entries in this table are alphabetical by service name, excluding the "Amazon" or "Amazon"
prefix. You can also use your browser's search functionality to find your service in the list.

Service Method of invocation

Amazon Alexa Event-driven; synchronous invocation

Amazon Managed Streaming
for Apache Kafka

Lambda polling

Self-managed Apache Kafka Lambda polling

Amazon API Gateway Event-driven; synchronous invocation

Amazon CloudFormation Event-driven; asynchronous invocation

Amazon CloudFront
(Lambda@Edge)

Event-driven; synchronous invocation

Amazon EventBridge
(CloudWatch Events)

Event-driven; asynchronous invocation

Amazon CloudWatch Logs Event-driven; asynchronous invocation

Amazon CodeCommit Event-driven; asynchronous invocation

Amazon CodePipeline Event-driven; asynchronous invocation

Amazon Cognito Event-driven; synchronous invocation

Amazon Config Event-driven; asynchronous invocation

Amazon Connect Event-driven; synchronous invocation

Amazon DynamoDB Lambda polling

Amazon Elastic File System Special integration

Listing of services and links to more information 999

Amazon Lambda Developer Guide

Service Method of invocation

Elastic Load Balancing
(Application Load Balancer)

Event-driven; synchronous invocation

Amazon IoT Event-driven; asynchronous invocation

Amazon IoT Events Event-driven; asynchronous invocation

Amazon Kinesis Lambda polling

Amazon Data Firehose Event-driven; synchronous invocation

Amazon Lex Event-driven; synchronous invocation

Amazon MQ Lambda polling

Amazon Simple Email Service Event-driven; asynchronous invocation

Amazon Simple Notification
Service

Event-driven; asynchronous invocation

Amazon Simple Queue
Service

Lambda polling

Amazon Simple Storage
Service (Amazon S3)

Event-driven; asynchronous invocation

Amazon Simple Storage
Service Batch

Event-driven; synchronous invocation

Secrets Manager Event-driven; synchronous invocation

Amazon VPC Lattice Event-driven; synchronous invocation

Amazon X-Ray Special integration

Listing of services and links to more information 1000

Amazon Lambda Developer Guide

Event-driven invocation

Some services generate events that can invoke your Lambda function. For more information about
designing these types of architectures , see Event driven architectures in Serverless Land.

When you implement an event-driven architecture, you grant the event-generating service
permission to invoke your function in the function's resource-based policy. Then you configure that
service to generate events that invoke your function.

The events are data structured in JSON format. The JSON structure varies depending on the service
that generates it and the event type, but they all contain the data that the function needs to
process the event.

Lambda converts the event document into an object and passes it to your function handler.
For compiled languages, Lambda provides definitions for event types in a library. For more
information, see the topic about building functions with your language: Building Lambda functions
with C#, Building Lambda functions with Go, Building Lambda functions with Java, or Building
Lambda functions with PowerShell.

Depending on the service, the event-driven invocation can be synchronous or asynchronous.

• For synchronous invocation, the service that generates the event waits for the response from
your function. That service defines the data that the function needs to return in the response.
The service controls the error strategy, such as whether to retry on errors. For more information,
see the section called “Synchronous invocation”.

• For asynchronous invocation, Lambda queues the event before passing it to your function.
When Lambda queues the event, it immediately sends a success response to the service that
generated the event. After the function processes the event, Lambda doesn’t return a response
to the event-generating service. For more information, see the section called “Asynchronous
invocation”.

For more information about how Lambda manages error handling for synchronously and
asychronously invoked functions, see the section called “Error handling”.

Lambda polling

For services that generate a queue or data stream, you set up an event source mapping in Lambda
to have Lambda poll the queue or a data stream.

Event-driven invocation 1001

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/event-driven-architectures

Amazon Lambda Developer Guide

When you implement a Lambda polling architecture, you grant Lambda permission to access the
other service in the function's execution role. Lambda reads data from the other service, creates an
event, and invokes your function.

Lambda polling 1002

Amazon Lambda Developer Guide

Common Lambda application types and use cases

Lambda functions and triggers are the core components of building applications on Amazon
Lambda. A Lambda function is the code and runtime that process events, while a trigger is the
Amazon service or application that invokes the function. To illustrate, consider the following
scenarios:

• File processing – Suppose you have a photo sharing application. People use your application
to upload photos, and the application stores these user photos in an Amazon S3 bucket. Then,
your application creates a thumbnail version of each user's photos and displays them on the
user's profile page. In this scenario, you may choose to create a Lambda function that creates
a thumbnail automatically. Amazon S3 is one of the supported Amazon event sources that can
publish object-created events and invoke your Lambda function. Your Lambda function code can
read the photo object from the S3 bucket, create a thumbnail version, and then save it in another
S3 bucket.

• Data and analytics – Suppose you are building an analytics application and storing raw data in
a DynamoDB table. When you write, update, or delete items in a table, DynamoDB streams can
publish item update events to a stream associated with the table. In this case, the event data
provides the item key, event name (such as insert, update, and delete), and other relevant details.
You can write a Lambda function to generate custom metrics by aggregating raw data.

• Websites – Suppose you are creating a website and you want to host the backend logic on
Lambda. You can invoke your Lambda function over HTTP using Amazon API Gateway as the
HTTP endpoint. Now, your web client can invoke the API, and then API Gateway can route the
request to Lambda.

• Mobile applications – Suppose you have a custom mobile application that produces events.
You can create a Lambda function to process events published by your custom application. For
example, you can configure a Lambda function to process the clicks within your custom mobile
application.

Amazon Lambda supports many Amazon services as event sources. For more information, see
Using Amazon Lambda with other services. When you configure these event sources to trigger a
Lambda function, the Lambda function is invoked automatically when events occur. You define
event source mapping, which is how you identify what events to track and which Lambda function
to invoke.

Use cases 1003

Amazon Lambda Developer Guide

The following are introductory examples of event sources and how the end-to-end experience
works.

Example 1: Amazon S3 pushes events and invokes a Lambda function

Amazon S3 can publish events of different types, such as PUT, POST, COPY, and DELETE object
events on a bucket. Using the bucket notification feature, you can configure an event source
mapping that directs Amazon S3 to invoke a Lambda function when a specific type of event occurs.

The following is a typical sequence:

1. The user creates an object in a bucket.

2. Amazon S3 detects the object created event.

3. Amazon S3 invokes your Lambda function using the permissions provided by the execution role.

4. Amazon Lambda runs the Lambda function, specifying the event as a parameter.

You configure Amazon S3 to invoke your function as a bucket notification action. To grant Amazon
S3 permission to invoke the function, update the function's resource-based policy.

Example 2: Amazon Lambda pulls events from a Kinesis stream and
invokes a Lambda function

For poll-based event sources, Amazon Lambda polls the source and then invokes the Lambda
function when records are detected on that source.

• CreateEventSourceMapping

• UpdateEventSourceMapping

The following steps describe how a custom application writes records to a Kinesis stream:

1. The custom application writes records to a Kinesis stream.

2. Amazon Lambda continuously polls the stream, and invokes the Lambda function when the
service detects new records on the stream. Amazon Lambda knows which stream to poll and
which Lambda function to invoke based on the event source mapping you create in Lambda.

3. The Lambda function is invoked with the incoming event.

Example 1: Amazon S3 pushes events and invokes a Lambda function 1004

https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html

Amazon Lambda Developer Guide

When working with stream-based event sources, you create event source mappings in Amazon
Lambda. Lambda reads items from the stream and invokes the function synchronously. You don't
need to grant Lambda permission to invoke the function, but it does need permission to read from
the stream.

Example 2: Amazon Lambda pulls events from a Kinesis stream and invokes a Lambda function 1005

Amazon Lambda Developer Guide

Using Amazon Lambda with Alexa

You can use Lambda functions to build services that give new skills to Alexa, the Voice assistant on
Amazon Echo. The Alexa Skills Kit provides the APIs, tools, and documentation to create these new
skills, powered by your own services running as Lambda functions. Amazon Echo users can access
these new skills by asking Alexa questions or making requests.

The Alexa Skills Kit is available on GitHub.

• Alexa Skills Kit SDK for Java

• Alexa Skills Kit SDK for Node.js

• Alexa Skills Kit SDK for Python

Example Alexa smart home event

{
 "header": {
 "payloadVersion": "1",
 "namespace": "Control",
 "name": "SwitchOnOffRequest"
 },
 "payload": {
 "switchControlAction": "TURN_ON",
 "appliance": {
 "additionalApplianceDetails": {
 "key2": "value2",
 "key1": "value1"
 },
 "applianceId": "sampleId"
 },
 "accessToken": "sampleAccessToken"
 }
}

For more information, see Host a custom skill as an Amazon Lambda Function in the Build Skills
with the Alexa Skills Kit guide.

Alexa 1006

https://github.com/alexa/alexa-skills-kit-sdk-for-java
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs
https://github.com/alexa/alexa-skills-kit-sdk-for-python
https://developer.amazon.com/docs/alexa/custom-skills/host-a-custom-skill-as-an-aws-lambda-function.html

Amazon Lambda Developer Guide

Using Lambda with self-managed Apache Kafka

Note

If you want to send data to a target other than a Lambda function or enrich the data before
sending it, see Amazon EventBridge Pipes.

Lambda supports Apache Kafka as an event source. Apache Kafka is a an open-source event
streaming platform that supports workloads such as data pipelines and streaming analytics.

You can use the Amazon managed Kafka service Amazon Managed Streaming for Apache Kafka
(Amazon MSK), or a self-managed Kafka cluster. For details about using Lambda with Amazon MSK,
see Using Lambda with Amazon MSK.

This topic describes how to use Lambda with a self-managed Kafka cluster. In Amazon terminology,
a self-managed cluster includes non-Amazon hosted Kafka clusters. For example, you can host your
Kafka cluster with a cloud provider such as Confluent Cloud.

Apache Kafka as an event source operates similarly to using Amazon Simple Queue Service
(Amazon SQS) or Amazon Kinesis. Lambda internally polls for new messages from the event
source and then synchronously invokes the target Lambda function. Lambda reads the messages
in batches and provides these to your function as an event payload. The maximum batch size is
configurable. (The default is 100 messages.)

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of batches can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the Amazon Knowledge Center.

For Kafka-based event sources, Lambda supports processing control parameters, such as batching
windows and batch size. For more information, see Batching behavior.

For an example of how to use self-managed Kafka as an event source, see Using self-hosted
Apache Kafka as an event source for Amazon Lambda on the Amazon Compute Blog.

Apache Kafka 1007

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes.html
https://kafka.apache.org/
https://www.confluent.io/confluent-cloud/
https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://amazonaws-china.com/blogs/compute/using-self-hosted-apache-kafka-as-an-event-source-for-aws-lambda/
https://amazonaws-china.com/blogs/compute/using-self-hosted-apache-kafka-as-an-event-source-for-aws-lambda/

Amazon Lambda Developer Guide

Topics

• Example event

• Kafka cluster authentication

• Managing API access and permissions

• Authentication and authorization errors

• Network configuration

• Adding a Kafka cluster as an event source

• Using a Kafka cluster as an event source

• Polling and stream starting positions

• Auto scaling of the Kafka event source

• Event source API operations

• Event source mapping errors

• Amazon CloudWatch metrics

• Self-managed Apache Kafka configuration parameters

Example event

Lambda sends the batch of messages in the event parameter when it invokes your Lambda
function. The event payload contains an array of messages. Each array item contains details of
the Kafka topic and Kafka partition identifier, together with a timestamp and a base64-encoded
message.

{
 "eventSource": "SelfManagedKafka",
 "bootstrapServers":"b-2.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092,b-1.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092",
 "records":{
 "mytopic-0":[
 {
 "topic":"mytopic",
 "partition":0,
 "offset":15,
 "timestamp":1545084650987,
 "timestampType":"CREATE_TIME",
 "key":"abcDEFghiJKLmnoPQRstuVWXyz1234==",

Example event 1008

Amazon Lambda Developer Guide

 "value":"SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "headers":[
 {
 "headerKey":[
 104,
 101,
 97,
 100,
 101,
 114,
 86,
 97,
 108,
 117,
 101
]
 }
]
 }
]
 }
}

Kafka cluster authentication

Lambda supports several methods to authenticate with your self-managed Apache Kafka cluster.
Make sure that you configure the Kafka cluster to use one of these supported authentication
methods. For more information about Kafka security, see the Security section of the Kafka
documentation.

VPC access

If only Kafka users within your VPC access your Kafka brokers, you must configure the Kafka event
source for Amazon Virtual Private Cloud (Amazon VPC) access.

SASL/SCRAM authentication

Lambda supports Simple Authentication and Security Layer/Salted Challenge Response
Authentication Mechanism (SASL/SCRAM) authentication with Transport Layer Security (TLS)
encryption (SASL_SSL). Lambda sends the encrypted credentials to authenticate with the cluster.
Lambda doesn't support SASL/SCRAM with plaintext (SASL_PLAINTEXT). For more information
about SASL/SCRAM authentication, see RFC 5802.

Kafka cluster authentication 1009

http://kafka.apache.org/documentation.html#security
https://tools.ietf.org/html/rfc5802

Amazon Lambda Developer Guide

Lambda also supports SASL/PLAIN authentication. Because this mechanism uses clear text
credentials, the connection to the server must use TLS encryption to ensure that the credentials are
protected.

For SASL authentication, you store the sign-in credentials as a secret in Amazon Secrets Manager.
For more information about using Secrets Manager, see Tutorial: Create and retrieve a secret in the
Amazon Secrets Manager User Guide.

Important

To use Secrets Manager for authentication, secrets must be stored in the same Amazon
region as your Lambda function.

Mutual TLS authentication

Mutual TLS (mTLS) provides two-way authentication between the client and server. The client
sends a certificate to the server for the server to verify the client, and the server sends a certificate
to the client for the client to verify the server.

In self-managed Apache Kafka, Lambda acts as the client. You configure a client certificate (as a
secret in Secrets Manager) to authenticate Lambda with your Kafka brokers. The client certificate
must be signed by a CA in the server's trust store.

The Kafka cluster sends a server certificate to Lambda to authenticate the Kafka brokers with
Lambda. The server certificate can be a public CA certificate or a private CA/self-signed certificate.
The public CA certificate must be signed by a certificate authority (CA) that's in the Lambda trust
store. For a private CA/self-signed certificate, you configure the server root CA certificate (as a
secret in Secrets Manager). Lambda uses the root certificate to verify the Kafka brokers.

For more information about mTLS, see Introducing mutual TLS authentication for Amazon MSK as
an event source.

Configuring the client certificate secret

The CLIENT_CERTIFICATE_TLS_AUTH secret requires a certificate field and a private key field.
For an encrypted private key, the secret requires a private key password. Both the certificate and
private key must be in PEM format.

Kafka cluster authentication 1010

https://docs.amazonaws.cn/secretsmanager/latest/userguide/tutorials_basic.html
https://amazonaws-china.com/blogs/compute/introducing-mutual-tls-authentication-for-amazon-msk-as-an-event-source
https://amazonaws-china.com/blogs/compute/introducing-mutual-tls-authentication-for-amazon-msk-as-an-event-source

Amazon Lambda Developer Guide

Note

Lambda supports the PBES1 (but not PBES2) private key encryption algorithms.

The certificate field must contain a list of certificates, beginning with the client certificate, followed
by any intermediate certificates, and ending with the root certificate. Each certificate must start on
a new line with the following structure:

-----BEGIN CERTIFICATE-----
 <certificate contents>
-----END CERTIFICATE-----

Secrets Manager supports secrets up to 65,536 bytes, which is enough space for long certificate
chains.

The private key must be in PKCS #8 format, with the following structure:

-----BEGIN PRIVATE KEY-----
 <private key contents>
-----END PRIVATE KEY-----

For an encrypted private key, use the following structure:

-----BEGIN ENCRYPTED PRIVATE KEY-----
 <private key contents>
-----END ENCRYPTED PRIVATE KEY-----

The following example shows the contents of a secret for mTLS authentication using an encrypted
private key. For an encrypted private key, include the private key password in the secret.

{"privateKeyPassword":"testpassword",
"certificate":"-----BEGIN CERTIFICATE-----
MIIE5DCCAsygAwIBAgIRAPJdwaFaNRrytHBto0j5BA0wDQYJKoZIhvcNAQELBQAw
...
j0Lh4/+1HfgyE2KlmII36dg4IMzNjAFEBZiCRoPimO40s1cRqtFHXoal0QQbIlxk
cmUuiAii9R0=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIFgjCCA2qgAwIBAgIQdjNZd6uFf9hbNC5RdfmHrzANBgkqhkiG9w0BAQsFADBb

Kafka cluster authentication 1011

https://datatracker.ietf.org/doc/html/rfc2898/#section-6.1
https://datatracker.ietf.org/doc/html/rfc5208

Amazon Lambda Developer Guide

...
rQoiowbbk5wXCheYSANQIfTZ6weQTgiCHCCbuuMKNVS95FkXm0vqVD/YpXKwA/no
c8PH3PSoAaRwMMgOSA2ALJvbRz8mpg==
-----END CERTIFICATE-----",
"privateKey":"-----BEGIN ENCRYPTED PRIVATE KEY-----
MIIFKzBVBgkqhkiG9w0BBQ0wSDAnBgkqhkiG9w0BBQwwGgQUiAFcK5hT/X7Kjmgp
...
QrSekqF+kWzmB6nAfSzgO9IaoAaytLvNgGTckWeUkWn/V0Ck+LdGUXzAC4RxZnoQ
zp2mwJn2NYB7AZ7+imp0azDZb+8YG2aUCiyqb6PnnA==
-----END ENCRYPTED PRIVATE KEY-----"
}

Configuring the server root CA certificate secret

You create this secret if your Kafka brokers use TLS encryption with certificates signed by a private
CA. You can use TLS encryption for VPC, SASL/SCRAM, SASL/PLAIN, or mTLS authentication.

The server root CA certificate secret requires a field that contains the Kafka broker's root CA
certificate in PEM format. The following example shows the structure of the secret.

{"certificate":"-----BEGIN CERTIFICATE-----
MIID7zCCAtegAwIBAgIBADANBgkqhkiG9w0BAQsFADCBmDELMAkGA1UEBhMCVVMx
EDAOBgNVBAgTB0FyaXpvbmExEzARBgNVBAcTClNjb3R0c2RhbGUxJTAjBgNVBAoT
HFN0YXJmaWVsZCBUZWNobm9sb2dpZXMsIEluYy4xOzA5BgNVBAMTMlN0YXJmaWVs
ZCBTZXJ2aWNlcyBSb290IENlcnRpZmljYXRlIEF1dG...
-----END CERTIFICATE-----"
}

Managing API access and permissions

In addition to accessing your self-managed Kafka cluster, your Lambda function needs permissions
to perform various API actions. You add these permissions to the function's execution role. If your
users need access to any API actions, add the required permissions to the identity policy for the
Amazon Identity and Access Management (IAM) user or role.

Required Lambda function permissions

To create and store logs in a log group in Amazon CloudWatch Logs, your Lambda function must
have the following permissions in its execution role:

• logs:CreateLogGroup

Managing API access and permissions 1012

https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html

Amazon Lambda Developer Guide

• logs:CreateLogStream

• logs:PutLogEvents

Optional Lambda function permissions

Your Lambda function might also need permissions to:

• Describe your Secrets Manager secret.

• Access your Amazon Key Management Service (Amazon KMS) customer managed key.

• Access your Amazon VPC.

• Send records of failed invocations to a destination.

Secrets Manager and Amazon KMS permissions

Depending on the type of access control that you're configuring for your Kafka brokers, your
Lambda function might need permission to access your Secrets Manager secret or to decrypt your
Amazon KMS customer managed key. To access these resources, your function's execution role
must have the following permissions:

• secretsmanager:GetSecretValue

• kms:Decrypt

VPC permissions

If only users within a VPC can access your self-managed Apache Kafka cluster, your Lambda
function must have permission to access your Amazon VPC resources. These resources include your
VPC, subnets, security groups, and network interfaces. To access these resources, your function's
execution role must have the following permissions:

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeVpcs

• ec2:DeleteNetworkInterface

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

Managing API access and permissions 1013

https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html
https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html
https://docs.amazonaws.cn/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeVpcs.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DeleteNetworkInterface.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeSubnets.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html

Amazon Lambda Developer Guide

Sending records to a destination

If you want to send records of failed invocations to an on-failure destination, your Lambda function
must have permission to send these records. For Kafka event source mappings, you can choose
between an Amazon SNS topic, Amazon SQS queue, or Amazon S3 bucket as the destination. To
send records to an SNS topic, your function's execution role must have the following permission:

• sns:Publish

To send records to an SQS queue, your function's execution role must have the following
permission:

• sqs:SendMessage

To send records to an S3 bucket, your function's execution role must have the following
permissions:

• s3:PutObject

• s3:ListBuckets

Additionally, if you configured a KMS key on your destination, Lambda needs the following
permissions depending on the destination type:

• If you've enabled encryption with your own KMS key for an S3 destination, kms:GenerateDataKey
is required. If the KMS key and S3 bucket destination are in a different account from your
Lambda function and execution role, configure the KMS key to trust the execution role to allow
kms:GenerateDataKey.

• If you've enabled encryption with your own KMS key for SQS destination, kms:Decrypt
and kms:GenerateDataKey are required. If the KMS key and SQS queue destination are in a
different account from your Lambda function and execution role, configure the KMS key to
trust the execution role to allow kms:Decrypt, kms:GenerateDataKey, kms:DescribeKey, and
kms:ReEncrypt.

• If you've enabled encryption with your own KMS key for SNS destination, kms:Decrypt
and kms:GenerateDataKey are required. If the KMS key and SNS topic destination are in a
different account from your Lambda function and execution role, configure the KMS key to
trust the execution role to allow kms:Decrypt, kms:GenerateDataKey, kms:DescribeKey, and
kms:ReEncrypt.

Managing API access and permissions 1014

https://docs.amazonaws.cn/sns/latest/api/API_Publish.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_PutObject.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_ListBuckets.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html

Amazon Lambda Developer Guide

Adding permissions to your execution role

To access other Amazon services that your self-managed Apache Kafka cluster uses, Lambda uses
the permissions policies that you define in your Lambda function's execution role.

By default, Lambda is not permitted to perform the required or optional actions for a self-
managed Apache Kafka cluster. You must create and define these actions in an IAM trust policy,
and then attach the policy to your execution role. This example shows how you might create a
policy that allows Lambda to access your Amazon VPC resources.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ec2:CreateNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeVpcs",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
],
 "Resource":"*"
 }
]
 }

For information about creating a JSON policy document in the IAM console, see Creating policies
on the JSON tab in the IAM User Guide.

Granting users access with an IAM policy

By default, users and roles don't have permission to perform event source API operations. To grant
access to users in your organization or account, you create or update an identity-based policy. For
more information, see Controlling access to Amazon resources using policies in the IAM User Guide.

Authentication and authorization errors

If any of the permissions required to consume data from the Kafka cluster are missing,
Lambda displays one of the following error messages in the event source mapping under
LastProcessingResult.

Authentication and authorization errors 1015

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#term_trust-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-json-editor
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-json-editor
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_controlling.html

Amazon Lambda Developer Guide

Error messages

• Cluster failed to authorize Lambda

• SASL authentication failed

• Server failed to authenticate Lambda

• Lambda failed to authenticate server

• Provided certificate or private key is invalid

Cluster failed to authorize Lambda

For SASL/SCRAM or mTLS, this error indicates that the provided user doesn't have all of the
following required Kafka access control list (ACL) permissions:

• DescribeConfigs Cluster

• Describe Group

• Read Group

• Describe Topic

• Read Topic

When you create Kafka ACLs with the required kafka-cluster permissions, specify the topic and
group as resources. The topic name must match the topic in the event source mapping. The group
name must match the event source mapping's UUID.

After you add the required permissions to the execution role, it might take several minutes for the
changes to take effect.

SASL authentication failed

For SASL/SCRAM or SASL/PLAIN, this error indicates that the provided sign-in credentials aren't
valid.

Server failed to authenticate Lambda

This error indicates that the Kafka broker failed to authenticate Lambda. This can occur for any of
the following reasons:

• You didn't provide a client certificate for mTLS authentication.

Authentication and authorization errors 1016

Amazon Lambda Developer Guide

• You provided a client certificate, but the Kafka brokers aren't configured to use mTLS
authentication.

• A client certificate isn't trusted by the Kafka brokers.

Lambda failed to authenticate server

This error indicates that Lambda failed to authenticate the Kafka broker. This can occur for any of
the following reasons:

• The Kafka brokers use self-signed certificates or a private CA, but didn't provide the server root
CA certificate.

• The server root CA certificate doesn't match the root CA that signed the broker's certificate.

• Hostname validation failed because the broker's certificate doesn't contain the broker's DNS
name or IP address as a subject alternative name.

Provided certificate or private key is invalid

This error indicates that the Kafka consumer couldn't use the provided certificate or private key.
Make sure that the certificate and key use PEM format, and that the private key encryption uses a
PBES1 algorithm.

Network configuration

For Lambda to use your Kafka cluster as an event source, it needs access to the Amazon VPC your
cluster resides in. We recommend that you deploy Amazon PrivateLink VPC endpoints for Lambda
to access your VPC. Deploy endpoints for Lambda and Amazon Security Token Service (Amazon
STS). If the broker uses authentication, also deploy a VPC endpoint for Secrets Manager. If you
configured an on-failure destination, also deploy a VPC endpoint for the destination service.

Alternatively, ensure that the VPC associated with your Kafka cluster includes one NAT gateway per
public subnet. For more information, see Internet and service access for VPC-connected functions.

If you use VPC endpoints, you must also configure them to enable private DNS names.

When you create an event source mapping for a self-managed Apache Kafka cluster, Lambda
checks whether Elastic Network Interfaces (ENIs) are already present for the subnets and security
groups of your cluster’s VPC. If Lambda finds existing ENIs, it attempts to re-use them. Otherwise,
Lambda creates new ENIs to connect to the event source and invoke your function.

Network configuration 1017

https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.amazonaws.cn/vpc/latest/privatelink/interface-endpoints.html#enable-private-dns-names

Amazon Lambda Developer Guide

Note

Lambda functions always run inside VPCs owned by the Lambda service. These VPCs are
maintained automatically by the service and are not visible to customers. You can also
connect your function to an Amazon VPC. In either case, your function’s VPC configuration
doesn’t affect the event source mapping. Only the configuration of the event source’s VPC
determines how Lambda connects to your event source.

For more information about configuring the network, see Setting up Amazon Lambda with an
Apache Kafka cluster within a VPC on the Amazon Compute Blog.

VPC security group rules

Configure the security groups for the Amazon VPC containing your cluster with the following rules
(at minimum):

• Inbound rules – Allow all traffic on the Kafka broker port for the security groups specified for
your event source. Kafka uses port 9092 by default.

• Outbound rules – Allow all traffic on port 443 for all destinations. Allow all traffic on the Kafka
broker port for the security groups specified for your event source. Kafka uses port 9092 by
default.

• If you are using VPC endpoints instead of a NAT gateway, the security groups associated with
the VPC endpoints must allow all inbound traffic on port 443 from the event source's security
groups.

Working with VPC endpoints

When you use VPC endpoints, API calls to invoke your function are routed through these
endpoints using the ENIs. The Lambda service principal needs to call sts:AssumeRole and
lambda:InvokeFunction on any roles and functions that use those ENIs.

By default, VPC endpoints have IAM policies which are open. Best practice is to restrict these
policies to allow only specific principals to perform the needed actions using that endpoint.
To ensure that your event source mapping is able to invoke your Lambda function, the VPC
endpoint policy must allow the Lambda service principle to call sts:AssumeRole and
lambda:InvokeFunction. Restricting your VPC endpoint policies to allow only API calls
originating within your organization prevents the event source mapping from functioning properly.

Network configuration 1018

https://amazonaws-china.com/blogs/compute/setting-up-aws-lambda-with-an-apache-kafka-cluster-within-a-vpc/
https://amazonaws-china.com/blogs/compute/setting-up-aws-lambda-with-an-apache-kafka-cluster-within-a-vpc/

Amazon Lambda Developer Guide

The following example VPC endpoint policies show how to grant the required access to the
Lambda service principal for the Amazon STS and Lambda endpoints.

Example VPC endpoint policy - Amazon STS endpoint

{
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
}

Example VPC endpoint policy - Lambda endpoint

{
 "Statement": [
 {
 "Action": "lambda:InvokeFunction",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
}

If your Kafka broker uses authentication, you can also restrict the VPC endpoint policy for the
Secrets Manager endpoint. To call the Secrets Manager API, Lambda uses your function role, not
the Lambda service principal. The following example shows a Secrets Manager endpoint policy.

Network configuration 1019

Amazon Lambda Developer Guide

Example VPC endpoint policy - Secrets Manager endpoint

{
 "Statement": [
 {
 "Action": "secretsmanager:GetSecretValue",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "customer_function_execution_role_arn"
]
 },
 "Resource": "customer_secret_arn"
 }
]
}

If you have an on-failure destination configured, Lambda also uses your function’s role to call
either s3:PutObject, sns:Publish, or sqs:sendMessage using the Lambda-managed ENIs.

Adding a Kafka cluster as an event source

To create an event source mapping, add your Kafka cluster as a Lambda function trigger using the
Lambda console, an Amazon SDK, or the Amazon Command Line Interface (Amazon CLI).

This section describes how to create an event source mapping using the Lambda console and the
Amazon CLI.

Prerequisites

• A self-managed Apache Kafka cluster. Lambda supports Apache Kafka version 0.10.1.0 and later.

• An execution role with permission to access the Amazon resources that your self-managed Kafka
cluster uses.

Customizable consumer group ID

When setting up Kafka as an event source, you can specify a consumer group ID. This consumer
group ID is an existing identifier for the Kafka consumer group that you want your Lambda
function to join. You can use this feature to seamlessly migrate any ongoing Kafka record
processing setups from other consumers to Lambda.

Adding a Kafka cluster as an event source 1020

https://www.amazonaws.cn/getting-started/tools-sdks/
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html

Amazon Lambda Developer Guide

If you specify a consumer group ID and there are other active pollers within that consumer group,
Kafka distributes messages across all consumers. In other words, Lambda doesn't receive all
message for the Kafka topic. If you want Lambda to handle all messages in the topic, turn off any
other pollers in that consumer group.

Additionally, if you specify a consumer group ID, and Kafka finds a valid existing consumer group
with the same ID, Lambda ignores the StartingPosition parameter for your event source
mapping. Instead, Lambda begins processing records according to the committed offset of the
consumer group. If you specify a consumer group ID, and Kafka cannot find an existing consumer
group, then Lambda configures your event source with the specified StartingPosition.

The consumer group ID that you specify must be unique among all your Kafka event sources. After
creating a Kafka event source mapping with the consumer group ID specified, you cannot update
this value.

On-failure destinations

To retain records of failed invocations or oversized payloads from your Kafka event source,
configure an on-failure destination to your function. When an invocation fails, Lambda sends a
JSON record containing details of the invocation to your destination.

You can choose between an Amazon SNS topic, Amazon SQS queue, or Amazon S3 bucket as your
destination. For SNS topic or SQS queue destinations, Lambda sends the record metadata to the
destination. For S3 bucket destinations, Lambda sends the entire invocation record along with the
metadata to the destination.

For Lambda to successfully send records to your chosen destination, ensure that your function's
execution role contains the relevant permissions. The table also describes how each destination
type receives the JSOn invocation record.

Destination type Supported for the
following event
sources

Required permissio
ns

Destination-specific
JSON format

Amazon SQS queue • Kinesis

• DynamoDB

• Self-managed
Apache Kafka and

• sqs:SendMessage Lambda passes the
invocation record
metadata as the

Adding a Kafka cluster as an event source 1021

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

Amazon Lambda Developer Guide

Destination type Supported for the
following event
sources

Required permissio
ns

Destination-specific
JSON format

Managed Apache
Kafka

Message to the
destination.

Amazon SNS topic • Kinesis

• DynamoDB

• Self-managed
Apache Kafka and
Managed Apache
Kafka

• sns:Publish Lambda passes the
invocation record
metadata as the
Message to the
destination.

Amazon S3 bucket • Self-managed
Apache Kafka and
Managed Apache
Kafka

• s3:PutObject

• s3:ListBuckets

Lambda stores
the invocation
record along with
its metadata at the
destination.

Tip

As a best practice, include the minimum permissions required only in your execution role.

SNS and SQS destinations

The following example shows what Lambda sends to an SNS topic or SQS queue destination for
a failed Kafka event source invocation. Each of the keys under recordsInfo contains both the
Kafka topic and partition, separated by a hyphen. For example, for the key "Topic-0", Topic is
the Kafka topic, and 0 is the partition. For each topic and partition, you can use the offsets and
timestamp data to find the original invocation records.

{
 "requestContext": {
 "requestId": "316aa6d0-8154-xmpl-9af7-85d5f4a6bc81",
 "functionArn": "arn:aws:lambda:us-east-1:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted" | "MaximumPayloadSizeExceeded",

Adding a Kafka cluster as an event source 1022

https://docs.amazonaws.cn/sns/latest/api/API_Publish.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_PutObject.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_ListBuckets.html

Amazon Lambda Developer Guide

 "approximateInvokeCount": 1
 },
 "responseContext": { // null if record is MaximumPayloadSizeExceeded
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KafkaBatchInfo": {
 "batchSize": 500,
 "eventSourceArn": "arn:aws:kafka:us-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2",
 "bootstrapServers": "...",
 "payloadSize": 2039086, // In bytes
 "recordsInfo": {
 "Topic-0": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 },
 "Topic-1": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 }
 }
 }
}

S3 destinations

For S3 destinations, Lambda sends the entire invocation record along with the metadata to the
destination. The following example shows that Lambda sends to an S3 bucket destination for a
failed Kafka event source invocation. In addition to all of the fields from the previous example for
SQS and SNS destinations, the payload field contains the original invocation record as an escaped
JSON string.

Adding a Kafka cluster as an event source 1023

Amazon Lambda Developer Guide

{
 "requestContext": {
 "requestId": "316aa6d0-8154-xmpl-9af7-85d5f4a6bc81",
 "functionArn": "arn:aws:lambda:us-east-1:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted" | "MaximumPayloadSizeExceeded",
 "approximateInvokeCount": 1
 },
 "responseContext": { // null if record is MaximumPayloadSizeExceeded
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KafkaBatchInfo": {
 "batchSize": 500,
 "eventSourceArn": "arn:aws:kafka:us-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2",
 "bootstrapServers": "...",
 "payloadSize": 2039086, // In bytes
 "recordsInfo": {
 "Topic-0": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 },
 "Topic-1": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 }
 }
 },
 "payload": "<Whole Event>" // Only available in S3
}

Adding a Kafka cluster as an event source 1024

Amazon Lambda Developer Guide

Tip

We recommend enabling S3 versioning on your destination bucket.

Configuring on-failure destinations

To configure an on-failure destination using the console, follow these steps:

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add destination.

4. For Source, choose Event source mapping invocation.

5. For Event source mapping, choose an event source that's configured for this function.

6. For Condition, select On failure. For event source mapping invocations, this is the only
accepted condition.

7. For Destination type, choose the destination type that Lambda sends invocation records to.

8. For Destination, choose a resource.

9. Choose Save.

You can also configure an on-failure destination using the Lambda API. For example, the following
CreateEventSourceMapping CLI command adds an SQS on-failure dsetination to MyFunction:

aws lambda create-event-source-mapping \
--function-name "MyFunction" \
--destination-config '{"OnFailure": {"Destination": "arn:aws:sqs:us-
east-1:123456789012:dest-queue"}}'

The following UpdateEventSourceMapping CLI command adds an S3 on-failure destination to the
Kafka event source associated with the input uuid:

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--destination-config '{"OnFailure": {"Destination": "arn:aws:s3:::dest-bucket"}}'

To remove a destination, supply an empty string as the argument to the destination-config
parameter:

Adding a Kafka cluster as an event source 1025

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html

Amazon Lambda Developer Guide

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--destination-config '{"OnFailure": {"Destination": ""}}'

Adding a self-managed Kafka cluster (console)

Follow these steps to add your self-managed Apache Kafka cluster and a Kafka topic as a trigger
for your Lambda function.

To add an Apache Kafka trigger to your Lambda function (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your Lambda function.

3. Under Function overview, choose Add trigger.

4. Under Trigger configuration, do the following:

a. Choose the Apache Kafka trigger type.

b. For Bootstrap servers, enter the host and port pair address of a Kafka broker in your
cluster, and then choose Add. Repeat for each Kafka broker in the cluster.

c. For Topic name, enter the name of the Kafka topic used to store records in the cluster.

d. (Optional) For Batch size, enter the maximum number of records to receive in a single
batch.

e. For Batch window, enter the maximum amount of seconds that Lambda spends gathering
records before invoking the function.

f. (Optional) For Consumer group ID, enter the ID of a Kafka consumer group to join.

g. (Optional) For Starting position, choose Latest to start reading the stream from the latest
record, Trim horizon to start at the earliest available record, or At timestamp to specify a
timestamp to start reading from.

h. (Optional) For VPC, choose the Amazon VPC for your Kafka cluster. Then, choose the VPC
subnets and VPC security groups.

This setting is required if only users within your VPC access your brokers.

i. (Optional) For Authentication, choose Add, and then do the following:

i. Choose the access or authentication protocol of the Kafka brokers in your cluster.
Adding a Kafka cluster as an event source 1026

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

• If your Kafka broker uses SASL/PLAIN authentication, choose BASIC_AUTH.

• If your broker uses SASL/SCRAM authentication, choose one of the SASL_SCRAM
protocols.

• If you're configuring mTLS authentication, choose the
CLIENT_CERTIFICATE_TLS_AUTH protocol.

ii. For SASL/SCRAM or mTLS authentication, choose the Secrets Manager secret key that
contains the credentials for your Kafka cluster.

j. (Optional) For Encryption, choose the Secrets Manager secret containing the root CA
certificate that your Kafka brokers use for TLS encryption, if your Kafka brokers use
certificates signed by a private CA.

This setting applies to TLS encryption for SASL/SCRAM or SASL/PLAIN, and to mTLS
authentication.

k. To create the trigger in a disabled state for testing (recommended), clear Enable trigger.
Or, to enable the trigger immediately, select Enable trigger.

5. To create the trigger, choose Add.

Adding a self-managed Kafka cluster (Amazon CLI)

Use the following example Amazon CLI commands to create and view a self-managed Apache
Kafka trigger for your Lambda function.

Using SASL/SCRAM

If Kafka users access your Kafka brokers over the internet, specify the Secrets Manager secret that
you created for SASL/SCRAM authentication. The following example uses the create-event-
source-mapping Amazon CLI command to map a Lambda function named my-kafka-function
to a Kafka topic named AWSKafkaTopic.

aws lambda create-event-source-mapping \
 --topics AWSKafkaTopic \
 --source-access-configuration Type=SASL_SCRAM_512_AUTH,URI=arn:aws-
cn:secretsmanager:us-east-1:111122223333:secret:MyBrokerSecretName \
 --function-name arn:aws-cn:lambda:us-east-1:111122223333:function:my-kafka-function \
 --self-managed-event-source '{"Endpoints":{"KAFKA_BOOTSTRAP_SERVERS":
["abc3.xyz.com:9092", "abc2.xyz.com:9092"]}}'

Adding a Kafka cluster as an event source 1027

https://docs.amazonaws.cn/cli/latest/reference/lambda/create-event-source-mapping.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-event-source-mapping.html

Amazon Lambda Developer Guide

Using a VPC

If only Kafka users within your VPC access your Kafka brokers, you must specify your VPC, subnets,
and VPC security group. The following example uses the create-event-source-mapping
Amazon CLI command to map a Lambda function named my-kafka-function to a Kafka topic
named AWSKafkaTopic.

aws lambda create-event-source-mapping \
 --topics AWSKafkaTopic \
 --source-access-configuration '[{"Type": "VPC_SUBNET", "URI":
 "subnet:subnet-0011001100"}, {"Type": "VPC_SUBNET", "URI":
 "subnet:subnet-0022002200"}, {"Type": "VPC_SECURITY_GROUP", "URI":
 "security_group:sg-0123456789"}]' \
 --function-name arn:aws-cn:lambda:us-east-1:111122223333:function:my-kafka-function \
 --self-managed-event-source '{"Endpoints":{"KAFKA_BOOTSTRAP_SERVERS":
["abc3.xyz.com:9092", "abc2.xyz.com:9092"]}}'

Viewing the status using the Amazon CLI

The following example uses the get-event-source-mapping Amazon CLI command to describe
the status of the event source mapping that you created.

aws lambda get-event-source-mapping
 --uuid dh38738e-992b-343a-1077-3478934hjkfd7

Using a Kafka cluster as an event source

When you add your Apache Kafka cluster as a trigger for your Lambda function, the cluster is used
as an event source.

Lambda reads event data from the Kafka topics that you specify as Topics in a
CreateEventSourceMapping request, based on the StartingPosition that you specify. After
successful processing, your Kafka topic is committed to your Kafka cluster.

If you specify the StartingPosition as LATEST, Lambda starts reading from the latest
message in each partition belonging to the topic. Because there can be some delay after trigger
configuration before Lambda starts reading the messages, Lambda doesn't read any messages
produced during this window.

Lambda processes records from one or more Kafka topic partitions that you specify
and sends a JSON payload to your function. When more records are available, Lambda

Using a Kafka cluster as an event source 1028

https://docs.amazonaws.cn/cli/latest/reference/lambda/create-event-source-mapping.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/get-event-source-mapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html

Amazon Lambda Developer Guide

continues processing records in batches, based on the BatchSize value that you specify in a
CreateEventSourceMapping request, until your function catches up with the topic.

If your function returns an error for any of the messages in a batch, Lambda retries the whole
batch of messages until processing succeeds or the messages expire. You can send records that fail
all retry attempts to an on-failure destination for later processing.

Note

While Lambda functions typically have a maximum timeout limit of 15 minutes, event
source mappings for Amazon MSK, self-managed Apache Kafka, Amazon DocumentDB, and
Amazon MQ for ActiveMQ and RabbitMQ only support functions with maximum timeout
limits of 14 minutes. This constraint ensures that the event source mapping can properly
handle function errors and retries.

Polling and stream starting positions

Be aware that stream polling during event source mapping creation and updates is eventually
consistent.

• During event source mapping creation, it may take several minutes to start polling events from
the stream.

• During event source mapping updates, it may take several minutes to stop and restart polling
events from the stream.

This behavior means that if you specify LATEST as the starting position for the stream, the event
source mapping could miss events during creation or updates. To ensure that no events are missed,
specify the stream starting position as TRIM_HORIZON or AT_TIMESTAMP.

Auto scaling of the Kafka event source

When you initially create an an Apache Kafka event source, Lambda allocates one consumer to
process all partitions in the Kafka topic. Each consumer has multiple processors running in parallel
to handle increased workloads. Additionally, Lambda automatically scales up or down the number
of consumers, based on workload. To preserve message ordering in each partition, the maximum
number of consumers is one consumer per partition in the topic.

Polling and stream starting positions 1029

https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html

Amazon Lambda Developer Guide

In one-minute intervals, Lambda evaluates the consumer offset lag of all the partitions in the topic.
If the lag is too high, the partition is receiving messages faster than Lambda can process them. If
necessary, Lambda adds or removes consumers from the topic. The scaling process of adding or
removing consumers occurs within three minutes of evaluation.

If your target Lambda function is overloaded, Lambda reduces the number of consumers. This
action reduces the workload on the function by reducing the number of messages that consumers
can retrieve and send to the function.

To monitor the throughput of your Kafka topic, you can view the Apache Kafka consumer metrics,
such as consumer_lag and consumer_offset. To check how many function invocations occur in
parallel, you can also monitor the concurrency metrics for your function.

Event source API operations

When you add your Kafka cluster as an event source for your Lambda function using the Lambda
console, an Amazon SDK, or the Amazon CLI, Lambda uses APIs to process your request.

To manage an event source with the Amazon Command Line Interface (Amazon CLI) or an Amazon
SDK, you can use the following API operations:

• CreateEventSourceMapping

• ListEventSourceMappings

• GetEventSourceMapping

• UpdateEventSourceMapping

• DeleteEventSourceMapping

Event source mapping errors

When you add your Apache Kafka cluster as an event source for your Lambda function, if your
function encounters an error, your Kafka consumer stops processing records. Consumers of a topic
partition are those that subscribe to, read, and process your records. Your other Kafka consumers
can continue processing records, provided they don't encounter the same error.

To determine the cause of a stopped consumer, check the StateTransitionReason field in the
response of EventSourceMapping. The following list describes the event source errors that you
can receive:

Event source API operations 1030

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://www.amazonaws.cn/getting-started/tools-sdks/
https://www.amazonaws.cn/getting-started/tools-sdks/
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteEventSourceMapping.html

Amazon Lambda Developer Guide

ESM_CONFIG_NOT_VALID

The event source mapping configuration isn't valid.

EVENT_SOURCE_AUTHN_ERROR

Lambda couldn't authenticate the event source.

EVENT_SOURCE_AUTHZ_ERROR

Lambda doesn't have the required permissions to access the event source.

FUNCTION_CONFIG_NOT_VALID

The function configuration isn't valid.

Note

If your Lambda event records exceed the allowed size limit of 6 MB, they can go
unprocessed.

Amazon CloudWatch metrics

Lambda emits the OffsetLag metric while your function processes records. The value of this
metric is the difference in offset between the last record written to the Kafka event source topic
and the last record that your function's consumer group processed. You can use OffsetLag to
estimate the latency between when a record is added and when your consumer group processes it.

An increasing trend in OffsetLag can indicate issues with pollers in your function's consumer
group. For more information, see Working with Lambda function metrics.

Self-managed Apache Kafka configuration parameters

All Lambda event source types share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
Apache Kafka.

Amazon CloudWatch metrics 1031

https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html

Amazon Lambda Developer Guide

Event source parameters that apply to self-managed Apache Kafka

Parameter Required Default Notes

BatchSize N 100 Maximum: 10,000

Enabled N Enabled

FunctionName Y

FilterCriteria N Lambda event
filtering

MaximumBa
tchingWindowInSeco
nds

N 500 ms Batching behavior

SelfManagedEventSo
urce

Y List of Kafka Brokers.
Can set only on
Create

SelfManagedKafkaEv
entSourceConfig

N Contains the
ConsumerGroupId
field which defaults
to a unique value.

Can set only on
Create

SourceAccessConfig
urations

N No credentials VPC information
or authentication
credentials for the
cluster

For SASL_PLAIN, set
to BASIC_AUTH

StartingPosition Y AT_TIMESTAMP,
TRIM_HORIZON, or
LATEST

Can set only on
Create

Self-managed Apache Kafka configuration parameters 1032

Amazon Lambda Developer Guide

Parameter Required Default Notes

StartingPositionTi
mestamp

N Required if StartingP
osition is set to
AT_TIMESTAMP

Topics Y Topic name

Can set only on
Create

Self-managed Apache Kafka configuration parameters 1033

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon API Gateway

You can create a web API with an HTTP endpoint for your Lambda function by using Amazon
API Gateway. API Gateway provides tools for creating and documenting web APIs that route
HTTP requests to Lambda functions. You can secure access to your API with authentication and
authorization controls. Your APIs can serve traffic over the internet or can be accessible only within
your VPC.

Resources in your API define one or more methods, such as GET or POST. Methods have an
integration that routes requests to a Lambda function or another integration type. You can define
each resource and method individually, or use special resource and method types to match all
requests that fit a pattern. A proxy resource catches all paths beneath a resource. The ANY method
catches all HTTP methods.

This section explains general information on how to choose an API type, add an endpoint to your
Lambda function, and information on events, permissions, responses, and error handling.

Sections

• Adding an endpoint to your Lambda function

• Proxy integration

• Event format

• Response format

• Permissions

• Handling errors with an API Gateway API

• Choosing an API type

• Sample applications

• Tutorial: Using Lambda with API Gateway

Adding an endpoint to your Lambda function

To add a public endpoint to your Lambda function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add trigger.

API Gateway 1034

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

4. Select API Gateway.

5. Choose Create an API or Use an existing API.

a. New API: For API type, choose HTTP API. For more information, see API types.

b. Existing API: Select the API from the dropdown menu or enter the API ID (for example,
r3pmxmplak).

6. For Security, choose Open.

7. Choose Add.

Proxy integration

API Gateway APIs are comprised of stages, resources, methods, and integrations. The stage and
resource determine the path of the endpoint:

API path format

• /prod/ – The prod stage and root resource.

• /prod/user – The prod stage and user resource.

• /dev/{proxy+} – Any route in the dev stage.

• / – (HTTP APIs) The default stage and root resource.

A Lambda integration maps a path and HTTP method combination to a Lambda function. You
can configure API Gateway to pass the body of the HTTP request as-is (custom integration), or to
encapsulate the request body in a document that includes all of the request information including
headers, resource, path, and method.

Event format

Amazon API Gateway invokes your function synchronously with an event that contains a JSON
representation of the HTTP request. For a custom integration, the event is the body of the request.
For a proxy integration, the event has a defined structure. The following example shows a proxy
event from an API Gateway REST API.

Example event.json API Gateway proxy event (REST API)

{

Proxy integration 1035

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/nodejs-apig/event.json

Amazon Lambda Developer Guide

 "resource": "/",
 "path": "/",
 "httpMethod": "GET",
 "requestContext": {
 "resourcePath": "/",
 "httpMethod": "GET",
 "path": "/Prod/",
 ...
 },
 "headers": {
 "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9",
 "accept-encoding": "gzip, deflate, br",
 "Host": "70ixmpl4fl.execute-api.us-east-2.amazonaws.com",
 "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/80.0.3987.132 Safari/537.36",
 "X-Amzn-Trace-Id": "Root=1-5e66d96f-7491f09xmpl79d18acf3d050",
 ...
 },
 "multiValueHeaders": {
 "accept": [
 "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/
apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9"
],
 "accept-encoding": [
 "gzip, deflate, br"
],
 ...
 },
 "queryStringParameters": null,
 "multiValueQueryStringParameters": null,
 "pathParameters": null,
 "stageVariables": null,
 "body": null,
 "isBase64Encoded": false
 }

Response format

API Gateway waits for a response from your function and relays the result to the caller. For a
custom integration, you define an integration response and a method response to convert the
output from the function to an HTTP response. For a proxy integration, the function must respond
with a representation of the response in a specific format.

Response format 1036

Amazon Lambda Developer Guide

The following example shows a response object from a Node.js function. The response object
represents a successful HTTP response that contains a JSON document.

Example index.mjs – Proxy integration response object (Node.js)

var response = {
 "statusCode": 200,
 "headers": {
 "Content-Type": "application/json"
 },
 "isBase64Encoded": false,
 "multiValueHeaders": {
 "X-Custom-Header": ["My value", "My other value"],
 },
 "body": "{\n \"TotalCodeSize\": 104330022,\n \"FunctionCount\": 26\n}"
 }

The Lambda runtime serializes the response object into JSON and sends it to the API. The API
parses the response and uses it to create an HTTP response, which it then sends to the client that
made the original request.

Example HTTP response

< HTTP/1.1 200 OK
 < Content-Type: application/json
 < Content-Length: 55
 < Connection: keep-alive
 < x-amzn-RequestId: 32998fea-xmpl-4268-8c72-16138d629356
 < X-Custom-Header: My value
 < X-Custom-Header: My other value
 < X-Amzn-Trace-Id: Root=1-5e6aa925-ccecxmplbae116148e52f036
 <
 {
 "TotalCodeSize": 104330022,
 "FunctionCount": 26
 }

Permissions

Amazon API Gateway gets permission to invoke your function from the function's resource-
based policy. You can grant invoke permission to an entire API, or grant limited access to a stage,
resource, or method.

Permissions 1037

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/nodejs-apig/function/index.mjs

Amazon Lambda Developer Guide

When you add an API to your function by using the Lambda console, using the API Gateway
console, or in an Amazon SAM template, the function's resource-based policy is updated
automatically. The following is an example function policy.

Example function policy

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Sid": "nodejs-apig-functiongetEndpointPermissionProd-BWDBXMPLXE2F",
 "Effect": "Allow",
 "Principal": {
 "Service": "apigateway.amazonaws.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws-cn:lambda:us-west-2:111122223333:function:nodejs-apig-
function-1G3MXMPLXVXYI",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws-cn:execute-api:us-west-2:111122223333:ktyvxmpls1/*/
GET/"
 }
 }
 }
]
}

You can manage function policy permissions manually with the following API operations:

• AddPermission

• RemovePermission

• GetPolicy

To grant invocation permission to an existing API, use the add-permission command.

aws lambda add-permission --function-name my-function \

Permissions 1038

https://docs.amazonaws.cn/lambda/latest/api/API_AddPermission.html
https://docs.amazonaws.cn/lambda/latest/api/API_RemovePermission.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetPolicy.html

Amazon Lambda Developer Guide

--statement-id apigateway-get --action lambda:InvokeFunction \
--principal apigateway.amazonaws.com.cn \
--source-arn "arn:aws-cn:execute-api:cn-north-1:123456789012:mnh1xmpli7/default/GET/"

You should see the following output:

{
 "Statement": "{\"Sid\":\"apigateway-test-2\",\"Effect\":\"Allow\",\"Principal
\":{\"Service\":\"apigateway.amazonaws.com.cn\"},\"Action\":\"lambda:InvokeFunction
\",\"Resource\":\"arn:aws-cn:lambda:cn-north-1:123456789012:function:my-function
\",\"Condition\":{\"ArnLike\":{\"AWS:SourceArn\":\"arn:aws-cn:execute-api:cn-
north-1:123456789012:mnh1xmpli7/default/GET\"}}}"
}

Note

If your function and API are in different regions, the region identifier in the source ARN
must match the region of the function, not the region of the API. When API Gateway
invokes a function, it uses a resource ARN that is based on the ARN of the API, but modified
to match the function's region.

The source ARN in this example grants permission to an integration on the GET method of the root
resource in the default stage of an API, with ID mnh1xmpli7. You can use an asterisk in the source
ARN to grant permissions to multiple stages, methods, or resources.

Resource patterns

• mnh1xmpli7/*/GET/* – GET method on all resources in all stages.

• mnh1xmpli7/prod/ANY/user – ANY method on the user resource in the prod stage.

• mnh1xmpli7/*/*/* – Any method on all resources in all stages.

For details on viewing the policy and removing statements, see Cleaning up resource-based
policies.

Handling errors with an API Gateway API

API Gateway treats all invocation and function errors as internal errors. If the Lambda API rejects
the invocation request, API Gateway returns a 500 error code. If the function runs but returns an

Handling errors with an API Gateway API 1039

Amazon Lambda Developer Guide

error, or returns a response in the wrong format, API Gateway returns a 502. In both cases, the
body of the response from API Gateway is {"message": "Internal server error"}.

Note

API Gateway does not retry any Lambda invocations. If Lambda returns an error, API
Gateway returns an error response to the client.

The following example shows an X-Ray trace map for a request that resulted in a function error and
a 502 from API Gateway. The client receives the generic error message.

To customize the error response, you must catch errors in your code and format a response in the
required format.

Example index.mjs – Error formatting

var formatError = function(error){
 var response = {
 "statusCode": error.statusCode,
 "headers": {
 "Content-Type": "text/plain",
 "x-amzn-ErrorType": error.code
 },
 "isBase64Encoded": false,
 "body": error.code + ": " + error.message
 }
 return response
}

API Gateway converts this response into an HTTP error with a custom status code and body. In the
trace map, the function node is green because it handled the error.

Handling errors with an API Gateway API 1040

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/nodejs-apig/function/index.mjs

Amazon Lambda Developer Guide

Choosing an API type

API Gateway supports three types of APIs that invoke Lambda functions:

• HTTP API – A lightweight, low-latency RESTful API.

• REST API – A customizable, feature-rich RESTful API.

• WebSocket API – A web API that maintains persistent connections with clients for full-duplex
communication.

HTTP APIs and REST APIs are both RESTful APIs that process HTTP requests and return responses.
HTTP APIs are newer and are built with the API Gateway version 2 API. The following features are
new for HTTP APIs:

HTTP API features

• Automatic deployments – When you modify routes or integrations, changes deploy
automatically to stages that have automatic deployment enabled.

• Default stage – You can create a default stage ($default) to serve requests at the root path of
your API's URL. For named stages, you must include the stage name at the beginning of the path.

• CORS configuration – You can configure your API to add CORS headers to outgoing responses,
instead of adding them manually in your function code.

REST APIs are the classic RESTful APIs that API Gateway has supported since launch. REST APIs
currently have more customization, integration, and management features.

REST API features

• Integration types – REST APIs support custom Lambda integrations. With a custom integration,
you can send just the body of the request to the function, or apply a transform template to the
request body before sending it to the function.

• Access control – REST APIs support more options for authentication and authorization.

Choosing an API type 1041

Amazon Lambda Developer Guide

• Monitoring and tracing – REST APIs support Amazon X-Ray tracing and additional logging
options.

For a detailed comparison, see Choosing between HTTP APIs and REST APIs in the API Gateway
Developer Guide.

WebSocket APIs also use the API Gateway version 2 API and support a similar feature set. Use a
WebSocket API for applications that benefit from a persistent connection between the client and
API. WebSocket APIs provide full-duplex communication, which means that both the client and the
API can send messages continuously without waiting for a response.

HTTP APIs support a simplified event format (version 2.0). The following example shows an event
from an HTTP API.

Example event-v2.json – API Gateway proxy event (HTTP API)

{
 "version": "2.0",
 "routeKey": "ANY /nodejs-apig-function-1G3XMPLZXVXYI",
 "rawPath": "/default/nodejs-apig-function-1G3XMPLZXVXYI",
 "rawQueryString": "",
 "cookies": [
 "s_fid=7AABXMPL1AFD9BBF-0643XMPL09956DE2",
 "regStatus=pre-register"
],
 "headers": {
 "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9",
 "accept-encoding": "gzip, deflate, br",
 ...
 },
 "requestContext": {
 "accountId": "123456789012",
 "apiId": "r3pmxmplak",
 "domainName": "r3pmxmplak.execute-api.us-east-2.amazonaws.com",
 "domainPrefix": "r3pmxmplak",
 "http": {
 "method": "GET",
 "path": "/default/nodejs-apig-function-1G3XMPLZXVXYI",
 "protocol": "HTTP/1.1",
 "sourceIp": "205.255.255.176",

Choosing an API type 1042

https://docs.amazonaws.cn/apigateway/latest/developerguide/http-api-vs-rest.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/nodejs-apig/event-v2.json

Amazon Lambda Developer Guide

 "userAgent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/80.0.3987.132 Safari/537.36"
 },
 "requestId": "JKJaXmPLvHcESHA=",
 "routeKey": "ANY /nodejs-apig-function-1G3XMPLZXVXYI",
 "stage": "default",
 "time": "10/Mar/2020:05:16:23 +0000",
 "timeEpoch": 1583817383220
 },
 "isBase64Encoded": true
}

For more information, see Amazon Lambda integrations in the API Gateway Developer Guide.

Sample applications

The GitHub repository for this guide provides the following sample application for API Gateway.

• API Gateway with Node.js – A function with an Amazon SAM template that creates a REST API
that has Amazon X-Ray tracing enabled. It includes scripts for deploying, invoking the function,
testing the API, and cleanup.

Lambda also provides blueprints and templates that you can use to create an API Gateway
application in the Lambda console.

Tutorial: Using Lambda with API Gateway

In this tutorial, you create a REST API through which you invoke a Lambda function using an HTTP
request. Your Lambda function will perform create, read, update, and delete (CRUD) operations
on a DynamoDB table. This function is provided here for demonstration, but you will learn to
configure an API Gateway REST API that can invoke any Lambda function.

Sample applications 1043

https://docs.amazonaws.cn/apigateway/latest/developerguide/http-api-develop-integrations-lambda.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/nodejs-apig

Amazon Lambda Developer Guide

Using API Gateway provides users with a secure HTTP endpoint to invoke your Lambda function
and can help manage large volumes of calls to your function by throttling traffic and automatically
validating and authorizing API calls. API Gateway also provides flexible security controls using
Amazon Identity and Access Management (IAM) and Amazon Cognito. This is useful for use cases
where advance authorization is required for calls to your application.

To complete this tutorial, you will go through the following stages:

1. Create and configure a Lambda function in Python or Node.js to perform operations on a
DynamoDB table.

2. Create a REST API in API Gateway to connect to your Lambda function.

3. Create a DynamoDB table and test it with your Lambda function in the console.

4. Deploy your API and test the full setup using curl in a terminal.

By completing these stages, you will learn how to use API Gateway to create an HTTP endpoint
that can securely invoke a Lambda function at any scale. You will also learn how to deploy your API,
and how to test it in the console and by sending an HTTP request using a terminal.

Tutorial 1044

Amazon Lambda Developer Guide

Sections

• Prerequisites

• Create a permissions policy

• Create an execution role

• Create the function

• Invoke the function using the Amazon CLI

• Create a REST API using API Gateway

• Create a resource on your REST API

• Create an HTTP POST method

• Create a DynamoDB table

• Test the integration of API Gateway, Lambda, and DynamoDB

• Deploy the API

• Use curl to invoke your function using HTTP requests

• Clean up your resources (optional)

Prerequisites

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

Tutorial 1045

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user

Amazon Lambda Developer Guide

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Install the Amazon Command Line Interface

If you have not yet installed the Amazon Command Line Interface, follow the steps at Installing or
updating the latest version of the Amazon CLI to install it.

The tutorial requires a command line terminal or shell to run commands. In Linux and macOS, use
your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux.

Create a permissions policy

Tutorial 1046

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Lambda Developer Guide

Before you can create an execution role for your Lambda function, you first need to create a
permissions policy to give your function permission to access the required Amazon resources. For
this tutorial, the policy allows Lambda to perform CRUD operations on a DynamoDB table and
write to Amazon CloudWatch Logs.

To create the policy

1. Open the Policies page of the IAM console.

2. Choose Create Policy.

3. Choose the JSON tab, and then paste the following custom policy into the JSON editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1428341300017",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "",
 "Resource": "*",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Effect": "Allow"
 }
]
}

4. Choose Next: Tags.

5. Choose Next: Review.

Tutorial 1047

https://console.amazonaws.cn/iam/home#/policies

Amazon Lambda Developer Guide

6. Under Review policy, for the policy Name, enter lambda-apigateway-policy.

7. Choose Create policy.

Create an execution role

An execution role is an Amazon Identity and Access Management (IAM) role that grants a Lambda
function permission to access Amazon services and resources. To enable your function to perform
operations on a DynamoDB table, you attach the permissions policy you created in the previous
step.

To create an execution role and attach your custom permissions policy

1. Open the Roles page of the IAM console.

2. Choose Create role.

3. For the type of trusted entity, choose Amazon service, then for the use case, choose Lambda.

4. Choose Next.

5. In the policy search box, enter lambda-apigateway-policy.

6. In the search results, select the policy that you created (lambda-apigateway-policy), and
then choose Next.

7. Under Role details, for the Role name, enter lambda-apigateway-role, then choose
Create role.

Later in the tutorial, you need the Amazon Resource Name (ARN) of the role you just created. On
the Roles page of the IAM console, choose the name of your role (lambda-apigateway-role)
and copy the Role ARN displayed on the Summary page.

Tutorial 1048

https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

Create the function

The following code example receives an event input from API Gateway specifying an operation
to perform on the DynamoDB table you will create and some payload data. If the parameters the
function receives are valid, it performs the requested operation on the table.

Node.js

Example index.mjs

console.log('Loading function');

import { DynamoDBDocumentClient, PutCommand, GetCommand,
 UpdateCommand, DeleteCommand} from "@aws-sdk/lib-dynamodb";
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

const ddbClient = new DynamoDBClient({ region: "us-west-2" });
const ddbDocClient = DynamoDBDocumentClient.from(ddbClient);

// Define the name of the DDB table to perform the CRUD operations on
const tablename = "lambda-apigateway";

/**
 * Provide an event that contains the following keys:
 *
 * - operation: one of 'create,' 'read,' 'update,' 'delete,' or 'echo'
 * - payload: a JSON object containing the parameters for the table item
 * to perform the operation on
 */
export const handler = async (event, context) => {

 const operation = event.operation;

Tutorial 1049

Amazon Lambda Developer Guide

 if (operation == 'echo'){
 return(event.payload);
 }

 else {
 event.payload.TableName = tablename;

 switch (operation) {
 case 'create':
 await ddbDocClient.send(new PutCommand(event.payload));
 break;
 case 'read':
 var table_item = await ddbDocClient.send(new
 GetCommand(event.payload));
 console.log(table_item);
 break;
 case 'update':
 await ddbDocClient.send(new UpdateCommand(event.payload));
 break;
 case 'delete':
 await ddbDocClient.send(new DeleteCommand(event.payload));
 break;
 default:
 return ('Unknown operation: ${operation}');
 }
 }
};

Note

In this example, the name of the DynamoDB table is defined as a variable in your
function code. In a real application, best practice is to pass this parameter as an
environment variable and to avoid hardcoding the table name. For more information
see Using Amazon Lambda environment variables.

To create the function

1. Save the code example as a file named index.mjs and, if necessary, edit the Amazon
region specified in the code. The region specified in the code must be the same as the
region in which you create your DynamoDB table later in the tutorial.

Tutorial 1050

https://docs.amazonaws.cn/lambda/latest/dg/configuration-envvars.html

Amazon Lambda Developer Guide

2. Create a deployment package using the following zip command.

zip function.zip index.mjs

3. Create a Lambda function using the create-function Amazon CLI command. For the
role parameter, enter the execution role's Amazon Resource Name (ARN) that you copied
earlier.

aws lambda create-function \
--function-name LambdaFunctionOverHttps \
--zip-file fileb://function.zip \
--handler index.handler \
--runtime nodejs20.x \
--role arn:aws-cn:iam::123456789012:role/service-role/lambda-apigateway-role

Python 3

Example LambdaFunctionOverHttps.py

import boto3
import json

define the DynamoDB table that Lambda will connect to
tableName = "lambda-apigateway"

create the DynamoDB resource
dynamo = boto3.resource('dynamodb').Table(tableName)

print('Loading function')

def lambda_handler(event, context):
 '''Provide an event that contains the following keys:

 - operation: one of the operations in the operations dict below
 - payload: a JSON object containing parameters to pass to the
 operation being performed
 '''

 # define the functions used to perform the CRUD operations
 def ddb_create(x):
 dynamo.put_item(**x)

Tutorial 1051

Amazon Lambda Developer Guide

 def ddb_read(x):
 dynamo.get_item(**x)

 def ddb_update(x):
 dynamo.update_item(**x)

 def ddb_delete(x):
 dynamo.delete_item(**x)

 def echo(x):
 return x

 operation = event['operation']

 operations = {
 'create': ddb_create,
 'read': ddb_read,
 'update': ddb_update,
 'delete': ddb_delete,
 'echo': echo,
 }

 if operation in operations:
 return operations[operation](event.get('payload'))
 else:
 raise ValueError('Unrecognized operation "{}"'.format(operation))

Note

In this example, the name of the DynamoDB table is defined as a variable in your
function code. In a real application, best practice is to pass this parameter as an
environment variable and to avoid hardcoding the table name. For more information
see Using Amazon Lambda environment variables.

To create the function

1. Save the code example as a file named LambdaFunctionOverHttps.py.

2. Create a deployment package using the following zip command.

zip function.zip LambdaFunctionOverHttps.py

Tutorial 1052

https://docs.amazonaws.cn/lambda/latest/dg/configuration-envvars.html

Amazon Lambda Developer Guide

3. Create a Lambda function using the create-function Amazon CLI command. For the
role parameter, enter the execution role's Amazon Resource Name (ARN) that you copied
earlier.

aws lambda create-function \
--function-name LambdaFunctionOverHttps \
--zip-file fileb://function.zip \
--handler LambdaFunctionOverHttps.lambda_handler \
--runtime python3.12 \
--role arn:aws-cn:iam::123456789012:role/service-role/lambda-apigateway-role

Invoke the function using the Amazon CLI

Before integrating your function with API Gateway, confirm that you have deployed the function
successfully. Create a test event containing the parameters your API Gateway API will send to
Lambda and use the Amazon CLI invoke command to run your function.

To invoke the Lambda function with the Amazon CLI

1. Save the following JSON as a file named input.txt.

{
 "operation": "echo",
 "payload": {
 "somekey1": "somevalue1",
 "somekey2": "somevalue2"
 }
}

2. Run the following invoke Amazon CLI command.

Tutorial 1053

Amazon Lambda Developer Guide

aws lambda invoke \
--function-name LambdaFunctionOverHttps \
--payload file://input.txt outputfile.txt \
--cli-binary-format raw-in-base64-out

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the following response:

{
"StatusCode": 200,
"ExecutedVersion": "LATEST"
}

3. Confirm that your function performed the echo operation you specified in the JSON test
event. Inspect the outputfile.txt file and verify it contains the following:

{"somekey1": "somevalue1", "somekey2": "somevalue2"}

Create a REST API using API Gateway

In this step, you create the API Gateway REST API you will use to invoke your Lambda function.

Tutorial 1054

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

To create the API

1. Open the API Gateway console.

2. Choose Create API.

3. In the REST API box, choose Build.

4. Under API details, leave New API selected, and for API Name, enter DynamoDBOperations.

5. Choose Create API.

Create a resource on your REST API

To add an HTTP method to your API, you first need to create a resource for that method to operate
on. Here you create the resource to manage your DynamoDB table.

To create the resource

1. In the API Gateway console, on the Resources page for your API, choose Create Resource.

2. In Resource details, for Resource name enter DynamoDBManager.

3. Choose Create Resource.

Tutorial 1055

https://console.amazonaws.cn/apigateway
https://console.amazonaws.cn/apigateway

Amazon Lambda Developer Guide

Create an HTTP POST method

In this step, you create a method (POST) for your DynamoDBManager resource. You link this POST
method to your Lambda function so that when the method receives an HTTP request, API Gateway
invokes your Lambda function.

Note

For the purpose of this tutorial, one HTTP method (POST) is used to invoke a single
Lambda function which carries out all of the operations on your DynamoDB table. In a real
application, best practice is to use a different Lambda function and HTTP method for each
operation. For more information, see The Lambda monolith in Serverless Land.

To create the POST method

1. On the Resources page for your API, ensure that the /DynamoDBManager resource is
highlighted. Then, in the Methods pane, choose Create Method.

2. For Method type, choose POST.

3. For Integration type, leave Lambda function selected.

4. For Lambda function, choose the Amazon Resource Name (ARN) for your function
(LambdaFunctionOverHttps).

5. Choose Create method.

Tutorial 1056

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/monolith

Amazon Lambda Developer Guide

Create a DynamoDB table

Create an empty DynamoDB table that your Lambda function will perform CRUD operations on.

To create the DynamoDB table

1. Open the Tables page of the DynamoDB console.

2. Choose Create table.

3. Under Table details, do the following:

1. For Table name, enter lambda-apigateway.

2. For Partition key, enter id, and keep the data type set as String.

4. Under Table settings, keep the Default settings.

5. Choose Create table.

Test the integration of API Gateway, Lambda, and DynamoDB

Tutorial 1057

https://console.amazonaws.cn/dynamodbv2#tables

Amazon Lambda Developer Guide

You're now ready to test the integration of your API Gateway API method with your Lambda
function and your DynamoDB table. Using the API Gateway console, you send requests directly to
your POST method using the console's test function. In this step, you first use a create operation
to add a new item to your DynamoDB table, then you use an update operation to modify the item.

Test 1: To create a new item in your DynamoDB table

1. In the API Gateway console, choose your API (DynamoDBOperations).

2. Choose the POST method under the DynamoDBManager resource.

3. Choose the Test tab. You might need to choose the right arrow button to show the tab.

4. Under Test method, leave Query strings and Headers empty. For Request body, paste the
following JSON:

{
 "operation": "create",
 "payload": {
 "Item": {
 "id": "1234ABCD",
 "number": 5
 }
 }
}

5. Choose Test.

The results that are displayed when the test completes should show status 200. This status
code indicates that the create operation was successful.

Tutorial 1058

https://console.amazonaws.cn/apigateway

Amazon Lambda Developer Guide

To confirm, check that your DynamoDB table now contains the new item.

6. Open the Tables page of the DynamoDB console and choose the lambda-apigateway table.

7. Chose Explore table items. In the Items returned pane, you should see one item with the id
1234ABCD and the number 5.

Test 2: To update the item in your DynamoDB table

1. In the API Gateway console, return to your POST method's Test tab.

2. Under Test method, leave Query strings and Headers empty. For Request body, paste the
following JSON:

{
 "operation": "update",
 "payload": {
 "Key": {
 "id": "1234ABCD"
 },
 "AttributeUpdates": {
 "number": {
 "Value": 10
 }
 }
 }
}

3. Choose Test.

The results which are displayed when the test completes should show status 200. This status
code indicates that the update operation was successful.

To confirm, check that the item in yout DynamoDB table has been modified.

4. Open the Tables page of the DynamoDB console and choose the lambda-apigateway table.

5. Chose Explore table items. In the Items returned pane, you should see one item with the id
1234ABCD and the number 10.

Tutorial 1059

https://console.amazonaws.cn/dynamodbv2#tables
https://console.amazonaws.cn/apigateway
https://console.amazonaws.cn/dynamodbv2#tables

Amazon Lambda Developer Guide

Deploy the API

For a client to call the API, you must create a deployment and an associated stage. A stage
represents a snapshot of your API including its methods and integrations.

To deploy the API

1. Open the APIs page of the API Gateway console and choose the DynamoDBOperations API.

2. On the Resources page for your API choose Deploy API.

3. For Stage, choose *New stage*, then for Stage name, enter test.

4. Choose Deploy.

5. In the Stage details pane, copy the Invoke URL. You will use this in the next step to invoke
your function using an HTTP request.

Use curl to invoke your function using HTTP requests

Tutorial 1060

https://console.amazonaws.cn/apigateway

Amazon Lambda Developer Guide

You can now invoke your Lambda function by issuing an HTTP request to your API. In this step, you
will create a new item in your DynamoDB table and then delete it.

To invoke the Lambda function using curl

1. Run the following curl command using the invoke URL you copied in the previous step. When
you use curl with the -d (data) option, it automatically uses the HTTP POST method.

curl https://l8togsqxd8.execute-api.us-west-2.amazonaws.com/test/DynamoDBManager \
-d '{"operation": "create", "payload": {"Item": {"id": "5678EFGH", "number": 15}}}'

2. To verify that the create operation was successful, do the following:

1. Open the Tables page of the DynamoDB console and choose the lambda-apigateway
table.

2. Choose Explore table items. In the Items returned pane, you should see an item with the id
5678EFGH and the number 15.

3. Run the following curl command to delete the item you just created. Use your own invoke
URL.

curl https://l8togsqxd8.execute-api.us-west-2.amazonaws.com/test/DynamoDBManager \
-d '{"operation": "delete", "payload": {"Key": {"id": "5678EFGH"}}}'

4. Confirm that the delete operation was successful. In the Items returned pane of the
DynamoDB console Explore items page, verify that the item with id 5678EFGH is no longer in
the table.

Clean up your resources (optional)

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

Tutorial 1061

https://console.amazonaws.cn/dynamodbv2#tables
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

4. Type delete in the text input field and choose Delete.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the API

1. Open the APIs page of the API Gateway console.

2. Select the API you created.

3. Choose Actions, Delete.

4. Choose Delete.

To delete the DynamoDB table

1. Open the Tables page of the DynamoDB console.

2. Select the table you created.

3. Choose Delete.

4. Enter delete in the text box.

5. Choose Delete table.

Using Amazon Lambda with Amazon Application Composer

Amazon Application Composer is a visual builder for desiging modern applications on Amazon. You
design your application architecture by dragging, grouping, and connecting Amazon Web Services
in a visual canvas. Application Composer creates infrastructure as code (IaC) templates from your
design that you can deploy using Amazon SAM or Amazon CloudFormation.

Application Composer 1062

https://console.amazonaws.cn/iam/home#/roles
https://console.amazonaws.cn/apigateway/main/apis
https://console.amazonaws.cn/dynamodb/home#tables:
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/what-is-sam.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/Welcome.html

Amazon Lambda Developer Guide

Exporting a Lambda function to Application Composer

You can get started using Application Composer by creating a new project based on the
configuration of an existing Lambda function using the Lambda console. To export your function's
configuration and code to Application Composer to create a new project, do the following:

1. Open the Functions page of the Lambda console.

2. Select the function you want to use as a basis for your Application Composer project.

3. In the Function overview pane, choose Export to Application Composer.

To export your function's configuration and code to Application Composer, Lambda creates an
Amazon S3 bucket in your account to temporarily store this data.

4. In the dialog box, choose Confirm and create project to accept the default name for this
bucket and export your function's configuration and code to Application Composer.

5. (Optional) To choose another name for the Amazon S3 bucket that Lambda creates, enter a
new name and choose Confirm and create project. Amazon S3 bucket names must be globally
unique and follow the bucket naming rules.

6. To save your project and function files in Application Composer, activate local sync mode.

Note

If you've used the Export to Application Composer feature before and created an Amazon
S3 bucket using the default name, Lambda can re-use this bucket if it still exists. Accept the
default bucket name in the dialog box to re-use the existing bucket.

Amazon S3 transfer bucket configuration

The Amazon S3 bucket that Lambda creates to transfer your function's configuration automatically
encrypts objects using the AES 256 encryption standard. Lambda also configures the bucket to use
the bucket owner condition to ensure that only your Amazon Web Services account is able to add
objects to the bucket.

Lambda configures the bucket to automatically delete objects 10 days after they are uploaded.
However, Lambda doesn't automaticaly delete the bucket itself. To delete the bucket from your
Amazon Web Services account, follow the instructions in Deleting a bucket. The default bucket

Exporting a Lambda function to Application Composer 1063

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.amazonaws.cn/application-composer/latest/dg/reference-features-local-sync.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucket-owner-condition.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/delete-bucket.html

Amazon Lambda Developer Guide

name uses the prefix lambdasam, a 10-digit alphanumeric string, and the Amazon Web Services
Region you created your function in:

lambdasam-06f22da95b-us-east-1

To avoid additional charges being added to your Amazon Web Services account, we recommend
that you delete the Amazon S3 bucket as soon as you have finished exporting your function to
Application Composer.

Standard Amazon S3 pricing applies.

Required permissions

To use the Lambda integration with Application Composer feature, you need certain permissions to
download an Amazon SAM template and to write your function's configuration to Amazon S3.

To download an Amazon SAM template, you must have permission to use the following API
actions:

• GetPolicy

• iam:GetPolicyVersion

• iam:GetRole

• iam:GetRolePolicy

• iam:ListAttachedRolePolicies

• iam:ListRolePolicies

• iam:ListRoles

You can grant permission to use all of these actions by adding the AWSLambda_ReadOnlyAccess
Amazon managed policy to your IAM user role.

For Lambda to write your function's configuration to Amazon S3, you must have permission to use
the following API actions:

• S3:PutObject

• S3:CreateBucket

• S3:PutBucketEncryption

• S3:PutBucketLifecycleConfiguration

Exporting a Lambda function to Application Composer 1064

https://www.amazonaws.cn/s3/pricing/
https://docs.amazonaws.cn/lambda/latest/api/API_GetPolicy.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_GetPolicyVersion.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_GetRole.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_GetRolePolicy.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListRolePolicies.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListRoles.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambda_ReadOnlyAccess.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_PutObject.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_CreateBucket.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_PutBucketEncryption.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_PutBucketLifecycleConfiguration.html

Amazon Lambda Developer Guide

If you are unable to export your function's configuration to Application Composer, check that your
account has the required permissions for these operations. If you have the required permissions,
but still cannot export your function's configuration, check for any resource-based policies that
might limit access to Amazon S3.

Other resources

For a more detailed tutorial on how to design a serverless application in Application Composer
based on an existing Lambda function, see the section called “Infrastructure as code (IaC)”.

To use Application Composer and Amazon SAM to design and deploy a complete serverless
application using Lambda, you can also follow the Amazon Application Composer tutorial in the
Amazon Serverless Patterns Workshop.

Other resources 1065

https://catalog.workshops.aws/serverless-patterns/en-US/dive-deeper/module1a
https://catalog.workshops.aws/serverless-patterns/en-US

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon CloudTrail

Amazon CloudTrail is a service that provides a record of actions taken by a user, role, or an Amazon
service. CloudTrail captures API calls as events. For an ongoing record of events in your Amazon
account, you create a trail. A trail enables CloudTrail to deliver log files of events to an Amazon S3
bucket.

You can take advantage of Amazon S3's bucket notification feature and direct Amazon S3 to
publish object-created events to Amazon Lambda. Whenever CloudTrail writes logs to your S3
bucket, Amazon S3 can then invoke your Lambda function by passing the Amazon S3 object-
created event as a parameter. The S3 event provides information, including the bucket name and
key name of the log object that CloudTrail created. Your Lambda function code can read the log
object and process the access records logged by CloudTrail. For example, you might write Lambda
function code to notify you if specific API call was made in your account.

In this scenario, CloudTrail writes access logs to your S3 bucket. As for Amazon Lambda, Amazon
S3 is the event source so Amazon S3 publishes events to Amazon Lambda and invokes your
Lambda function.

Example CloudTrail log

{
 "Records":[
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"Root",
 "principalId":"123456789012",
 "arn":"arn:aws-cn:iam::123456789012:root",
 "accountId":"123456789012",
 "accessKeyId":"access-key-id",
 "sessionContext":{
 "attributes":{
 "mfaAuthenticated":"false",
 "creationDate":"2015-01-24T22:41:54Z"
 }
 }
 },
 "eventTime":"2015-01-24T23:26:50Z",
 "eventSource":"sns.amazonaws.com",
 "eventName":"CreateTopic",

CloudTrail 1066

Amazon Lambda Developer Guide

 "awsRegion":"us-east-2",
 "sourceIPAddress":"205.251.233.176",
 "userAgent":"console.amazonaws.com",
 "requestParameters":{
 "name":"dropmeplease"
 },
 "responseElements":{
 "topicArn":"arn:aws-cn:sns:us-east-2:123456789012:exampletopic"
 },
 "requestID":"3fdb7834-9079-557e-8ef2-350abc03536b",
 "eventID":"17b46459-dada-4278-b8e2-5a4ca9ff1a9c",
 "eventType":"AwsApiCall",
 "recipientAccountId":"123456789012"
 },
 {
 "eventVersion":"1.02",
 "userIdentity":{
 "type":"Root",
 "principalId":"123456789012",
 "arn":"arn:aws-cn:iam::123456789012:root",
 "accountId":"123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext":{
 "attributes":{
 "mfaAuthenticated":"false",
 "creationDate":"2015-01-24T22:41:54Z"
 }
 }
 },
 "eventTime":"2015-01-24T23:27:02Z",
 "eventSource":"sns.amazonaws.com",
 "eventName":"GetTopicAttributes",
 "awsRegion":"us-east-2",
 "sourceIPAddress":"205.251.233.176",
 "userAgent":"console.amazonaws.com",
 "requestParameters":{
 "topicArn":"arn:aws-cn:sns:us-east-2:123456789012:exampletopic"
 },
 "responseElements":null,
 "requestID":"4a0388f7-a0af-5df9-9587-c5c98c29cbec",
 "eventID":"ec5bb073-8fa1-4d45-b03c-f07b9fc9ea18",
 "eventType":"AwsApiCall",
 "recipientAccountId":"123456789012"
 }

CloudTrail 1067

Amazon Lambda Developer Guide

]
}

For detailed information about how to configure Amazon S3 as the event source, see Using
Amazon Lambda with Amazon S3.

Topics

• Logging Amazon Lambda API calls using Amazon CloudTrail

• Sample function code

CloudTrail 1068

Amazon Lambda Developer Guide

Logging Amazon Lambda API calls using Amazon CloudTrail

Amazon Lambda is integrated with Amazon CloudTrail, a service that provides a record of actions
taken by a user, role, or an Amazon Web Service. CloudTrail captures API calls for Lambda as
events. The calls captured include calls from the Lambda console and code calls to the Lambda
API operations. Using the information collected by CloudTrail, you can determine the request that
was made to Lambda, the IP address from which the request was made, when it was made, and
additional details.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon Web Service.

CloudTrail is active in your Amazon Web Services account when you create the account and you
automatically have access to the CloudTrail Event history. The CloudTrail Event history provides
a viewable, searchable, downloadable, and immutable record of the past 90 days of recorded
management events in an Amazon Web Services Region. For more information, see Working with
CloudTrail Event history in the Amazon CloudTrail User Guide. There are no CloudTrail charges for
viewing the Event history.

For an ongoing record of events in your Amazon Web Services account past 90 days, create a trail
or a CloudTrail Lake event data store.

CloudTrail trails

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. All trails created using the
Amazon Web Services Management Console are multi-Region. You can create a single-Region
or a multi-Region trail by using the Amazon CLI. Creating a multi-Region trail is recommended
because you capture activity in all Amazon Web Services Regions in your account. If you create
a single-Region trail, you can view only the events logged in the trail's Amazon Web Services
Region. For more information about trails, see Creating a trail for your Amazon Web Services
account and Creating a trail for an organization in the Amazon CloudTrail User Guide.

CloudTrail logs 1069

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/creating-trail-organization.html

Amazon Lambda Developer Guide

You can deliver one copy of your ongoing management events to your Amazon S3 bucket at
no charge from CloudTrail by creating a trail, however, there are Amazon S3 storage charges.
For more information about CloudTrail pricing, see Amazon CloudTrail Pricing. For information
about Amazon S3 pricing, see Amazon S3 Pricing.

CloudTrail Lake event data stores

CloudTrail Lake lets you run SQL-based queries on your events. CloudTrail Lake converts existing
events in row-based JSON format to Apache ORC format. ORC is a columnar storage format
that is optimized for fast retrieval of data. Events are aggregated into event data stores, which
are immutable collections of events based on criteria that you select by applying advanced
event selectors. The selectors that you apply to an event data store control which events persist
and are available for you to query. For more information about CloudTrail Lake, see Working
with Amazon CloudTrail Lake in the Amazon CloudTrail User Guide.

CloudTrail Lake event data stores and queries incur costs. When you create an event data store,
you choose the pricing option you want to use for the event data store. The pricing option
determines the cost for ingesting and storing events, and the default and maximum retention
period for the event data store. For more information about CloudTrail pricing, see Amazon
CloudTrail Pricing.

Lambda data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource
(for example, reading or writing to an Amazon S3 object). These are also known as data plane
operations. Data events are often high-volume activities. By default, CloudTrail doesn’t log most
data events, and the CloudTrail Event history doesn't record them.

One CloudTrail data event that is logged by default for supported services is
LambdaESMDisabled. To learn more about using this event to help troubleshoot issues with
Lambda event source mappings, see the section called “Using CloudTrail to troubleshoot disabled
Lambda event sources”.

Additional charges apply for data events. For more information about CloudTrail pricing, see
Amazon CloudTrail Pricing.

You can log data events for the AWS::Lambda::Function resource type by using the CloudTrail
console, Amazon CLI, or CloudTrail API operations. For more information about how to log data
events, see Logging data events with the Amazon Web Services Management Console and Logging
data events with the Amazon Command Line Interface in the Amazon CloudTrail User Guide.

CloudTrail logs 1070

https://www.amazonaws.cn/cloudtrail/pricing/
https://www.amazonaws.cn/s3/pricing/
https://orc.apache.org/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-lake-manage-costs.html#cloudtrail-lake-manage-costs-pricing-option
https://www.amazonaws.cn/cloudtrail/pricing/
https://www.amazonaws.cn/cloudtrail/pricing/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://www.amazonaws.cn/cloudtrail/pricing/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI

Amazon Lambda Developer Guide

The following table lists the Lambda resource type for which you can log data events. The Data
event type (console) column shows the value to choose from the Data event type list on the
CloudTrail console. The resources.type value column shows the resources.type value, which
you would specify when configuring advanced event selectors using the Amazon CLI or CloudTrail
APIs. The Data APIs logged to CloudTrail column shows the API calls logged to CloudTrail for the
resource type.

Data event type (console) resources.type value Data APIs logged to
CloudTrail

Lambda AWS::Lambda::Funct
ion

Invoke

You can configure advanced event selectors to filter on the eventName, readOnly, and
resources.ARN fields to log only those events that are important to you. The following example
is the JSON view of a data event configuration that logs events for a specific function only. For
more information about these fields, see AdvancedFieldSelector in the Amazon CloudTrail API
Reference.

[
 {
 "name": "function-invokes",
 "fieldSelectors": [
 {
 "field": "eventCategory",
 "equals": [
 "Data"
]
 },
 {
 "field": "resources.type",
 "equals": [
 "AWS::Lambda::Function"
]
 },
 {
 "field": "resources.ARN",
 "equals": [
 "arn:aws:lambda:us-east-1:111122223333:function:hello-world"

CloudTrail logs 1071

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html
https://docs.amazonaws.cn/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html

Amazon Lambda Developer Guide

]
 }
]
 }
]

Lambda management events in CloudTrail

Management events provide information about management operations that are performed on
resources in your Amazon Web Services account. These are also known as control plane operations.
By default, CloudTrail logs management events.

Lambda supports logging the following actions as management events in CloudTrail log files.

Note

In the CloudTrail log file, the eventName might include date and version information, but
it is still referring to the same public API action. For example the, GetFunction action
appears as GetFunction20150331v2. The following list specifies when the event name
differs from the API action name.

• AddLayerVersionPermission

• AddPermission (event name: AddPermission20150331v2)

• CreateAlias (event name: CreateAlias20150331)

• CreateEventSourceMapping (event name: CreateEventSourceMapping20150331)

• CreateFunction (event name: CreateFunction20150331)

(The Environment and ZipFile parameters are omitted from the CloudTrail logs for
CreateFunction.)

• CreateFunctionUrlConfig

• DeleteAlias (event name: DeleteAlias20150331)

• DeleteCodeSigningConfig

• DeleteEventSourceMapping (event name: DeleteEventSourceMapping20150331)

• DeleteFunction (event name: DeleteFunction20150331)

• DeleteFunctionConcurrency (event name: DeleteFunctionConcurrency20171031)

CloudTrail logs 1072

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events
https://docs.amazonaws.cn/lambda/latest/api/API_AddLayerVersionPermission.html
https://docs.amazonaws.cn/lambda/latest/api/API_AddPermission.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionConcurrency.html

Amazon Lambda Developer Guide

• DeleteFunctionUrlConfig

• DeleteProvisionedConcurrencyConfig

• GetAlias (event name: GetAlias20150331)

• GetEventSourceMapping

• GetFunction

• GetFunctionUrlConfig

• GetFunctionConfiguration

• GetLayerVersionPolicy

• GetPolicy

• ListEventSourceMappings

• ListFunctions

• ListFunctionUrlConfigs

• PublishLayerVersion (event name: PublishLayerVersion20181031)

(The ZipFile parameter is omitted from the CloudTrail logs for PublishLayerVersion.)

• PublishVersion (event name: PublishVersion20150331)

• PutFunctionConcurrency (event name: PutFunctionConcurrency20171031)

• PutFunctionCodeSigningConfig

• PutFunctionEventInvokeConfig

• PutProvisionedConcurrencyConfig

• PutRuntimeManagementConfig

• RemovePermission (event name: RemovePermission20150331v2)

• TagResource (event name: TagResource20170331v2)

• UntagResource (event name: UntagResource20170331v2)

• UpdateAlias (event name: UpdateAlias20150331)

• UpdateCodeSigningConfig

• UpdateEventSourceMapping (event name: UpdateEventSourceMapping20150331)

• UpdateFunctionCode (event name: UpdateFunctionCode20150331v2)

(The ZipFile parameter is omitted from the CloudTrail logs for UpdateFunctionCode.)

• UpdateFunctionConfiguration (event name: UpdateFunctionConfiguration20150331v2)

CloudTrail logs 1073

https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteProvisionedConcurrencyConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetLayerVersionPolicy.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetPolicy.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListFunctions.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListFunctionUrlConfigs.html
https://docs.amazonaws.cn/lambda/latest/api/API_PublishLayerVersion.html
https://docs.amazonaws.cn/lambda/latest/api/API_PublishVersion.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionConcurrency.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutProvisionedConcurrencyConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutRuntimeManagementConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_RemovePermission.html
https://docs.amazonaws.cn/lambda/latest/api/API_TagResource.html
https://docs.amazonaws.cn/lambda/latest/api/API_UntagResource.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html

Amazon Lambda Developer Guide

(The Environment parameter is omitted from the CloudTrail logs for
UpdateFunctionConfiguration.)

• UpdateFunctionEventInvokeConfig

• UpdateFunctionUrlConfig

Using CloudTrail to troubleshoot disabled Lambda event sources

When you change the state of an event source mapping using the UpdateEventSourceMapping API
action, the API call is logged as a management event in CloudTrail. Event source mappings can can
also transition directly to the Disabled state due to errors.

For the following services, Lambda publishes the LambdaESMDisabled data event to CloudTrail
when your event source transitions to the Disabled state:

• Amazon Simple Queue Service (Amazon SQS)

• Amazon DynamoDB

• Amazon Kinesis

Lambda doesn't support this event for any other event source mapping types.

To receive alerts when event source mappings for supported services transition to the Disabled
state, set up an alarm in Amazon CloudWatch using the LambdaESMDisabled CloudTrail event. To
learn more about setting up a CloudWatch alarm, see Creating CloudWatch alarms for CloudTrail
events: examples.

The serviceEventDetails entity in the LambdaESMDisabled event message contains one of
the following error codes.

RESOURCE_NOT_FOUND

The resource specified in the request does not exist.

FUNCTION_NOT_FOUND

The function attached to the event source does not exist.

REGION_NAME_NOT_VALID

A Region name provided to the event source or function is invalid.

CloudTrail logs 1074

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html

Amazon Lambda Developer Guide

AUTHORIZATION_ERROR

Permissions have not been set, or are misconfigured.

FUNCTION_IN_FAILED_STATE

The function code does not compile, has encountered an unrecoverable exception, or a bad
deployment has occurred.

Lambda event examples

An event represents a single request from any source and includes information about the requested
API operation, the date and time of the operation, request parameters, and so on. CloudTrail log
files aren't an ordered stack trace of the public API calls, so events don't appear in any specific
order.

The following example shows CloudTrail log entries for the GetFunction and DeleteFunction
actions.

Note

The eventName might include date and version information, such as
"GetFunction20150331", but it is still referring to the same public API.

{
 "Records": [
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "A1B2C3D4E5F6G7EXAMPLE",
 "arn": "arn:aws-cn:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-03-18T19:03:36Z",
 "eventSource": "lambda.amazonaws.com",
 "eventName": "GetFunction",
 "awsRegion": "us-east-1",

CloudTrail logs 1075

Amazon Lambda Developer Guide

 "sourceIPAddress": "127.0.0.1",
 "userAgent": "Python-httplib2/0.8 (gzip)",
 "errorCode": "AccessDenied",
 "errorMessage": "User: arn:aws-cn:iam::111122223333:user/myUserName is not
 authorized to perform: lambda:GetFunction on resource: arn:aws-cn:lambda:us-
west-2:111122223333:function:other-acct-function",
 "requestParameters": null,
 "responseElements": null,
 "requestID": "7aebcd0f-cda1-11e4-aaa2-e356da31e4ff",
 "eventID": "e92a3e85-8ecd-4d23-8074-843aabfe89bf",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "A1B2C3D4E5F6G7EXAMPLE",
 "arn": "arn:aws-cn:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2015-03-18T19:04:42Z",
 "eventSource": "lambda.amazonaws.com",
 "eventName": "DeleteFunction20150331",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "Python-httplib2/0.8 (gzip)",
 "requestParameters": {
 "functionName": "basic-node-task"
 },
 "responseElements": null,
 "requestID": "a2198ecc-cda1-11e4-aaa2-e356da31e4ff",
 "eventID": "20b84ce5-730f-482e-b2b2-e8fcc87ceb22",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }
]
}

For information about CloudTrail record contents, see CloudTrail record contents in the Amazon
CloudTrail User Guide.

CloudTrail logs 1076

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html

Amazon Lambda Developer Guide

Sample function code

Sample code is available for the following languages.

Topics

• Node.js

Node.js

The following example processes CloudTrail logs, and sends a notification when an Amazon SNS
topic was created.

Example index.js

var aws = require('aws-sdk');
var zlib = require('zlib');
var async = require('async');

var EVENT_SOURCE_TO_TRACK = /sns.amazonaws.com/;
var EVENT_NAME_TO_TRACK = /CreateTopic/;
var DEFAULT_SNS_REGION = 'us-west-2';
var SNS_TOPIC_ARN = 'The ARN of your SNS topic';

var s3 = new aws.S3();
var sns = new aws.SNS({
 apiVersion: '2010-03-31',
 region: DEFAULT_SNS_REGION
});

exports.handler = function(event, context, callback) {
 var srcBucket = event.Records[0].s3.bucket.name;
 var srcKey = event.Records[0].s3.object.key;

 async.waterfall([
 function fetchLogFromS3(next){
 console.log('Fetching compressed log from S3...');
 s3.getObject({
 Bucket: srcBucket,
 Key: srcKey
 },
 next);
 },

Sample code 1077

Amazon Lambda Developer Guide

 function uncompressLog(response, next){
 console.log("Uncompressing log...");
 zlib.gunzip(response.Body, next);
 },
 function publishNotifications(jsonBuffer, next) {
 console.log('Filtering log...');
 var json = jsonBuffer.toString();
 console.log('CloudTrail JSON from S3:', json);
 var records;
 try {
 records = JSON.parse(json);
 } catch (err) {
 next('Unable to parse CloudTrail JSON: ' + err);
 return;
 }
 var matchingRecords = records
 .Records
 .filter(function(record) {
 return record.eventSource.match(EVENT_SOURCE_TO_TRACK)
 && record.eventName.match(EVENT_NAME_TO_TRACK);
 });

 console.log('Publishing ' + matchingRecords.length + ' notification(s) in
 parallel...');
 async.each(
 matchingRecords,
 function(record, publishComplete) {
 console.log('Publishing notification: ', record);
 sns.publish({
 Message:
 'Alert... SNS topic created: \n TopicARN=' +
 record.responseElements.topicArn + '\n\n' +
 JSON.stringify(record),
 TopicArn: SNS_TOPIC_ARN
 }, publishComplete);
 },
 next
);
 }
], function (err) {
 if (err) {
 console.error('Failed to publish notifications: ', err);
 } else {
 console.log('Successfully published all notifications.');

Sample code 1078

Amazon Lambda Developer Guide

 }
 callback(null,"message");
 });
};

Zip up the sample code to create a deployment package. For instructions, see Deploy Node.js
Lambda functions with .zip file archives.

Sample code 1079

Amazon Lambda Developer Guide

Using Lambda with CloudWatch Logs

You can use a Lambda function to monitor and analyze logs from an Amazon CloudWatch Logs
log stream. Create subscriptions for one or more log streams to invoke a function when logs are
created or match an optional pattern. Use the function to send a notification or persist the log to a
database or storage.

CloudWatch Logs invokes your function asynchronously with an event that contains log data. The
value of the data field is a Base64-encoded .gzip file archive.

Example CloudWatch Logs message event

{
 "awslogs": {
 "data":
 "ewogICAgIm1lc3NhZ2VUeXBlIjogIkRBVEFfTUVTU0FHRSIsCiAgICAib3duZXIiOiAiMTIzNDU2Nzg5MDEyIiwKICAgICJsb2dHcm91cCI6I..."
 }
}

When decoded and decompressed, the log data is a JSON document with the following structure:

Example CloudWatch Logs message data (decoded)

{
 "messageType": "DATA_MESSAGE",
 "owner": "123456789012",
 "logGroup": "/aws/lambda/echo-nodejs",
 "logStream": "2019/03/13/[$LATEST]94fa867e5374431291a7fc14e2f56ae7",
 "subscriptionFilters": [
 "LambdaStream_cloudwatchlogs-node"
],
 "logEvents": [
 {
 "id": "34622316099697884706540976068822859012661220141643892546",
 "timestamp": 1552518348220,
 "message": "REPORT RequestId: 6234bffe-149a-b642-81ff-2e8e376d8aff
\tDuration: 46.84 ms\tBilled Duration: 47 ms \tMemory Size: 192 MB\tMax Memory Used: 72
 MB\t\n"
 }
]
}

CloudWatch Logs 1080

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Subscriptions.html

Amazon Lambda Developer Guide

For a sample application that uses CloudWatch Logs as a trigger, see Error processor sample
application for Amazon Lambda.

CloudWatch Logs 1081

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon CloudFormation

In an Amazon CloudFormation template, you can specify a Lambda function as the target of a
custom resource. Use custom resources to process parameters, retrieve configuration values, or call
other Amazon services during stack lifecycle events.

The following example invokes a function that's defined elsewhere in the template.

Example – Custom resource definition

Resources:
 primerinvoke:
 Type: AWS::CloudFormation::CustomResource
 Version: "1.0"
 Properties:
 ServiceToken: !GetAtt primer.Arn
 FunctionName: !Ref randomerror

The service token is the Amazon Resource Name (ARN) of the function that Amazon
CloudFormation invokes when you create, update, or delete the stack. You can also include
additional properties like FunctionName, which Amazon CloudFormation passes to your function
as is.

Amazon CloudFormation invokes your Lambda function asynchronously with an event that
includes a callback URL.

Example – Amazon CloudFormation message event

{
 "RequestType": "Create",
 "ServiceToken": "arn:aws-cn:lambda:cn-north-1:123456789012:function:lambda-error-
processor-primer-14ROR2T3JKU66",
 "ResponseURL": "https://cloudformation-custom-resource-
response-cnnorth1.s3.cn-north-1.amazonaws.com.cn/arn%3Aaws
%3Acloudformation%3Acn-north-1%3A123456789012%3Astack/lambda-error-
processor/1134083a-2608-1e91-9897-022501a2c456%7Cprimerinvoke%7C5d478078-13e9-
baf0-464a-7ef285ecc786?
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Expires=1555451971&Signature=28UijZePE5I4dvukKQqM
%2F9Rf1o4%3D",
 "StackId": "arn:aws-cn:cloudformation:cn-north-1:123456789012:stack/lambda-error-
processor/1134083a-2608-1e91-9897-022501a2c456",

CloudFormation 1082

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-cfn-customresource.html

Amazon Lambda Developer Guide

 "RequestId": "5d478078-13e9-baf0-464a-7ef285ecc786",
 "LogicalResourceId": "primerinvoke",
 "ResourceType": "AWS::CloudFormation::CustomResource",
 "ResourceProperties": {
 "ServiceToken": "arn:aws-cn:lambda:cn-north-1:123456789012:function:lambda-
error-processor-primer-14ROR2T3JKU66",
 "FunctionName": "lambda-error-processor-randomerror-ZWUC391MQAJK"
 }
}

The function is responsible for returning a response to the callback URL that indicates success or
failure. For the full response syntax, see Custom resource response objects.

Example – Amazon CloudFormation custom resource response

{
 "Status": "SUCCESS",
 "PhysicalResourceId": "2019/04/18/[$LATEST]b3d1bfc65f19ec610654e4d9b9de47a0",
 "StackId": "arn:aws-cn:cloudformation:cn-north-1:123456789012:stack/lambda-error-
processor/1134083a-2608-1e91-9897-022501a2c456",
 "RequestId": "5d478078-13e9-baf0-464a-7ef285ecc786",
 "LogicalResourceId": "primerinvoke"
}

Amazon CloudFormation provides a library called cfn-response that handles sending the
response. If you define your function within a template, you can require the library by name.
Amazon CloudFormation then adds the library to the deployment package that it creates for the
function.

If your function that a Custom Resource uses has an Elastic Network Interface attached to it, add
the following resources to the VPC policy where region is the Region the function is in without
the dashes. For example, us-east-1 is useast1. This will allow the Custom Resource to respond
to the callback URL that sends a signal back to the Amazon CloudFormation stack.

arn:aws:s3:::cloudformation-custom-resource-response-region",
"arn:aws:s3:::cloudformation-custom-resource-response-region/*",

The following example function invokes a second function. If the call succeeds, the function sends
a success response to Amazon CloudFormation, and the stack update continues. The template uses
the AWS::Serverless::Function resource type provided by Amazon Serverless Application Model.

CloudFormation 1083

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/crpg-ref-responses.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

Example error-processor/template.yml – Custom resource function

Transform: 'AWS::Serverless-2016-10-31'
Resources:
 primer:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs16.x
 InlineCode: |
 var aws = require('aws-sdk');
 var response = require('cfn-response');
 exports.handler = function(event, context) {
 // For Delete requests, immediately send a SUCCESS response.
 if (event.RequestType == "Delete") {
 response.send(event, context, "SUCCESS");
 return;
 }
 var responseStatus = "FAILED";
 var responseData = {};
 var functionName = event.ResourceProperties.FunctionName
 var lambda = new aws.Lambda();
 lambda.invoke({ FunctionName: functionName }, function(err, invokeResult) {
 if (err) {
 responseData = {Error: "Invoke call failed"};
 console.log(responseData.Error + ":\n", err);
 }
 else responseStatus = "SUCCESS";
 response.send(event, context, responseStatus, responseData);
 });
 };
 Description: Invoke a function to create a log stream.
 MemorySize: 128
 Timeout: 8
 Role: !GetAtt role.Arn
 Tracing: Active

If the function that the custom resource invokes isn't defined in a template, you can get the source
code for cfn-response from cfn-response module in the Amazon CloudFormation User Guide.

For a sample application that uses a custom resource to ensure that a function's log group is
created before another resource that depends on it, see Error processor sample application for
Amazon Lambda.

CloudFormation 1084

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/error-processor/template.yml
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/cfn-lambda-function-code-cfnresponsemodule.html

Amazon Lambda Developer Guide

For more information about custom resources, see Custom resources in the Amazon
CloudFormation User Guide.

CloudFormation 1085

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/template-custom-resources.html

Amazon Lambda Developer Guide

Using Amazon Lambda with CloudFront Lambda@Edge

Lambda@Edge is an extension of Amazon Lambda that lets you deploy Python and Node.js
functions at Amazon CloudFront edge locations. A common use case of Lambda@Edge is to use
functions to customize the content that your CloudFront distribution delivers to your end users.
Invoking these functions closer to the viewer instead of on origin servers significantly reduces
latency and improves the user experience.

When you associate a CloudFront distribution with a Lambda@Edge function, CloudFront
intercepts requests and responses at CloudFront edge locations. CloudFront then invokes your
Lambda function by sending an event. You can have CloudFront invoke your Lambda function
when the following events occur:

• When CloudFront receives a request from a viewer (viewer request)

• Before CloudFront forwards a request to the origin (origin request)

• When CloudFront receives a response from the origin (origin response)

• Before CloudFront returns the response to the viewer (viewer response)

Note

Lambda@Edge supports a limited set of runtimes and features. For details, see
Requirements and restrictions on Lambda functions in the Amazon CloudFront developer
guide.

The following is an example of a CloudFront event.

CloudFront (Lambda@Edge) 1086

https://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/lambda-at-the-edge.html
https://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/lambda-requirements-limits.html

Amazon Lambda Developer Guide

Example CloudFront message event

{
 "Records": [
 {
 "cf": {
 "config": {
 "distributionId": "EDFDVBD6EXAMPLE"
 },
 "request": {
 "clientIp": "2001:0db8:85a3:0:0:8a2e:0370:7334",
 "method": "GET",
 "uri": "/picture.jpg",
 "headers": {
 "host": [
 {
 "key": "Host",
 "value": "d111111abcdef8.cloudfront.net"
 }
],
 "user-agent": [
 {
 "key": "User-Agent",
 "value": "curl/7.51.0"
 }
]
 }
 }
 }
 }
]
}

For more information about using Lambda@Edge, see Using CloudFront with Lambda@Edge.

CloudFront (Lambda@Edge) 1087

https://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/lambda-at-the-edge.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon CodeCommit

You can create a trigger for an Amazon CodeCommit repository so that events in the repository will
invoke a Lambda function. For example, you can invoke a Lambda function when a branch or tag is
created or when a push is made to an existing branch.

Example Amazon CodeCommit message event

{
 "Records": [
 {
 "awsRegion": "us-east-2",
 "codecommit": {
 "references": [
 {
 "commit": "5e493c6f3067653f3d04eca608b4901eb227078",
 "ref": "refs/heads/master"
 }
]
 },
 "eventId": "31ade2c7-f889-47c5-a937-1cf99e2790e9",
 "eventName": "ReferenceChanges",
 "eventPartNumber": 1,
 "eventSource": "aws:codecommit",
 "eventSourceARN": "arn:aws-cn:codecommit:us-east-2:123456789012:lambda-
pipeline-repo",
 "eventTime": "2019-03-12T20:58:25.400+0000",
 "eventTotalParts": 1,
 "eventTriggerConfigId": "0d17d6a4-efeb-46f3-b3ab-a63741badeb8",
 "eventTriggerName": "index.handler",
 "eventVersion": "1.0",
 "userIdentityARN": "arn:aws-cn:iam::123456789012:user/intern"
 }
]
}

For more information, see Manage triggers for an Amazon CodeCommit repository.

CodeCommit 1088

https://docs.amazonaws.cn/codecommit/latest/userguide/how-to-notify.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon CodePipeline

Amazon CodePipeline is a service that enables you to create continuous delivery pipelines for
applications that run on Amazon. You can create a pipeline to deploy your Lambda application.
You can also configure a pipeline to invoke a Lambda function to perform a task when the pipeline
runs. When you create a Lambda application in the Lambda console, Lambda creates a pipeline
that includes source, build, and deploy stages.

CodePipeline invokes your function asynchronously with an event that contains details about the
job. The following example shows an event from a pipeline that invoked a function named my-
function.

Example CodePipeline event

{
 "CodePipeline.job": {
 "id": "c0d76431-b0e7-xmpl-97e3-e8ee786eb6f6",
 "accountId": "123456789012",
 "data": {
 "actionConfiguration": {
 "configuration": {
 "FunctionName": "my-function",
 "UserParameters": "{\"KEY\": \"VALUE\"}"
 }
 },
 "inputArtifacts": [
 {
 "name": "my-pipeline-SourceArtifact",
 "revision": "e0c7xmpl2308ca3071aa7bab414de234ab52eea",
 "location": {
 "type": "S3",
 "s3Location": {
 "bucketName": "us-west-2-123456789012-my-pipeline",
 "objectKey": "my-pipeline/test-api-2/TdOSFRV"
 }
 }
 }
],
 "outputArtifacts": [
 {
 "name": "invokeOutput",
 "revision": null,

CodePipeline 1089

Amazon Lambda Developer Guide

 "location": {
 "type": "S3",
 "s3Location": {
 "bucketName": "us-west-2-123456789012-my-pipeline",
 "objectKey": "my-pipeline/invokeOutp/D0YHsJn"
 }
 }
 }
],
 "artifactCredentials": {
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "secretAccessKey": "6CGtmAa3lzWtV7a...",
 "sessionToken": "IQoJb3JpZ2luX2VjEA...",
 "expirationTime": 1575493418000
 }
 }
 }
}

To complete the job, the function must call the CodePipeline API to signal success or failure. The
following example Node.js function uses the PutJobSuccessResult operation to signal success.
It gets the job ID for the API call from the event object.

Example index.js

var AWS = require('aws-sdk')
var codepipeline = new AWS.CodePipeline()

exports.handler = async (event) => {
 console.log(JSON.stringify(event, null, 2))
 var jobId = event["CodePipeline.job"].id
 var params = {
 jobId: jobId
 }
 return codepipeline.putJobSuccessResult(params).promise()
}

For asynchronous invocation, Lambda queues the message and retries if your function returns
an error. Configure your function with a destination to retain events that your function could not
process.

CodePipeline 1090

Amazon Lambda Developer Guide

For a tutorial on how to configure a pipeline to invoke a Lambda function, see Invoke an Amazon
Lambda function in a pipeline in the Amazon CodePipeline User Guide.

You can use Amazon CodePipeline to create a continuous delivery pipeline for your Lambda
application. CodePipeline combines source control, build, and deployment resources to create a
pipeline that runs whenever you make a change to your application's source code.

For an alternate method of creating a pipeline with Amazon Serverless Application Model and
Amazon CloudFormation, watch Automate your serverless application deployments on the Amazon
Web Services YouTube channel.

Permissions

To invoke a function, a CodePipeline pipeline needs permission to use the following API operations:

• ListFunctions

• InvokeFunction

The default pipeline service role includes these permissions.

To complete a job, the function needs the following permissions in its execution role.

• codepipeline:PutJobSuccessResult

• codepipeline:PutJobFailureResult

These permissions are included in the AWSCodePipelineCustomActionAccess managed policy.

Permissions 1091

https://docs.amazonaws.cn/codepipeline/latest/userguide/actions-invoke-lambda-function.html
https://docs.amazonaws.cn/codepipeline/latest/userguide/actions-invoke-lambda-function.html
https://www.youtube.com/watch?v=0o3urdBeoII
https://docs.amazonaws.cn/lambda/latest/api/API_ListFunctions.html
https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html
https://docs.amazonaws.cn/codepipeline/latest/userguide/how-to-custom-role.html
https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/AWSCodePipelineCustomActionAccess

Amazon Lambda Developer Guide

Working with Amazon CodeWhisperer in the Lambda console

Amazon CodeWhisperer is a general purpose, machine learning-powered code generator that
provides you with code recommendations in real time. When activated in the Lambda console,
CodeWhisperer automatically generates suggestions based on your existing code and comments.
Your personalized recommendations can vary in size and scope, ranging from a single one-liner to
fully formed functions.

For more information, see Setting up Amazon CodeWhisperer with Amazon Lambda in the Amazon
CodeWhisperer User Guide.

CodeWhisperer 1092

https://docs.amazonaws.cn/codewhisperer/latest/userguide/lambda-setup.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon Cognito

The Amazon Cognito Events feature enables you to run Lambda functions in response to events in
Amazon Cognito. Amazon Cognito provides authentication, authorization, and user management
for your web and mobile apps. You can invoke a Lambda function in response to important events
in Amazon Cognito. For example, using the Sync Trigger events, you can invoke a Lambda function
that is published each time a dataset is synchronized. To learn more and walk through an example,
see Introducing Amazon Cognito Events: Sync Triggers in the Mobile Development blog.

Example Amazon Cognito message event

{
 "datasetName": "datasetName",
 "eventType": "SyncTrigger",
 "region": "us-east-1",
 "identityId": "identityId",
 "datasetRecords": {
 "SampleKey2": {
 "newValue": "newValue2",
 "oldValue": "oldValue2",
 "op": "replace"
 },
 "SampleKey1": {
 "newValue": "newValue1",
 "oldValue": "oldValue1",
 "op": "replace"
 }
 },
 "identityPoolId": "identityPoolId",
 "version": 2
}

You configure event source mapping using Amazon Cognito event subscription configuration. For
information about event source mapping and a sample event, see Amazon Cognito events in the
Amazon Cognito Developer Guide.

Cognito 1093

https://amazonaws-china.com/blogs/mobile/introducing-amazon-cognito-events-sync-triggers/
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-events.html

Amazon Lambda Developer Guide

Using Lambda with Amazon Connect

You can use a Lambda function to process requests from Amazon Connect. You can use Amazon
Connect to create a cloud contact center.

Amazon Connect invokes your Lambda function synchronously with an event that contains the
request body and metadata.

Example Amazon Connect request event

{
 "Details": {
 "ContactData": {
 "Attributes": {},
 "Channel": "VOICE",
 "ContactId": "4a573372-1f28-4e26-b97b-XXXXXXXXXXX",
 "CustomerEndpoint": {
 "Address": "+1234567890",
 "Type": "TELEPHONE_NUMBER"
 },
 "InitialContactId": "4a573372-1f28-4e26-b97b-XXXXXXXXXXX",
 "InitiationMethod": "INBOUND | OUTBOUND | TRANSFER | CALLBACK",
 "InstanceARN": "arn:aws-cn:connect:aws-region:1234567890:instance/
c8c0e68d-2200-4265-82c0-XXXXXXXXXX",
 "PreviousContactId": "4a573372-1f28-4e26-b97b-XXXXXXXXXXX",
 "Queue": {
 "ARN": "arn:aws-cn:connect:eu-west-2:111111111111:instance/cccccccc-bbbb-
dddd-eeee-ffffffffffff/queue/aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "Name": "PasswordReset"
 },
 "SystemEndpoint": {
 "Address": "+1234567890",
 "Type": "TELEPHONE_NUMBER"
 }
 },
 "Parameters": {
 "sentAttributeKey": "sentAttributeValue"
 }
 },
 "Name": "ContactFlowEvent"
}

Connect 1094

Amazon Lambda Developer Guide

For information about how to use Amazon Connect with Lambda, see Invoke Lambda functions in
the Amazon Connect administrator guide.

Connect 1095

https://docs.amazonaws.cn/connect/latest/adminguide/connect-lambda-functions.html

Amazon Lambda Developer Guide

Using Lambda with Amazon DocumentDB

You can use a Lambda function to process events in an Amazon DocumentDB (with MongoDB
compatibility) change stream by configuring an Amazon DocumentDB cluster as an event source.
Then, you can automate event-driven workloads by invoking your Lambda function each time that
data changes with your Amazon DocumentDB cluster.

Note

Lambda supports version 4.0 and 5.0 of Amazon DocumentDB only. Lambda doesn't
support version 3.6.
Also, for event source mappings, Lambda supports instance-based clusters and regional
clusters only. Lambda doesn't support elastic clusters or global clusters. This limitation
doesn't apply when using Lambda as a client to connect to Amazon DocumentDB. Lambda
can connect to all cluster types to perform CRUD operations.

Lambda processes events from Amazon DocumentDB change streams sequentially in the order in
which they arrive. Because of this, your function can handle only one concurrent invocation from
DocumentDB at a time. To monitor your function, you can track its concurrency metrics.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of batches can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the Amazon Knowledge Center.

Topics

• Example Amazon DocumentDB event

• Prerequisites and permissions

• Network configuration

• Creating an Amazon DocumentDB event source mapping (console)

• Creating an Amazon DocumentDB event source mapping (SDK or CLI)

• Polling and stream starting positions

DocumentDB 1096

https://docs.amazonaws.cn/documentdb/latest/developerguide/change_streams.html
https://docs.amazonaws.cn/documentdb/latest/developerguide/change_streams.html
https://docs.amazonaws.cn/documentdb/latest/developerguide/docdb-using-elastic-clusters.html
https://docs.amazonaws.cn/documentdb/latest/developerguide/global-clusters.html
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-concurrency.html
https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent

Amazon Lambda Developer Guide

• Monitoring your Amazon DocumentDB event source

• Tutorial: Using Amazon Lambda with Amazon DocumentDB Streams

Example Amazon DocumentDB event

{
 "eventSourceArn": "arn:aws:rds:us-
east-1:123456789012:cluster:canaryclusterb2a659a2-qo5tcmqkcl03",
 "events": [
 {
 "event": {
 "_id": {
 "_data": "0163eeb6e7000000090100000009000041e1"
 },
 "clusterTime": {
 "$timestamp": {
 "t": 1676588775,
 "i": 9
 }
 },
 "documentKey": {
 "_id": {
 "$oid": "63eeb6e7d418cd98afb1c1d7"
 }
 },
 "fullDocument": {
 "_id": {
 "$oid": "63eeb6e7d418cd98afb1c1d7"
 },
 "anyField": "sampleValue"
 },
 "ns": {
 "db": "test_database",
 "coll": "test_collection"
 },
 "operationType": "insert"
 }
 }
],
 "eventSource": "aws:docdb"
}

Example Amazon DocumentDB event 1097

Amazon Lambda Developer Guide

For more information about the events in this example and their shapes, see Change Events on the
MongoDB Documentation website.

Prerequisites and permissions

Before you can use Amazon DocumentDB as an event source for your Lambda function, note the
following prerequisites. You must:

• Have an existing Amazon DocumentDB cluster in the same Amazon Web Services account
and Amazon Web Services Region as your function. If you don't have an existing cluster, you
can create one by following the steps in Get Started with Amazon DocumentDB in the Amazon
DocumentDB Developer Guide. Alternatively, the first set of steps in Tutorial: Using Amazon
Lambda with Amazon DocumentDB Streams guide you through creating a DocumentDB cluster
with all the necessary prerequisites.

• Allow Lambda to access the Amazon Virtual Private Cloud (Amazon VPC) resources associated
with your Amazon DocumentDB cluster. For more information, see Network configuration.

• Enable TLS on your Amazon DocumentDB cluster. This is the default setting. If you disable TLS,
then Lambda cannot communicate with your cluster.

• Activate change streams on your Amazon DocumentDB cluster. For more information, see
Using Change Streams with Amazon DocumentDB in the Amazon DocumentDB Developer Guide.

• Provide Lambda with credentials to access your Amazon DocumentDB cluster. When setting
up the event source, provide the Amazon Secrets Manager key that contains the authentication
details (username and password) required to access your cluster. To provide this key during setup,
do either of the following:

• If you're using the Lambda console for setup, then provide the key in the Secrets manager key
field.

• If you're using the Amazon Command Line Interface (Amazon CLI) for setup, then provide this
key in the source-access-configurations option. You can include this option with either
the create-event-source-mapping command or the update-event-source-mapping
command. For example:

aws lambda create-event-source-mapping \
 ...
 --source-access-configurations
 '[{"Type":"BASIC_AUTH","URI":"arn:aws:secretsmanager:us-
west-2:123456789012:secret:DocDBSecret-AbC4E6"}]' \
 ...

Prerequisites and permissions 1098

https://www.mongodb.com/docs/manual/reference/change-events/
https://docs.amazonaws.cn/documentdb/latest/developerguide/get-started-guide.html
https://docs.amazonaws.cn/documentdb/latest/developerguide/change_streams.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html

Amazon Lambda Developer Guide

• Grant Lambda permissions to manage resources related to your Amazon DocumentDB
stream. Manually add the following permissions to your function's execution role:

• rds:DescribeDBClusters

• rds:DescribeDBClusterParameters

• rds:DescribeDBSubnetGroups

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeVpcs

• ec2:DeleteNetworkInterface

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

• kms:Decrypt

• secretsmanager:GetSecretValue

• Keep the size of Amazon DocumentDB change stream events that you send to Lambda
under 6 MB. Lambda supports payload sizes of up to 6 MB. If your change stream tries to
send Lambda an event larger than 6 MB, then Lambda drops the message and emits the
OversizedRecordCount metric. Lambda emits all metrics on a best-effort basis.

Note

While Lambda functions typically have a maximum timeout limit of 15 minutes, event
source mappings for Amazon MSK, self-managed Apache Kafka, Amazon DocumentDB, and
Amazon MQ for ActiveMQ and RabbitMQ only support functions with maximum timeout
limits of 14 minutes. This constraint ensures that the event source mapping can properly
handle function errors and retries.

Network configuration

For Lambda to use your Amazon DocumentDB cluster as an event source, it needs access to the
Amazon VPC your cluster resides in. We recommend that you deploy Amazon PrivateLink VPC
endpoints for Lambda to access your VPC. Deploy a VPC endpoint for Lambda and, if the cluster
uses authentication, also deploy a VPC endpoint for Secrets Manager.

Network configuration 1099

https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/API_DescribeDBClusters.html
https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/API_DescribeDBClusterParameters.html
https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/API_DescribeDBSubnetGroups.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeVpcs.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DeleteNetworkInterface.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeSubnets.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html

Amazon Lambda Developer Guide

Alternatively, ensure that the VPC associated with your Amazon DocumentDB cluster includes one
NAT gateway per public subnet. For more information, see Internet and service access for VPC-
connected functions.

If you use VPC endpoints, you must also configure them to enable private DNS names.

When you create an event source mapping for a Amazon DocumentDB cluster, Lambda checks
whether Elastic Network Interfaces (ENIs) are already present for the subnets and security groups
of your cluster’s VPC. If Lambda finds existing ENIs, it attempts to re-use them. Otherwise, Lambda
creates new ENIs to connect to the event source and invoke your function.

Note

Lambda functions always run inside VPCs owned by the Lambda service. These VPCs are
maintained automatically by the service and are not visible to customers. You can also
connect your function to an Amazon VPC. In either case, your function’s VPC configuration
doesn’t affect the event source mapping. Only the configuration of the event source’s VPC
determines how Lambda connects to your event source.

VPC security group rules

Configure the security groups for the Amazon VPC containing your cluster with the following rules
(at minimum):

• Inbound rules – Allow all traffic on the Amazon DocumentDB cluster port for the security groups
specified for your event source. Amazon DocumentDB uses port 27017 by default.

• Outbound rules – Allow all traffic on port 443 for all destinations. Allow all traffic on the Amazon
DocumentDB cluster port. Amazon DocumentDB uses port 27017 by default.

• If you are using VPC endpoints instead of a NAT gateway, the security groups associated with
the VPC endpoints must allow all inbound traffic on port 443 from the event source's security
groups.

Working with VPC endpoints

When you use VPC endpoints, API calls to invoke your function are routed through these endpoints
using the ENIs. The Lambda service principal needs to call lambda:InvokeFunction on any
functions that use those ENIs.

Network configuration 1100

https://docs.amazonaws.cn/vpc/latest/privatelink/interface-endpoints.html#enable-private-dns-names

Amazon Lambda Developer Guide

By default, VPC endpoints have IAM policies which are open. Best practice is to restrict these
policies to only allow specific principals to perform the needed actions using that endpoint. To
ensure that your event source mapping is able to invoke your Lambda function, the VPC endpoint
policy must allow the Lambda service principle to call lambda:InvokeFunction. Restricting your
VPC endpoint policies to only allow API calls originating within your organization prevents the
event source mapping from functioning properly.

The following example VPC endpoint policies show how to grant the required access for Lambda
endpoints.

Example VPC endpoint policy - Lambda endpoint

{
 "Statement": [
 {
 "Action": "lambda:InvokeFunction",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
}

If your Amazon DocumentDB cluster uses authentication, you can also restrict the VPC endpoint
policy for the Secrets Manager endpoint. To call the Secrets Manager API, Lambda uses your
function role, not the Lambda service principal. The following example shows a Secrets Manager
endpoint policy.

Example VPC endpoint policy - Secrets Manager endpoint

{
 "Statement": [
 {
 "Action": "secretsmanager:GetSecretValue",
 "Effect": "Allow",
 "Principal": {
 "AWS": [

Network configuration 1101

Amazon Lambda Developer Guide

 "customer_function_execution_role_arn"
]
 },
 "Resource": "customer_secret_arn"
 }
]
}

Creating an Amazon DocumentDB event source mapping (console)

For a Lambda function to read from an Amazon DocumentDB cluster's change stream, create an
event source mapping. This section describes how to do this from the Lambda console. For Amazon
SDK and Amazon CLI instructions, see the section called “Creating an Amazon DocumentDB event
source mapping (SDK or CLI)”.

To create an Amazon DocumentDB event source mapping (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Under Function overview, choose Add trigger.

4. Under Trigger configuration, in the dropdown list, choose DocumentDB.

5. Configure the required options, and then choose Add.

Lambda supports the following options for Amazon DocumentDB event sources:

• DocumentDB cluster – Select an Amazon DocumentDB cluster.

• Activate trigger – Choose whether you want to activate the trigger immediately. If you select
this check box, then your function immediately starts receiving traffic from the specified Amazon
DocumentDB change stream upon creation of the event source mapping. We recommend that
you clear the check box to create the event source mapping in a deactivated state for testing.
After creation, you can activate the event source mapping at any time.

• Database name – Enter the name of a database within the cluster to consume.

• (Optional) Collection name – Enter the name of a collection within the database to consume.
If you don't specify a collection, then Lambda listens to all events from each collection in the
database.

• Batch size – Set the maximum number of messages to retrieve in a single batch, up to 10,000.
The default batch size is 100.

Creating an Amazon DocumentDB event source mapping (console) 1102

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

• Starting position – Choose the position in the stream to start reading records from.

• Latest – Process only new records that are added to the stream. Your function starts
processing records only after Lambda finishes creating your event source. This means that
some records may be dropped until your event source is created successfully.

• Trim horizon – Process all records in the stream. Lambda uses the log retention duration of
your cluster to determine where to start reading events from. Specifically, Lambda starts
reading from current_time - log_retention_duration. Your change stream must
already be active before this timestamp for Lambda to read all events properly.

• At timestamp – Process records starting from a specific time. Your change stream must
already be active before the specified timestamp for Lambda to read all events properly.

• Authentication – Choose the authentication method for accessing the brokers in your cluster.

• BASIC_AUTH – With basic authentication, you must provide the Secrets Manager key that
contains the credentials to access your cluster.

• Secrets Manager key – Choose the Secrets Manager key that contains the authentication details
(username and password) required to access your Amazon DocumentDB cluster.

• (Optional) Batch window – Set the maximum amount of time in seconds to gather records
before invoking your function, up to 300.

• (Optional) Full document configuration – For document update operations, choose what you
want to send to the stream. The default value is Default, which means that for each change
stream event, Amazon DocumentDB sends only a delta describing the changes made. For more
information about this field, see FullDocument in the MongoDB Javadoc API documentation.

• Default – Lambda sends only a partial document describing the changes made.

• UpdateLookup – Lambda sends a delta describing the changes, along with a copy of the entire
document.

Creating an Amazon DocumentDB event source mapping (SDK or CLI)

To create or manage an Amazon DocumentDB event source mapping with an Amazon SDK, you can
use the following API operations:

• CreateEventSourceMapping

• ListEventSourceMappings

• GetEventSourceMapping

• UpdateEventSourceMapping

Creating an Amazon DocumentDB event source mapping (SDK or CLI) 1103

https://mongodb.github.io/mongo-java-driver/3.9/javadoc/com/mongodb/client/model/changestream/FullDocument.html#DEFAULT
https://aws.amazon.com/developer/tools/
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html

Amazon Lambda Developer Guide

• DeleteEventSourceMapping

To create the event source mapping with the Amazon CLI, use the create-event-source-
mapping command. The following example uses this command to map a function named my-
function to an Amazon DocumentDB change stream. The event source is specified by an
Amazon Resource Name (ARN), with a batch size of 500, starting from the timestamp in Unix time.
The command also specifies the Secrets Manager key that Lambda uses to connect to Amazon
DocumentDB. Additionally, it includes document-db-event-source-config parameters that
specify the database and the collection to read from.

aws lambda create-event-source-mapping --function-name my-function \
 --event-source-arn arn:aws:rds:us-west-2:123456789012:cluster:privatecluster7de2-
epzcyvu4pjoy
 --batch-size 500 \
 --starting-position AT_TIMESTAMP \
 --starting-position-timestamp 1541139109 \
 --source-access-configurations
 '[{"Type":"BASIC_AUTH","URI":"arn:aws:secretsmanager:us-
east-1:123456789012:secret:DocDBSecret-BAtjxi"}]' \
 --document-db-event-source-config '{"DatabaseName":"test_database",
 "CollectionName": "test_collection"}' \

You should see output that looks like this:

{
 "UUID": "2b733gdc-8ac3-cdf5-af3a-1827b3b11284",
 "BatchSize": 500,
 "DocumentDBEventSourceConfig": {
 "CollectionName": "test_collection",
 "DatabaseName": "test_database",
 "FullDocument": "Default"
 },
 "MaximumBatchingWindowInSeconds": 0,
 "EventSourceArn": "arn:aws:rds:us-west-2:123456789012:cluster:privatecluster7de2-
epzcyvu4pjoy",
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "LastModified": 1541348195.412,
 "LastProcessingResult": "No records processed",
 "State": "Creating",
 "StateTransitionReason": "User action"

Creating an Amazon DocumentDB event source mapping (SDK or CLI) 1104

https://docs.amazonaws.cn/lambda/latest/api/API_DeleteEventSourceMapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html

Amazon Lambda Developer Guide

}

After creation, you can use the update-event-source-mapping command to update the
settings for your Amazon DocumentDB event source. The following example updates the batch size
to 1,000 and the batch window to 10 seconds. For this command, you need the UUID of your event
source mapping, which you can retrieve using the list-event-source-mapping command or
the Lambda console.

aws lambda update-event-source-mapping --function-name my-function \
 --uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
 --batch-size 1000 \
 --batch-window 10

You should see this output that looks like this:

{
 "UUID": "2b733gdc-8ac3-cdf5-af3a-1827b3b11284",
 "BatchSize": 500,
 "DocumentDBEventSourceConfig": {
 "CollectionName": "test_collection",
 "DatabaseName": "test_database",
 "FullDocument": "Default"
 },
 "MaximumBatchingWindowInSeconds": 0,
 "EventSourceArn": "arn:aws:rds:us-west-2:123456789012:cluster:privatecluster7de2-
epzcyvu4pjoy",
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "LastModified": 1541359182.919,
 "LastProcessingResult": "OK",
 "State": "Updating",
 "StateTransitionReason": "User action"
}

Lambda updates settings asynchronously, so you may not see these changes in the output until
the process completes. To view the current settings of your event source mapping, use the get-
event-source-mapping command.

aws lambda get-event-source-mapping --uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b

You should see this output that looks like this:

Creating an Amazon DocumentDB event source mapping (SDK or CLI) 1105

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-event-source-mapping.html

Amazon Lambda Developer Guide

{
 "UUID": "2b733gdc-8ac3-cdf5-af3a-1827b3b11284",
 "DocumentDBEventSourceConfig": {
 "CollectionName": "test_collection",
 "DatabaseName": "test_database",
 "FullDocument": "Default"
 },
 "BatchSize": 1000,
 "MaximumBatchingWindowInSeconds": 10,
 "EventSourceArn": "arn:aws:rds:us-west-2:123456789012:cluster:privatecluster7de2-
epzcyvu4pjoy",
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "LastModified": 1541359182.919,
 "LastProcessingResult": "OK",
 "State": "Enabled",
 "StateTransitionReason": "User action"
}

To delete your Amazon DocumentDB event source mapping, use the delete-event-source-
mapping command.

aws lambda delete-event-source-mapping \
 --uuid 2b733gdc-8ac3-cdf5-af3a-1827b3b11284

Polling and stream starting positions

Be aware that stream polling during event source mapping creation and updates is eventually
consistent.

• During event source mapping creation, it may take several minutes to start polling events from
the stream.

• During event source mapping updates, it may take several minutes to stop and restart polling
events from the stream.

This behavior means that if you specify LATEST as the starting position for the stream, the event
source mapping could miss events during creation or updates. To ensure that no events are missed,
specify the stream starting position as TRIM_HORIZON or AT_TIMESTAMP.

Polling and stream starting positions 1106

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-event-source-mapping.html

Amazon Lambda Developer Guide

Monitoring your Amazon DocumentDB event source

To help you monitor your Amazon DocumentDB event source, Lambda emits the IteratorAge
metric when your function finishes processing a batch of records. Iterator age is the difference
between the timestamp of the most recent event and the current timestamp. Essentially, the
IteratorAge metric indicates how old the last processed record in the batch is. If your function is
currently processing new events, then you can use the iterator age to estimate the latency between
when a record is added and when your function processes it. An increasing trend in IteratorAge
can indicate issues with your function. For more information, see Working with Lambda function
metrics.

Amazon DocumentDB change streams aren't optimized to handle large time gaps between events.
If your Amazon DocumentDB event source doesn't receive any events for an extended period of
time, Lambda may disable the event source mapping. The length of this time period can vary from
a few weeks to a few months depending on cluster size and other workloads.

Lambda supports payloads of up to 6 MB. However, Amazon DocumentDB change stream events
can be up to 16 MB in size. If your change stream tries to send Lambda a change stream event
larger than 6 MB, then Lambda drops the message and emits the OversizedRecordCount metric.
Lambda emits all metrics on a best-effort basis.

Tutorial: Using Amazon Lambda with Amazon DocumentDB Streams

In this tutorial, you create a basic Lambda function that consumes events from an Amazon
DocumentDB (with MongoDB compatibility) change stream. To complete this tutorial, you will go
through the following stages:

• Set up your Amazon DocumentDB cluster, connect to it, and activate change streams on it.
• Create your Lambda function, and configure your Amazon DocumentDB cluster as an event

source for your function.
• Test the end-to-end setup by inserting items into your Amazon DocumentDB database.

Topics

• Prerequisites

• Create the Amazon Cloud9 environment

• Create the EC2 security group

• Create the secret in Secrets Manager

Monitoring your Amazon DocumentDB event source 1107

Amazon Lambda Developer Guide

• Create the DocumentDB cluster

• Install the mongo shell

• Connect to the DocumentDB cluster

• Activate change streams

• Create interface VPC endpoints

• Create the execution role

• Create the Lambda function

• Create the Lambda event source mapping

• Test your function - manual invoke

• Test your function - insert a record

• Test your function - update a record

• Test your function - delete a record

• Clean up your resources

Prerequisites

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

Tutorial 1108

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user

Amazon Lambda Developer Guide

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Install the Amazon Command Line Interface

If you have not yet installed the Amazon Command Line Interface, follow the steps at Installing or
updating the latest version of the Amazon CLI to install it.

The tutorial requires a command line terminal or shell to run commands. In Linux and macOS, use
your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux.

Tutorial 1109

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Lambda Developer Guide

Create the Amazon Cloud9 environment

Before creating the Lambda function, you need to create and configure your Amazon DocumentDB
cluster. The steps to set up your cluster in this tutorial is based on the procedure in Get Started
with Amazon DocumentDB.

Note

If you already have a Amazon DocumentDB cluster set up, ensure that you activate change
streams and create the necessary interface VPC endpoints. Then, you can skip directly to
the function creation steps.

First, create an Amazon Cloud9 environment. You’ll use this environment throughout this tutorial
to connect to and query your DocumentDB cluster.

To create an Amazon Cloud9 environment

1. Open the Cloud9 console and choose Create environment.

2. Create an environment with the following configuration:

• Under Details:

Tutorial 1110

https://docs.aws.amazon.com/documentdb/latest/developerguide/get-started-guide.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/get-started-guide.html
https://console.aws.amazon.com/cloud9control/home#

Amazon Lambda Developer Guide

• Name – DocumentDBCloud9Environment

• Environment type – New EC2 instance

• Under New EC2 instance:

• Instance type – t2.micro (1 GiB RAM + 1 vCPU)

• Platform – Amazon Linux 2

• Timeout – 30 minutes

• Under Network settings:

• Connection – Amazon Systems Manager (SSM)

• Expand the VPC settings dropdown.

• Amazon Virtual Private Cloud (VPC) – Choose your default VPC.

• Subnet – No preference

• Keep all other default settings.

3. Choose Create. Provisioning your new Amazon Cloud9 environment can take several minutes.

Create the EC2 security group

Tutorial 1111

https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html

Amazon Lambda Developer Guide

Next, create a EC2 security group with rules that allow traffic between your DocumentDB cluster
and your Cloud9 environment.

To create an EC2 security group

1. Open the EC2 console. Under Network and Security, choose Security groups.

2. Choose Create security group.

3. Create a security group with the following configuration:

• Under Basic details:

• Security group name – DocDBTutorial

• Description – Security group for traffic between Cloud9 and DocumentDB.

• VPC – Choose your default VPC.

• Under Inbound rules, choose Add rule. Create a rule with the following configuration:

• Type – Custom TCP

• Port range – 27017

• Source – Custom

• In the search box next to Source, choose the security group for the Amazon Cloud9
environment you created in the previous step. To see a list of available security groups,
enter cloud9 in the search box. Choose the security group with the name aws-cloud9-
<environment_name>.

• Keep all other default settings.

4. Choose Create security group.

Tutorial 1112

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://console.aws.amazon.com/ec2
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html

Amazon Lambda Developer Guide

Create the secret in Secrets Manager

To access your DocumentDB cluster manually, you must provide username and password
credentials. For Lambda to access your cluster, you must provide a Secrets Manager secret that
contains these same access credentials when setting up your event source mapping. In this step,
you’ll create this secret.

To create the secret in Secrets Manager

1. Open the Secrets Manager console and choose Store a new secret.

2. For Choose secret type, choose the following options:

• Under Basic details:

• Secret type – Credentials for Amazon DocumentDB database

• Under Credentials, enter the username and password you’ll use to access your
DocumentDB cluster.

• Database – Choose your DocumentDB cluster.

• Choose Next.

3. For Configure secret, choose the following options:

Tutorial 1113

https://console.aws.amazon.com/secretsmanager/home#

Amazon Lambda Developer Guide

• Secret name – DocumentDBSecret

• Choose Next.

4. Choose Next.

5. Choose Store.

6. Refresh the console to verify that you successfully stored the DocumentDBSecret secret.

Note down the Secret ARN of your secret. You’ll need it in a later step.

Create the DocumentDB cluster

In this step, you’ll create a DocumentDB cluster using the security group from the previous step.

To create a DocumentDB cluster

1. Open the DocumentDB console. Under Clusters, choose Create.

2. Create a cluster with the following configuration:

• For Cluster type, choose Instance Based Cluster.

• Under Configuration:

Tutorial 1114

https://console.aws.amazon.com/docdb/home#

Amazon Lambda Developer Guide

• Engine version – 4.0.0

• Instance class – db.t3.medium

• Number of instances – 1.

• Under Authentication:

• Enter the Username and Password needed to connect to your cluster (same credentials
as you used to create the secret in the previous step). In Confirm password, confirm your
password.

• Toggle on Show advanced settings.

• Under Network settings:

• Virtual Private Cloud (VPC) – Choose your default VPC.

• Subnet group – default

• VPC security groups – In addition to default (VPC), choose the DocDBTutorial
(VPC) security group you created in the previous step.

• Keep all other default settings.

3. Choose Create cluster. Provisioning your DocumentDB cluster can take several minutes.

Install the mongo shell

Tutorial 1115

https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html

Amazon Lambda Developer Guide

In this step, you’ll install the mongo shell in your Cloud9 environment. The mongo shell is a
command-line utility that you use to connect to and query your DocumentDB cluster.

To install the mongo shell on your Cloud9 environment

1. Open the Cloud9 console. Next to the DocumentDBCloud9Environment environment you
created earlier, click on the Open link under the Cloud9 IDE column.

2. In the terminal window, create the MongoDB repository file with the following command:

echo -e "[mongodb-org-4.0] \nname=MongoDB Repository\nbaseurl=https://
repo.mongodb.org/yum/amazon/2013.03/mongodb-org/4.0/x86_64/\ngpgcheck=1 \nenabled=1
 \ngpgkey=https://www.mongodb.org/static/pgp/server-4.0.asc" | sudo tee /etc/
yum.repos.d/mongodb-org-4.0.repo

3. Then, install the mongo shell with the following command:

sudo yum install -y mongodb-org-shell

4. To encrypt data in transit, download the public key for Amazon DocumentDB. The following
command downloads a file named global-bundle.pem:

wget https://truststore.pki.rds.amazonaws.com/global/global-bundle.pem

Tutorial 1116

https://console.aws.amazon.com/cloud9control/home#
https://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem

Amazon Lambda Developer Guide

Connect to the DocumentDB cluster

You’re now ready to connect to your DocumentDB cluster using the mongo shell.

To connect to your DocumentDB cluster

1. Open the DocumentDB console. Under Clusters, choose your cluster by choosing its cluster
identifier.

2. In the Connectivity & security tab, under Connect to this cluster with the mongo shell,
choose Copy.

3. In your Cloud9 environment, paste this command into the terminal. Replace
<insertYourPassword> with the correct password.

After entering this command, if the command prompt becomes rs0:PRIMARY>, then you’re
connected to your Amazon DocumentDB cluster.

Tutorial 1117

https://console.aws.amazon.com/docdb/home#

Amazon Lambda Developer Guide

Activate change streams

For this tutorial, you’ll track changes to the products collection of the docdbdemo database in
your DocumentDB cluster. You do this by activating change streams. First, create the docdbdemo
database and test it by inserting a record.

To create a new database within your cluster

1. In your Cloud9 environment, ensure that you’re still connected to your DocumentDB cluster.

2. In the terminal window, use the following command to create a new database called
docdbdemo:

use docdbdemo

3. Then, use the following command to insert a record into docdbdemo:

db.products.insert({"hello":"world"})

You should see output that looks like this:

WriteResult({ "nInserted" : 1 })

Tutorial 1118

https://docs.aws.amazon.com/documentdb/latest/developerguide/change_streams.html

Amazon Lambda Developer Guide

4. Use the following command to list all databases:

show dbs

Ensure that your output contains the docdbdemo database:

docdbdemo 0.000GB

Next, activate change streams on the products collection of the docdbdemo database using the
following command:

db.adminCommand({modifyChangeStreams: 1,
 database: "docdbdemo",
 collection: "products",
 enable: true});

You should see output that looks like this:

{ "ok" : 1, "operationTime" : Timestamp(1680126165, 1) }

Tutorial 1119

Amazon Lambda Developer Guide

Create interface VPC endpoints

Next, create interface VPC endpoints to ensure that Lambda and Secrets Manager (used later to
store our cluster access credentials) can connect to your default VPC.

To create interface VPC endpoints

1. Open the VPC console. In the left menu, under Virtual private cloud, choose Endpoints.

2. Choose Create endpoint. Create an endpoint with the following configuration:

• For Name tag, enter lambda-default-vpc.

• For Service category, choose Amazon services.

• For Services, enter lambda in the search box. Choose the service with format
com.amazonaws.<region>.lambda.

• For VPC, choose your default VPC.

• For Subnets, check the boxes next to each availability zone. Choose the correct subnet ID for
each availability zone.

• For IP address type, select IPv4.

• For Security groups, choose the default VPC security group (Group name of default), and
the security group you created earlier (Group name of DocDBTutorial).

Tutorial 1120

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://console.aws.amazon.com/vpc/home#
https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html

Amazon Lambda Developer Guide

• Keep all other default settings.

• Choose Create endpoint.

3. Again, choose Create endpoint. Create an endpoint with the following configuration:

• For Name tag, enter secretsmanager-default-vpc.

• For Service category, choose Amazon services.

• For Services, enter secretsmanager in the search box. Choose the service with format
com.amazonaws.<region>.secretsmanager.

• For VPC, choose your default VPC.

• For Subnets, check the boxes next to each availability zone. Choose the correct subnet ID for
each availability zone.

• For IP address type, select IPv4.

• For Security groups, choose the default VPC security group (Group name of default), and
the security group you created earlier (Group name of DocDBTutorial).

• Keep all other default settings.

• Choose Create endpoint.

This completes the cluster setup portion of this tutorial.

Tutorial 1121

https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html

Amazon Lambda Developer Guide

Create the execution role

In the next set of steps, you’ll create your Lambda function. First, you need to create the execution
role that gives your function permission to access your cluster. You do this by creating an IAM
policy first, then attaching this policy to an IAM role.

To create IAM policy

1. Open the Policies page in the IAM console and choose Create policy.

2. Choose the JSON tab. In the following policy, replace the Secrets Manager resource ARN in
the final line of the statement with your secret ARN from earlier, and copy the policy into the
editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "LambdaESMNetworkingAccess",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:DescribeNetworkInterfaces",

Tutorial 1122

https://console.aws.amazon.com/iam/home#/policies

Amazon Lambda Developer Guide

 "ec2:DescribeVpcs",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "kms:Decrypt"
],
 "Resource": "*"
 },
 {
 "Sid": "LambdaDocDBESMAccess",
 "Effect": "Allow",
 "Action": [
 "rds:DescribeDBClusters",
 "rds:DescribeDBClusterParameters",
 "rds:DescribeDBSubnetGroups"
],
 "Resource": "*"
 },
 {
 "Sid": "LambdaDocDBESMGetSecretValueAccess",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:DocumentDBSecret"
 }
]
}

3. Choose Next: Tags, then choose Next: Review.

4. For Name, enter AWSDocumentDBLambdaPolicy.

5. Choose Create policy.

To create the IAM role

1. Open the Roles page in the IAM console and choose Create role.

2. For Select trusted entity, choose the following options:

• Trusted entity type – Amazon service

• Use case – Lambda

Tutorial 1123

https://console.aws.amazon.com/iam/home#/roles

Amazon Lambda Developer Guide

• Choose Next.

3. For Add permissions, choose the AWSDocumentDBLambdaPolicy policy you just created, as
well as the AWSLambdaBasicExecutionRole to give your function permissions to write to
Amazon CloudWatch Logs.

4. Choose Next.

5. For Role name, enter AWSDocumentDBLambdaExecutionRole.

6. Choose Create role.

Create the Lambda function

The following example code receives a DocumentDB event input and processes the message that it
contains.

console.log('Loading function');
exports.handler = async (event, context) =>
{
 console.log('Received event:', JSON.stringify(event, null, 2));
 return 'OK';
};

Tutorial 1124

Amazon Lambda Developer Guide

To create the Lambda function

1. Copy the sample code into a file named index.js.

2. Create a deployment package with the following command.

zip function.zip index.js

3. Use the following CLI command to create the function. Replace us-east-1 with the region,
and 123456789012 with your account ID.

aws lambda create-function --function-name ProcessDocumentDBRecords \
 --zip-file fileb://function.zip --handler index.handler --runtime nodejs16.x \
 --region us-east-1 \
 --role arn:aws:iam::123456789012:role/AWSDocumentDBLambdaExecutionRole

Create the Lambda event source mapping

Create the event source mapping that associates your DocumentDB change stream with your
Lambda function. After you create this event source mapping, Amazon Lambda immediately starts
polling the stream.

Tutorial 1125

Amazon Lambda Developer Guide

To create the event source mapping

1. Open the Functions page in the Lambda console.

2. Choose the ProcessDocumentDBRecords function you created earlier.

3. Choose the Configuration tab, then choose Triggers in the left menu.

4. Choose Add trigger.

5. Under Trigger configuration, for the source, select DocumentDB.

6. Create the event source mapping with the following configuration:

• DocumentDB cluster – Choose the cluster you created earlier.

• Database name – docdbdemo

• Collection name – products

• Batch size – 1

• Starting position – Latest

• Authentication – BASIC_AUTH

• Secrets Manager key – Choose the DocumentDBSecret you just created.

• Batch window – 1

• Full document configuration – UpdateLookup

7. Choose Add. Creating your event source mapping can take a few minutes.

Tutorial 1126

https://console.aws.amazon.com/lambda/home#/functions

Amazon Lambda Developer Guide

Test your function - manual invoke

To test that you created your function and event source mapping correctly, invoke your function
using the invoke command. To do this, first copy the following event JSON into a file called
input.txt:

{
 "eventSourceArn": "arn:aws:rds:us-east-1:123456789012:cluster:canaryclusterb2a659a2-
qo5tcmqkcl03",
 "events": [
 {
 "event": {
 "_id": {
 "_data": "0163eeb6e7000000090100000009000041e1"
 },
 "clusterTime": {
 "$timestamp": {
 "t": 1676588775,
 "i": 9
 }
 },
 "documentKey": {
 "_id": {

Tutorial 1127

Amazon Lambda Developer Guide

 "$oid": "63eeb6e7d418cd98afb1c1d7"
 }
 },
 "fullDocument": {
 "_id": {
 "$oid": "63eeb6e7d418cd98afb1c1d7"
 },
 "anyField": "sampleValue"
 },
 "ns": {
 "db": "docdbdemo",
 "coll": "products"
 },
 "operationType": "insert"
 }
 }
],
 "eventSource": "aws:docdb"
}

Then, use the following command to invoke your function with this event:

aws lambda invoke --function-name ProcessDocumentDBRecords \
 --cli-binary-format raw-in-base64-out \
 --region us-east-1 \
 --payload file://input.txt out.txt

You should see a response that looks like the following:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

You can verify that your function successfully processed the event by checking CloudWatch Logs.

To verify manual invocation via CloudWatch Logs

1. Open the Functions page in the Lambda console.

2. Choose the Monitor tab, then choose View CloudWatch logs. This takes you to the specific log
group associated with your function in the CloudWatch console.

Tutorial 1128

https://console.aws.amazon.com/lambda/home#/functions

Amazon Lambda Developer Guide

3. Choose the most recent log stream. Within the log messages, you should see the event JSON.

Test your function - insert a record

Test your end-to-end setup by interacting directly with your DocumentDB database. In the next set
of steps, you’ll insert a record, update it, then delete it.

To insert a record

1. Reconnect to your DocumentDB cluster in your Cloud9 environment.

2. Use this command to ensure that you’re currently using the docdbdemo database:

use docdbdemo

3. Insert a record into the products collection of the docdbdemo database:

db.products.insert({"name":"Pencil", "price": 1.00})

Tutorial 1129

Amazon Lambda Developer Guide

Test your function - update a record

Next, update the record you just inserted with the following command:

db.products.update(
 { "name": "Pencil" },
 { $set: { "price": 0.50 }}
)

Verify that your function successfully processed this event by checking CloudWatch Logs.

Tutorial 1130

Amazon Lambda Developer Guide

Test your function - delete a record

Finally, delete the record you just updated with the following command:

db.products.remove({ "name": "Pencil" })

Verify that your function successfully processed this event by checking CloudWatch Logs.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

Tutorial 1131

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the VPC endpoints

1. Open the VPC console. In the left menu, under Virtual private cloud, choose Endpoints.

2. Select the endpoints you created.

3. Choose Actions, Delete VPC endpoints.

4. Enter delete in the text input field.

5. Choose Delete.

To delete the Amazon DocumentDB cluster

1. Open the DocumentDB console.

2. Choose the DocumentDB cluster you created for this tutorial, and disable deletion protection.

3. In the main Clusters page, choose your DocumentDB cluster again.

4. Choose Actions, Delete.

5. For Create final cluster snapshot, select No.

6. Enter delete in the text input field.

7. Choose Delete.

To delete the secret in Secrets Manager

1. Open the Secrets Manager console.

2. Choose the secret you created for this tutorial.

3. Choose Actions, Delete secret.

4. Choose Schedule deletion.

Tutorial 1132

https://console.amazonaws.cn/iam/home#/roles
https://console.aws.amazon.com/vpc/home#
https://console.aws.amazon.com/docdb/home#
https://console.aws.amazon.com/secretsmanager/home#

Amazon Lambda Developer Guide

To delete the Amazon EC2 security group

1. Open the EC2 console. Under Network and Security, choose Security groups.

2. Select the security group you created for this tutorial.

3. Choose Actions, Delete security groups.

4. Choose Delete.

To delete the Cloud9 environment

1. Open the Cloud9 console.

2. Select the environment you created for this tutorial.

3. Choose Delete.

4. Enter delete in the text input field.

5. Choose Delete.

Tutorial 1133

https://console.aws.amazon.com/ec2
https://console.aws.amazon.com/cloud9control/home#

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon DynamoDB

Note

If you want to send data to a target other than a Lambda function or enrich the data before
sending it, see Amazon EventBridge Pipes.

You can use an Amazon Lambda function to process records in an Amazon DynamoDB stream. With
DynamoDB Streams, you can trigger a Lambda function to perform additional work each time a
DynamoDB table is updated.

Lambda reads records from the stream and invokes your function synchronously with an event that
contains stream records. Lambda reads records in batches and invokes your function to process
records from the batch.

Sections

• Example event

• Polling and batching streams

• Polling and stream starting positions

• Simultaneous readers of a shard in DynamoDB Streams

• Execution role permissions

• Add permissions and create the event source mapping

• Event source mapping APIs

• Error handling

• Amazon CloudWatch metrics

• Time windows

• Reporting batch item failures

• Amazon DynamoDB Streams configuration parameters

• Tutorial: Using Amazon Lambda with Amazon DynamoDB streams

• Sample function code

• Amazon SAM template for a DynamoDB application

DynamoDB 1134

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html

Amazon Lambda Developer Guide

Example event

Example

{
 "Records": [
 {
 "eventID": "1",
 "eventVersion": "1.0",
 "dynamodb": {
 "Keys": {
 "Id": {
 "N": "101"
 }
 },
 "NewImage": {
 "Message": {
 "S": "New item!"
 },
 "Id": {
 "N": "101"
 }
 },
 "StreamViewType": "NEW_AND_OLD_IMAGES",
 "SequenceNumber": "111",
 "SizeBytes": 26
 },
 "awsRegion": "us-west-2",
 "eventName": "INSERT",
 "eventSourceARN": "arn:aws-cn:dynamodb:us-west-2:123456789012:table/my-table/
stream/2023-06-10T19:26:16.525",
 "eventSource": "aws:dynamodb"
 },
 {
 "eventID": "2",
 "eventVersion": "1.0",
 "dynamodb": {
 "OldImage": {
 "Message": {
 "S": "New item!"
 },
 "Id": {
 "N": "101"

Example event 1135

Amazon Lambda Developer Guide

 }
 },
 "SequenceNumber": "222",
 "Keys": {
 "Id": {
 "N": "101"
 }
 },
 "SizeBytes": 59,
 "NewImage": {
 "Message": {
 "S": "This item has changed"
 },
 "Id": {
 "N": "101"
 }
 },
 "StreamViewType": "NEW_AND_OLD_IMAGES"
 },
 "awsRegion": "us-west-2",
 "eventName": "MODIFY",
 "eventSourceARN": "arn:aws-cn:dynamodb:us-west-2:123456789012:table/my-table/
stream/2023-06-10T19:26:16.525",
 "eventSource": "aws:dynamodb"
 }
]}

Polling and batching streams

Lambda polls shards in your DynamoDB stream for records at a base rate of 4 times per second.
When records are available, Lambda invokes your function and waits for the result. If processing
succeeds, Lambda resumes polling until it receives more records.

By default, Lambda invokes your function as soon as records are available. If the batch that
Lambda reads from the event source has only one record in it, Lambda sends only one record to
the function. To avoid invoking the function with a small number of records, you can tell the event
source to buffer records for up to 5 minutes by configuring a batching window. Before invoking the
function, Lambda continues to read records from the event source until it has gathered a full batch,
the batching window expires, or the batch reaches the payload limit of 6 MB. For more information,
see Batching behavior.

Polling and batching streams 1136

Amazon Lambda Developer Guide

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of batches can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the Amazon Knowledge Center.

If your function returns an error, Lambda retries the batch until processing succeeds or the data
expires. To avoid stalled shards, you can configure the event source mapping to retry with a smaller
batch size, limit the number of retries, or discard records that are too old. To retain discarded
events, you can configure the event source mapping to send details about failed batches to a
standard SQS queue or standard SNS topic.

To increase concurrency, you can also process multiple batches from each shard in parallel.
Lambda can process up to 10 batches in each shard simultaneously. If you increase the number of
concurrent batches per shard, Lambda still ensures in-order processing at the item (partition and
sort key) level.

Configure the ParallelizationFactor setting to process one shard of a Kinesis or DynamoDB data
stream with more than one Lambda invocation simultaneously. You can specify the number of
concurrent batches that Lambda polls from a shard via a parallelization factor from 1 (default)
to 10. For example, when you set ParallelizationFactor to 2, you can have 200 concurrent
Lambda invocations at maximum to process 100 Kinesis data shards (though in practice, you may
see a different values for the ConcurrentExecutions metric). This helps scale up the processing
throughput when the data volume is volatile and the IteratorAge is high.

You can also use the ParallelizationFactor with Kinesis aggregation. The behavior of the
event source mapping depends on whether you're using enhanced fan-out:

• Without enhanced fan-out: All of the events inside an aggregated event must have the same
partition key. The partition key must also match that of the aggregated event. If the events
inside the aggregated event have different partition keys, Lambda cannot guarantee in-order
processing of the events by partition key.

• With enhanced fan-out: First, Lambda decodes the aggregated event into its individual events.
The aggregated event can have a different partition key than events it contains. However, events
that don't correspond to the partition key are dropped and lost. Lambda doesn't process these
events, and doesn't send them to a configured failure destination.

Polling and batching streams 1137

https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-ParallelizationFactor
https://docs.amazonaws.cn/streams/latest/dev/enhanced-consumers.html
https://github.com/awslabs/kinesis-aggregation/blob/master/potential_data_loss.md

Amazon Lambda Developer Guide

Polling and stream starting positions

Be aware that stream polling during event source mapping creation and updates is eventually
consistent.

• During event source mapping creation, it may take several minutes to start polling events from
the stream.

• During event source mapping updates, it may take several minutes to stop and restart polling
events from the stream.

This behavior means that if you specify LATEST as the starting position for the stream, the event
source mapping could miss events during creation or updates. To ensure that no events are missed,
specify the stream starting position as TRIM_HORIZON.

Simultaneous readers of a shard in DynamoDB Streams

For single-Region tables that are not global tables, you can design for up to two Lambda functions
to read from the same DynamoDB Streams shard at the same time. Exceeding this limit can result
in request throttling. For global tables, we recommend you limit the number of simultaneous
functions to one to avoid request throttling.

Execution role permissions

The AWSLambdaDynamoDBExecutionRole Amazon managed policy includes the permissions that
Lambda needs to read from your DynamoDB stream. Add this managed policy to your function's
execution role.

To send records of failed batches to a standard SQS queue or standard SNS topic, your function
needs additional permissions. Each destination service requires a different permission, as follows:

• Amazon SQS – sqs:SendMessage

• Amazon SNS – sns:Publish

Add permissions and create the event source mapping

Create an event source mapping to tell Lambda to send records from your stream to a Lambda
function. You can create multiple event source mappings to process the same data with multiple
Lambda functions, or to process items from multiple streams with a single function.

Polling and stream starting positions 1138

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaDynamoDBExecutionRole.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/sns/latest/api/API_Publish.html

Amazon Lambda Developer Guide

To configure your function to read from DynamoDB Streams, attach the
AWSLambdaDynamoDBExecutionRole Amazon managed policy to your execution role and then
create a DynamoDB trigger.

To add permissions and create a trigger

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose the Configuration tab, and then choose Permissions.

4. Under Role name, choose the link to your execution role. This link opens the role in the IAM
console.

5. Choose Add permissions, and then choose Attach policies.

6. In the search field, enter AWSLambdaDynamoDBExecutionRole. Add this policy to your
execution role. This is an Amazon managed policy that contains the permissions your function
needs to read from the DynamoDB stream. For more information about this policy, see
AWSLambdaDynamoDBExecutionRole in the Amazon Managed Policy Reference.

7. Go back to your function in the Lambda console. Under Function overview, choose Add
trigger.

8. Choose a trigger type.

9. Configure the required options, and then choose Add.

Create the event source mapping 1139

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaDynamoDBExecutionRole.html
https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaDynamoDBExecutionRole.html

Amazon Lambda Developer Guide

Lambda supports the following options for DynamoDB event sources:

Event source options

• DynamoDB table – The DynamoDB table to read records from.

• Batch size – The number of records to send to the function in each batch, up to 10,000. Lambda
passes all of the records in the batch to the function in a single call, as long as the total size of
the events doesn't exceed the payload limit for synchronous invocation (6 MB).

• Batch window – Specify the maximum amount of time to gather records before invoking the
function, in seconds.

• Starting position – Process only new records, or all existing records.

• Latest – Process new records that are added to the stream.

• Trim horizon – Process all records in the stream.

After processing any existing records, the function is caught up and continues to process new
records.

• On-failure destination – A standard SQS queue or standard SNS topic for records that can't be
processed. When Lambda discards a batch of records that's too old or has exhausted all retries,
Lambda sends details about the batch to the queue or topic.

• Retry attempts – The maximum number of times that Lambda retries when the function returns
an error. This doesn't apply to service errors or throttles where the batch didn't reach the
function.

• Maximum age of record – The maximum age of a record that Lambda sends to your function.

• Split batch on error – When the function returns an error, split the batch into two before
retrying. Your original batch size setting remains unchanged.

• Concurrent batches per shard – Concurrently process multiple batches from the same shard.

• Enabled – Set to true to enable the event source mapping. Set to false to stop processing
records. Lambda keeps track of the last record processed and resumes processing from that point
when the mapping is reenabled.

Note

You are not charged for GetRecords API calls invoked by Lambda as part of DynamoDB
triggers.

Create the event source mapping 1140

Amazon Lambda Developer Guide

To manage the event source configuration later, choose the trigger in the designer.

Event source mapping APIs

To manage an event source with the Amazon Command Line Interface (Amazon CLI) or an Amazon
SDK, you can use the following API operations:

• CreateEventSourceMapping

• ListEventSourceMappings

• GetEventSourceMapping

• UpdateEventSourceMapping

• DeleteEventSourceMapping

The following example uses the Amazon CLI to map a function named my-function to a
DynamoDB stream that its Amazon Resource Name (ARN) specifies, with a batch size of 500.

aws lambda create-event-source-mapping --function-name my-function --batch-size 500 --
maximum-batching-window-in-seconds 5 --starting-position LATEST \
--event-source-arn arn:aws-cn:dynamodb:us-west-2:123456789012:table/my-table/
stream/2023-06-10T19:26:16.525

You should see the following output:

{
 "UUID": "14e0db71-5d35-4eb5-b481-8945cf9d10c2",
 "BatchSize": 500,
 "MaximumBatchingWindowInSeconds": 5,
 "ParallelizationFactor": 1,
 "EventSourceArn": "arn:aws-cn:dynamodb:us-east-2:123456789012:table/my-table/
stream/2019-06-10T19:26:16.525",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "LastModified": 1560209851.963,
 "LastProcessingResult": "No records processed",
 "State": "Creating",
 "StateTransitionReason": "User action",
 "DestinationConfig": {},
 "MaximumRecordAgeInSeconds": 604800,
 "BisectBatchOnFunctionError": false,
 "MaximumRetryAttempts": 10000

Event source mapping APIs 1141

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://www.amazonaws.cn/getting-started/tools-sdks/
https://www.amazonaws.cn/getting-started/tools-sdks/
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteEventSourceMapping.html

Amazon Lambda Developer Guide

}

Configure additional options to customize how batches are processed and to specify when to
discard records that can't be processed. The following example updates an event source mapping
to send a failure record to a standard SQS queue after two retry attempts, or if the records are
more than an hour old.

aws lambda update-event-source-mapping --uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--maximum-retry-attempts 2 --maximum-record-age-in-seconds 3600
--destination-config '{"OnFailure": {"Destination": "arn:aws-cn:sqs:us-
east-2:123456789012:dlq"}}'

You should see this output:

{
 "UUID": "f89f8514-cdd9-4602-9e1f-01a5b77d449b",
 "BatchSize": 100,
 "MaximumBatchingWindowInSeconds": 0,
 "ParallelizationFactor": 1,
 "EventSourceArn": "arn:aws-cn:dynamodb:us-west-2:123456789012:table/my-table/
stream/2023-06-10T19:26:16.525",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "LastModified": 1573243620.0,
 "LastProcessingResult": "PROBLEM: Function call failed",
 "State": "Updating",
 "StateTransitionReason": "User action",
 "DestinationConfig": {},
 "MaximumRecordAgeInSeconds": 604800,
 "BisectBatchOnFunctionError": false,
 "MaximumRetryAttempts": 10000
}

Updated settings are applied asynchronously and aren't reflected in the output until the process
completes. Use the get-event-source-mapping command to view the current status.

aws lambda get-event-source-mapping --uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b

You should see this output:

{

Event source mapping APIs 1142

Amazon Lambda Developer Guide

 "UUID": "f89f8514-cdd9-4602-9e1f-01a5b77d449b",
 "BatchSize": 100,
 "MaximumBatchingWindowInSeconds": 0,
 "ParallelizationFactor": 1,
 "EventSourceArn": "arn:aws-cn:dynamodb:us-west-2:123456789012:table/my-table/
stream/2023-06-10T19:26:16.525",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "LastModified": 1573244760.0,
 "LastProcessingResult": "PROBLEM: Function call failed",
 "State": "Enabled",
 "StateTransitionReason": "User action",
 "DestinationConfig": {
 "OnFailure": {
 "Destination": "arn:aws-cn:sqs:us-east-2:123456789012:dlq"
 }
 },
 "MaximumRecordAgeInSeconds": 3600,
 "BisectBatchOnFunctionError": false,
 "MaximumRetryAttempts": 2
}

To process multiple batches concurrently, use the --parallelization-factor option.

aws lambda update-event-source-mapping --uuid 2b733gdc-8ac3-cdf5-af3a-1827b3b11284 \
--parallelization-factor 5

Error handling

The event source mapping that reads records from your DynamoDB stream, invokes your function
synchronously, and retries on errors. If Lambda throttles the function or returns an error without
invoking the function, Lambda retries until the records expire or exceed the maximum age that you
configure on the event source mapping.

If the function receives the records but returns an error, Lambda retries until the records in the
batch expire, exceed the maximum age, or reach the configured retry quota. For function errors,
you can also configure the event source mapping to split a failed batch into two batches. Retrying
with smaller batches isolates bad records and works around timeout issues. Splitting a batch does
not count towards the retry quota.

If the error handling measures fail, Lambda discards the records and continues processing batches
from the stream. With the default settings, this means that a bad record can block processing on

Error handling 1143

Amazon Lambda Developer Guide

the affected shard for up to one day. To avoid this, configure your function's event source mapping
with a reasonable number of retries and a maximum record age that fits your use case.

To retain a record of discarded batches, configure a failed-event destination. Lambda sends a
document to the destination queue or topic with details about the batch.

To configure a destination for failed-event records

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add destination.

4. For Source, choose Stream invocation.

5. For Stream, choose a stream that is mapped to the function.

6. For Destination type, choose the type of resource that receives the invocation record.

7. For Destination, choose a resource.

8. Choose Save.

The following example shows an invocation record for a DynamoDB stream.

Example Invocation Record

{
 "requestContext": {
 "requestId": "316aa6d0-8154-xmpl-9af7-85d5f4a6bc81",
 "functionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted",
 "approximateInvokeCount": 1
 },
 "responseContext": {
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:13:49.717Z",
 "DDBStreamBatchInfo": {
 "shardId": "shardId-00000001573689847184-864758bb",
 "startSequenceNumber": "800000000003126276362",
 "endSequenceNumber": "800000000003126276362",

Error handling 1144

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

 "approximateArrivalOfFirstRecord": "2019-11-14T00:13:19Z",
 "approximateArrivalOfLastRecord": "2019-11-14T00:13:19Z",
 "batchSize": 1,
 "streamArn": "arn:aws-cn:dynamodb:us-east-2:123456789012:table/mytable/
stream/2019-11-14T00:04:06.388"
 }
}

You can use this information to retrieve the affected records from the stream for troubleshooting.
The actual records aren't included, so you must process this record and retrieve them from the
stream before they expire and are lost.

Amazon CloudWatch metrics

Lambda emits the IteratorAge metric when your function finishes processing a batch of records.
The metric indicates how old the last record in the batch was when processing finished. If your
function is processing new events, you can use the iterator age to estimate the latency between
when a record is added and when the function processes it.

An increasing trend in iterator age can indicate issues with your function. For more information, see
Working with Lambda function metrics.

Time windows

Lambda functions can run continuous stream processing applications. A stream represents
unbounded data that flows continuously through your application. To analyze information from
this continuously updating input, you can bound the included records using a window defined in
terms of time.

Tumbling windows are distinct time windows that open and close at regular intervals. By default,
Lambda invocations are stateless—you cannot use them for processing data across multiple
continuous invocations without an external database. However, with tumbling windows, you can
maintain your state across invocations. This state contains the aggregate result of the messages
previously processed for the current window. Your state can be a maximum of 1 MB per shard. If it
exceeds that size, Lambda terminates the window early.

Each record in a stream belongs to a specific window. Lambda will process each record at least
once, but doesn't guarantee that each record will be processed only once. In rare cases, such as
error handling, some records might be processed more than once. Records are always processed in
order the first time. If records are processed more than once, they might be processed out of order.

Amazon CloudWatch metrics 1145

Amazon Lambda Developer Guide

Aggregation and processing

Your user managed function is invoked both for aggregation and for processing the final results
of that aggregation. Lambda aggregates all records received in the window. You can receive these
records in multiple batches, each as a separate invocation. Each invocation receives a state. Thus,
when using tumbling windows, your Lambda function response must contain a state property.
If the response does not contain a state property, Lambda considers this a failed invocation. To
satisfy this condition, your function can return a TimeWindowEventResponse object, which has
the following JSON shape:

Example TimeWindowEventResponse values

{
 "state": {
 "1": 282,
 "2": 715
 },
 "batchItemFailures": []
}

Note

For Java functions, we recommend using a Map<String, String> to represent the state.

At the end of the window, the flag isFinalInvokeForWindow is set to true to indicate that this
is the final state and that it’s ready for processing. After processing, the window completes and
your final invocation completes, and then the state is dropped.

At the end of your window, Lambda uses final processing for actions on the aggregation results.
Your final processing is synchronously invoked. After successful invocation, your function
checkpoints the sequence number and stream processing continues. If invocation is unsuccessful,
your Lambda function suspends further processing until a successful invocation.

Example DynamodbTimeWindowEvent

{
 "Records":[
 {

Time windows 1146

Amazon Lambda Developer Guide

 "eventID":"1",
 "eventName":"INSERT",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{
 "Message":{
 "S":"New item!"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"111",
 "SizeBytes":26,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"2",
 "eventName":"MODIFY",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{
 "Message":{
 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }

Time windows 1147

Amazon Lambda Developer Guide

 },
 "OldImage":{
 "Message":{
 "S":"New item!"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"222",
 "SizeBytes":59,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"3",
 "eventName":"REMOVE",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "OldImage":{
 "Message":{
 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"333",
 "SizeBytes":38,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 }
],
 "window": {
 "start": "2020-07-30T17:00:00Z",

Time windows 1148

Amazon Lambda Developer Guide

 "end": "2020-07-30T17:05:00Z"
 },
 "state": {
 "1": "state1"
 },
 "shardId": "shard123456789",
 "eventSourceARN": "stream-ARN",
 "isFinalInvokeForWindow": false,
 "isWindowTerminatedEarly": false
}

Configuration

You can configure tumbling windows when you create or update an event source mapping. To
configure a tumbling window, specify the window in seconds. The following example Amazon
Command Line Interface (Amazon CLI) command creates a streaming event source mapping
that has a tumbling window of 120 seconds. The Lambda function defined for aggregation and
processing is named tumbling-window-example-function.

aws lambda create-event-source-mapping --event-source-arn arn:aws-cn:dynamodb:us-
east-1:123456789012:stream/lambda-stream --function-name "arn:aws-cn:lambda:us-
east-1:123456789018:function:tumbling-window-example-function" --region us-east-1 --
starting-position TRIM_HORIZON --tumbling-window-in-seconds 120

Lambda determines tumbling window boundaries based on the time when records were inserted
into the stream. All records have an approximate timestamp available that Lambda uses in
boundary determinations.

Tumbling window aggregations do not support resharding. When the shard ends, Lambda
considers the window closed, and the child shards start their own window in a fresh state.

Tumbling windows fully support the existing retry policies maxRetryAttempts and
maxRecordAge.

Example Handler.py – Aggregation and processing

The following Python function demonstrates how to aggregate and then process your final state:

def lambda_handler(event, context):
 print('Incoming event: ', event)
 print('Incoming state: ', event['state'])

Time windows 1149

Amazon Lambda Developer Guide

#Check if this is the end of the window to either aggregate or process.
 if event['isFinalInvokeForWindow']:
 # logic to handle final state of the window
 print('Destination invoke')
 else:
 print('Aggregate invoke')

#Check for early terminations
 if event['isWindowTerminatedEarly']:
 print('Window terminated early')

 #Aggregation logic
 state = event['state']
 for record in event['Records']:
 state[record['dynamodb']['NewImage']['Id']] = state.get(record['dynamodb']
['NewImage']['Id'], 0) + 1

 print('Returning state: ', state)
 return {'state': state}

Reporting batch item failures

When consuming and processing streaming data from an event source, by default Lambda
checkpoints to the highest sequence number of a batch only when the batch is a complete
success. Lambda treats all other results as a complete failure and retries processing the batch up
to the retry limit. To allow for partial successes while processing batches from a stream, turn on
ReportBatchItemFailures. Allowing partial successes can help to reduce the number of retries
on a record, though it doesn’t entirely prevent the possibility of retries in a successful record.

To turn on ReportBatchItemFailures, include the enum value ReportBatchItemFailures
in the FunctionResponseTypes list. This list indicates which response types are enabled for your
function. You can configure this list when you create or update an event source mapping.

Report syntax

When configuring reporting on batch item failures, the StreamsEventResponse class is returned
with a list of batch item failures. You can use a StreamsEventResponse object to return the
sequence number of the first failed record in the batch. You can also create your own custom class
using the correct response syntax. The following JSON structure shows the required response
syntax:

Reporting batch item failures 1150

Amazon Lambda Developer Guide

{
 "batchItemFailures": [
 {
 "itemIdentifier": "<SequenceNumber>"
 }
]
}

Note

If the batchItemFailures array contains multiple items, Lambda uses the record with
the lowest sequence number as the checkpoint. Lambda then retries all records starting
from that checkpoint.

Success and failure conditions

Lambda treats a batch as a complete success if you return any of the following:

• An empty batchItemFailure list

• A null batchItemFailure list

• An empty EventResponse

• A null EventResponse

Lambda treats a batch as a complete failure if you return any of the following:

• An empty string itemIdentifier

• A null itemIdentifier

• An itemIdentifier with a bad key name

Lambda retries failures based on your retry strategy.

Bisecting a batch

If your invocation fails and BisectBatchOnFunctionError is turned on, the batch is bisected
regardless of your ReportBatchItemFailures setting.

Reporting batch item failures 1151

Amazon Lambda Developer Guide

When a partial batch success response is received and both BisectBatchOnFunctionError
and ReportBatchItemFailures are turned on, the batch is bisected at the returned sequence
number and Lambda retries only the remaining records.

Here are some examples of function code that return the list of failed message IDs in the batch:

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent;
import com.amazonaws.services.lambda.runtime.events.StreamsEventResponse;
import com.amazonaws.services.lambda.runtime.events.models.dynamodb.StreamRecord;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

public class ProcessDynamodbRecords implements RequestHandler<DynamodbEvent,
 Serializable> {

 @Override
 public StreamsEventResponse handleRequest(DynamodbEvent input, Context
 context) {

 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<>();
 String curRecordSequenceNumber = "";

Reporting batch item failures 1152

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling#readme

Amazon Lambda Developer Guide

 for (DynamodbEvent.DynamodbStreamRecord dynamodbStreamRecord :
 input.getRecords()) {
 try {
 //Process your record
 StreamRecord dynamodbRecord = dynamodbStreamRecord.getDynamodb();
 curRecordSequenceNumber = dynamodbRecord.getSequenceNumber();

 } catch (Exception e) {
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 batchItemFailures.add(new
 StreamsEventResponse.BatchItemFailure(curRecordSequenceNumber));
 return new StreamsEventResponse(batchItemFailures);
 }
 }

 return new StreamsEventResponse();
 }
}

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def handler(event, context):
 records = event.get("Records")
 curRecordSequenceNumber = ""

 for record in records:

Reporting batch item failures 1153

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

 try:
 # Process your record
 curRecordSequenceNumber = record["dynamodb"]["SequenceNumber"]
 except Exception as e:
 # Return failed record's sequence number
 return {"batchItemFailures":[{"itemIdentifier":
 curRecordSequenceNumber}]}

 return {"batchItemFailures":[]}

Amazon DynamoDB Streams configuration parameters

All Lambda event source types share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
DynamoDB Streams.

Event source parameters that apply to DynamoDB Streams

Parameter Required Default Notes

BatchSize N 100 Maximum: 10,000

BisectBatchOnFunct
ionError

N false

DestinationConfig N Standard Amazon
SQS queue or
standard Amazon
SNS topic destination
for discarded records

Enabled N true

EventSourceArn Y ARN of the data
stream or a stream
consumer

FilterCriteria N

Amazon DynamoDB Streams configuration parameters 1154

https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html

Amazon Lambda Developer Guide

Parameter Required Default Notes

FunctionName Y

MaximumBa
tchingWindowInSeco
nds

N 0

MaximumRe
cordAgeInSeconds

N -1 -1 means infinite:
failed records are
retried until the
record expires. The
data retention limit
for DynamoDB
Streams is 24 hours.

Minimum: -1

Maximum: 604,800

MaximumRe
tryAttempts

N -1 -1 means infinite:
failed records are
retried until the
record expires

Minimum: 0

Maximum: 10,000

ParallelizationFactor N 1 Maximum: 10

StartingPosition Y TRIM_HORIZON or
LATEST

TumblingWindowInSe
conds

N Minimum: 0

Maximum: 900

Amazon DynamoDB Streams configuration parameters 1155

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html#Streams.DataRetention
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html#Streams.DataRetention
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html#Streams.DataRetention

Amazon Lambda Developer Guide

Tutorial: Using Amazon Lambda with Amazon DynamoDB streams

In this tutorial, you create a Lambda function to consume events from an Amazon DynamoDB
stream.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the Amazon Command Line Interface (Amazon CLI)
version 2. Commands and the expected output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

Create the execution role

Create the execution role that gives your function permission to access Amazon resources.

To create an execution role

1. Open the roles page in the IAM console.

Tutorial 1156

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

2. Choose Create role.

3. Create a role with the following properties.

• Trusted entity – Lambda.

• Permissions – AWSLambdaDynamoDBExecutionRole.

• Role name – lambda-dynamodb-role.

The AWSLambdaDynamoDBExecutionRole has the permissions that the function needs to read
items from DynamoDB and write logs to CloudWatch Logs.

Create the function

Create a Lambda function that processes your DynamoDB events. The function code writes some of
the incoming event data to CloudWatch Logs.

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);
 });
};

const logDynamoDBRecord = (record) => {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);

Tutorial 1157

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

Amazon Lambda Developer Guide

};

To create the function

1. Copy the sample code into a file named example.js.

2. Create a deployment package.

zip function.zip example.js

3. Create a Lambda function with the create-function command.

aws lambda create-function --function-name ProcessDynamoDBRecords \
 --zip-file fileb://function.zip --handler example.handler --runtime nodejs18.x
 \
 --role arn:aws-cn:iam::111122223333:role/lambda-dynamodb-role

Test the Lambda function

In this step, you invoke your Lambda function manually using the invoke Amazon Lambda CLI
command and the following sample DynamoDB event. Copy the following into a file named
input.txt.

Example input.txt

{
 "Records":[
 {
 "eventID":"1",
 "eventName":"INSERT",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{

Tutorial 1158

Amazon Lambda Developer Guide

 "Message":{
 "S":"New item!"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"111",
 "SizeBytes":26,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"2",
 "eventName":"MODIFY",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "NewImage":{
 "Message":{
 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }
 },
 "OldImage":{
 "Message":{
 "S":"New item!"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"222",
 "SizeBytes":59,
 "StreamViewType":"NEW_AND_OLD_IMAGES"

Tutorial 1159

Amazon Lambda Developer Guide

 },
 "eventSourceARN":"stream-ARN"
 },
 {
 "eventID":"3",
 "eventName":"REMOVE",
 "eventVersion":"1.0",
 "eventSource":"aws:dynamodb",
 "awsRegion":"us-east-1",
 "dynamodb":{
 "Keys":{
 "Id":{
 "N":"101"
 }
 },
 "OldImage":{
 "Message":{
 "S":"This item has changed"
 },
 "Id":{
 "N":"101"
 }
 },
 "SequenceNumber":"333",
 "SizeBytes":38,
 "StreamViewType":"NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN":"stream-ARN"
 }
]
}

Run the following invoke command.

aws lambda invoke --function-name ProcessDynamoDBRecords \
 --cli-binary-format raw-in-base64-out \
 --payload file://input.txt outputfile.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

Tutorial 1160

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

The function returns the string message in the response body.

Verify the output in the outputfile.txt file.

Create a DynamoDB table with a stream enabled

Create an Amazon DynamoDB table with a stream enabled.

To create a DynamoDB table

1. Open the DynamoDB console.

2. Choose Create table.

3. Create a table with the following settings.

• Table name – lambda-dynamodb-stream

• Primary key – id (string)

4. Choose Create.

To enable streams

1. Open the DynamoDB console.

2. Choose Tables.

3. Choose the lambda-dynamodb-stream table.

4. Under Exports and streams, choose DynamoDB stream details.

5. Choose Turn on.

6. For View type, choose Key attributes only.

7. Choose Turn on stream.

Write down the stream ARN. You need this in the next step when you associate the stream with
your Lambda function. For more information on enabling streams, see Capturing table activity with
DynamoDB Streams.

Add an event source in Amazon Lambda

Create an event source mapping in Amazon Lambda. This event source mapping associates the
DynamoDB stream with your Lambda function. After you create this event source mapping,
Amazon Lambda starts polling the stream.

Tutorial 1161

https://console.amazonaws.cn/dynamodb
https://console.amazonaws.cn/dynamodb
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html

Amazon Lambda Developer Guide

Run the following Amazon CLI create-event-source-mapping command. After the command
runs, note down the UUID. You'll need this UUID to refer to the event source mapping in any
commands, for example, when deleting the event source mapping.

aws lambda create-event-source-mapping --function-name ProcessDynamoDBRecords \
 --batch-size 100 --starting-position LATEST --event-source DynamoDB-stream-arn

This creates a mapping between the specified DynamoDB stream and the Lambda function.
You can associate a DynamoDB stream with multiple Lambda functions, and associate the same
Lambda function with multiple streams. However, the Lambda functions will share the read
throughput for the stream they share.

You can get the list of event source mappings by running the following command.

aws lambda list-event-source-mappings

The list returns all of the event source mappings you created, and for each mapping it shows
the LastProcessingResult, among other things. This field is used to provide an informative
message if there are any problems. Values such as No records processed (indicates that
Amazon Lambda has not started polling or that there are no records in the stream) and OK
(indicates Amazon Lambda successfully read records from the stream and invoked your Lambda
function) indicate that there are no issues. If there are issues, you receive an error message.

If you have a lot of event source mappings, use the function name parameter to narrow down the
results.

aws lambda list-event-source-mappings --function-name ProcessDynamoDBRecords

Test the setup

Test the end-to-end experience. As you perform table updates, DynamoDB writes event records to
the stream. As Amazon Lambda polls the stream, it detects new records in the stream and invokes
your Lambda function on your behalf by passing events to the function.

1. In the DynamoDB console, add, update, and delete items to the table. DynamoDB writes records
of these actions to the stream.

2. Amazon Lambda polls the stream and when it detects updates to the stream, it invokes your
Lambda function by passing in the event data it finds in the stream.

Tutorial 1162

Amazon Lambda Developer Guide

3. Your function runs and creates logs in Amazon CloudWatch. You can verify the logs reported in
the Amazon CloudWatch console.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the DynamoDB table

1. Open the Tables page of the DynamoDB console.

2. Select the table you created.

3. Choose Delete.

4. Enter delete in the text box.

5. Choose Delete table.

Sample function code

Sample code is available for the following languages.

Sample code 1163

https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/iam/home#/roles
https://console.amazonaws.cn/dynamodb/home#tables:

Amazon Lambda Developer Guide

Topics

• Node.js

• Java 11

• C#

• Python 3

• Go

Node.js

The following example processes messages from DynamoDB, and logs their contents.

Example ProcessDynamoDBStream.js

console.log('Loading function');

exports.lambda_handler = function(event, context, callback) {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(function(record) {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log('DynamoDB Record: %j', record.dynamodb);
 });
 callback(null, "message");
};

Zip up the sample code to create a deployment package. For instructions, see Deploy Node.js
Lambda functions with .zip file archives.

Java 11

The following example processes messages from DynamoDB, and logs their contents.
handleRequest is the handler that Amazon Lambda invokes and provides event data. The handler
uses the predefined DynamodbEvent class, which is defined in the aws-lambda-java-events
library.

Example DDBEventProcessor.java

package example;

Sample code 1164

Amazon Lambda Developer Guide

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler2;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent.DynamodbStreamRecord;

public class DDBEventProcessor implements
 RequestHandler2<DynamodbEvent, String> {

 public String handleRequest(DynamodbEvent ddbEvent, Context context) {
 for (DynamodbStreamRecord record : ddbEvent.getRecords()){
 System.out.println(record.getEventID());
 System.out.println(record.getEventName());
 System.out.println(record.getDynamodb().toString());

 }
 return "Successfully processed " + ddbEvent.getRecords().size() + " records.";
 }
}

If the handler returns normally without exceptions, Lambda considers the input batch of records
as processed successfully and begins reading new records in the stream. If the handler throws an
exception, Lambda considers the input batch of records as not processed and invokes the function
with the same batch of records again.

Dependencies

• aws-lambda-java-core

• aws-lambda-java-events

Build the code with the Lambda library dependencies to create a deployment package. For
instructions, see Deploy Java Lambda functions with .zip or JAR file archives.

C#

The following example processes messages from DynamoDB, and logs their contents.
ProcessDynamoEvent is the handler that Amazon Lambda invokes and provides event
data. The handler uses the predefined DynamoDbEvent class, which is defined in the
Amazon.Lambda.DynamoDBEvents library.

Sample code 1165

Amazon Lambda Developer Guide

Example ProcessingDynamoDBStreams.cs

using System;
using System.IO;
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

using Amazon.Lambda.Serialization.Json;

namespace DynamoDBStreams
{
 public class DdbSample
 {
 private static readonly JsonSerializer _jsonSerializer = new JsonSerializer();

 public void ProcessDynamoEvent(DynamoDBEvent dynamoEvent)
 {
 Console.WriteLine($"Beginning to process {dynamoEvent.Records.Count}
 records...");

 foreach (var record in dynamoEvent.Records)
 {
 Console.WriteLine($"Event ID: {record.EventID}");
 Console.WriteLine($"Event Name: {record.EventName}");

 string streamRecordJson = SerializeObject(record.Dynamodb);
 Console.WriteLine($"DynamoDB Record:");
 Console.WriteLine(streamRecordJson);
 }

 Console.WriteLine("Stream processing complete.");
 }

 private string SerializeObject(object streamRecord)
 {
 using (var ms = new MemoryStream())
 {
 _jsonSerializer.Serialize(streamRecord, ms);
 return Encoding.UTF8.GetString(ms.ToArray());
 }
 }
 }

Sample code 1166

Amazon Lambda Developer Guide

}

Replace the Program.cs in a .NET Core project with the above sample. For instructions, see Build
and deploy C# Lambda functions with .zip file archives.

Python 3

The following example processes messages from DynamoDB, and logs their contents.

Example ProcessDynamoDBStream.py

from __future__ import print_function

def lambda_handler(event, context):
 for record in event['Records']:
 print(record['eventID'])
 print(record['eventName'])
 print('Successfully processed %s records.' % str(len(event['Records'])))

Zip up the sample code to create a deployment package. For instructions, see Working with .zip file
archives for Python Lambda functions.

Go

The following example processes messages from DynamoDB, and logs their contents.

Example

import (
 "strings"

 "github.com/aws/aws-lambda-go/events"
)

func handleRequest(ctx context.Context, e events.DynamoDBEvent) {

 for _, record := range e.Records {
 fmt.Printf("Processing request data for event ID %s, type %s.\n",
 record.EventID, record.EventName)

 // Print new values for attributes of type String
 for name, value := range record.Change.NewImage {

Sample code 1167

Amazon Lambda Developer Guide

 if value.DataType() == events.DataTypeString {
 fmt.Printf("Attribute name: %s, value: %s\n", name, value.String())
 }
 }
 }
}

Build the executable with go build and create a deployment package. For instructions, see
Deploy Go Lambda functions with .zip file archives.

Amazon SAM template for a DynamoDB application

You can build this application using Amazon SAM. To learn more about creating Amazon SAM
templates, see Amazon SAM template basics in the Amazon Serverless Application Model Developer
Guide.

Below is a sample Amazon SAM template for the tutorial application. Copy the text below to
a .yaml file and save it next to the ZIP package you created previously. Note that the Handler and
Runtime parameter values should match the ones you used when you created the function in the
previous section.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 ProcessDynamoDBStream:
 Type: AWS::Serverless::Function
 Properties:
 Handler: handler
 Runtime: runtime
 Policies: AWSLambdaDynamoDBExecutionRole
 Events:
 Stream:
 Type: DynamoDB
 Properties:
 Stream: !GetAtt DynamoDBTable.StreamArn
 BatchSize: 100
 StartingPosition: TRIM_HORIZON

 DynamoDBTable:
 Type: AWS::DynamoDB::Table

Sample template 1168

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-template-basics.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

 Properties:
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: S
 KeySchema:
 - AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 5
 WriteCapacityUnits: 5
 StreamSpecification:
 StreamViewType: NEW_IMAGE

For information on how to package and deploy your serverless application using the package and
deploy commands, see Deploying serverless applications in the Amazon Serverless Application
Model Developer Guide.

Sample template 1169

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-deploying.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon EC2

You can use Amazon Lambda to process lifecycle events from Amazon Elastic Compute Cloud and
manage Amazon EC2 resources. Amazon EC2 sends events to Amazon EventBridge (CloudWatch
Events) for lifecycle events such as when an instance changes state, when an Amazon Elastic Block
Store volume snapshot completes, or when a spot instance is scheduled to be terminated. You
configure EventBridge (CloudWatch Events) to forward those events to a Lambda function for
processing.

EventBridge (CloudWatch Events) invokes your Lambda function asynchronously with the event
document from Amazon EC2.

Example instance lifecycle event

{
 "version": "0",
 "id": "b6ba298a-7732-2226-xmpl-976312c1a050",
 "detail-type": "EC2 Instance State-change Notification",
 "source": "aws.ec2",
 "account": "111122223333",
 "time": "2019-10-02T17:59:30Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws-cn:ec2:us-east-1:111122223333:instance/i-0c314xmplcd5b8173"
],
 "detail": {
 "instance-id": "i-0c314xmplcd5b8173",
 "state": "running"
 }
}

For details on configuring events in EventBridge (CloudWatch Events), see Using Amazon Lambda
with Amazon EventBridge (CloudWatch Events). For an example function that processes Amazon
EBS snapshot notifications, see Amazon EventBridge (CloudWatch Events) for Amazon EBS in the
Amazon EC2 User Guide for Linux Instances.

You can also use the Amazon SDK to manage instances and other resources with the Amazon EC2
API.

EC2 1170

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ebs-cloud-watch-events.html

Amazon Lambda Developer Guide

Permissions

To process lifecycle events from Amazon EC2, EventBridge (CloudWatch Events) needs permission
to invoke your function. This permission comes from the function's resource-based policy. If
you use the EventBridge (CloudWatch Events) console to configure an event trigger, the console
updates the resource-based policy on your behalf. Otherwise, add a statement like the following:

Example resource-based policy statement for Amazon EC2 lifecycle notifications

{
 "Sid": "ec2-events",
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com.cn"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws-cn:lambda:cn-north-1:12456789012:function:my-function",
 "Condition": {
 "ArnLike": {
 "AWS:SourceArn": "arn:aws-cn:events:cn-north-1:12456789012:rule/*"
 }
 }
}

To add a statement, use the add-permission Amazon CLI command.

aws lambda add-permission --action lambda:InvokeFunction --statement-id ec2-events \
--principal events.amazonaws.com.cn --function-name my-function --source-arn 'arn:aws-
cn:events:cn-north-1:12456789012:rule/*'

If your function uses the Amazon SDK to manage Amazon EC2 resources, add Amazon EC2
permissions to the function's execution role.

Permissions 1171

Amazon Lambda Developer Guide

Tutorial: Configuring a Lambda function to access Amazon
ElastiCache in an Amazon VPC

To learn how to configure Lambda to access Amazon ElastiCache in an Amazon VPC, see the
Lambda tutorial in the ElastiCache for Redis User Guide.

ElastiCache 1172

https://docs.amazonaws.cn/AmazonElastiCache/latest/red-ug/LambdaRedis.html

Amazon Lambda Developer Guide

Using Amazon Lambda with an Application Load Balancer

You can use a Lambda function to process requests from an Application Load Balancer. Elastic
Load Balancing supports Lambda functions as a target for an Application Load Balancer. Use load
balancer rules to route HTTP requests to a function, based on path or header values. Process the
request and return an HTTP response from your Lambda function.

Elastic Load Balancing invokes your Lambda function synchronously with an event that contains
the request body and metadata.

Example Application Load Balancer request event

{
 "requestContext": {
 "elb": {
 "targetGroupArn": "arn:aws-cn:elasticloadbalancing:cn-
north-1:123456789012:targetgroup/lambda-279XGJDqGZ5rsrHC2Fjr/49e9d65c45c6791a"
 }
 },
 "httpMethod": "GET",
 "path": "/lambda",
 "queryStringParameters": {
 "query": "1234ABCD"
 },
 "headers": {
 "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp,image/apng,*/*;q=0.8",
 "accept-encoding": "gzip",
 "accept-language": "zh-CN,zh;q=0.9",
 "connection": "keep-alive",
 "host": "lambda-alb-123578498.cn-north-1.elb.amazonaws.com.cn",
 "upgrade-insecure-requests": "1",
 "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36",
 "x-amzn-trace-id": "Root=1-5c536348-3d683b8b04734faae651f476",
 "x-forwarded-for": "72.12.164.125",
 "x-forwarded-port": "80",
 "x-forwarded-proto": "http",
 "x-imforwards": "20"
 },
 "body": "",
 "isBase64Encoded": false

Elastic Load Balancing (Application Load Balancer) 1173

Amazon Lambda Developer Guide

}

Your function processes the event and returns a response document to the load balancer in JSON.
Elastic Load Balancing converts the document to an HTTP success or error response and returns it
to the user.

Example response document format

{
 "statusCode": 200,
 "statusDescription": "200 OK",
 "isBase64Encoded": false,
 "headers": {
 "Content-Type": "text/html"
 },
 "body": "<h1>Hello from Lambda!</h1>"
}

To configure an Application Load Balancer as a function trigger, grant Elastic Load Balancing
permission to run the function, create a target group that routes requests to the function, and add
a rule to the load balancer that sends requests to the target group.

Use the add-permission command to add a permission statement to your function's resource-
based policy.

aws lambda add-permission --function-name alb-function \
--statement-id load-balancer --action "lambda:InvokeFunction" \
--principal elasticloadbalancing.amazonaws.com.cn

You should see the following output:

{
 "Statement": "{\"Sid\":\"load-balancer\",\"Effect\":\"Allow\",
\"Principal\":{\"Service\":\"elasticloadbalancing.amazonaws.com.cn\"},
\"Action\":\"lambda:InvokeFunction\",\"Resource\":\"arn:aws-cn:lambda:cn-
north-1:123456789012:function:alb-function\"}"
}

For instructions on configuring the Application Load Balancer listener and target group, see
Lambda functions as a target in the User Guide for Application Load Balancers.

Elastic Load Balancing (Application Load Balancer) 1174

https://docs.amazonaws.cn/elasticloadbalancing/latest/application/lambda-functions.html

Amazon Lambda Developer Guide

Using Amazon EFS with Lambda

Lambda integrates with Amazon Elastic File System (Amazon EFS) to support secure, shared file
system access for Lambda applications. You can configure functions to mount a file system during
initialization with the NFS protocol over the local network within a VPC. Lambda manages the
connection and encrypts all traffic to and from the file system.

The file system and the Lambda function must be in the same region. A Lambda function in one
account can mount a file system in a different account. For this scenario, you configure VPC peering
between the function VPC and the file system VPC.

Note

To configure a function to connect to a file system, see Configuring file system access for
Lambda functions.

Amazon EFS supports file locking to prevent corruption if multiple functions try to write to the
same file system at the same time. Locking in Amazon EFS follows the NFS v4.1 protocol for
advisory locking, and enables your applications to use both whole file and byte range locks.

Amazon EFS provides options to customize your file system based on your application's need to
maintain high performance at scale. There are three primary factors to consider: the number of
connections, throughput (in MiB per second), and IOPS.

Quotas

For detail on file system quotas and limits, see Quotas for Amazon EFS file systems in the
Amazon Elastic File System User Guide.

To avoid issues with scaling, throughput, and IOPS, monitor the metrics that Amazon EFS sends to
Amazon CloudWatch. For an overview of monitoring in Amazon EFS, see Monitoring Amazon EFS in
the Amazon Elastic File System User Guide.

Sections

• Connections

• Throughput

EFS 1175

https://docs.amazonaws.cn/efs/latest/ug/how-it-works.html#consistency
https://docs.amazonaws.cn/efs/latest/ug/limits.html#limits-fs-specific
https://docs.amazonaws.cn/efs/latest/ug/monitoring-cloudwatch.html
https://docs.amazonaws.cn/efs/latest/ug/monitoring_overview.html

Amazon Lambda Developer Guide

• IOPS

Connections

Amazon EFS supports up to 25,000 connections per file system. During initialization, each instance
of a function creates a single connection to its file system that persists across invocations. This
means that you can reach 25,000 concurrency across one or more functions connected to a file
system. To limit the number of connections a function creates, use reserved concurrency.

However, when you make changes to your function's code or configuration at scale, there is a
temporary increase in the number of function instances beyond the current concurrency. Lambda
provisions new instances to handle new requests and there is some delay before old instances
close their connections to the file system. To avoid hitting the maximum connections limit during
a deployment, use rolling deployments. With rolling deployments, you gradually shift traffic to the
new version each time you make a change.

If you connect to the same file system from other services such as Amazon EC2, you should also be
aware of the scaling behavior of connections in Amazon EFS. A file system supports the creation of
up to 3,000 connections in a burst, after which it supports 500 new connections per minute.

To monitor and trigger an alarm on connections, use the ClientConnections metric.

Throughput

At scale, it is also possible to exceed the maximum throughput for a file system. In bursting mode
(the default), a file system has a low baseline throughput that scales linearly with its size. To allow
for bursts of activity, the file system is granted burst credits that allow it to use 100 MiB/s or
more of throughput. Credits accumulate continually and are expended with every read and write
operation. If the file system runs out of credits, it throttles read and write operations beyond the
baseline throughput, which can cause invocations to time out.

Note

If you use provisioned concurrency, your function can consume burst credits even when
idle. With provisioned concurrency, Lambda initializes instances of your function before it is
invoked, and recycles instances every few hours. If you use files on an attached file system
during initialization, this activity can use all of your burst credits.

Connections 1176

Amazon Lambda Developer Guide

To monitor and trigger an alarm on throughput, use the BurstCreditBalance metric. It
should increase when your function's concurrency is low and decrease when it is high. If it always
decreases or does not accumulate enough during low activity to cover peak traffic, you may need
to limit your function's concurrency or enable provisioned throughput.

IOPS

Input/output operations per second (IOPS) is a measurement of the number of read and write
operations processed by the file system. In general purpose mode, IOPS is limited in favor of lower
latency, which is beneficial for most applications.

To monitor and alarm on IOPS in general purpose mode, use the PercentIOLimit metric. If
this metric reaches 100%, your function can time out waiting for read and write operations to
complete.

IOPS 1177

https://docs.amazonaws.cn/efs/latest/ug/performance.html#throughput-modes

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon EventBridge (CloudWatch
Events)

Note

Amazon EventBridge is the preferred way to manage your events. CloudWatch Events
and EventBridge are the same underlying service and API, but EventBridge provides more
features. Changes you make in either CloudWatch Events or EventBridge will appear in each
console. For more information, see the Amazon EventBridge documentation.

EventBridge (CloudWatch Events) helps you to respond to state changes in your Amazon resources.
For more information about EventBridge, see What is Amazon EventBridge? in the Amazon
EventBridge User Guide.

When your resources change state, they automatically send events into an event stream. With
EventBridge (CloudWatch Events), you can create rules that match selected events in the
stream and route them to your Amazon Lambda function to take action. For example, you
can automatically invoke an Amazon Lambda function to log the state of an EC2 instance or
AutoScaling group.

EventBridge (CloudWatch Events) invokes your function asynchronously with an event document
that wraps the event from its source. The following example shows an event that originated from a
database snapshot in Amazon Relational Database Service.

Example EventBridge (CloudWatch Events) event

{
 "version": "0",
 "id": "fe8d3c65-xmpl-c5c3-2c87-81584709a377",
 "detail-type": "RDS DB Instance Event",
 "source": "aws.rds",
 "account": "123456789012",
 "time": "2020-04-28T07:20:20Z",
 "region": "us-east-2",
 "resources": [
 "arn:aws-cn:rds:us-east-2:123456789012:db:rdz6xmpliljlb1"
],
 "detail": {
 "EventCategories": [

EventBridge (CloudWatch Events) 1178

https://docs.amazonaws.cn/eventbridge/index.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-what-is.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/LogEC2InstanceState.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/LogASGroupState.html

Amazon Lambda Developer Guide

 "backup"
],
 "SourceType": "DB_INSTANCE",
 "SourceArn": "arn:aws-cn:rds:us-east-2:123456789012:db:rdz6xmpliljlb1",
 "Date": "2020-04-28T07:20:20.112Z",
 "Message": "Finished DB Instance backup",
 "SourceIdentifier": "rdz6xmpliljlb1"
 }
}

You can also create a Lambda function and direct Amazon Lambda to invoke it on a regular
schedule. You can specify a fixed rate (for example, invoke a Lambda function every hour or 15
minutes), or you can specify a Cron expression.

Example EventBridge (CloudWatch Events) message event

{
 "version": "0",
 "account": "123456789012",
 "region": "us-east-2",
 "detail": {},
 "detail-type": "Scheduled Event",
 "source": "aws.events",
 "time": "2019-03-01T01:23:45Z",
 "id": "cdc73f9d-aea9-11e3-9d5a-835b769c0d9c",
 "resources": [
 "arn:aws-cn:events:us-east-2:123456789012:rule/my-schedule"
]
}

To configure EventBridge (CloudWatch Events) to invoke your function

1. Open the Functions page of the Lambda console.

2. Choose a function

3. Under Function overview, choose Add trigger.

4. Set the trigger type to EventBridge (CloudWatch Events).

5. For Rule, choose Create a new rule.

6. Configure the remaining options and choose Add.

For more information on expressions schedules, see Schedule expressions using rate or cron.

EventBridge (CloudWatch Events) 1179

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Each Amazon account can have up to 100 unique event sources of the EventBridge (CloudWatch
Events)- Schedule source type. Each of these can be the event source for up to five Lambda
functions. That is, you can have up to 500 Lambda functions that can be executing on a schedule in
your Amazon account.

Topics

• Schedule expressions using rate or cron

Schedule expressions using rate or cron

To create schedules using cron and rate expressions for Lambda, we recommend you use Amazon
EventBridge Scheduler. For more information, see Using Lambda with Amazon EventBridge
Scheduler.

Schedule expressions 1180

Amazon Lambda Developer Guide

Using Lambda with Amazon EventBridge Scheduler

Amazon EventBridge Scheduler is a serverless scheduler that allows you to create, run, and manage
tasks from one central, managed service. With EventBridge Scheduler, you can create schedules
using cron and rate expressions for recurring patterns, or configure one-time invocations. You can
set up flexible time windows for delivery, define retry limits, and set the maximum retention time
for unprocessed events.

When you set up EventBridge Scheduler with Lambda, EventBridge Scheduler invokes your Lambda
function asynchronously. This page explains how to use EventBridge Scheduler to invoke a Lambda
function on a schedule.

Set up the execution role

When you create a new schedule, EventBridge Scheduler must have permission to invoke its target
API operation on your behalf. You grant these permissions to EventBridge Scheduler using an
execution role. The permission policy you attach to your schedule's execution role defines the
required permissions. These permissions depend on the target API you want EventBridge Scheduler
to invoke.

When you use the EventBridge Scheduler console to create a schedule, as in the following
procedure, EventBridge Scheduler automatically sets up an execution role based on your selected
target. If you want to create a schedule using one of the EventBridge Scheduler SDKs, the
Amazon CLI, or Amazon CloudFormation, you must have an existing execution role that grants
the permissions EventBridge Scheduler requires to invoke a target. For more information about
manually setting up an execution role for your schedule, see Setting up an execution role in the
EventBridge Scheduler User Guide.

Create a schedule

To create a schedule by using the console

1. Open the Amazon EventBridge Scheduler console at https://console.amazonaws.cn/scheduler/
home.

2. On the Schedules page, choose Create schedule.

3. On the Specify schedule detail page, in the Schedule name and description section, do the
following:

EventBridge Scheduler 1181

https://docs.amazonaws.cn/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.amazonaws.cn/scheduler/latest/UserGuide/setting-up.html#setting-up-execution-role
https://console.amazonaws.cn/scheduler/home/
https://console.amazonaws.cn/scheduler/home/

Amazon Lambda Developer Guide

a. For Schedule name, enter a name for your schedule. For example, MyTestSchedule.

b. (Optional) For Description, enter a description for your schedule. For example, My first
schedule.

c. For Schedule group, choose a schedule group from the dropdown list. If you don't have a
group, choose default. To create a schedule group, choose create your own schedule.

You use schedule groups to add tags to groups of schedules.

4. • Choose your schedule options.

Occurrence Do this...

One-time schedule

A one-time schedule
invokes a target only once
at the date and time that
you specify.

For Date and time, do the
following:

• Enter a valid date in
YYYY/MM/DD format.

• Enter a timestamp in 24-
hour hh:mm format.

• For Timezone, choose
the timezone.

Recurring schedule

A recurring schedule
invokes a target at a rate
that you specify using a
cron expression or rate
expression.

a. For Schedule type, do
one of the following:

• To use a cron
expression to define
the schedule, choose
Cron-based schedule
and enter the cron
expression.

• To use a rate
expression to define
the schedule, choose
Rate-based schedule
and enter the rate
expression.

Create a schedule 1182

Amazon Lambda Developer Guide

Occurrence Do this...

For more informati
on about cron and
rate expressions,
see Schedule types
on EventBridge
Scheduler in the
Amazon EventBridge
Scheduler User Guide.

b. For Flexible time
window, choose Off to
turn off the option, or
choose one of the pre-
defined time windows.
For example, if you
choose 15 minutes
and you set a recurring
 schedule to invoke its
target once every hour,
the schedule runs within
15 minutes after the
start of every hour.

5. (Optional) If you chose Recurring schedule in the previous step, in the Timeframe section, do
the following:

a. For Timezone, choose a timezone.

b. For Start date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

c. For End date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

6. Choose Next.

7. On the Select target page, choose the Amazon API operation that EventBridge Scheduler
invokes:

Create a schedule 1183

https://docs.amazonaws.cn/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.amazonaws.cn/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.amazonaws.cn/scheduler/latest/UserGuide/schedule-types.html#cron-based

Amazon Lambda Developer Guide

a. Choose Amazon Lambda Invoke.

b. In the Invoke section, select a function or choose Create new Lambda function.

c. (Optional) Enter a JSON payload. If you don't enter a payload, EventBridge Scheduler uses
an empty event to invoke the function.

8. Choose Next.

9. On the Settings page, do the following:

a. To turn on the schedule, under Schedule state, toggle Enable schedule.

b. To configure a retry policy for your schedule, under Retry policy and dead-letter queue
(DLQ), do the following:

• Toggle Retry.

• For Maximum age of event, enter the maximum hour(s) and min(s) that EventBridge
Scheduler must keep an unprocessed event.

• The maximum time is 24 hours.

• For Maximum retries, enter the maximum number of times EventBridge Scheduler
retries the schedule if the target returns an error.

The maximum value is 185 retries.

With retry policies, if a schedule fails to invoke its target, EventBridge Scheduler re-runs
the schedule. If configured, you must set the maximum retention time and retries for the
schedule.

c. Choose where EventBridge Scheduler stores undelivered events.

Dead-letter queue (DLQ)
option

Do this...

Don't store Choose None.

Store the event in the
same Amazon Web
Services account where
you're creating the
schedule

a. Choose Select an
Amazon SQS queue
in my Amazon Web
Services account as a
DLQ.

Create a schedule 1184

Amazon Lambda Developer Guide

Dead-letter queue (DLQ)
option

Do this...

b. Choose the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

Store the event in a
different Amazon Web
Services account from
where you're creating the
schedule

a. Choose Specify an
Amazon SQS queue
in other Amazon Web
Services accounts as a
DLQ.

b. Enter the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

d. To use a customer managed key to encrypt your target input, under Encryption, choose
Customize encryption settings (advanced).

If you choose this option, enter an existing KMS key ARN or choose Create an Amazon
KMS key to navigate to the Amazon KMS console. For more information about how
EventBridge Scheduler encrypts your data at rest, see Encryption at rest in the Amazon
EventBridge Scheduler User Guide.

e. To have EventBridge Scheduler create a new execution role for you, choose Create new
role for this schedule. Then, enter a name for Role name. If you choose this option,
EventBridge Scheduler attaches the required permissions necessary for your templated
target to the role.

10. Choose Next.

11. In the Review and create schedule page, review the details of your schedule. In each section,
choose Edit to go back to that step and edit its details.

12. Choose Create schedule.

You can view a list of your new and existing schedules on the Schedules page. Under the
Status column, verify that your new schedule is Enabled.

To confirm that EventBridge Scheduler invoked the function, check the function's Amazon
CloudWatch logs.

Create a schedule 1185

https://docs.amazonaws.cn/scheduler/latest/UserGuide/encryption-rest.html

Amazon Lambda Developer Guide

Related resources

For more information about EventBridge Scheduler, see the following:

• EventBridge Scheduler User Guide

• EventBridge Scheduler API Reference

• EventBridge Scheduler Pricing

Related resources 1186

https://docs.amazonaws.cn/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.amazonaws.cn/scheduler/latest/APIReference/Welcome.html
https://www.amazonaws.cn/eventbridge/pricing/#Scheduler

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon IoT

Amazon IoT provides secure communication between internet-connected devices (such as sensors)
and the Amazon Cloud. This makes it possible for you to collect, store, and analyze telemetry data
from multiple devices.

You can create Amazon IoT rules for your devices to interact with Amazon services. The Amazon
IoT Rules Engine provides a SQL-based language to select data from message payloads and send
the data to other services, such as Amazon S3, Amazon DynamoDB, and Amazon Lambda. You
define a rule to invoke a Lambda function when you want to invoke another Amazon service or a
third-party service.

When an incoming IoT message triggers the rule, Amazon IoT invokes your Lambda function
asynchronously and passes data from the IoT message to the function.

The following example shows a moisture reading from a greenhouse sensor. The row and pos
values identify the location of the sensor. This example event is based on the greenhouse type in
the Amazon IoT Rules tutorials.

Example Amazon IoT message event

{
 "row" : "10",
 "pos" : "23",
 "moisture" : "75"
}

For asynchronous invocation, Lambda queues the message and retries if your function returns
an error. Configure your function with a destination to retain events that your function could not
process.

You need to grant permission for the Amazon IoT service to invoke your Lambda function. Use the
add-permission command to add a permission statement to your function's resource-based
policy.

aws lambda add-permission --function-name my-function \
--statement-id iot-events --action "lambda:InvokeFunction" --principal
 iot.amazonaws.com.cn

IoT 1187

https://docs.amazonaws.cn/iot/latest/developerguide/iot-rules.html
https://docs.amazonaws.cn/iot/latest/developerguide/iot-rules-tutorial.html

Amazon Lambda Developer Guide

You should see the following output:

{
 "Statement": "{\"Sid\":\"iot-events\",\"Effect\":\"Allow\",\"Principal\":{\"Service
\":\"iot.amazonaws.com.cn\"},\"Action\":\"lambda:InvokeFunction\",\"Resource\":
\"arn:aws-cn:lambda:cn-north-1:123456789012:function:my-function\"}"
}

For more information about how to use Lambda with Amazon IoT, see Creating an Amazon Lambda
rule.

IoT 1188

https://docs.amazonaws.cn/iot/latest/developerguide/iot-lambda-rule.html
https://docs.amazonaws.cn/iot/latest/developerguide/iot-lambda-rule.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon IoT Events

Amazon IoT Events monitors the inputs from multiple IoT sensors and applications to recognize
event patterns. Then it takes appropriate actions when events occur. Amazon IoT Events receives
its inputs as JSON payloads from many sources. Amazon IoT Events supports simple events (where
each input triggers an event) and complex events (where multiple inputs must occur to trigger the
event).

To use Amazon IoT Events, you define a detector model, which is a state-machine model of your
equipment or process. In addition to states, you define inputs and events for the model. You also
define the actions to take when an event occurs. Use a Lambda function for an action when you
want to invoke another Amazon service (such as Amazon Connect), or take actions in an external
application (such as your enterprise resource planning (ERP) application).

When the event occurs, Amazon IoT Events invokes your Lambda function asynchronously. It
provides information about the detector model and the event that triggered the action. The
following example message event is based on the definitions in the Amazon IoT Events simple
step-by-step example.

Example Amazon IoT Events message event

{
 "event":{
 "eventName": "myChargedEvent",
 "eventTime": 1567797571647,
 "payload":{
 "detector":{
 "detectorModelName": "AWS_IoTEvents_Hello_World1567793458261",
 "detectorModelVersion": "4",
 "keyValue": "100009"
 },
 "eventTriggerDetails":{
 "triggerType": "Message",
 "inputName": "AWS_IoTEvents_HelloWorld_VoltageInput",
 "messageId": "64c75a34-068b-4a1d-ae58-c16215dc4efd"
 },
 "actionExecutionId": "49f0f32f-1209-38a7-8a76-d6ca49dd0bc4",
 "state":{
 "variables": {},
 "stateName": "Charged",

IoT Events 1189

https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-simple-example.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-simple-example.html

Amazon Lambda Developer Guide

 "timers": {}
 }
 }
 }
}

The event that is passed into the Lambda function includes the following fields:

• eventName – The name for this event in the detector model.

• eventTime – The time that the event occurred.

• detector – The name and version of the detector model.

• eventTriggerDetails – A description of the input that triggered the event.

• actionExecutionId – The unique execution identifier of the action.

• state – The state of the detector model when the event occurred.

• stateName – The name of the state in the detector model.

• timers – Any timers that are set in this state.

• variables – Any variable values that are set in this state.

You need to grant permission for the Amazon IoT Events service to invoke your Lambda function.
Use the add-permission command to add a permission statement to your function's resource-
based policy.

aws lambda add-permission --function-name my-function \
--statement-id iot-events --action "lambda:InvokeFunction" --principal
 iotevents.amazonaws.com.cn

You should see the following output:

{
 "Statement": "{\"Sid\":\"iot-events\",\"Effect\":\"Allow\",\"Principal\":{\"Service
\":\"iotevents.amazonaws.com.cn\"},\"Action\":\"lambda:InvokeFunction\",\"Resource\":
\"arn:aws-cn:lambda:cn-north-1:123456789012:function:my-function\"}"
}

IoT Events 1190

Amazon Lambda Developer Guide

For more information about using Lambda with Amazon IoT Events, see Using Amazon IoT Events
with other services.

IoT Events 1191

https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-with-others.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-with-others.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon Data Firehose

Amazon Data Firehose captures, transforms, and loads streaming data into downstream services
such as Managed Service for Apache Flink or Amazon S3. You can write Lambda functions to
request additional, customized processing of the data before it is sent downstream.

Example Amazon Data Firehose message event

{
 "invocationId": "invoked123",
 "deliveryStreamArn": "aws:lambda:events",
 "region": "us-west-2",
 "records": [
 {
 "data": "SGVsbG8gV29ybGQ=",
 "recordId": "record1",
 "approximateArrivalTimestamp": 1510772160000,
 "kinesisRecordMetadata": {
 "shardId": "shardId-000000000000",
 "partitionKey": "4d1ad2b9-24f8-4b9d-a088-76e9947c317a",
 "approximateArrivalTimestamp": "2012-04-23T18:25:43.511Z",
 "sequenceNumber": "49546986683135544286507457936321625675700192471156785154",
 "subsequenceNumber": ""
 }
 },
 {
 "data": "SGVsbG8gV29ybGQ=",
 "recordId": "record2",
 "approximateArrivalTimestamp": 151077216000,
 "kinesisRecordMetadata": {
 "shardId": "shardId-000000000001",
 "partitionKey": "4d1ad2b9-24f8-4b9d-a088-76e9947c318a",
 "approximateArrivalTimestamp": "2012-04-23T19:25:43.511Z",
 "sequenceNumber": "49546986683135544286507457936321625675700192471156785155",
 "subsequenceNumber": ""
 }
 }
]
}

For more information, see Amazon Data Firehose data transformation in the Firehose Developer
Guide.

Kinesis Firehose 1192

https://docs.amazonaws.cn/firehose/latest/dev/data-transformation.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon Kinesis

Note

If you want to send data to a target other than a Lambda function or enrich the data before
sending it, see Amazon EventBridge Pipes.

You can use an Amazon Lambda function to process records in an Amazon Kinesis data stream.

A Kinesis data stream is a set of shards. Each shard contains a sequence of data records. A
consumer is an application that processes the data from a Kinesis data stream. You can map
a Lambda function to a shared-throughput consumer (standard iterator), or to a dedicated-
throughput consumer with enhanced fan-out.

For standard iterators, Lambda polls each shard in your Kinesis stream for records using HTTP
protocol. The event source mapping shares read throughput with other consumers of the shard.

To minimize latency and maximize read throughput, you can create a data stream consumer with
enhanced fan-out. Stream consumers get a dedicated connection to each shard that doesn't impact
other applications reading from the stream. The dedicated throughput can help if you have many
applications reading the same data, or if you're reprocessing a stream with large records. Kinesis
pushes records to Lambda over HTTP/2.

For details about Kinesis data streams, see Reading Data from Amazon Kinesis Data Streams.

Sections

• Example event

• Polling and batching streams

• Polling and stream starting position

• Configuring your data stream and function

• Execution role permissions

• Add permissions and create the event source mapping

• Filtering Kinesis events

• Event source mapping API

• Error handling

• Amazon CloudWatch metrics

Kinesis Streams 1193

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes.html
https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.amazonaws.cn/streams/latest/dev/key-concepts.html#shard
https://docs.amazonaws.cn/kinesis/latest/dev/enhanced-consumers.html
https://docs.amazonaws.cn/kinesis/latest/dev/building-consumers.html

Amazon Lambda Developer Guide

• Time windows

• Reporting batch item failures

• Amazon Kinesis configuration parameters

• Tutorial: Using Amazon Lambda with Amazon Kinesis

• Sample function code

• Amazon SAM template for a Kinesis application

Example event

Example

{
 "Records": [
 {
 "kinesis": {
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber":
 "49590338271490256608559692538361571095921575989136588898",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "approximateArrivalTimestamp": 1545084650.987
 },
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692538361571095921575989136588898",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws-cn:iam::123456789012:role/lambda-role",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws-cn:kinesis:us-east-2:123456789012:stream/lambda-
stream"
 },
 {
 "kinesis": {
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber":
 "49590338271490256608559692540925702759324208523137515618",
 "data": "VGhpcyBpcyBvbmx5IGEgdGVzdC4=",
 "approximateArrivalTimestamp": 1545084711.166

Example event 1194

Amazon Lambda Developer Guide

 },
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692540925702759324208523137515618",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws-cn:iam::123456789012:role/lambda-role",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws-cn:kinesis:us-east-2:123456789012:stream/lambda-
stream"
 }
]
}

Polling and batching streams

Lambda reads records from the data stream and invokes your function synchronously with an
event that contains stream records. Lambda reads records in batches and invokes your function to
process records from the batch. Each batch contains records from a single shard/data stream.

By default, Lambda invokes your function as soon as records are available. If the batch that
Lambda reads from the event source has only one record in it, Lambda sends only one record to
the function. To avoid invoking the function with a small number of records, you can tell the event
source to buffer records for up to 5 minutes by configuring a batching window. Before invoking the
function, Lambda continues to read records from the event source until it has gathered a full batch,
the batching window expires, or the batch reaches the payload limit of 6 MB. For more information,
see Batching behavior.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of batches can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the Amazon Knowledge Center.

If your function returns an error, Lambda retries the batch until processing succeeds or the data
expires. To avoid stalled shards, you can configure the event source mapping to retry with a smaller
batch size, limit the number of retries, or discard records that are too old. To retain discarded

Polling and batching streams 1195

https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent

Amazon Lambda Developer Guide

events, you can configure the event source mapping to send details about failed batches to a
standard SQS queue or standard SNS topic.

To increase concurrency, you can also process multiple batches from each shard in parallel.
Lambda can process up to 10 batches in each shard simultaneously. If you increase the number of
concurrent batches per shard, Lambda still ensures in-order processing at the partition-key level.

Configure the ParallelizationFactor setting to process one shard of a Kinesis or DynamoDB data
stream with more than one Lambda invocation simultaneously. You can specify the number of
concurrent batches that Lambda polls from a shard via a parallelization factor from 1 (default)
to 10. For example, when you set ParallelizationFactor to 2, you can have 200 concurrent
Lambda invocations at maximum to process 100 Kinesis data shards (though in practice, you may
see a different values for the ConcurrentExecutions metric). This helps scale up the processing
throughput when the data volume is volatile and the IteratorAge is high.

You can also use the ParallelizationFactor with Kinesis aggregation. The behavior of the
event source mapping depends on whether you're using enhanced fan-out:

• Without enhanced fan-out: All of the events inside an aggregated event must have the same
partition key. The partition key must also match that of the aggregated event. If the events
inside the aggregated event have different partition keys, Lambda cannot guarantee in-order
processing of the events by partition key.

• With enhanced fan-out: First, Lambda decodes the aggregated event into its individual events.
The aggregated event can have a different partition key than events it contains. However, events
that don't correspond to the partition key are dropped and lost. Lambda doesn't process these
events, and doesn't send them to a configured failure destination.

Polling and stream starting position

Be aware that stream polling during event source mapping creation and updates is eventually
consistent.

• During event source mapping creation, it may take several minutes to start polling events from
the stream.

• During event source mapping updates, it may take several minutes to stop and restart polling
events from the stream.

Polling and stream starting position 1196

https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html#lambda-CreateEventSourceMapping-request-ParallelizationFactor
https://docs.amazonaws.cn/streams/latest/dev/enhanced-consumers.html
https://github.com/awslabs/kinesis-aggregation/blob/master/potential_data_loss.md

Amazon Lambda Developer Guide

This behavior means that if you specify LATEST as the starting position for the stream, the event
source mapping could miss events during creation or updates. To ensure that no events are missed,
specify the stream starting position as TRIM_HORIZON or AT_TIMESTAMP.

Configuring your data stream and function

Your Lambda function is a consumer application for your data stream. It processes one batch of
records at a time from each shard. You can map a Lambda function to a data stream (standard
iterator), or to a consumer of a stream (enhanced fan-out).

For standard iterators, Lambda polls each shard in your Kinesis stream for records at a base rate
of once per second. When more records are available, Lambda keeps processing batches until the
function catches up with the stream. The event source mapping shares read throughput with other
consumers of the shard.

To minimize latency and maximize read throughput, create a data stream consumer with enhanced
fan-out. Enhanced fan-out consumers get a dedicated connection to each shard that doesn't
impact other applications reading from the stream. Stream consumers use HTTP/2 to reduce
latency by pushing records to Lambda over a long-lived connection and by compressing request
headers. You can create a stream consumer with the Kinesis RegisterStreamConsumer API.

aws kinesis register-stream-consumer --consumer-name con1 \
--stream-arn arn:aws-cn:kinesis:us-east-2:123456789012:stream/lambda-stream

You should see the following output:

{
 "Consumer": {
 "ConsumerName": "con1",
 "ConsumerARN": "arn:aws-cn:kinesis:us-east-2:123456789012:stream/lambda-stream/
consumer/con1:1540591608",
 "ConsumerStatus": "CREATING",
 "ConsumerCreationTimestamp": 1540591608.0
 }
}

To increase the speed at which your function processes records, add shards to your data stream.
Lambda processes records in each shard in order. It stops processing additional records in a shard if
your function returns an error. With more shards, there are more batches being processed at once,
which lowers the impact of errors on concurrency.

Configuring your data stream and function 1197

https://docs.amazonaws.cn/kinesis/latest/dev/enhanced-consumers.html
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_RegisterStreamConsumer.html

Amazon Lambda Developer Guide

If your function can't scale up to handle the total number of concurrent batches, request a quota
increase or reserve concurrency for your function.

Execution role permissions

Lambda needs the following permissions to manage resources that are related to your Kinesis data
stream. The AWSLambdaKinesisExecutionRole managed policy includes these permissions. You can
add this managed policy to your function's execution role.

• kinesis:DescribeStream

• kinesis:DescribeStreamSummary

• kinesis:GetRecords

• kinesis:GetShardIterator

• kinesis:ListShards

• kinesis:ListStreams

• kinesis:SubscribeToShard

If your Kinesis data stream and Lambda function are in different accounts, ensure that your stream
resource grants kinesis:DescribeStream permissions to your Lambda function's execution role
or account.

Additionally, when creating your event source mapping from the console, you must have the
kinesis:ListStreams and kinesis:ListStreamConsumers permissions.

To send records of failed batches to a standard SQS queue or standard SNS topic, your function
needs additional permissions. Each destination service requires a different permission, as follows:

• Amazon SQS – sqs:SendMessage

• Amazon SNS – sns:Publish

Add permissions and create the event source mapping

Create an event source mapping to tell Lambda to send records from your data stream to a
Lambda function. You can create multiple event source mappings to process the same data with
multiple Lambda functions, or to process items from multiple data streams with a single function.
When processing items from multiple data streams, each batch will only contain records from a
single shard/stream.

Execution role permissions 1198

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaKinesisExecutionRole.html
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_DescribeStream.html
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_DescribeStreamSummary.html
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_GetRecords.html
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_GetShardIterator.html
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_ListShards.html
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_ListStreams.html
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_SubscribeToShard.html
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_ListStreams.html
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_ListStreamConsumers.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/sns/latest/api/API_Publish.html

Amazon Lambda Developer Guide

To configure your function to read from a Kinesis data stream, add the
AWSLambdaKinesisExecutionRole Amazon managed policy to your execution role and create a
Kinesis trigger.

To add permissions and create a trigger

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose the Configuration tab, and then choose Permissions.

4. Under Role name, choose the link to your execution role. This link opens the role in the IAM
console.

5. Choose Add permissions, and then choose Attach policies.

6. In the search field, enter AWSLambdaKinesisExecutionRole. Add this policy to your
execution role. This is an Amazon managed policy that contains the permissions your
function needs to read from a Kinesis stream. For more information about this policy, see
AWSLambdaKinesisExecutionRole in the Amazon Managed Policy Reference.

7. Go back to your function in the Lambda console. Under Function overview, choose Add
trigger.

8. Choose a trigger type.

9. Configure the required options, and then choose Add.

Create the event source mapping 1199

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaKinesisExecutionRole.html
https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaKinesisExecutionRole.html

Amazon Lambda Developer Guide

Lambda supports the following options for Kinesis event sources:

Event source options

• Kinesis stream – The Kinesis stream to read records from.

• Consumer (optional) – Use a stream consumer to read from the stream over a dedicated
connection.

• Batch size – The number of records to send to the function in each batch, up to 10,000. Lambda
passes all of the records in the batch to the function in a single call, as long as the total size of
the events doesn't exceed the payload limit for synchronous invocation (6 MB).

• Batch window – Specify the maximum amount of time to gather records before invoking the
function, in seconds.

• Starting position – Process only new records, all existing records, or records created after a
certain date.

• Latest – Process new records that are added to the stream.

• Trim horizon – Process all records in the stream.

• At timestamp – Process records starting from a specific time.

After processing any existing records, the function is caught up and continues to process new
records.

• On-failure destination – A standard SQS queue or standard SNS topic for records that can't be
processed. When Lambda discards a batch of records that's too old or has exhausted all retries,
Lambda sends details about the batch to the queue or topic.

• Retry attempts – The maximum number of times that Lambda retries when the function returns
an error. This doesn't apply to service errors or throttles where the batch didn't reach the
function.

• Maximum age of record – The maximum age of a record that Lambda sends to your function.

• Split batch on error – When the function returns an error, split the batch into two before
retrying. Your original batch size setting remains unchanged.

• Concurrent batches per shard – Concurrently process multiple batches from the same shard.

• Enabled – Set to true to enable the event source mapping. Set to false to stop processing
records. Lambda keeps track of the last record processed and resumes processing from that point
when it's reenabled.

Create the event source mapping 1200

Amazon Lambda Developer Guide

Note

Kinesis charges for each shard and, for enhanced fan-out, data read from the stream. For
pricing details, see Amazon Kinesis pricing.

To manage the event source configuration later, choose the trigger in the designer.

Filtering Kinesis events

When you configure Kinesis as an event source for Lambda, you can use event filtering to control
which records from your stream Lambda sends to your function for processing. To learn more
about using Lambda event filtering with Kinesis, see Filtering with Kinesis.

Event source mapping API

To manage an event source with the Amazon Command Line Interface (Amazon CLI) or an Amazon
SDK, you can use the following API operations:

• CreateEventSourceMapping

• ListEventSourceMappings

• GetEventSourceMapping

• UpdateEventSourceMapping

• DeleteEventSourceMapping

To create the event source mapping with the Amazon CLI, use the create-event-source-
mapping command. The following example uses the Amazon CLI to map a function named my-
function to a Kinesis data stream. The data stream is specified by an Amazon Resource Name
(ARN), with a batch size of 500, starting from the timestamp in Unix time.

aws lambda create-event-source-mapping --function-name my-function \
--batch-size 500 --starting-position AT_TIMESTAMP --starting-position-timestamp
 1541139109 \
--event-source-arn arn:aws-cn:kinesis:us-east-2:123456789012:stream/lambda-stream

You should see the following output:

{

Filtering Kinesis events 1201

http://www.amazonaws.cn/kinesis/data-streams/pricing
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html#filtering-kinesis
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://www.amazonaws.cn/getting-started/tools-sdks/
https://www.amazonaws.cn/getting-started/tools-sdks/
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteEventSourceMapping.html

Amazon Lambda Developer Guide

 "UUID": "2b733gdc-8ac3-cdf5-af3a-1827b3b11284",
 "BatchSize": 500,
 "MaximumBatchingWindowInSeconds": 0,
 "ParallelizationFactor": 1,
 "EventSourceArn": "arn:aws-cn:kinesis:us-west-2:123456789012:stream/lambda-stream",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "LastModified": 1541139209.351,
 "LastProcessingResult": "No records processed",
 "State": "Creating",
 "StateTransitionReason": "User action",
 "DestinationConfig": {},
 "MaximumRecordAgeInSeconds": 604800,
 "BisectBatchOnFunctionError": false,
 "MaximumRetryAttempts": 10000
}

To use a consumer, specify the consumer's ARN instead of the stream's ARN.

Configure additional options to customize how batches are processed and to specify when to
discard records that can't be processed. The following example updates an event source mapping
to send a failure record to a standard SQS queue after two retry attempts, or if the records are
more than an hour old.

aws lambda update-event-source-mapping --uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--maximum-retry-attempts 2 --maximum-record-age-in-seconds 3600
--destination-config '{"OnFailure": {"Destination": "arn:aws-cn:sqs:us-
east-2:123456789012:dlq"}}'

You should see this output:

{
 "UUID": "f89f8514-cdd9-4602-9e1f-01a5b77d449b",
 "BatchSize": 100,
 "MaximumBatchingWindowInSeconds": 0,
 "ParallelizationFactor": 1,
 "EventSourceArn": "arn:aws-cn:kinesis:us-west-2:123456789012:stream/lambda-stream",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "LastModified": 1573243620.0,
 "LastProcessingResult": "PROBLEM: Function call failed",
 "State": "Updating",
 "StateTransitionReason": "User action",
 "DestinationConfig": {},

Event source mapping API 1202

Amazon Lambda Developer Guide

 "MaximumRecordAgeInSeconds": 604800,
 "BisectBatchOnFunctionError": false,
 "MaximumRetryAttempts": 10000
}

Updated settings are applied asynchronously and aren't reflected in the output until the process
completes. Use the get-event-source-mapping command to view the current status.

aws lambda get-event-source-mapping --uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b

You should see this output:

{
 "UUID": "f89f8514-cdd9-4602-9e1f-01a5b77d449b",
 "BatchSize": 100,
 "MaximumBatchingWindowInSeconds": 0,
 "ParallelizationFactor": 1,
 "EventSourceArn": "arn:aws-cn:kinesis:us-west-2:123456789012:stream/lambda-stream",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "LastModified": 1573244760.0,
 "LastProcessingResult": "PROBLEM: Function call failed",
 "State": "Enabled",
 "StateTransitionReason": "User action",
 "DestinationConfig": {
 "OnFailure": {
 "Destination": "arn:aws-cn:sqs:us-east-2:123456789012:dlq"
 }
 },
 "MaximumRecordAgeInSeconds": 3600,
 "BisectBatchOnFunctionError": false,
 "MaximumRetryAttempts": 2
}

To process multiple batches concurrently, use the --parallelization-factor option.

aws lambda update-event-source-mapping --uuid 2b733gdc-8ac3-cdf5-af3a-1827b3b11284 \
--parallelization-factor 5

Event source mapping API 1203

Amazon Lambda Developer Guide

Error handling

The event source mapping that reads records from your Kinesis stream, invokes your function
synchronously, and retries on errors. If Lambda throttles the function or returns an error without
invoking the function, Lambda retries until the records expire or exceed the maximum age that you
configure on the event source mapping.

If the function receives the records but returns an error, Lambda retries until the records in the
batch expire, exceed the maximum age, or reach the configured retry quota. For function errors,
you can also configure the event source mapping to split a failed batch into two batches. Retrying
with smaller batches isolates bad records and works around timeout issues. Splitting a batch does
not count towards the retry quota.

If the error handling measures fail, Lambda discards the records and continues processing batches
from the stream. With the default settings, this means that a bad record can block processing
on the affected shard for up to one week. To avoid this, configure your function's event source
mapping with a reasonable number of retries and a maximum record age that fits your use case.

To retain a record of discarded batches, configure a failed-event destination. Lambda sends a
document to the destination queue or topic with details about the batch.

To configure a destination for failed-event records

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add destination.

4. For Source, choose Stream invocation.

5. For Stream, choose a stream that is mapped to the function.

6. For Destination type, choose the type of resource that receives the invocation record.

7. For Destination, choose a resource.

8. Choose Save.

The following example shows an invocation record for a Kinesis stream.

Example invocation record

{

Error handling 1204

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

 "requestContext": {
 "requestId": "c9b8fa9f-5a7f-xmpl-af9c-0c604cde93a5",
 "functionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted",
 "approximateInvokeCount": 1
 },
 "responseContext": {
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KinesisBatchInfo": {
 "shardId": "shardId-000000000001",
 "startSequenceNumber":
 "49601189658422359378836298521827638475320189012309704722",
 "endSequenceNumber":
 "49601189658422359378836298522902373528957594348623495186",
 "approximateArrivalOfFirstRecord": "2019-11-14T00:38:04.835Z",
 "approximateArrivalOfLastRecord": "2019-11-14T00:38:05.580Z",
 "batchSize": 500,
 "streamArn": "arn:aws-cn:kinesis:us-east-2:123456789012:stream/mystream"
 }
}

You can use this information to retrieve the affected records from the stream for troubleshooting.
The actual records aren't included, so you must process this record and retrieve them from the
stream before they expire and are lost.

Amazon CloudWatch metrics

Lambda emits the IteratorAge metric when your function finishes processing a batch of records.
The metric indicates how old the last record in the batch was when processing finished. If your
function is processing new events, you can use the iterator age to estimate the latency between
when a record is added and when the function processes it.

An increasing trend in iterator age can indicate issues with your function. For more information, see
Working with Lambda function metrics.

Amazon CloudWatch metrics 1205

Amazon Lambda Developer Guide

Time windows

Lambda functions can run continuous stream processing applications. A stream represents
unbounded data that flows continuously through your application. To analyze information from
this continuously updating input, you can bound the included records using a window defined in
terms of time.

Tumbling windows are distinct time windows that open and close at regular intervals. By default,
Lambda invocations are stateless—you cannot use them for processing data across multiple
continuous invocations without an external database. However, with tumbling windows, you can
maintain your state across invocations. This state contains the aggregate result of the messages
previously processed for the current window. Your state can be a maximum of 1 MB per shard. If it
exceeds that size, Lambda terminates the window early.

Each record in a stream belongs to a specific window. Lambda will process each record at least
once, but doesn't guarantee that each record will be processed only once. In rare cases, such as
error handling, some records might be processed more than once. Records are always processed in
order the first time. If records are processed more than once, they might be processed out of order.

Aggregation and processing

Your user managed function is invoked both for aggregation and for processing the final results
of that aggregation. Lambda aggregates all records received in the window. You can receive these
records in multiple batches, each as a separate invocation. Each invocation receives a state. Thus,
when using tumbling windows, your Lambda function response must contain a state property.
If the response does not contain a state property, Lambda considers this a failed invocation. To
satisfy this condition, your function can return a TimeWindowEventResponse object, which has
the following JSON shape:

Example TimeWindowEventResponse values

{
 "state": {
 "1": 282,
 "2": 715
 },
 "batchItemFailures": []
}

Time windows 1206

Amazon Lambda Developer Guide

Note

For Java functions, we recommend using a Map<String, String> to represent the state.

At the end of the window, the flag isFinalInvokeForWindow is set to true to indicate that this
is the final state and that it’s ready for processing. After processing, the window completes and
your final invocation completes, and then the state is dropped.

At the end of your window, Lambda uses final processing for actions on the aggregation results.
Your final processing is synchronously invoked. After successful invocation, your function
checkpoints the sequence number and stream processing continues. If invocation is unsuccessful,
your Lambda function suspends further processing until a successful invocation.

Example KinesisTimeWindowEvent

{
 "Records": [
 {
 "kinesis": {
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber":
 "49590338271490256608559692538361571095921575989136588898",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "approximateArrivalTimestamp": 1607497475.000
 },
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692538361571095921575989136588898",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws-cn:iam::123456789012:role/lambda-kinesis-
role",
 "awsRegion": "us-east-1",
 "eventSourceARN": "arn:aws-cn:kinesis:us-east-1:123456789012:stream/lambda-
stream"
 }
],
 "window": {
 "start": "2020-12-09T07:04:00Z",

Time windows 1207

Amazon Lambda Developer Guide

 "end": "2020-12-09T07:06:00Z"
 },
 "state": {
 "1": 282,
 "2": 715
 },
 "shardId": "shardId-000000000006",
 "eventSourceARN": "arn:aws-cn:kinesis:us-east-1:123456789012:stream/lambda-stream",
 "isFinalInvokeForWindow": false,
 "isWindowTerminatedEarly": false
}

Configuration

You can configure tumbling windows when you create or update an event source mapping. To
configure a tumbling window, specify the window in seconds. The following example Amazon
Command Line Interface (Amazon CLI) command creates a streaming event source mapping
that has a tumbling window of 120 seconds. The Lambda function defined for aggregation and
processing is named tumbling-window-example-function.

aws lambda create-event-source-mapping --event-source-arn arn:aws-cn:kinesis:us-
east-1:123456789012:stream/lambda-stream --function-name "arn:aws-cn:lambda:us-
east-1:123456789018:function:tumbling-window-example-function" --region us-east-1 --
starting-position TRIM_HORIZON --tumbling-window-in-seconds 120

Lambda determines tumbling window boundaries based on the time when records were inserted
into the stream. All records have an approximate timestamp available that Lambda uses in
boundary determinations.

Tumbling window aggregations do not support resharding. When the shard ends, Lambda
considers the window closed, and the child shards start their own window in a fresh state.

Tumbling windows fully support the existing retry policies maxRetryAttempts and
maxRecordAge.

Example Handler.py – Aggregation and processing

The following Python function demonstrates how to aggregate and then process your final state:

def lambda_handler(event, context):
 print('Incoming event: ', event)
 print('Incoming state: ', event['state'])

Time windows 1208

Amazon Lambda Developer Guide

#Check if this is the end of the window to either aggregate or process.
 if event['isFinalInvokeForWindow']:
 # logic to handle final state of the window
 print('Destination invoke')
 else:
 print('Aggregate invoke')

#Check for early terminations
 if event['isWindowTerminatedEarly']:
 print('Window terminated early')

 #Aggregation logic
 state = event['state']
 for record in event['Records']:
 state[record['kinesis']['partitionKey']] = state.get(record['kinesis']
['partitionKey'], 0) + 1

 print('Returning state: ', state)
 return {'state': state}

Reporting batch item failures

When consuming and processing streaming data from an event source, by default Lambda
checkpoints to the highest sequence number of a batch only when the batch is a complete
success. Lambda treats all other results as a complete failure and retries processing the batch up
to the retry limit. To allow for partial successes while processing batches from a stream, turn on
ReportBatchItemFailures. Allowing partial successes can help to reduce the number of retries
on a record, though it doesn’t entirely prevent the possibility of retries in a successful record.

To turn on ReportBatchItemFailures, include the enum value ReportBatchItemFailures
in the FunctionResponseTypes list. This list indicates which response types are enabled for your
function. You can configure this list when you create or update an event source mapping.

Report syntax

When configuring reporting on batch item failures, the StreamsEventResponse class is returned
with a list of batch item failures. You can use a StreamsEventResponse object to return the
sequence number of the first failed record in the batch. You can also create your own custom class
using the correct response syntax. The following JSON structure shows the required response
syntax:

Reporting batch item failures 1209

Amazon Lambda Developer Guide

{
 "batchItemFailures": [
 {
 "itemIdentifier": "<SequenceNumber>"
 }
]
}

Note

If the batchItemFailures array contains multiple items, Lambda uses the record with
the lowest sequence number as the checkpoint. Lambda then retries all records starting
from that checkpoint.

Success and failure conditions

Lambda treats a batch as a complete success if you return any of the following:

• An empty batchItemFailure list

• A null batchItemFailure list

• An empty EventResponse

• A null EventResponse

Lambda treats a batch as a complete failure if you return any of the following:

• An empty string itemIdentifier

• A null itemIdentifier

• An itemIdentifier with a bad key name

Lambda retries failures based on your retry strategy.

Bisecting a batch

If your invocation fails and BisectBatchOnFunctionError is turned on, the batch is bisected
regardless of your ReportBatchItemFailures setting.

Reporting batch item failures 1210

Amazon Lambda Developer Guide

When a partial batch success response is received and both BisectBatchOnFunctionError
and ReportBatchItemFailures are turned on, the batch is bisected at the returned sequence
number and Lambda retries only the remaining records.

Here are some examples of function code that return the list of failed message IDs in the batch:

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text;
using System.Text.Json.Serialization;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace KinesisIntegration;

public class Function
{
 // Powertools Logger requires an environment variables against your function
 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task<StreamsEventResponse> FunctionHandler(KinesisEvent evnt,
 ILambdaContext context)
 {
 if (evnt.Records.Count == 0)

Reporting batch item failures 1211

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

 {
 Logger.LogInformation("Empty Kinesis Event received");
 return new StreamsEventResponse();
 }

 foreach (var record in evnt.Records)
 {
 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 return new StreamsEventResponse
 {
 BatchItemFailures = new
 List<StreamsEventResponse.BatchItemFailure>
 {
 new StreamsEventResponse.BatchItemFailure
 { ItemIdentifier = record.Kinesis.SequenceNumber }
 }
 };
 }
 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 return new StreamsEventResponse();
 }

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {
 byte[] bytes = record.Data.ToArray();
 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work

Reporting batch item failures 1212

Amazon Lambda Developer Guide

 return data;
 }
}

public class StreamsEventResponse
{
 [JsonPropertyName("batchItemFailures")]
 public IList<BatchItemFailure> BatchItemFailures { get; set; }
 public class BatchItemFailure
 {
 [JsonPropertyName("itemIdentifier")]
 public string ItemIdentifier { get; set; }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, kinesisEvent events.KinesisEvent)
 (map[string]interface{}, error) {
 batchItemFailures := []map[string]interface{}{}

Reporting batch item failures 1213

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

 for _, record := range kinesisEvent.Records {
 curRecordSequenceNumber := ""

 // Process your record
 if /* Your record processing condition here */ {
 curRecordSequenceNumber = record.Kinesis.SequenceNumber
 }

 // Add a condition to check if the record processing failed
 if curRecordSequenceNumber != "" {
 batchItemFailures = append(batchItemFailures, map[string]interface{}
{"itemIdentifier": curRecordSequenceNumber})
 }
 }

 kinesisBatchResponse := map[string]interface{}{
 "batchItemFailures": batchItemFailures,
 }
 return kinesisBatchResponse, nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

Reporting batch item failures 1214

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling#readme

Amazon Lambda Developer Guide

import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import com.amazonaws.services.lambda.runtime.events.StreamsEventResponse;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

public class ProcessKinesisRecords implements RequestHandler<KinesisEvent,
 StreamsEventResponse> {

 @Override
 public StreamsEventResponse handleRequest(KinesisEvent input, Context
 context) {

 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<>();
 String curRecordSequenceNumber = "";

 for (KinesisEvent.KinesisEventRecord kinesisEventRecord :
 input.getRecords()) {
 try {
 //Process your record
 KinesisEvent.Record kinesisRecord =
 kinesisEventRecord.getKinesis();
 curRecordSequenceNumber = kinesisRecord.getSequenceNumber();

 } catch (Exception e) {
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 batchItemFailures.add(new
 StreamsEventResponse.BatchItemFailure(curRecordSequenceNumber));
 return new StreamsEventResponse(batchItemFailures);
 }
 }

 return new StreamsEventResponse(batchItemFailures);
 }
}

Reporting batch item failures 1215

Amazon Lambda Developer Guide

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Javascript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 console.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

Reporting batch item failures 1216

https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

Reporting Kinesis batch item failures with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
 KinesisStreamBatchResponse,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,
 context: Context
): Promise<KinesisStreamBatchResponse> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 logger.info(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 logger.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

Reporting batch item failures 1217

Amazon Lambda Developer Guide

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Kinesis\KinesisEvent;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

Reporting batch item failures 1218

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handle(mixed $event, Context $context): array
 {
 $kinesisEvent = new KinesisEvent($event);
 $this->logger->info("Processing records");
 $records = $kinesisEvent->getRecords();

 $failedRecords = [];
 foreach ($records as $record) {
 try {
 $data = $record->getData();
 $this->logger->info(json_encode($data));
 // TODO: Do interesting work based on the new data
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $failedRecords[] = $record->getSequenceNumber();
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");

 // change format for the response
 $failures = array_map(
 fn(string $sequenceNumber) => ['itemIdentifier' => $sequenceNumber],
 $failedRecords
);

 return [
 'batchItemFailures' => $failures
];
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Reporting batch item failures 1219

Amazon Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def handler(event, context):
 records = event.get("Records")
 curRecordSequenceNumber = ""

 for record in records:
 try:
 # Process your record
 curRecordSequenceNumber = record["kinesis"]["sequenceNumber"]
 except Exception as e:
 # Return failed record's sequence number
 return {"batchItemFailures":[{"itemIdentifier":
 curRecordSequenceNumber}]}

 return {"batchItemFailures":[]}

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting batch item failures 1220

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling
https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

Reporting Kinesis batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

def lambda_handler(event:, context:)
 batch_item_failures = []

 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data
 rescue StandardError => err
 puts "An error occurred #{err}"
 # Since we are working with streams, we can return the failed item
 immediately.
 # Lambda will immediately begin to retry processing from this failed item
 onwards.
 return { batchItemFailures: [{ itemIdentifier: record['kinesis']
['sequenceNumber'] }] }
 end
 end

 puts "Successfully processed #{event['Records'].length} records."
 { batchItemFailures: batch_item_failures }
end

def get_record_data_async(payload)
 data = Base64.decode64(payload['data']).force_encoding('utf-8')
 # Placeholder for actual async work
 sleep(1)
 data
end

Reporting batch item failures 1221

Amazon Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::{
 event::kinesis::KinesisEvent,
 kinesis::KinesisEventRecord,
 streams::{KinesisBatchItemFailure, KinesisEventResponse},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<KinesisEvent>) ->
 Result<KinesisEventResponse, Error> {
 let mut response = KinesisEventResponse {
 batch_item_failures: vec![],
 };

 if event.payload.records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(response);
 }

 for record in &event.payload.records {
 tracing::info!(
 "EventId: {}",
 record.event_id.as_deref().unwrap_or_default()
);

 let record_processing_result = process_record(record);

 if record_processing_result.is_err() {
 response.batch_item_failures.push(KinesisBatchItemFailure {
 item_identifier: record.kinesis.sequence_number.clone(),

Reporting batch item failures 1222

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

 });
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return Ok(response);
 }
 }

 tracing::info!(
 "Successfully processed {} records",
 event.payload.records.len()
);

 Ok(response)
}

fn process_record(record: &KinesisEventRecord) -> Result<(), Error> {
 let record_data = std::str::from_utf8(record.kinesis.data.as_slice());

 if let Some(err) = record_data.err() {
 tracing::error!("Error: {}", err);
 return Err(Error::from(err));
 }

 let record_data = record_data.unwrap_or_default();

 // do something interesting with the data
 tracing::info!("Data: {}", record_data);

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

Reporting batch item failures 1223

Amazon Lambda Developer Guide

 run(service_fn(function_handler)).await
}

Amazon Kinesis configuration parameters

All Lambda event source types share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
Kinesis.

Event source parameters that apply to Kinesis

Parameter Required Default Notes

BatchSize N 100 Maximum: 10,000

BisectBatchOnFunct
ionError

N false

DestinationConfig N standard Amazon
SQS queue or
standard Amazon
SNS topic destination
for discarded records

Enabled N true

EventSourceArn Y ARN of the data
stream or a stream
consumer

FunctionName Y

MaximumBa
tchingWindowInSeco
nds

N 0

MaximumRe
cordAgeInSeconds

N -1 -1 means infinite:
Lambda doesn't
discard records

Amazon Kinesis configuration parameters 1224

https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html

Amazon Lambda Developer Guide

Parameter Required Default Notes

(Kinesis Data Streams
data retention
settings still apply)

Minimum: -1

Maximum: 604,800

MaximumRe
tryAttempts

N -1 -1 means infinite:
failed records are
retried until the
record expires

Minimum: -1

Maximum: 10,000

ParallelizationFactor N 1 Maximum: 10

StartingPosition Y AT_TIMESTAMP,
TRIM_HORIZON, or
LATEST

StartingPositionTi
mestamp

N Only valid if
StartingPosition is set
to AT_TIMESTAMP.
The time from which
to start reading, in
Unix time seconds

TumblingWindowInSe
conds

N Minimum: 0

Maximum: 900

Tutorial: Using Amazon Lambda with Amazon Kinesis

In this tutorial, you create a Lambda function to consume events from a Kinesis stream.

Tutorial 1225

https://docs.amazonaws.cn/streams/latest/dev/kinesis-extended-retention.html
https://docs.amazonaws.cn/streams/latest/dev/kinesis-extended-retention.html
https://docs.amazonaws.cn/streams/latest/dev/kinesis-extended-retention.html

Amazon Lambda Developer Guide

1. Custom app writes records to the stream.

2. Amazon Lambda polls the stream and, when it detects new records in the stream, invokes your
Lambda function.

3. Amazon Lambda runs the Lambda function by assuming the execution role you specified at the
time you created the Lambda function.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the Amazon Command Line Interface (Amazon CLI)
version 2. Commands and the expected output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

Create the execution role

Create the execution role that gives your function permission to access Amazon resources.

Tutorial 1226

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Lambda Developer Guide

To create an execution role

1. Open the roles page in the IAM console.

2. Choose Create role.

3. Create a role with the following properties.

• Trusted entity – Amazon Lambda.

• Permissions – AWSLambdaKinesisExecutionRole.

• Role name – lambda-kinesis-role.

The AWSLambdaKinesisExecutionRole policy has the permissions that the function needs to read
items from Kinesis and write logs to CloudWatch Logs.

Create the function

Create a Lambda function that processes your Kinesis messages. The function code logs the event
ID and event data of the Kinesis record to CloudWatch Logs.

This tutorial uses the Node.js 18.x runtime, but we've also provided example code in other runtime
languages. You can select the tab in the following box to see code for the runtime you're interested
in. The JavaScript code you'll use in this step is in the first example shown in the JavaScript tab.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

Tutorial 1227

https://console.amazonaws.cn/iam/home#/roles
https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace KinesisIntegrationSampleCode;

public class Function
{
 // Powertools Logger requires an environment variables against your function
 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task FunctionHandler(KinesisEvent evnt, ILambdaContext context)
 {
 if (evnt.Records.Count == 0)
 {
 Logger.LogInformation("Empty Kinesis Event received");
 return;
 }

 foreach (var record in evnt.Records)
 {
 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 throw;
 }
 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 }

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {

Tutorial 1228

Amazon Lambda Developer Guide

 byte[] bytes = record.Data.ToArray();
 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work
 return data;
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "log"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, kinesisEvent events.KinesisEvent) error {
 if len(kinesisEvent.Records) == 0 {
 log.Printf("empty Kinesis event received")
 return nil
 }

 for _, record := range kinesisEvent.Records {
 log.Printf("processed Kinesis event with EventId: %v", record.EventID)
 recordDataBytes := record.Kinesis.Data
 recordDataText := string(recordDataBytes)
 log.Printf("record data: %v", recordDataText)

Tutorial 1229

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

 // TODO: Do interesting work based on the new data
 }
 log.Printf("successfully processed %v records", len(kinesisEvent.Records))
 return nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent;

public class Handler implements RequestHandler<KinesisEvent, Void> {
 @Override
 public Void handleRequest(final KinesisEvent event, final Context context) {
 LambdaLogger logger = context.getLogger();
 if (event.getRecords().isEmpty()) {
 logger.log("Empty Kinesis Event received");
 return null;
 }
 for (KinesisEvent.KinesisEventRecord record : event.getRecords()) {
 try {

Tutorial 1230

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda#readme

Amazon Lambda Developer Guide

 logger.log("Processed Event with EventId: "+record.getEventID());
 String data = new String(record.getKinesis().getData().array());
 logger.log("Data:"+ data);
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex) {
 logger.log("An error occurred:"+ex.getMessage());
 throw ex;
 }
 }
 logger.log("Successfully processed:"+event.getRecords().size()+"
 records");
 return null;
 }

}

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 console.error(`An error occurred ${err}`);
 throw err;

Tutorial 1231

https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

Consuming a Kinesis event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 logger.info(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 logger.error(`An error occurred ${err}`);
 throw err;

Tutorial 1232

Amazon Lambda Developer Guide

 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 }
};

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Kinesis event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Kinesis\KinesisEvent;
use Bref\Event\Kinesis\KinesisHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends KinesisHandler
{
 private StderrLogger $logger;

Tutorial 1233

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handleKinesis(KinesisEvent $event, Context $context): void
 {
 $this->logger->info("Processing records");
 $records = $event->getRecords();
 foreach ($records as $record) {
 $data = $record->getData();
 $this->logger->info(json_encode($data));
 // TODO: Do interesting work based on the new data

 // Any exception thrown will be logged and the invocation will be
 marked as failed
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Python.

Tutorial 1234

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import base64
def lambda_handler(event, context):

 for record in event['Records']:
 try:
 print(f"Processed Kinesis Event - EventID: {record['eventID']}")
 record_data = base64.b64decode(record['kinesis']
['data']).decode('utf-8')
 print(f"Record Data: {record_data}")
 # TODO: Do interesting work based on the new data
 except Exception as e:
 print(f"An error occurred {e}")
 raise e
 print(f"Successfully processed {len(event['Records'])} records.")

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Kinesis event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

def lambda_handler(event:, context:)
 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data

Tutorial 1235

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

 rescue => err
 $stderr.puts "An error occurred #{err}"
 raise err
 end
 end
 puts "Successfully processed #{event['Records'].length} records."
end

def get_record_data_async(payload)
 data = Base64.decode64(payload['data']).force_encoding('UTF-8')
 # Placeholder for actual async work
 # You can use Ruby's asynchronous programming tools like async/await or fibers
 here.
 return data
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Kinesis event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::kinesis::KinesisEvent;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<KinesisEvent>) -> Result<(), Error>
 {
 if event.payload.records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(());
 }

 event.payload.records.iter().for_each(|record| {

Tutorial 1236

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

 tracing::info!("EventId:
 {}",record.event_id.as_deref().unwrap_or_default());

 let record_data = std::str::from_utf8(&record.kinesis.data);

 match record_data {
 Ok(data) => {
 // log the record data
 tracing::info!("Data: {}", data);
 }
 Err(e) => {
 tracing::error!("Error: {}", e);
 }
 }
 });

 tracing::info!(
 "Successfully processed {} records",
 event.payload.records.len()
);

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

To create the function

1. Create a directory for the project, and then switch to that directory.

Tutorial 1237

Amazon Lambda Developer Guide

mkdir kinesis-tutorial
cd kinesis-tutorial

2. Copy the sample JavaScript code into a new file named index.js.

3. Create a deployment package.

zip function.zip index.js

4. Create a Lambda function with the create-function command.

aws lambda create-function --function-name ProcessKinesisRecords \
--zip-file fileb://function.zip --handler index.handler --runtime nodejs18.x \
--role arn:aws-cn:iam::111122223333:role/lambda-kinesis-role

Test the Lambda function

Invoke your Lambda function manually using the invoke Amazon Lambda CLI command and a
sample Kinesis event.

To test the Lambda function

1. Copy the following JSON into a file and save it as input.txt.

{
 "Records": [
 {
 "kinesis": {
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "1",
 "sequenceNumber":
 "49590338271490256608559692538361571095921575989136588898",
 "data": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "approximateArrivalTimestamp": 1545084650.987
 },
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000006:49590338271490256608559692538361571095921575989136588898",
 "eventName": "aws:kinesis:record",

Tutorial 1238

Amazon Lambda Developer Guide

 "invokeIdentityArn": "arn:aws-cn:iam::111122223333:role/lambda-kinesis-
role",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws-cn:kinesis:us-east-2:111122223333:stream/
lambda-stream"
 }
]
}

2. Use the invoke command to send the event to the function.

aws lambda invoke --function-name ProcessKinesisRecords \
--cli-binary-format raw-in-base64-out \
--payload file://input.txt outputfile.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

The response is saved to out.txt.

Create a Kinesis stream

Use the create-stream command to create a stream.

aws kinesis create-stream --stream-name lambda-stream --shard-count 1

Run the following describe-stream command to get the stream ARN.

aws kinesis describe-stream --stream-name lambda-stream

You should see the following output:

{
 "StreamDescription": {
 "Shards": [
 {
 "ShardId": "shardId-000000000000",
 "HashKeyRange": {

Tutorial 1239

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

 "StartingHashKey": "0",
 "EndingHashKey": "340282366920746074317682119384634633455"
 },
 "SequenceNumberRange": {
 "StartingSequenceNumber":
 "49591073947768692513481539594623130411957558361251844610"
 }
 }
],
 "StreamARN": "arn:aws-cn:kinesis:us-east-1:111122223333:stream/lambda-stream",
 "StreamName": "lambda-stream",
 "StreamStatus": "ACTIVE",
 "RetentionPeriodHours": 24,
 "EnhancedMonitoring": [
 {
 "ShardLevelMetrics": []
 }
],
 "EncryptionType": "NONE",
 "KeyId": null,
 "StreamCreationTimestamp": 1544828156.0
 }
}

You use the stream ARN in the next step to associate the stream with your Lambda function.

Add an event source in Amazon Lambda

Run the following Amazon CLI add-event-source command.

aws lambda create-event-source-mapping --function-name ProcessKinesisRecords \
--event-source arn:aws-cn:kinesis:us-east-1:111122223333:stream/lambda-stream \
--batch-size 100 --starting-position LATEST

Note the mapping ID for later use. You can get a list of event source mappings by running the
list-event-source-mappings command.

aws lambda list-event-source-mappings --function-name ProcessKinesisRecords \
--event-source arn:aws-cn:kinesis:us-east-1:111122223333:stream/lambda-stream

In the response, you can verify the status value is enabled. Event source mappings can be disabled
to pause polling temporarily without losing any records.

Tutorial 1240

Amazon Lambda Developer Guide

Test the setup

To test the event source mapping, add event records to your Kinesis stream. The --data value is a
string that the CLI encodes to base64 prior to sending it to Kinesis. You can run the same command
more than once to add multiple records to the stream.

aws kinesis put-record --stream-name lambda-stream --partition-key 1 \
--data "Hello, this is a test."

Lambda uses the execution role to read records from the stream. Then it invokes your Lambda
function, passing in batches of records. The function decodes data from each record and logs it,
sending the output to CloudWatch Logs. View the logs in the CloudWatch console.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

To delete the Kinesis stream

1. Sign in to the Amazon Web Services Management Console and open the Kinesis console at
https://console.amazonaws.cn/kinesis.

Tutorial 1241

https://console.amazonaws.cn/cloudwatch
https://console.amazonaws.cn/iam/home#/roles
https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/kinesis

Amazon Lambda Developer Guide

2. Select the stream you created.

3. Choose Actions, Delete.

4. Enter delete in the text input field.

5. Choose Delete.

Sample function code

To process events from Amazon Kinesis, iterate through the records included in the event object
and decode the Base64-encoded data included in each.

Note

The code on this page does not support aggregated records. You can disable aggregation in
the Kinesis Producer Library configuration, or use the Kinesis Record Aggregation library to
deaggregate records.

Sample code is available for the following languages.

Topics

• Node.js 12.x

• Java 11

• C#

• Python 3

• Go

Node.js 12.x

The following example code receives a Kinesis event input and processes the messages that it
contains. For illustration, the code writes some of the incoming event data to CloudWatch Logs.

Example index.js

console.log('Loading function');

Sample code 1242

https://docs.amazonaws.cn/kinesis/latest/dev/kinesis-kpl-concepts.html#kinesis-kpl-concepts-aggretation
https://docs.amazonaws.cn/kinesis/latest/dev/kinesis-kpl-config.html
https://github.com/awslabs/kinesis-aggregation

Amazon Lambda Developer Guide

exports.handler = function(event, context) {
 //console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(function(record) {
 // Kinesis data is base64 encoded so decode here
 var payload = Buffer.from(record.kinesis.data, 'base64').toString('ascii');
 console.log('Decoded payload:', payload);
 });
};

Zip up the sample code to create a deployment package. For instructions, see Deploy Node.js
Lambda functions with .zip file archives.

Java 11

The following is example Java code that receives Kinesis event record data as input and processes
it. For illustration, the code writes some of the incoming event data to CloudWatch Logs.

In the code, recordHandler is the handler. The handler uses the predefined KinesisEvent class
that is defined in the aws-lambda-java-events library.

Example ProcessKinesisEvents.java

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;

public class ProcessKinesisRecords implements RequestHandler<KinesisEvent, Void>{
 @Override
 public Void handleRequest(KinesisEvent event, Context context)
 {
 for(KinesisEventRecord rec : event.getRecords()) {
 System.out.println(new String(rec.getKinesis().getData().array()));
 }
 return null;
 }
}

If the handler returns normally without exceptions, Lambda considers the input batch of records
as processed successfully and begins reading new records in the stream. If the handler throws an

Sample code 1243

Amazon Lambda Developer Guide

exception, Lambda considers the input batch of records as not processed and invokes the function
with the same batch of records again.

Dependencies

• aws-lambda-java-core

• aws-lambda-java-events

• aws-java-sdk

Build the code with the Lambda library dependencies to create a deployment package. For
instructions, see Deploy Java Lambda functions with .zip or JAR file archives.

C#

The following is example C# code that receives Kinesis event record data as input and processes it.
For illustration, the code writes some of the incoming event data to CloudWatch Logs.

In the code, HandleKinesisRecord is the handler. The handler uses the predefined
KinesisEvent class that is defined in the Amazon.Lambda.KinesisEvents library.

Example ProcessingKinesisEvents.cs

using System;
using System.IO;
using System.Text;

using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;

namespace KinesisStreams
{
 public class KinesisSample
 {
 [LambdaSerializer(typeof(JsonSerializer))]
 public void HandleKinesisRecord(KinesisEvent kinesisEvent)
 {
 Console.WriteLine($"Beginning to process {kinesisEvent.Records.Count}
 records...");

 foreach (var record in kinesisEvent.Records)
 {

Sample code 1244

Amazon Lambda Developer Guide

 Console.WriteLine($"Event ID: {record.EventId}");
 Console.WriteLine($"Event Name: {record.EventName}");

 string recordData = GetRecordContents(record.Kinesis);
 Console.WriteLine($"Record Data:");
 Console.WriteLine(recordData);
 }
 Console.WriteLine("Stream processing complete.");
 }

 private string GetRecordContents(KinesisEvent.Record streamRecord)
 {
 using (var reader = new StreamReader(streamRecord.Data, Encoding.ASCII))
 {
 return reader.ReadToEnd();
 }
 }
 }
}

Replace the Program.cs in a .NET Core project with the above sample. For instructions, see Build
and deploy C# Lambda functions with .zip file archives.

Python 3

The following is example Python code that receives Kinesis event record data as input and
processes it. For illustration, the code writes to some of the incoming event data to CloudWatch
Logs.

Example ProcessKinesisRecords.py

from __future__ import print_function
#import json
import base64
def lambda_handler(event, context):
 for record in event['Records']:
 #Kinesis data is base64 encoded so decode here
 payload=base64.b64decode(record["kinesis"]["data"])
 print("Decoded payload: " + str(payload))

Zip up the sample code to create a deployment package. For instructions, see Working with .zip file
archives for Python Lambda functions.

Sample code 1245

Amazon Lambda Developer Guide

Go

The following is example Go code that receives Kinesis event record data as input and processes it.
For illustration, the code writes to some of the incoming event data to CloudWatch Logs.

Example ProcessKinesisRecords.go

import (
 "strings"
 "github.com/aws/aws-lambda-go/events"
)

func handler(ctx context.Context, kinesisEvent events.KinesisEvent) {
 for _, record := range kinesisEvent.Records {
 kinesisRecord := record.Kinesis
 dataBytes := kinesisRecord.Data
 dataText := string(dataBytes)

 fmt.Printf("%s Data = %s \n", record.EventName, dataText)
 }
}

Build the executable with go build and create a deployment package. For instructions, see
Deploy Go Lambda functions with .zip file archives.

Amazon SAM template for a Kinesis application

You can build this application using Amazon SAM. To learn more about creating Amazon SAM
templates, see Amazon SAM template basics in the Amazon Serverless Application Model Developer
Guide.

Below is a sample Amazon SAM template for the Lambda application from the tutorial. The
function and handler in the template are for the Node.js code. If you use a different code sample,
update the values accordingly.

Example template.yaml - Kinesis stream

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
 LambdaFunction:

Sample template 1246

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-template-basics.html

Amazon Lambda Developer Guide

 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs18.x
 Timeout: 10
 Tracing: Active
 Events:
 Stream:
 Type: Kinesis
 Properties:
 Stream: !GetAtt stream.Arn
 BatchSize: 100
 StartingPosition: LATEST
 stream:
 Type: AWS::Kinesis::Stream
 Properties:
 ShardCount: 1
Outputs:
 FunctionName:
 Description: "Function name"
 Value: !Ref LambdaFunction
 StreamARN:
 Description: "Stream ARN"
 Value: !GetAtt stream.Arn

The template creates a Lambda function, a Kinesis stream, and an event source mapping. The event
source mapping reads from the stream and invokes the function.

To use an HTTP/2 stream consumer, create the consumer in the template and configure the event
source mapping to read from the consumer instead of from the stream.

Example template.yaml - Kinesis stream consumer

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: A function that processes data from a Kinesis stream.
Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs12.x
 Timeout: 10

Sample template 1247

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

 Tracing: Active
 Events:
 Stream:
 Type: Kinesis
 Properties:
 Stream: !GetAtt streamConsumer.ConsumerARN
 StartingPosition: LATEST
 BatchSize: 100
 stream:
 Type: "AWS::Kinesis::Stream"
 Properties:
 ShardCount: 1
 streamConsumer:
 Type: "AWS::Kinesis::StreamConsumer"
 Properties:
 StreamARN: !GetAtt stream.Arn
 ConsumerName: "TestConsumer"
Outputs:
 FunctionName:
 Description: "Function name"
 Value: !Ref function
 StreamARN:
 Description: "Stream ARN"
 Value: !GetAtt stream.Arn
 ConsumerARN:
 Description: "Stream consumer ARN"
 Value: !GetAtt streamConsumer.ConsumerARN

For information on how to package and deploy your serverless application using the package and
deploy commands, see Deploying serverless applications in the Amazon Serverless Application
Model Developer Guide.

Sample template 1248

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-deploying.html

Amazon Lambda Developer Guide

Using Lambda with Kubernetes

You can deploy and manage Lambda functions with the Kubernetes API using Amazon Controllers
for Kubernetes (ACK) or Crossplane.

Amazon Controllers for Kubernetes (ACK)

You can use ACK to deploy and manage Amazon resources from the Kubernetes API. Through
ACK, Amazon provides open-source custom controllers for Amazon services such as Lambda,
Amazon Elastic Container Registry (Amazon ECR), Amazon Simple Storage Service (Amazon S3),
and Amazon SageMaker. Each supported Amazon service has its own custom controller. In your
Kubernetes cluster, install a controller for each Amazon service that you want to use. Then, create a
Custom Resource Definition (CRD) to define the Amazon resources.

We recommend that you use Helm 3.8 or later to install ACK controllers. Every ACK controller
comes with its own Helm chart, which installs the controller, CRDs, and Kubernetes RBAC rules. For
more information, see Install an ACK Controller in the ACK documentation.

After you create the ACK custom resource, you can use it like any other built-in Kubernetes object.
For example, you can deploy and manage Lambda functions with your preferred Kubernetes
toolchains, including kubectl.

Here are some example use cases for provisioning Lambda functions through ACK:

• Your organization uses role-based access control (RBAC) and IAM roles for service accounts to
create permissions boundaries. With ACK, you can reuse this security model for Lambda without
having to create new users and policies.

• Your organization has a DevOps process to deploy resources into an Amazon Elastic Kubernetes
Service (Amazon EKS) cluster using Kubernetes manifests. With ACK, you can use a manifest to
provision Lambda functions without creating separate infrastructure as code templates.

For more information about using ACK, see the Lambda tutorial in the ACK documentation.

Crossplane

Crossplane is an open-source Cloud Native Computing Foundation (CNCF) project that uses
Kubernetes to manage cloud infrastructure resources. With Crossplane, developers can request
infrastructure without needing to understand its complexities. Platform teams retain control over
how the infrastructure is provisioned and managed.

Kubernetes 1249

https://aws-controllers-k8s.github.io/community/docs/community/overview/
https://aws-controllers-k8s.github.io/community/docs/community/overview/
https://docs.crossplane.io/latest/getting-started/provider-aws/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://helm.sh/docs/intro/install/
https://aws-controllers-k8s.github.io/community/docs/user-docs/install/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://docs.amazonaws.cn/eks/latest/userguide/iam-roles-for-service-accounts.html
https://aws-controllers-k8s.github.io/community/docs/tutorials/lambda-oci-example/
https://docs.crossplane.io/latest/getting-started/provider-aws/

Amazon Lambda Developer Guide

Using Crossplane, you can deploy and manage Lambda functions with your preferred Kubernetes
toolchains such as kubectl, and any CI/CD pipeline that can deploy manifests to Kubernetes. Here
are some example use cases for provisioning Lambda functions through Crossplane:

• Your organization wants to enforce compliance by ensuring that Lambda functions have the
correct tags. Platform teams can use Crossplane Compositions to define this policy through API
abstractions. Developers can then use these abstractions to deploy Lambda functions with tags.

• Your project uses GitOps with Kubernetes. In this model, Kubernetes continuously reconciles
the git repository (desired state) with the resources running inside the cluster (current state). If
there are differences, the GitOps process automatically makes changes to the cluster. You can
use GitOps with Kubernetes for deploying and managing Lambda functions through Crossplane,
using familiar Kubernetes tools and concepts such as CRDs and Controllers.

To learn more about using Crossplane with Lambda, see the following:

• Amazon Blueprints for Crossplane: This repository includes examples of how to use Crossplane to
deploy Amazon resources, including Lambda functions.

Note

Amazon Blueprints for Crossplane are under active development and should not be used
in production.

• Deploying Lambda with Amazon EKS and Crossplane: This video demonstrates an advanced
example of deploying an Amazon serverless architecture with Crossplane, exploring the design
from both the developer and platform perspectives.

Crossplane 1250

https://kubernetes.io/docs/reference/kubectl/
https://docs.crossplane.io/latest/getting-started/introduction/#compositions
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/concepts/architecture/controller/
https://github.com/awslabs/crossplane-on-eks/blob/main/examples/upbound-aws-provider/README.md#deploy-the-examples
https://www.youtube.com/watch?v=m-9KLq29K4k

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon Lex

You can use Amazon Lex to integrate a conversation bot into your application. The Amazon Lex bot
provides a conversational interface with your users. Amazon Lex provides prebuilt integration with
Lambda, which enables you to use a Lambda function with your Amazon Lex bot.

When you configure an Amazon Lex bot, you can specify a Lambda function to perform validation,
fulfillment, or both. For validation, Amazon Lex invokes the Lambda function after each response
from the user. The Lambda function can validate the response and provide corrective feedback to
the user, if necessary. For fulfillment, Amazon Lex invokes the Lambda function to fulfill the user
request after the bot successfully collects all of the required information and receives confirmation
from the user.

You can manage the concurrency of your Lambda function to control the maximum number of
simultaneous bot conversations that you serve. The Amazon Lex API returns an HTTP 429 status
code (Too Many Requests) if the function is at maximum concurrency.

The API returns an HTTP 424 status code (Dependency Failed Exception) if the Lambda function
throws an exception.

The Amazon Lex bot invokes your Lambda function synchronously. The event parameter contains
information about the bot and the value of each slot in the dialog. For definitions of the event and
response fields, see Lambda event and response format in the Amazon Lex Developer Guide. The
invocationSource parameter in the Amazon Lex message event indicates whether the Lambda
function should validate the inputs (DialogCodeHook) or fulfill the intent (FulfillmentCodeHook).

For an example tutorial that shows how to use Lambda with Amazon Lex, see Exercise 1: Create
Amazon Lex bot using a blueprint in the Amazon Lex Developer Guide.

Roles and permissions

You need to configure a service-linked role as your function's execution role. Amazon Lex defines
the service-linked role with predefined permissions. When you create an Amazon Lex bot using the
console, the service-linked role is created automatically. To create a service-linked role with the
Amazon CLI, use the create-service-linked-role command.

aws iam create-service-linked-role --aws-service-name lex.amazonaws.com

This command creates the following role.

Lex 1251

https://docs.amazonaws.cn/lex/latest/dg/lambda-input-response-format.html
https://docs.amazonaws.cn/lex/latest/dg/gs-bp.html
https://docs.amazonaws.cn/lex/latest/dg/gs-bp.html

Amazon Lambda Developer Guide

{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "lex.amazonaws.com"
 }
 }
]
 },
 "RoleName": "AWSServiceRoleForLexBots",
 "Path": "/aws-service-role/lex.amazonaws.com/",
 "Arn": "arn:aws-cn:iam::account-id:role/aws-service-role/lex.amazonaws.com/
AWSServiceRoleForLexBots"
}

If your Lambda function uses other Amazon services, you need to add the corresponding
permissions to the service-linked role.

You use a resource-based permissions policy to allow the Amazon Lex bot to invoke your Lambda
function. If you use the Amazon Lex console, the permissions policy is created automatically. From
the Amazon CLI, use the Lambda add-permission command to set the permission.

For Amazon Lex V2, run the following command. In the source ARN, replace us-east-1 with the
Amazon Web Services Region your Amazon Lex bot is in, and use your own Amazon Web Services
account number and bot alias.

aws lambda add-permission \
 --function-name LexCodeHook \
 --statement-id LexInvoke-MyBot \
 --action lambda:InvokeFunction \
 --principal lex.amazonaws.com \
 --source-arn "arn:aws-cn:lex:us-east-1:123456789012:bot-alias/MYBOT/MYBOTALIAS"

Roles and permissions 1252

Amazon Lambda Developer Guide

You can also use Amazon Lex V1 to invoke a Lambda function. For Amazon Lex V1, run the
following command. In the source ARN , replace us-east-1 with the Amazon Web Services Region
your Amazon Lex intent is in and use your own Amazon Web Services account number and intent
name.

aws lambda add-permission \
 --function-name LexCodeHook \
 --statement-id LexInvoke-MyIntent \
 --action lambda:InvokeFunction \
 --principal lex.amazonaws.com \
 --source-arn "arn:aws-cn:lex:us-east-1:123456789012 ID:intent:MYINTENT:*"

Note that Amazon Lex V1 is no longer maintained. We recommend that you use Amazon Lex V2.

Roles and permissions 1253

Amazon Lambda Developer Guide

Using Lambda with Amazon MQ

Note

If you want to send data to a target other than a Lambda function or enrich the data before
sending it, see Amazon EventBridge Pipes.

Amazon MQ is a managed message broker service for Apache ActiveMQ and RabbitMQ. A message
broker enables software applications and components to communicate using various programming
languages, operating systems, and formal messaging protocols through either topic or queue event
destinations.

Amazon MQ can also manage Amazon Elastic Compute Cloud (Amazon EC2) instances on your
behalf by installing ActiveMQ or RabbitMQ brokers and by providing different network topologies
and other infrastructure needs.

You can use a Lambda function to process records from your Amazon MQ message broker. Lambda
invokes your function through an event source mapping, a Lambda resource that reads messages
from your broker and invokes the function synchronously.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of batches can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the Amazon Knowledge Center.

The Amazon MQ event source mapping has the following configuration restrictions:

• Concurrency – Lambda functions that use an Amazon MQ event source mapping have a
default maximum concurrency setting. For ActiveMQ, the Lambda service limits the number of
concurrent execution environments to five. For RabbitMQ, the number of concurrent execution
environments is limited to 1. Even if you change your function's reserved or provisioned
concurrency settings, the Lambda service won't make more execution environments available. To
request an increase in the default maximum concurrency, contact Amazon Web Services Support.

MQ 1254

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes.html
https://activemq.apache.org/
https://www.rabbitmq.com
https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent

Amazon Lambda Developer Guide

• Cross account – Lambda does not support cross-account processing. You cannot use Lambda to
process records from an Amazon MQ message broker that is in a different Amazon Web Services
account.

• Authentication – For ActiveMQ, only the ActiveMQ SimpleAuthenticationPlugin is supported.
For RabbitMQ, only the PLAIN authentication mechanism is supported. Users must use
Amazon Secrets Manager to manage their credentials. For more information about ActiveMQ
authentication, see Integrating ActiveMQ brokers with LDAP in the Amazon MQ Developer Guide.

• Connection quota – Brokers have a maximum number of allowed connections per wire-level
protocol. This quota is based on the broker instance type. For more information, see the Brokers
section of Quotas in Amazon MQ in the Amazon MQ Developer Guide.

• Connectivity – You can create brokers in a public or private virtual private cloud (VPC). For
private VPCs, your Lambda function needs access to the VPC to receive messages. For more
information, see the section called “Network configuration” later in this topic.

• Event destinations – Only queue destinations are supported. However, you can use a virtual
topic, which behaves as a topic internally while interacting with Lambda as a queue. For more
information, see Virtual Destinations on the Apache ActiveMQ website, and Virtual Hosts on the
RabbitMQ website.

• Network topology – For ActiveMQ, only one single-instance or standby broker is supported per
event source mapping. For RabbitMQ, only one single-instance broker or cluster deployment is
supported per event source mapping. Single-instance brokers require a failover endpoint. For
more information about these broker deployment modes, see Active MQ Broker Architecture and
Rabbit MQ Broker Architecturein the Amazon MQ Developer Guide.

• Protocols – Supported protocols depend on the type of Amazon MQ integration.

• For ActiveMQ integrations, Lambda consumes messages using the OpenWire/Java Message
Service (JMS) protocol. No other protocols are supported for consuming messages. Within the
JMS protocol, only TextMessage and BytesMessage are supported. Lambda also supports
JMS custom properties. For more information about the OpenWire protocol, see OpenWire on
the Apache ActiveMQ website.

• For RabbitMQ integrations, Lambda consumes messages using the AMQP 0-9-1 protocol.
No other protocols are supported for consuming messages. For more information about
RabbitMQ's implementation of the AMQP 0-9-1 protocol, see AMQP 0-9-1 Complete
Reference Guide on the RabbitMQ website.

MQ 1255

https://activemq.apache.org/security#simple-authentication-plugin
https://www.rabbitmq.com/access-control.html#mechanisms
https://docs.amazonaws.cn/amazon-mq/latest/developer-guide/security-authentication-authorization.html
https://docs.amazonaws.cn/amazon-mq/latest/developer-guide/amazon-mq-limits.html#broker-limits
https://activemq.apache.org/virtual-destinations
https://www.rabbitmq.com/vhosts.html
https://docs.amazonaws.cn/amazon-mq/latest/developer-guide/amazon-mq-broker-architecture.html
https://docs.amazonaws.cn/amazon-mq/latest/developer-guide/rabbitmq-broker-architecture.html
https://activemq.apache.org/components/cms/api_docs/activemqcpp-3.6.0/html/classactivemq_1_1commands_1_1_active_m_q_text_message.html
https://activemq.apache.org/components/cms/api_docs/activemqcpp-3.9.0/html/classactivemq_1_1commands_1_1_active_m_q_bytes_message.html
https://activemq.apache.org/openwire.html
https://www.rabbitmq.com/amqp-0-9-1-reference.html
https://www.rabbitmq.com/amqp-0-9-1-reference.html

Amazon Lambda Developer Guide

Lambda automatically supports the latest versions of ActiveMQ and RabbitMQ that Amazon MQ
supports. For the latest supported versions, see Amazon MQ release notes in the Amazon MQ
Developer Guide.

Note

By default, Amazon MQ has a weekly maintenance window for brokers. During that window
of time, brokers are unavailable. For brokers without standby, Lambda cannot process any
messages during that window.

Sections

• Lambda consumer group

• Execution role permissions

• Network configuration

• Add permissions and create the event source mapping

• Event source mapping API

• Event source mapping errors

• Amazon MQ and RabbitMQ configuration parameters

Lambda consumer group

To interact with Amazon MQ, Lambda creates a consumer group which can read from your Amazon
MQ brokers. The consumer group is created with the same ID as the event source mapping UUID.

For Amazon MQ event sources, Lambda batches records together and sends them to your function
in a single payload. To control behavior, you can configure the batching window and batch size.
Lambda pulls messages until it processes the payload size maximum of 6 MB, the batching window
expires, or the number of records reaches the full batch size. For more information, see Batching
behavior.

The consumer group retrieves the messages as a BLOB of bytes, base64-encodes them into a single
JSON payload, and then invokes your function. If your function returns an error for any of the
messages in a batch, Lambda retries the whole batch of messages until processing succeeds or the
messages expire.

Lambda consumer group 1256

https://docs.amazonaws.cn/amazon-mq/latest/developer-guide/amazon-mq-release-notes.html

Amazon Lambda Developer Guide

Note

While Lambda functions typically have a maximum timeout limit of 15 minutes, event
source mappings for Amazon MSK, self-managed Apache Kafka, Amazon DocumentDB, and
Amazon MQ for ActiveMQ and RabbitMQ only support functions with maximum timeout
limits of 14 minutes. This constraint ensures that the event source mapping can properly
handle function errors and retries.

You can monitor a given function's concurrency usage using the ConcurrentExecutions
metric in Amazon CloudWatch. For more information about concurrency, see the section called
“Configuring reserved concurrency”.

Example Amazon MQ record events

ActiveMQ

{
 "eventSource": "aws:mq",
 "eventSourceArn": "arn:aws:mq:us-
west-2:111122223333:broker:test:b-9bcfa592-423a-4942-879d-eb284b418fc8",
 "messages": [
 {
 "messageID": "ID:b-9bcfa592-423a-4942-879d-eb284b418fc8-1.mq.us-
west-2.amazonaws.com-37557-1234520418293-4:1:1:1:1",
 "messageType": "jms/text-message",
 "deliveryMode": 1,
 "replyTo": null,
 "type": null,
 "expiration": "60000",
 "priority": 1,
 "correlationId": "myJMSCoID",
 "redelivered": false,
 "destination": {
 "physicalName": "testQueue"
 },
 "data":"QUJDOkFBQUE=",
 "timestamp": 1598827811958,
 "brokerInTime": 1598827811958,
 "brokerOutTime": 1598827811959,
 "properties": {
 "index": "1",

Lambda consumer group 1257

Amazon Lambda Developer Guide

 "doAlarm": "false",
 "myCustomProperty": "value"
 }
 },
 {
 "messageID": "ID:b-9bcfa592-423a-4942-879d-eb284b418fc8-1.mq.us-
west-2.amazonaws.com-37557-1234520418293-4:1:1:1:1",
 "messageType": "jms/bytes-message",
 "deliveryMode": 1,
 "replyTo": null,
 "type": null,
 "expiration": "60000",
 "priority": 2,
 "correlationId": "myJMSCoID1",
 "redelivered": false,
 "destination": {
 "physicalName": "testQueue"
 },
 "data":"LQaGQ82S48k=",
 "timestamp": 1598827811958,
 "brokerInTime": 1598827811958,
 "brokerOutTime": 1598827811959,
 "properties": {
 "index": "1",
 "doAlarm": "false",
 "myCustomProperty": "value"
 }
 }
]
}

RabbitMQ

{
 "eventSource": "aws:rmq",
 "eventSourceArn": "arn:aws-cn:mq:us-
west-2:111122223333:broker:pizzaBroker:b-9bcfa592-423a-4942-879d-eb284b418fc8",
 "rmqMessagesByQueue": {
 "pizzaQueue::/": [
 {
 "basicProperties": {
 "contentType": "text/plain",

Lambda consumer group 1258

Amazon Lambda Developer Guide

 "contentEncoding": null,
 "headers": {
 "header1": {
 "bytes": [
 118,
 97,
 108,
 117,
 101,
 49
]
 },
 "header2": {
 "bytes": [
 118,
 97,
 108,
 117,
 101,
 50
]
 },
 "numberInHeader": 10
 },
 "deliveryMode": 1,
 "priority": 34,
 "correlationId": null,
 "replyTo": null,
 "expiration": "60000",
 "messageId": null,
 "timestamp": "Jan 1, 1970, 12:33:41 AM",
 "type": null,
 "userId": "AIDACKCEVSQ6C2EXAMPLE",
 "appId": null,
 "clusterId": null,
 "bodySize": 80
 },
 "redelivered": false,
 "data": "eyJ0aW1lb3V0IjowLCJkYXRhIjoiQ1pybWYwR3c4T3Y0YnFMUXhENEUifQ=="
 }
]
 }
}

Lambda consumer group 1259

Amazon Lambda Developer Guide

Note

In the RabbitMQ example, pizzaQueue is the name of the RabbitMQ queue, and / is the
name of the virtual host. When receiving messages, the event source lists messages under
pizzaQueue::/.

Execution role permissions

To read records from an Amazon MQ broker, your Lambda function needs the following
permissions added to its execution role:

• mq:DescribeBroker

• secretsmanager:GetSecretValue

• ec2:CreateNetworkInterface

• ec2:DeleteNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeSecurityGroups

• ec2:DescribeSubnets

• ec2:DescribeVpcs

• logs:CreateLogGroup

• logs:CreateLogStream

• logs:PutLogEvents

Note

When using an encrypted customer managed key, add the kms:Decrypt permission as
well.

Execution role permissions 1260

https://docs.amazonaws.cn/amazon-mq/latest/api-reference/brokers-broker-id.html#brokers-broker-id-http-methods
https://docs.amazonaws.cn/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DeleteNetworkInterface.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeSubnets.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeVpcs.html
https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html
https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html
https://docs.amazonaws.cn/msk/1.0/apireference/clusters-clusterarn-bootstrap-brokers.html#clusters-clusterarn-bootstrap-brokersget

Amazon Lambda Developer Guide

Network configuration

To give Lambda full access to your broker through your event source mapping, either your broker
must use a public endpoint (public IP address), or you must provide access to the Amazon VPC you
created the broker in.

By default, when you create an Amazon MQ broker, the PubliclyAccessible flag is set to false.
For your broker to receive a public IP address, you must set the PubliclyAccessible flag to
true.

Best practice for using Amazon MQ with Lambda is to use Amazon PrivateLink VPC endpoints and
to give your Lambda function access to your broker's VPC. Deploy an endpoint for Lambda, and,
for ActiveMQ only, an endpoint for Amazon Security Token Service (Amazon STS). If your broker
uses authentication, also deploy an endpoint for Amazon Secrets Manager. To learn more, see the
section called “Working with VPC endpoints”.

Alternatively, configure a NAT gateway on each public subnet in the VPC containing your Amazon
MQ broker. For more information, see the section called “Internet and service access for VPC-
connected functions”.

When you create an event source mapping for an Amazon MQ broker, Lambda checks whether
Elastic Network Interfaces (ENIs) are already present for the subnets and security groups of your
broker’s VPC. If Lambda finds existing ENIs, it attempts to re-use them. Otherwise, Lambda creates
new ENIs to connect to the event source and invoke your function.

Note

Lambda functions always run inside VPCs owned by the Lambda service. These VPCs are
maintained automatically by the service and are not visible to customers. You can also
connect your function to an Amazon VPC. In either case, your function’s VPC configuration
doesn’t affect the event source mapping. Only the configuration of the event source’s VPC
determines how Lambda connects to your event source.

VPC security group rules

Configure the security groups for the Amazon VPC containing your cluster with the following rules
(at minimum):

Network configuration 1261

https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html

Amazon Lambda Developer Guide

• Inbound rules – Allow all traffic on the broker port for the security group specified for your event
source from within its own security group. ActiveMQ uses port 61617 by default and RabbitMQ
uses port 5671 by default.

• Outbound rules – Allow all traffic on port 443 for all destinations. Allow all traffic on the broker
port for within its own security group. ActiveMQ uses port 61617 by default and RabbitMQ uses
port 5671 by default.

• If you use VPC endpoints instead of a NAT gateway, the security groups associated with the VPC
endpoints must allow all inbound traffic on port 443 from the event source's security groups.

Working with VPC endpoints

When you use VPC endpoints, API calls to invoke your function are routed through these endpoints
using the ENIs. The Lambda service principal needs to call lambda:InvokeFunction on any
functions that use those ENIs. Additionally, for ActiveMQ, the Lambda service principal needs to
call sts:AssumeRole on roles that use the ENIs.

By default, VPC endpoints have IAM policies which are open. Best practice is to restrict these
policies to only allow specific principals to perform the needed actions using that endpoint.
To ensure that your event source mapping is able to invoke your Lambda function, the VPC
endpoint policy must allow the Lambda service principle to call lambda:InvokeFunction and,
for ActiveMQ, sts:AssumeRole. Restricting your VPC endpoint policies to only allow API calls
originating within your organization prevents the event source mapping from functioning properly.

The following example VPC endpoint policies show how to grant the required access for Amazon
STS and Lambda endpoints.

Example VPC endpoint policy - Amazon STS endpoint (ActiveMQ only)

{
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"

Network configuration 1262

Amazon Lambda Developer Guide

 }
]
}

Example VPC endpoint policy - Lambda endpoint

{
 "Statement": [
 {
 "Action": "lambda:InvokeFunction",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
}

If your Amazon MQ broker uses authentication, you can also restrict the VPC endpoint policy for
the Secrets Manager endpoint. To call the Secrets Manager API, Lambda uses your function role,
not the Lambda service principal. The following example shows a Secrets Manager endpoint policy.

Example VPC endpoint policy - Secrets Manager endpoint

{
 "Statement": [
 {
 "Action": "secretsmanager:GetSecretValue",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "customer_function_execution_role_arn"
]
 },
 "Resource": "customer_secret_arn"
 }
]
}

Network configuration 1263

Amazon Lambda Developer Guide

Add permissions and create the event source mapping

Create an event source mapping to tell Lambda to send records from an Amazon MQ broker to a
Lambda function. You can create multiple event source mappings to process the same data with
multiple functions, or to process items from multiple sources with a single function.

To configure your function to read from Amazon MQ, add the required permissions and create an
MQ trigger in the Lambda console.

To add permissions and create a trigger

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose the Configuration tab, and then choose Permissions.

4. Under Role name, choose the link to your execution role. This link opens the role in the IAM
console.

5. Choose Add permissions, and then choose Create inline policy.

6. In the Policy editor, choose JSON. Enter the following policy. Your function needs these
permissions to read from an Amazon MQ broker.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "mq:DescribeBroker",
 "secretsmanager:GetSecretValue",
 "ec2:CreateNetworkInterface",

Create the event source mapping 1264

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

Note

When using an encrypted customer managed key, you must also add the
kms:Decrypt permission.

7. Choose Next. Enter a policy name and then choose Create policy.

8. Go back to your function in the Lambda console. Under Function overview, choose Add
trigger.

9. Choose the MQ trigger type.

10. Configure the required options, and then choose Add.

Lambda supports the following options for Amazon MQ event sources:

• MQ broker – Select an Amazon MQ broker.

• Batch size – Set the maximum number of messages to retrieve in a single batch.

• Queue name – Enter the Amazon MQ queue to consume.

Create the event source mapping 1265

Amazon Lambda Developer Guide

• Source access configuration – Enter virtual host information and the Secrets Manager secret
that stores your broker credentials.

• Enable trigger – Disable the trigger to stop processing records.

To enable or disable the trigger (or delete it), choose the MQ trigger in the designer. To reconfigure
the trigger, use the event source mapping API operations.

Event source mapping API

To manage an event source with the Amazon Command Line Interface (Amazon CLI) or an Amazon
SDK, you can use the following API operations:

• CreateEventSourceMapping

• ListEventSourceMappings

• GetEventSourceMapping

• UpdateEventSourceMapping

• DeleteEventSourceMapping

To create the event source mapping with the Amazon Command Line Interface (Amazon CLI), use
the create-event-source-mapping command.

The following example Amazon CLI command creates an event source which maps a Lambda
function named MQ-Example-Function to an Amazon MQ RabbitMQ-based broker named
ExampleMQBroker. The command also provides the virtual host name and a Secrets Manager
secret ARN that stores the broker credentials.

aws lambda create-event-source-mapping \
--event-source-arn arn:aws-cn:mq:us-
east-1:123456789012:broker:ExampleMQBroker:b-24cacbb4-b295-49b7-8543-7ce7ce9dfb98 \
--function-name arn:aws-cn:lambda:us-east-1:123456789012:function:MQ-Example-Function \
--queues ExampleQueue \
--source-access-configuration Type=VIRTUAL_HOST,URI="/" Type=BASIC_AUTH,URI=arn:aws-
cn:secretsmanager:us-east-1:123456789012:secret:ExampleMQBrokerUserPassword-xPBMTt \

You should see the following output:

{
 "UUID": "91eaeb7e-c976-1234-9451-8709db01f137",

Event source mapping API 1266

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://www.amazonaws.cn/getting-started/tools-sdks/
https://www.amazonaws.cn/getting-started/tools-sdks/
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteEventSourceMapping.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/create-event-source-mapping.html

Amazon Lambda Developer Guide

 "BatchSize": 100,
 "EventSourceArn": "arn:aws-cn:mq:us-east-1:123456789012:broker:ExampleMQBroker:b-
b4d492ef-bdc3-45e3-a781-cd1a3102ecca",
 "FunctionArn": "arn:aws-cn:lambda:us-east-1:123456789012:function:MQ-Example-
Function",
 "LastModified": 1601927898.741,
 "LastProcessingResult": "No records processed",
 "State": "Creating",
 "StateTransitionReason": "USER_INITIATED",
 "Queues": [
 "ExampleQueue"
],
 "SourceAccessConfigurations": [
 {
 "Type": "BASIC_AUTH",
 "URI": "arn:aws-cn:secretsmanager:us-
east-1:123456789012:secret:ExampleMQBrokerUserPassword-xPBMTt"
 }
]
}

Using the update-event-source-mapping command, you can configure additional options such
as how Lambda processes batches and to specify when to discard records that cannot be processed.
The following example command updates an event source mapping to have a batch size of 2.

aws lambda update-event-source-mapping \
--uuid 91eaeb7e-c976-1234-9451-8709db01f137 \
--batch-size 2

You should see the following output:

{
 "UUID": "91eaeb7e-c976-1234-9451-8709db01f137",
 "BatchSize": 2,
 "EventSourceArn": "arn:aws-cn:mq:us-east-1:123456789012:broker:ExampleMQBroker:b-
b4d492ef-bdc3-45e3-a781-cd1a3102ecca",
 "FunctionArn": "arn:aws-cn:lambda:us-east-1:123456789012:function:MQ-Example-
Function",
 "LastModified": 1601928393.531,
 "LastProcessingResult": "No records processed",
 "State": "Updating",
 "StateTransitionReason": "USER_INITIATED"

Event source mapping API 1267

https://docs.amazonaws.cn/cli/latest/reference/lambda/update-event-source-mapping.html

Amazon Lambda Developer Guide

}

Lambda updates these settings asynchronously. The output will not reflect changes until this
process completes. To view the current status of your resource, use the get-event-source-
mapping command.

aws lambda get-event-source-mapping \
--uuid 91eaeb7e-c976-4939-9451-8709db01f137

You should see the following output:

{
 "UUID": "91eaeb7e-c976-4939-9451-8709db01f137",
 "BatchSize": 2,
 "EventSourceArn": "arn:aws-cn:mq:us-east-1:123456789012:broker:ExampleMQBroker:b-
b4d492ef-bdc3-45e3-a781-cd1a3102ecca",
 "FunctionArn": "arn:aws-cn:lambda:us-east-1:123456789012:function:MQ-Example-
Function",
 "LastModified": 1601928393.531,
 "LastProcessingResult": "No records processed",
 "State": "Enabled",
 "StateTransitionReason": "USER_INITIATED"
}

Event source mapping errors

When a Lambda function encounters an unrecoverable error, your Amazon MQ consumer stops
processing records. Any other consumers can continue processing, provided that they do not
encounter the same error. To determine the potential cause of a stopped consumer, check the
StateTransitionReason field in the return details of your EventSourceMapping for one of
the following codes:

ESM_CONFIG_NOT_VALID

The event source mapping configuration is not valid.

EVENT_SOURCE_AUTHN_ERROR

Lambda failed to authenticate the event source.

EVENT_SOURCE_AUTHZ_ERROR

Lambda does not have the required permissions to access the event source.

Event source mapping errors 1268

https://docs.amazonaws.cn/cli/latest/reference/lambda/get-event-source-mapping.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/get-event-source-mapping.html

Amazon Lambda Developer Guide

FUNCTION_CONFIG_NOT_VALID

The function's configuration is not valid.

Records also go unprocessed if Lambda drops them due to their size. The size limit for Lambda
records is 6 MB. To redeliver messages upon function error, you can use a dead-letter queue (DLQ).
For more information, see Message Redelivery and DLQ Handling on the Apache ActiveMQ website
and Reliability Guide on the RabbitMQ website.

Note

Lambda does not support custom redelivery policies. Instead, Lambda uses a policy with
the default values from the Redelivery Policy page on the Apache ActiveMQ website, with
maximumRedeliveries set to 6.

Amazon MQ and RabbitMQ configuration parameters

All Lambda event source types share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
Amazon MQ and RabbitMQ.

Event source parameters that apply to Amazon MQ and RabbitMQ

Parameter Required Default Notes

BatchSize N 100 Maximum: 10,000

Enabled N true

FunctionName Y

FilterCriteria N Lambda event
filtering

MaximumBa
tchingWindowInSeco
nds

N 500 ms Batching behavior

Amazon MQ and RabbitMQ configuration parameters 1269

https://activemq.apache.org/message-redelivery-and-dlq-handling
https://www.rabbitmq.com/reliability.html
https://activemq.apache.org/redelivery-policy
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html

Amazon Lambda Developer Guide

Parameter Required Default Notes

Queues N The name of the
Amazon MQ broker
destination queue to
consume.

SourceAccessConfig
urations

N For ActiveMQ,
BASIC_AUTH
credentials. For
RabbitMQ, can
contain both
BASIC_AUTH
credentials and
VIRTUAL_HOST
information.

Amazon MQ and RabbitMQ configuration parameters 1270

Amazon Lambda Developer Guide

Using Lambda with Amazon MSK

Note

If you want to send data to a target other than a Lambda function or enrich the data before
sending it, see Amazon EventBridge Pipes.

Amazon Managed Streaming for Apache Kafka (Amazon MSK) is a fully managed service that you
can use to build and run applications that use Apache Kafka to process streaming data. Amazon
MSK simplifies the setup, scaling, and management of clusters running Kafka. Amazon MSK also
makes it easier to configure your application for multiple Availability Zones and for security with
Amazon Identity and Access Management (IAM). Amazon MSK supports multiple open-source
versions of Kafka.

Amazon MSK as an event source operates similarly to using Amazon Simple Queue Service
(Amazon SQS) or Amazon Kinesis. Lambda internally polls for new messages from the event
source and then synchronously invokes the target Lambda function. Lambda reads the messages
in batches and provides these to your function as an event payload. The maximum batch size is
configurable (the default is 100 messages). For more information, see Batching behavior.

Note

While Lambda functions typically have a maximum timeout limit of 15 minutes, event
source mappings for Amazon MSK, self-managed Apache Kafka, Amazon DocumentDB, and
Amazon MQ for ActiveMQ and RabbitMQ only support functions with maximum timeout
limits of 14 minutes. This constraint ensures that the event source mapping can properly
handle function errors and retries.

Lambda reads the messages sequentially for each partition. A single Lambda payload can contain
messages from multiple partitions. After Lambda processes each batch, it commits the offsets of
the messages in that batch. If your function returns an error for any of the messages in a batch,
Lambda retries the whole batch of messages until processing succeeds or the messages expire.

MSK 1271

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes.html
https://docs.amazonaws.cn/msk/latest/developerguide/what-is-msk.html

Amazon Lambda Developer Guide

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of batches can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the Amazon Knowledge Center.

For an example of how to configure Amazon MSK as an event source, see Using Amazon MSK as
an event source for Amazon Lambda on the Amazon Compute Blog. For a complete tutorial, see
Amazon MSK Lambda Integration in the Amazon MSK Labs.

Topics

• Example event

• MSK cluster authentication

• Managing API access and permissions

• Authentication and authorization errors

• Network configuration

• Adding Amazon MSK as an event source

• Creating cross-account event source mappings

• Auto scaling of the Amazon MSK event source

• Polling and stream starting positions

• Amazon CloudWatch metrics

• Amazon MSK configuration parameters

Example event

Lambda sends the batch of messages in the event parameter when it invokes your function. The
event payload contains an array of messages. Each array item contains details of the Amazon MSK
topic and partition identifier, together with a timestamp and a base64-encoded message.

{
 "eventSource":"aws:kafka",
 "eventSourceArn":"arn:aws:kafka:sa-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2",

Example event 1272

https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://amazonaws-china.com/blogs/compute/using-amazon-msk-as-an-event-source-for-aws-lambda/
https://amazonaws-china.com/blogs/compute/using-amazon-msk-as-an-event-source-for-aws-lambda/
https://amazonmsk-labs.workshop.aws/en/msklambda.html
https://amazonmsk-labs.workshop.aws/en/msklambda.html

Amazon Lambda Developer Guide

 "bootstrapServers":"b-2.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092,b-1.demo-cluster-1.a1bcde.c1.kafka.us-
east-1.amazonaws.com:9092",
 "records":{
 "mytopic-0":[
 {
 "topic":"mytopic",
 "partition":0,
 "offset":15,
 "timestamp":1545084650987,
 "timestampType":"CREATE_TIME",
 "key":"abcDEFghiJKLmnoPQRstuVWXyz1234==",
 "value":"SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
 "headers":[
 {
 "headerKey":[
 104,
 101,
 97,
 100,
 101,
 114,
 86,
 97,
 108,
 117,
 101
]
 }
]
 }
]
 }
}

MSK cluster authentication

Lambda needs permission to access the Amazon MSK cluster, retrieve records, and perform other
tasks. Amazon MSK supports several options for controlling client access to the MSK cluster.

Cluster access options

• Unauthenticated access

MSK cluster authentication 1273

Amazon Lambda Developer Guide

• SASL/SCRAM authentication

• IAM role-based authentication

• Mutual TLS authentication

• Configuring the mTLS secret

• How Lambda chooses a bootstrap broker

Unauthenticated access

If no clients access the cluster over the internet, you can use unauthenticated access.

SASL/SCRAM authentication

Amazon MSK supports Simple Authentication and Security Layer/Salted Challenge Response
Authentication Mechanism (SASL/SCRAM) authentication with Transport Layer Security (TLS)
encryption. For Lambda to connect to the cluster, you store the authentication credentials (user
name and password) in an Amazon Secrets Manager secret.

For more information about using Secrets Manager, see User name and password authentication
with Amazon Secrets Manager in the Amazon Managed Streaming for Apache Kafka Developer
Guide.

Amazon MSK doesn't support SASL/PLAIN authentication.

IAM role-based authentication

You can use IAM to authenticate the identity of clients that connect to the MSK cluster. If IAM
auth is active on your MSK cluster, and you don't provide a secret for auth, Lambda automatically
defaults to using IAM auth. To create and deploy user or role-based policies, use the IAM console
or API. For more information, see IAM access control in the Amazon Managed Streaming for Apache
Kafka Developer Guide.

To allow Lambda to connect to the MSK cluster, read records, and perform other required actions,
add the following permissions to your function's execution role.

{
 "Version": "2012-10-17",
 "Statement": [
 {

MSK cluster authentication 1274

https://docs.amazonaws.cn/msk/latest/developerguide/msk-password.html
https://docs.amazonaws.cn/msk/latest/developerguide/msk-password.html
https://docs.amazonaws.cn/msk/latest/developerguide/iam-access-control.html

Amazon Lambda Developer Guide

 "Effect": "Allow",
 "Action": [
 "kafka-cluster:Connect",
 "kafka-cluster:DescribeGroup",
 "kafka-cluster:AlterGroup",
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:ReadData",
 "kafka-cluster:DescribeClusterDynamicConfiguration"
],
 "Resource": [
 "arn:aws:kafka:region:account-id:cluster/cluster-name/cluster-uuid",
 "arn:aws:kafka:region:account-id:topic/cluster-name/cluster-uuid/topic-
name",
 "arn:aws:kafka:region:account-id:group/cluster-name/cluster-
uuid/consumer-group-id"
]
 }
]
}

You can scope these permissions to a specific cluster, topic, and group. For more information, see
the Amazon MSK Kafka actions in the Amazon Managed Streaming for Apache Kafka Developer
Guide.

Mutual TLS authentication

Mutual TLS (mTLS) provides two-way authentication between the client and server. The client
sends a certificate to the server for the server to verify the client, and the server sends a certificate
to the client for the client to verify the server.

For Amazon MSK, Lambda acts as the client. You configure a client certificate (as a secret in Secrets
Manager) to authenticate Lambda with the brokers in your MSK cluster. The client certificate must
be signed by a CA in the server's trust store. The MSK cluster sends a server certificate to Lambda
to authenticate the brokers with Lambda. The server certificate must be signed by a certificate
authority (CA) that's in the Amazon trust store.

For instructions on how to generate a client certificate, see Introducing mutual TLS authentication
for Amazon MSK as an event source.

Amazon MSK doesn't support self-signed server certificates, because all brokers in Amazon MSK
use public certificates signed by Amazon Trust Services CAs, which Lambda trusts by default.

MSK cluster authentication 1275

https://docs.amazonaws.cn/msk/latest/developerguide/iam-access-control.html#kafka-actions
https://amazonaws-china.com/blogs/compute/introducing-mutual-tls-authentication-for-amazon-msk-as-an-event-source
https://amazonaws-china.com/blogs/compute/introducing-mutual-tls-authentication-for-amazon-msk-as-an-event-source
https://docs.amazonaws.cn/msk/latest/developerguide/msk-encryption.html
https://www.amazontrust.com/repository/

Amazon Lambda Developer Guide

For more information about mTLS for Amazon MSK, see Mutual TLS Authentication in the Amazon
Managed Streaming for Apache Kafka Developer Guide.

Configuring the mTLS secret

The CLIENT_CERTIFICATE_TLS_AUTH secret requires a certificate field and a private key field.
For an encrypted private key, the secret requires a private key password. Both the certificate and
private key must be in PEM format.

Note

Lambda supports the PBES1 (but not PBES2) private key encryption algorithms.

The certificate field must contain a list of certificates, beginning with the client certificate, followed
by any intermediate certificates, and ending with the root certificate. Each certificate must start on
a new line with the following structure:

-----BEGIN CERTIFICATE-----
 <certificate contents>
-----END CERTIFICATE-----

Secrets Manager supports secrets up to 65,536 bytes, which is enough space for long certificate
chains.

The private key must be in PKCS #8 format, with the following structure:

-----BEGIN PRIVATE KEY-----
 <private key contents>
-----END PRIVATE KEY-----

For an encrypted private key, use the following structure:

-----BEGIN ENCRYPTED PRIVATE KEY-----
 <private key contents>
-----END ENCRYPTED PRIVATE KEY-----

The following example shows the contents of a secret for mTLS authentication using an encrypted
private key. For an encrypted private key, you include the private key password in the secret.

MSK cluster authentication 1276

https://docs.amazonaws.cn/msk/latest/developerguide/msk-authentication.html
https://datatracker.ietf.org/doc/html/rfc2898/#section-6.1
https://datatracker.ietf.org/doc/html/rfc5208

Amazon Lambda Developer Guide

{
 "privateKeyPassword": "testpassword",
 "certificate": "-----BEGIN CERTIFICATE-----
MIIE5DCCAsygAwIBAgIRAPJdwaFaNRrytHBto0j5BA0wDQYJKoZIhvcNAQELBQAw
...
j0Lh4/+1HfgyE2KlmII36dg4IMzNjAFEBZiCRoPimO40s1cRqtFHXoal0QQbIlxk
cmUuiAii9R0=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIFgjCCA2qgAwIBAgIQdjNZd6uFf9hbNC5RdfmHrzANBgkqhkiG9w0BAQsFADBb
...
rQoiowbbk5wXCheYSANQIfTZ6weQTgiCHCCbuuMKNVS95FkXm0vqVD/YpXKwA/no
c8PH3PSoAaRwMMgOSA2ALJvbRz8mpg==
-----END CERTIFICATE-----",
 "privateKey": "-----BEGIN ENCRYPTED PRIVATE KEY-----
MIIFKzBVBgkqhkiG9w0BBQ0wSDAnBgkqhkiG9w0BBQwwGgQUiAFcK5hT/X7Kjmgp
...
QrSekqF+kWzmB6nAfSzgO9IaoAaytLvNgGTckWeUkWn/V0Ck+LdGUXzAC4RxZnoQ
zp2mwJn2NYB7AZ7+imp0azDZb+8YG2aUCiyqb6PnnA==
-----END ENCRYPTED PRIVATE KEY-----"
}

How Lambda chooses a bootstrap broker

Lambda chooses a bootstrap broker based on the authentication methods available on your
cluster, and whether you provide a secret for authentication. If you provide a secret for mTLS or
SASL/SCRAM, Lambda automatically chooses that auth method. If you don't provide a secret,
Lambda selects the strongest auth method that's active on your cluster. The following is the order
of priority in which Lambda selects a broker, from strongest to weakest auth:

• mTLS (secret provided for mTLS)

• SASL/SCRAM (secret provided for SASL/SCRAM)

• SASL IAM (no secret provided, and IAM auth active)

• Unauthenticated TLS (no secret provided, and IAM auth not active)

• Plaintext (no secret provided, and both IAM auth and unauthenticated TLS are not active)

MSK cluster authentication 1277

https://docs.amazonaws.cn/msk/latest/developerguide/msk-get-bootstrap-brokers.html

Amazon Lambda Developer Guide

Note

If Lambda can't connect to the most secure broker type, Lambda doesn't attempt to
connect to a different (weaker) broker type. If you want Lambda to choose a weaker broker
type, deactivate all stronger auth methods on your cluster.

Managing API access and permissions

In addition to accessing the Amazon MSK cluster, your function needs permissions to perform
various Amazon MSK API actions. You add these permissions to the function's execution role. If
your users need access to any of the Amazon MSK API actions, add the required permissions to the
identity policy for the user or role.

You can add each of the following permissions to your execution role manually. Alternatively, you
can attach the Amazon managed policy AWSLambdaMSKExecutionRole to your execution role.
The AWSLambdaMSKExecutionRole policy contains all required API actions and VPC permissions
listed below.

Required Lambda function execution role permissions

To create and store logs in a log group in Amazon CloudWatch Logs, your Lambda function must
have the following permissions in its execution role:

• logs:CreateLogGroup

• logs:CreateLogStream

• logs:PutLogEvents

For Lambda to access your Amazon MSK cluster on your behalf, your Lambda function must have
the following permissions in its execution role:

• kafka:DescribeCluster

• kafka:DescribeClusterV2

• kafka:GetBootstrapBrokers

• kafka:DescribeVpcConnection: Only required for cross-account event source mappings.

• kafka:ListVpcConnections: Not required in execution role, but required for an IAM principal that is
creating a cross-account event source mapping.

Managing API access and permissions 1278

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaMSKExecutionRole.html
https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogStream.html
https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html
https://docs.amazonaws.cn/msk/1.0/apireference/clusters-clusterarn.html#clusters-clusterarnget
https://docs.amazonaws.cn/MSK/2.0/APIReference/v2-clusters-clusterarn.html#v2-clusters-clusterarnget
https://docs.amazonaws.cn/msk/1.0/apireference/clusters-clusterarn-bootstrap-brokers.html#clusters-clusterarn-bootstrap-brokersget
https://docs.amazonaws.cn/msk/1.0/apireference/vpc-connection-arn.html#vpc-connection-arnget
https://docs.amazonaws.cn/msk/1.0/apireference/vpc-connections.html#vpc-connectionsget

Amazon Lambda Developer Guide

You only need to add one of either kafka:DescribeCluster or kafka:DescribeClusterV2.
For provisioned MSK clusters, either permission works. For serverless MSK clusters, you must use
kafka:DescribeClusterV2.

Note

Lambda eventually plans to remove the kafka:DescribeCluster permission
from the associated AWSLambdaMSKExecutionRole managed policy. If you use this
policy, you should migrate any applications using kafka:DescribeCluster to use
kafka:DescribeClusterV2 instead.

VPC permissions

If only users within a VPC can access your Amazon MSK cluster, your Lambda function must
have permission to access your Amazon VPC resources. These resources include your VPC,
subnets, security groups, and network interfaces. To access these resources, your function's
execution role must have the following permissions. These permissions are included in the
AWSLambdaMSKExecutionRole Amazon managed policy.

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:DescribeVpcs

• ec2:DeleteNetworkInterface

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

Optional Lambda function permissions

Your Lambda function might also need permissions to:

• Access your SCRAM secret, if using SASL/SCRAM authentication.

• Describe your Secrets Manager secret.

• Access your Amazon Key Management Service (Amazon KMS) customer managed key.

• Send records of failed invocations to a destination.

Managing API access and permissions 1279

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaMSKExecutionRole.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeVpcs.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DeleteNetworkInterface.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeSubnets.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html

Amazon Lambda Developer Guide

Secrets Manager and Amazon KMS permissions

Depending on the type of access control that you're configuring for your Amazon MSK brokers,
your Lambda function might need permission to access your SCRAM secret (if using SASL/SCRAM
authentication), or Secrets Manager secret to decrypt your Amazon KMS customer managed key. To
access these resources, your function's execution role must have the following permissions:

• kafka:ListScramSecrets

• secretsmanager:GetSecretValue

• kms:Decrypt

Sending records to a destination

If you want to send records of failed invocations to an on-failure destination, your Lambda function
must have permission to send these records. For Kafka event source mappings, you can choose
between an Amazon SNS topic, Amazon SQS queue, or Amazon S3 bucket as the destination. To
send records to an SNS topic, your function's execution role must have the following permission:

• sns:Publish

To send records to an SQS queue, your function's execution role must have the following
permission:

• sqs:SendMessage

To send records to an S3 bucket, your function's execution role must have the following
permissions:

• s3:PutObject

• s3:ListBuckets

Additionally, if you configured a KMS key on your destination, Lambda needs the following
permissions depending on the destination type:

• If you've enabled encryption with your own KMS key for an S3 destination, kms:GenerateDataKey
is required. If the KMS key and S3 bucket destination are in a different account from your

Managing API access and permissions 1280

https://docs.amazonaws.cn/msk/1.0/apireference/clusters-clusterarn-scram-secrets.html#ListScramSecrets
https://docs.amazonaws.cn/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/sns/latest/api/API_Publish.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_PutObject.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_ListBuckets.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Lambda Developer Guide

Lambda function and execution role, configure the KMS key to trust the execution role to allow
kms:GenerateDataKey.

• If you've enabled encryption with your own KMS key for SQS destination, kms:Decrypt
and kms:GenerateDataKey are required. If the KMS key and SQS queue destination are in a
different account from your Lambda function and execution role, configure the KMS key to
trust the execution role to allow kms:Decrypt, kms:GenerateDataKey, kms:DescribeKey, and
kms:ReEncrypt.

• If you've enabled encryption with your own KMS key for SNS destination, kms:Decrypt
and kms:GenerateDataKey are required. If the KMS key and SNS topic destination are in a
different account from your Lambda function and execution role, configure the KMS key to
trust the execution role to allow kms:Decrypt, kms:GenerateDataKey, kms:DescribeKey, and
kms:ReEncrypt.

Adding permissions to your execution role

Follow these steps to add the Amazon managed policy AWSLambdaMSKExecutionRole to your
execution role using the IAM console.

To add an Amazon managed policy

1. Open the Policies page of the IAM console.

2. In the search box, enter the policy name (AWSLambdaMSKExecutionRole).

3. Select the policy from the list, and then choose Policy actions, Attach.

4. On the Attach policy page, select your execution role from the list, and then choose Attach
policy.

Granting users access with an IAM policy

By default, users and roles don't have permission to perform Amazon MSK API operations. To grant
access to users in your organization or account, you can add or update an identity-based policy.
For more information, see Amazon MSK Identity-Based Policy Examples in the Amazon Managed
Streaming for Apache Kafka Developer Guide.

Managing API access and permissions 1281

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaMSKExecutionRole.html
https://console.amazonaws.cn/iam/home#/policies
https://docs.amazonaws.cn/msk/latest/developerguide/security_iam_id-based-policy-examples.html

Amazon Lambda Developer Guide

Authentication and authorization errors

If any of the permissions required to consume data from the Amazon MSK cluster are missing,
Lambda displays one of the following error messages in the event source mapping under
LastProcessingResult.

Error messages

• Cluster failed to authorize Lambda

• SASL authentication failed

• Server failed to authenticate Lambda

• Provided certificate or private key is invalid

Cluster failed to authorize Lambda

For SASL/SCRAM or mTLS, this error indicates that the provided user doesn't have all of the
following required Kafka access control list (ACL) permissions:

• DescribeConfigs Cluster

• Describe Group

• Read Group

• Describe Topic

• Read Topic

For IAM access control, your function's execution role is missing one or more of the permissions
required to access the group or topic. Review the list of required permissions in the section called
“IAM role-based authentication”.

When you create either Kafka ACLs or an IAM policy with the required Kafka cluster permissions,
specify the topic and group as resources. The topic name must match the topic in the event source
mapping. The group name must match the event source mapping's UUID.

After you add the required permissions to the execution role, it might take several minutes for the
changes to take effect.

SASL authentication failed

For SASL/SCRAM, this error indicates that the provided user name and password aren't valid.

Authentication and authorization errors 1282

Amazon Lambda Developer Guide

For IAM access control, the execution role is missing the kafka-cluster:Connect permission for
the MSK cluster. Add this permission to the role and specify the cluster's Amazon Resource Name
(ARN) as a resource.

You might see this error occurring intermittently. The cluster rejects connections after the number
of TCP connections exceeds the Amazon MSK service quota. Lambda backs off and retries until
a connection is successful. After Lambda connects to the cluster and polls for records, the last
processing result changes to OK.

Server failed to authenticate Lambda

This error indicates that the Amazon MSK Kafka brokers failed to authenticate with Lambda. This
can occur for any of the following reasons:

• You didn't provide a client certificate for mTLS authentication.

• You provided a client certificate, but the brokers aren't configured to use mTLS.

• A client certificate isn't trusted by the brokers.

Provided certificate or private key is invalid

This error indicates that the Amazon MSK consumer couldn't use the provided certificate or private
key. Make sure that the certificate and key use PEM format, and that the private key encryption
uses a PBES1 algorithm.

Network configuration

For Lambda to use your Kafka cluster as an event source, it needs access to the Amazon VPC your
cluster resides in. We recommend that you deploy Amazon PrivateLink VPC endpoints for Lambda
to access your VPC. Deploy endpoints for Lambda and Amazon Security Token Service (Amazon
STS). If the broker uses authentication, also deploy a VPC endpoint for Secrets Manager. If you
configured an on-failure destination, also deploy a VPC endpoint for the destination service.

Alternatively, ensure that the VPC associated with your Kafka cluster includes one NAT gateway per
public subnet. For more information, see Internet and service access for VPC-connected functions.

If you use VPC endpoints, you must also configure them to enable private DNS names.

When you create an event source mapping for an MSK cluster, Lambda checks whether Elastic
Network Interfaces (ENIs) are already present for the subnets and security groups of your cluster’s

Network configuration 1283

https://docs.amazonaws.cn/msk/latest/developerguide/limits.html
https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.amazonaws.cn/vpc/latest/privatelink/interface-endpoints.html#enable-private-dns-names

Amazon Lambda Developer Guide

VPC. If Lambda finds existing ENIs, it attempts to re-use them. Otherwise, Lambda creates new
ENIs to connect to the event source and invoke your function.

Note

Lambda functions always run inside VPCs owned by the Lambda service. These VPCs are
maintained automatically by the service and are not visible to customers. You can also
connect your function to an Amazon VPC. In either case, your function’s VPC configuration
doesn’t affect the event source mapping. Only the configuration of the event source’s VPC
determines how Lambda connects to your event source.

Your Amazon VPC configuration is discoverable through the Amazon MSK API. You don't need to
configure it during setup using the create-event-source-mapping command.

For more information about configuring the network, see Setting up Amazon Lambda with an
Apache Kafka cluster within a VPC on the Amazon Compute Blog.

VPC security group rules

Configure the security groups for the Amazon VPC containing your cluster with the following rules
(at minimum):

• Inbound rules – Allow all traffic on the Amazon MSK broker port (9092 for plaintext, 9094 for
TLS, 9096 for SASL, 9098 for IAM) for the security groups specified for your event source.

• Outbound rules – Allow all traffic on port 443 for all destinations. Allow all traffic on the Amazon
MSK broker port (9092 for plaintext, 9094 for TLS, 9096 for SASL, 9098 for IAM) for the security
groups specified for your event source.

• If you are using VPC endpoints instead of a NAT gateway, the security groups associated with
the VPC endpoints must allow all inbound traffic on port 443 from the event source's security
groups.

Working with VPC endpoints

When you use VPC endpoints, API calls to invoke your function are routed through these
endpoints using the ENIs. The Lambda service principal needs to call sts:AssumeRole and
lambda:InvokeFunction on any roles and functions that use those ENIs.

Network configuration 1284

https://docs.amazonaws.cn/msk/1.0/apireference/resources.html
https://amazonaws-china.com/blogs/compute/setting-up-aws-lambda-with-an-apache-kafka-cluster-within-a-vpc/
https://amazonaws-china.com/blogs/compute/setting-up-aws-lambda-with-an-apache-kafka-cluster-within-a-vpc/

Amazon Lambda Developer Guide

By default, VPC endpoints have IAM policies which are open. Best practice is to restrict these
policies to allow only specific principals to perform the needed actions using that endpoint.
To ensure that your event source mapping is able to invoke your Lambda function, the VPC
endpoint policy must allow the Lambda service principle to call sts:AssumeRole and
lambda:InvokeFunction. Restricting your VPC endpoint policies to allow only API calls
originating within your organization prevents the event source mapping from functioning properly.

The following example VPC endpoint policies show how to grant the required access to the
Lambda service principal for the Amazon STS and Lambda endpoints.

Example VPC endpoint policy - Amazon STS endpoint

{
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]
}

Example VPC endpoint policy - Lambda endpoint

{
 "Statement": [
 {
 "Action": "lambda:InvokeFunction",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "lambda.amazonaws.com"
]
 },
 "Resource": "*"
 }
]

Network configuration 1285

Amazon Lambda Developer Guide

}

If your Kafka broker uses authentication, you can also restrict the VPC endpoint policy for the
Secrets Manager endpoint. To call the Secrets Manager API, Lambda uses your function role, not
the Lambda service principal. The following example shows a Secrets Manager endpoint policy.

Example VPC endpoint policy - Secrets Manager endpoint

{
 "Statement": [
 {
 "Action": "secretsmanager:GetSecretValue",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "customer_function_execution_role_arn"
]
 },
 "Resource": "customer_secret_arn"
 }
]
}

If you have an on-failure destination configured, Lambda also uses your function’s role to call
either s3:PutObject, sns:Publish, or sqs:sendMessage using the Lambda-managed ENIs.

Adding Amazon MSK as an event source

To create an event source mapping, add Amazon MSK as a Lambda function trigger using the
Lambda console, an Amazon SDK, or the Amazon Command Line Interface (Amazon CLI). Note that
when you add Amazon MSK as a trigger, Lambda assumes the VPC settings of the Amazon MSK
cluster, not the Lambda function's VPC settings.

This section describes how to create an event source mapping using the Lambda console and the
Amazon CLI.

Prerequisites

• An Amazon MSK cluster and a Kafka topic. For more information, see Getting Started Using
Amazon MSK in the Amazon Managed Streaming for Apache Kafka Developer Guide.

Adding Amazon MSK as an event source 1286

https://www.amazonaws.cn/getting-started/tools-sdks/
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/msk/latest/developerguide/getting-started.html
https://docs.amazonaws.cn/msk/latest/developerguide/getting-started.html

Amazon Lambda Developer Guide

• An execution role with permission to access the Amazon resources that your MSK cluster uses.

Customizable consumer group ID

When setting up Kafka as an event source, you can specify a consumer group ID. This consumer
group ID is an existing identifier for the Kafka consumer group that you want your Lambda
function to join. You can use this feature to seamlessly migrate any ongoing Kafka record
processing setups from other consumers to Lambda.

If you specify a consumer group ID and there are other active pollers within that consumer group,
Kafka distributes messages across all consumers. In other words, Lambda doesn't receive all
message for the Kafka topic. If you want Lambda to handle all messages in the topic, turn off any
other pollers in that consumer group.

Additionally, if you specify a consumer group ID, and Kafka finds a valid existing consumer group
with the same ID, Lambda ignores the StartingPosition parameter for your event source
mapping. Instead, Lambda begins processing records according to the committed offset of the
consumer group. If you specify a consumer group ID, and Kafka cannot find an existing consumer
group, then Lambda configures your event source with the specified StartingPosition.

The consumer group ID that you specify must be unique among all your Kafka event sources. After
creating a Kafka event source mapping with the consumer group ID specified, you cannot update
this value.

On-failure destinations

To retain records of failed invocations or oversized payloads from your Kafka event source,
configure an on-failure destination to your function. When an invocation fails, Lambda sends a
JSON record containing details of the invocation to your destination.

You can choose between an Amazon SNS topic, Amazon SQS queue, or Amazon S3 bucket as your
destination. For SNS topic or SQS queue destinations, Lambda sends the record metadata to the
destination. For S3 bucket destinations, Lambda sends the entire invocation record along with the
metadata to the destination.

For Lambda to successfully send records to your chosen destination, ensure that your function's
execution role contains the relevant permissions. The table also describes how each destination
type receives the JSOn invocation record.

Adding Amazon MSK as an event source 1287

Amazon Lambda Developer Guide

Destination type Supported for the
following event
sources

Required permissio
ns

Destination-specific
JSON format

Amazon SQS queue • Kinesis

• DynamoDB

• Self-managed
Apache Kafka and
Managed Apache
Kafka

• sqs:SendMessage Lambda passes the
invocation record
metadata as the
Message to the
destination.

Amazon SNS topic • Kinesis

• DynamoDB

• Self-managed
Apache Kafka and
Managed Apache
Kafka

• sns:Publish Lambda passes the
invocation record
metadata as the
Message to the
destination.

Amazon S3 bucket • Self-managed
Apache Kafka and
Managed Apache
Kafka

• s3:PutObject

• s3:ListBuckets

Lambda stores
the invocation
record along with
its metadata at the
destination.

Tip

As a best practice, include the minimum permissions required only in your execution role.

SNS and SQS destinations

The following example shows what Lambda sends to an SNS topic or SQS queue destination for
a failed Kafka event source invocation. Each of the keys under recordsInfo contains both the
Kafka topic and partition, separated by a hyphen. For example, for the key "Topic-0", Topic is
the Kafka topic, and 0 is the partition. For each topic and partition, you can use the offsets and
timestamp data to find the original invocation records.

Adding Amazon MSK as an event source 1288

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/sns/latest/api/API_Publish.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_PutObject.html
https://docs.amazonaws.cn/AmazonS3/latest/API/API_ListBuckets.html

Amazon Lambda Developer Guide

{
 "requestContext": {
 "requestId": "316aa6d0-8154-xmpl-9af7-85d5f4a6bc81",
 "functionArn": "arn:aws:lambda:us-east-1:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted" | "MaximumPayloadSizeExceeded",
 "approximateInvokeCount": 1
 },
 "responseContext": { // null if record is MaximumPayloadSizeExceeded
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KafkaBatchInfo": {
 "batchSize": 500,
 "eventSourceArn": "arn:aws:kafka:us-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2",
 "bootstrapServers": "...",
 "payloadSize": 2039086, // In bytes
 "recordsInfo": {
 "Topic-0": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 },
 "Topic-1": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 }
 }
 }
}

Adding Amazon MSK as an event source 1289

Amazon Lambda Developer Guide

S3 destinations

For S3 destinations, Lambda sends the entire invocation record along with the metadata to the
destination. The following example shows that Lambda sends to an S3 bucket destination for a
failed Kafka event source invocation. In addition to all of the fields from the previous example for
SQS and SNS destinations, the payload field contains the original invocation record as an escaped
JSON string.

{
 "requestContext": {
 "requestId": "316aa6d0-8154-xmpl-9af7-85d5f4a6bc81",
 "functionArn": "arn:aws:lambda:us-east-1:123456789012:function:myfunction",
 "condition": "RetryAttemptsExhausted" | "MaximumPayloadSizeExceeded",
 "approximateInvokeCount": 1
 },
 "responseContext": { // null if record is MaximumPayloadSizeExceeded
 "statusCode": 200,
 "executedVersion": "$LATEST",
 "functionError": "Unhandled"
 },
 "version": "1.0",
 "timestamp": "2019-11-14T00:38:06.021Z",
 "KafkaBatchInfo": {
 "batchSize": 500,
 "eventSourceArn": "arn:aws:kafka:us-east-1:123456789012:cluster/
vpc-2priv-2pub/751d2973-a626-431c-9d4e-d7975eb44dd7-2",
 "bootstrapServers": "...",
 "payloadSize": 2039086, // In bytes
 "recordsInfo": {
 "Topic-0": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",
 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 },
 "Topic-1": {
 "firstRecordOffset":
 "49601189658422359378836298521827638475320189012309704722",
 "lastRecordOffset":
 "49601189658422359378836298522902373528957594348623495186",
 "firstRecordTimestamp": "2019-11-14T00:38:04.835Z",

Adding Amazon MSK as an event source 1290

Amazon Lambda Developer Guide

 "lastRecordTimestamp": "2019-11-14T00:38:05.580Z",
 }
 }
 },
 "payload": "<Whole Event>" // Only available in S3
}

Tip

We recommend enabling S3 versioning on your destination bucket.

Configuring on-failure destinations

To configure an on-failure destination using the console, follow these steps:

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Under Function overview, choose Add destination.

4. For Source, choose Event source mapping invocation.

5. For Event source mapping, choose an event source that's configured for this function.

6. For Condition, select On failure. For event source mapping invocations, this is the only
accepted condition.

7. For Destination type, choose the destination type that Lambda sends invocation records to.

8. For Destination, choose a resource.

9. Choose Save.

You can also configure an on-failure destination using the Lambda API. For example, the following
CreateEventSourceMapping CLI command adds an SQS on-failure dsetination to MyFunction:

aws lambda create-event-source-mapping \
--function-name "MyFunction" \
--destination-config '{"OnFailure": {"Destination": "arn:aws:sqs:us-
east-1:123456789012:dest-queue"}}'

The following UpdateEventSourceMapping CLI command adds an S3 on-failure destination to the
Kafka event source associated with the input uuid:

Adding Amazon MSK as an event source 1291

https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html

Amazon Lambda Developer Guide

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--destination-config '{"OnFailure": {"Destination": "arn:aws:s3:::dest-bucket"}}'

To remove a destination, supply an empty string as the argument to the destination-config
parameter:

aws lambda update-event-source-mapping \
--uuid f89f8514-cdd9-4602-9e1f-01a5b77d449b \
--destination-config '{"OnFailure": {"Destination": ""}}'

Adding an Amazon MSK trigger (console)

Follow these steps to add your Amazon MSK cluster and a Kafka topic as a trigger for your Lambda
function.

To add an Amazon MSK trigger to your Lambda function (console)

1. Open the Functions page of the Lambda console.

2. Choose the name of your Lambda function.

3. Under Function overview, choose Add trigger.

4. Under Trigger configuration, do the following:

a. Choose the MSK trigger type.

b. For MSK cluster, select your cluster.

c. For Batch size, enter the maximum number of messages to receive in a single batch.

d. For Batch window, enter the maximum amount of seconds that Lambda spends gathering
records before invoking the function.

e. For Topic name, enter the name of a Kafka topic.

f. (Optional) For Consumer group ID, enter the ID of a Kafka consumer group to join.

g. (Optional) For Starting position, choose Latest to start reading the stream from the latest
record, Trim horizon to start at the earliest available record, or At timestamp to specify a
timestamp to start reading from.

h. (Optional) For Authentication, choose the secret key for authenticating with the brokers
in your MSK cluster.

Adding Amazon MSK as an event source 1292

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

i. To create the trigger in a disabled state for testing (recommended), clear Enable trigger.
Or, to enable the trigger immediately, select Enable trigger.

5. To create the trigger, choose Add.

Adding an Amazon MSK trigger (Amazon CLI)

Use the following example Amazon CLI commands to create and view an Amazon MSK trigger for
your Lambda function.

Creating a trigger using the Amazon CLI

Example — Create event source mapping for cluster that uses IAM authentication

The following example uses the create-event-source-mapping Amazon CLI command to map
a Lambda function named my-kafka-function to a Kafka topic named AWSKafkaTopic. The
topic's starting position is set to LATEST. When the cluster uses IAM role-based authentication, you
don't need a SourceAccessConfiguration object. Example:

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws-cn:kafka:us-east-1:111122223333:cluster/my-cluster/
fc2f5bdf-fd1b-45ad-85dd-15b4a5a6247e-2 \
 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function

Example — Create event source mapping for cluster that uses SASL/SCRAM authentication

If the cluster uses SASL/SCRAM authentication, you must include a SourceAccessConfiguration
object that specifies SASL_SCRAM_512_AUTH and a Secrets Manager secret ARN.

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws-cn:kafka:us-east-1:111122223333:cluster/my-cluster/
fc2f5bdf-fd1b-45ad-85dd-15b4a5a6247e-2 \
 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function
 --source-access-configurations '[{"Type": "SASL_SCRAM_512_AUTH","URI":
 "arn:aws:secretsmanager:us-east-1:111122223333:secret:my-secret"}]'

Adding Amazon MSK as an event source 1293

https://docs.amazonaws.cn/cli/latest/reference/lambda/create-event-source-mapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_SourceAccessConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_SourceAccessConfiguration.html

Amazon Lambda Developer Guide

Example — Create event source mapping for cluster that uses mTLS authentication

If the cluster uses mTLS authentication, you must include a SourceAccessConfiguration object that
specifies CLIENT_CERTIFICATE_TLS_AUTH and a Secrets Manager secret ARN.

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws-cn:kafka:us-east-1:111122223333:cluster/my-cluster/
fc2f5bdf-fd1b-45ad-85dd-15b4a5a6247e-2 \
 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function
 --source-access-configurations '[{"Type": "CLIENT_CERTIFICATE_TLS_AUTH","URI":
 "arn:aws:secretsmanager:us-east-1:111122223333:secret:my-secret"}]'

For more information, see the CreateEventSourceMapping API reference documentation.

Viewing the status using the Amazon CLI

The following example uses the get-event-source-mapping Amazon CLI command to describe
the status of the event source mapping that you created.

aws lambda get-event-source-mapping \
 --uuid 6d9bce8e-836b-442c-8070-74e77903c815

Creating cross-account event source mappings

You can use multi-VPC private connectivity to connect a Lambda function to a provisioned
MSK cluster in a different Amazon Web Services account. Multi-VPC connectivity uses Amazon
PrivateLink, which keeps all traffic within the Amazon network.

Note

You can't create cross-account event source mappings for serverless MSK clusters.

To create a cross-account event source mapping, you must first configure multi-VPC
connectivity for the MSK cluster. When you create the event source mapping, use the managed
VPC connection ARN instead of the cluster ARN, as shown in the following examples. The
CreateEventSourceMapping operation also differs depending on which authentication type the
MSK cluster uses.

Cross-account event source mappings 1294

https://docs.amazonaws.cn/lambda/latest/api/API_SourceAccessConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/get-event-source-mapping.html
https://docs.amazonaws.cn/msk/latest/developerguide/aws-access-mult-vpc.html
https://docs.amazonaws.cn/msk/latest/developerguide/aws-access-mult-vpc.html#mvpc-cluster-owner-action-turn-on
https://docs.amazonaws.cn/msk/latest/developerguide/aws-access-mult-vpc.html#mvpc-cluster-owner-action-turn-on
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html

Amazon Lambda Developer Guide

Example — Create cross-account event source mapping for cluster that uses IAM authentication

When the cluster uses IAM role-based authentication, you don't need a SourceAccessConfiguration
object. Example:

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws:kafka:us-east-1:111122223333:vpc-connection/444455556666/
my-cluster-name/51jn98b4-0a61-46cc-b0a6-61g9a3d797d5-7 \
 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function

Example — Create cross-account event source mapping for cluster that uses SASL/SCRAM
authentication

If the cluster uses SASL/SCRAM authentication, you must include a SourceAccessConfiguration
object that specifies SASL_SCRAM_512_AUTH and a Secrets Manager secret ARN.

There are two ways to use secrets for cross-account Amazon MSK event source mappings with
SASL/SCRAM authentication:

• Create a secret in the Lambda function account and sync it with the cluster secret. Create a
rotation to keep the two secrets in sync. This option allows you to control the secret from the
function account.

• Use the secret that's associated with the MSK cluster. This secret must allow cross-account access
to the Lambda function account. For more information, see Permissions to Amazon Secrets
Manager secrets for users in a different account.

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws:kafka:us-east-1:111122223333:vpc-connection/444455556666/
my-cluster-name/51jn98b4-0a61-46cc-b0a6-61g9a3d797d5-7 \
 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function \
 --source-access-configurations '[{"Type": "SASL_SCRAM_512_AUTH","URI":
 "arn:aws:secretsmanager:us-east-1:444455556666:secret:my-secret"}]'

Cross-account event source mappings 1295

https://docs.amazonaws.cn/lambda/latest/api/API_SourceAccessConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_SourceAccessConfiguration.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/auth-and-access_examples_cross.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/auth-and-access_examples_cross.html

Amazon Lambda Developer Guide

Example — Create cross-account event source mapping for cluster that uses mTLS
authentication

If the cluster uses mTLS authentication, you must include a SourceAccessConfiguration object that
specifies CLIENT_CERTIFICATE_TLS_AUTH and a Secrets Manager secret ARN. The secret can be
stored in the cluster account or the Lambda function account.

aws lambda create-event-source-mapping \
 --event-source-arn arn:aws:kafka:us-east-1:111122223333:vpc-connection/444455556666/
my-cluster-name/51jn98b4-0a61-46cc-b0a6-61g9a3d797d5-7 \
 --topics AWSKafkaTopic \
 --starting-position LATEST \
 --function-name my-kafka-function \
 --source-access-configurations '[{"Type": "CLIENT_CERTIFICATE_TLS_AUTH","URI":
 "arn:aws:secretsmanager:us-east-1:444455556666:secret:my-secret"}]'

Auto scaling of the Amazon MSK event source

When you initially create an Amazon MSK event source, Lambda allocates one consumer to process
all partitions in the Kafka topic. Each consumer has multiple processors running in parallel to
handle increased workloads. Additionally, Lambda automatically scales up or down the number
of consumers, based on workload. To preserve message ordering in each partition, the maximum
number of consumers is one consumer per partition in the topic.

In one-minute intervals, Lambda evaluates the consumer offset lag of all the partitions in the topic.
If the lag is too high, the partition is receiving messages faster than Lambda can process them. If
necessary, Lambda adds or removes consumers from the topic. The scaling process of adding or
removing consumers occurs within three minutes of evaluation.

If your target Lambda function is throttled, Lambda reduces the number of consumers. This action
reduces the workload on the function by reducing the number of messages that consumers can
retrieve and send to the function.

To monitor the throughput of your Kafka topic, view the Offset lag metric Lambda emits while your
function processes records.

To check how many function invocations occur in parallel, you can also monitor the concurrency
metrics for your function.

Auto scaling of the Amazon MSK event source 1296

https://docs.amazonaws.cn/lambda/latest/api/API_SourceAccessConfiguration.html

Amazon Lambda Developer Guide

Polling and stream starting positions

Be aware that stream polling during event source mapping creation and updates is eventually
consistent.

• During event source mapping creation, it may take several minutes to start polling events from
the stream.

• During event source mapping updates, it may take several minutes to stop and restart polling
events from the stream.

This behavior means that if you specify LATEST as the starting position for the stream, the event
source mapping could miss events during creation or updates. To ensure that no events are missed,
specify the stream starting position as TRIM_HORIZON or AT_TIMESTAMP.

Amazon CloudWatch metrics

Lambda emits the OffsetLag metric while your function processes records. The value of this
metric is the difference in offset between the last record written to the Kafka event source topic
and the last record that your function's consumer group processed. You can use OffsetLag to
estimate the latency between when a record is added and when your consumer group processes it.

An increasing trend in OffsetLag can indicate issues with pollers in your function's consumer
group. For more information, see Working with Lambda function metrics.

Amazon MSK configuration parameters

All Lambda event source types share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
Amazon MSK.

Event source parameters that apply to Amazon MSK

Parameter Required Default Notes

AmazonMan
agedKafkaEventSour
ceConfig

N Contains the
ConsumerGroupId
field, which defaults
to a unique value.

Can set only on
Create

Polling and stream starting positions 1297

https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html

Amazon Lambda Developer Guide

Parameter Required Default Notes

BatchSize N 100 Maximum: 10,000

Enabled N Enabled

EventSourceArn Y Can set only on
Create

FunctionName Y

FilterCriteria N Lambda event
filtering

MaximumBa
tchingWindowInSeco
nds

N 500 ms Batching behavior

SourceAccessConfig
urations

N No credentials SASL/SCRAM
or CLIENT_CE
RTIFICATE_TLS_AUTH
(MutualTLS)
authentication
credentials for your
event source

StartingPosition Y AT_TIMESTAMP,
TRIM_HORIZON, or
LATEST

Can set only on
Create

StartingPositionTi
mestamp

N Required if StartingP
osition is set to
AT_TIMESTAMP

Amazon MSK configuration parameters 1298

Amazon Lambda Developer Guide

Parameter Required Default Notes

Topics Y Kafka topic name

Can set only on
Create

Amazon MSK configuration parameters 1299

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon RDS

You can connect a Lambda function to an Amazon Relational Database Service (Amazon RDS)
database directly and through an Amazon RDS Proxy. Direct connections are useful in simple
scenarios, and proxies are recommended for production. A database proxy manages a pool of
shared database connections which enables your function to reach high concurrency levels without
exhausting database connections.

We recommend using Amazon RDS Proxy for Lambda functions that make frequent short database
connections, or open and close large numbers of database connections.

Configuring your function

In the Lambda console, you can provision, and configure, Amazon RDS database instances
and proxy resources. For more information, see RDS databases under the Configuration tab.
Alternatively, you can also create and configure connections to Lambda functions in the Amazon
RDS console.

• To connect to a database, your function must be in the same Amazon VPC where your database
runs.

• You can use Amazon RDS databases with MySQL, MariaDB, PostgreSQL, or Microsoft SQL Server
engines.

• You can also use Aurora DB clusters with MySQL or PostgreSQL engines.

• You need to provide a Secrets Manager secret for database authentication.

• An IAM role must provide permission to use the secret, and a trust policy must allow Amazon
RDS to assume the role.

• The IAM princiapl that uses the console to configure the Amazon RDS resource, and connect it to
your function must have the following permissions:

Note

You need the Amazon RDS Proxy permissions only if you configure an Amazon RDS Proxy
to to manage a pool of your database connections.

RDS 1300

Amazon Lambda Developer Guide

Example permission policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateSecurityGroup",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect",
 "rds:CreateDBProxy",
 "rds:CreateDBInstance",
 "rds:CreateDBSubnetGroup",
 "rds:DescribeDBClusters",
 "rds:DescribeDBInstances",
 "rds:DescribeDBSubnetGroups",
 "rds:DescribeDBProxies",
 "rds:DescribeDBProxyTargets",
 "rds:DescribeDBProxyTargetGroups",
 "rds:RegisterDBProxyTargets",
 "rds:ModifyDBInstance",
 "rds:ModifyDBProxy"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",

Configuring your function 1301

Amazon Lambda Developer Guide

 "Action": [
 "lambda:CreateFunction",
 "lambda:ListFunctions",
 "lambda:UpdateFunctionConfiguration"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:AttachPolicy",
 "iam:CreateRole",
 "iam:CreatePolicy"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds",
 "secretsmanager:CreateSecret"
],
 "Resource": "*"
 }
]
}

Amazon RDS charges an hourly rate for proxies based on the database instance size, see RDS Proxy
pricing for details. For more information on proxy connections in general, see Using Amazon RDS
Proxy in the Amazon RDS User Guide.

Lambda and Amazon RDS setup

Both Lambda and Amazon RDS consoles will assist you in automatically configuring some
of the required resources to make a connection between Lambda and Amazon RDS.

Configuring your function 1302

http://www.amazonaws.cn/rds/proxy/pricing/
http://www.amazonaws.cn/rds/proxy/pricing/
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/rds-proxy.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/rds-proxy.html

Amazon Lambda Developer Guide

Process event notifications from Amazon RDS

You can use Lambda to process event notifications from an Amazon RDS database. Amazon RDS
sends notifications to an Amazon Simple Notification Service (Amazon SNS) topic, which you can
configure to invoke a Lambda function. Amazon SNS wraps the message from Amazon RDS in its
own event document and sends it to your function.

For more information about configuring an Amazon RDS database to send notifications, see Using
Amazon RDS event notifications.

Example Amazon RDS message in an Amazon SNS event

{
 "Records": [
 {
 "EventVersion": "1.0",
 "EventSubscriptionArn": "arn:aws-cn:sns:us-east-2:123456789012:rds-
lambda:21be56ed-a058-49f5-8c98-aedd2564c486",
 "EventSource": "aws:sns",
 "Sns": {
 "SignatureVersion": "1",
 "Timestamp": "2023-01-02T12:45:07.000Z",
 "Signature": "tcc6faL2yUC6dgZdmrwh1Y4cGa/ebXEkAi6RibDsvpi
+tE/1+82j...65r==",
 "SigningCertUrl": "https://sns.us-east-2.amazonaws.com/
SimpleNotificationService-ac565b8b1a6c5d002d285f9598aa1d9b.pem",
 "MessageId": "95df01b4-ee98-5cb9-9903-4c221d41eb5e",
 "Message": "{\"Event Source\":\"db-instance\",\"Event Time\":\"2023-01-02
 12:45:06.000\",\"Identifier Link\":\"https://console.amazonaws.cn/rds/home?region=eu-
west-1#dbinstance:id=dbinstanceid\",\"Source ID\":\"dbinstanceid\",\"Event ID\":
\"http://docs.amazonwebservices.com/AmazonRDS/latest/UserGuide/USER_Events.html#RDS-
EVENT-0002\",\"Event Message\":\"Finished DB Instance backup\"}",
 "MessageAttributes": {},
 "Type": "Notification",
 "UnsubscribeUrl": "https://sns.us-east-2.amazonaws.com/?
Action=Unsubscribe&SubscriptionArn=arn:aws-cn:sns:us-east-2:123456789012:test-
lambda:21be56ed-a058-49f5-8c98-aedd2564c486",
 "TopicArn":"arn:aws-cn:sns:us-east-2:123456789012:sns-lambda",
 "Subject": "RDS Notification Message"
 }
 }
]

Process event notifications from Amazon RDS 1303

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Events.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Events.html

Amazon Lambda Developer Guide

 }

Lambda and Amazon RDS tutorial

• Using a Lambda function to access an Amazon RDS database – From the Amazon RDS User
Guide, learn how to use a Lambda function to write data to an Amazon RDS database through
an Amazon RDS Proxy. Your Lambda function will read records from an Amazon SQS queue and
write new items to a table in your database whenever a message is added.

Lambda and Amazon RDS tutorial 1304

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/rds-lambda-tutorial.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon S3

You can use Lambda to process event notifications from Amazon Simple Storage Service. Amazon
S3 can send an event to a Lambda function when an object is created or deleted. You configure
notification settings on a bucket, and grant Amazon S3 permission to invoke a function on the
function's resource-based permissions policy.

Warning

If your Lambda function uses the same bucket that triggers it, it could cause the function
to run in a loop. For example, if the bucket triggers a function each time an object is
uploaded, and the function uploads an object to the bucket, then the function indirectly
triggers itself. To avoid this, use two buckets, or configure the trigger to only apply to a
prefix used for incoming objects.

Amazon S3 invokes your function asynchronously with an event that contains details about the
object. The following example shows an event that Amazon S3 sent when a deployment package
was uploaded to Amazon S3.

Example Amazon S3 notification event

{
 "Records": [
 {
 "eventVersion": "2.1",
 "eventSource": "aws:s3",
 "awsRegion": "us-east-2",
 "eventTime": "2019-09-03T19:37:27.192Z",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "AWS:AIDAINPONIXQXHT3IKHL2"
 },
 "requestParameters": {
 "sourceIPAddress": "205.255.255.255"
 },
 "responseElements": {
 "x-amz-request-id": "D82B88E5F771F645",
 "x-amz-id-2":
 "vlR7PnpV2Ce81l0PRw6jlUpck7Jo5ZsQjryTjKlc5aLWGVHPZLj5NeC6qMa0emYBDXOo6QBU0Wo="
 },

S3 1305

https://docs.amazonaws.cn/AmazonS3/latest/dev/NotificationHowTo.html

Amazon Lambda Developer Guide

 "s3": {
 "s3SchemaVersion": "1.0",
 "configurationId": "828aa6fc-f7b5-4305-8584-487c791949c1",
 "bucket": {
 "name": "DOC-EXAMPLE-BUCKET",
 "ownerIdentity": {
 "principalId": "A3I5XTEXAMAI3E"
 },
 "arn": "arn:aws-cn:s3:::lambda-artifacts-deafc19498e3f2df"
 },
 "object": {
 "key": "b21b84d653bb07b05b1e6b33684dc11b",
 "size": 1305107,
 "eTag": "b21b84d653bb07b05b1e6b33684dc11b",
 "sequencer": "0C0F6F405D6ED209E1"
 }
 }
 }
]
}

To invoke your function, Amazon S3 needs permission from the function's resource-based policy.
When you configure an Amazon S3 trigger in the Lambda console, the console modifies the
resource-based policy to allow Amazon S3 to invoke the function if the bucket name and account
ID match. If you configure the notification in Amazon S3, you use the Lambda API to update
the policy. You can also use the Lambda API to grant permission to another account, or restrict
permission to a designated alias.

If your function uses the Amazon SDK to manage Amazon S3 resources, it also needs Amazon S3
permissions in its execution role.

Topics

• Tutorial: Using an Amazon S3 trigger to invoke a Lambda function

• Tutorial: Using an Amazon S3 trigger to create thumbnail images

Tutorial: Using an Amazon S3 trigger to invoke a Lambda function

In this tutorial, you use the console to create a Lambda function and configure a trigger for an
Amazon Simple Storage Service (Amazon S3) bucket. Every time that you add an object to your
Amazon S3 bucket, your function runs and outputs the object type to Amazon CloudWatch Logs.

Tutorial: Use an S3 trigger 1306

Amazon Lambda Developer Guide

This tutorial demonstrates how to:

1. Create an Amazon S3 bucket.

2. Create a Lambda function that returns the object type of objects in an Amazon S3 bucket.

3. Configure a Lambda trigger that invokes your function when objects are uploaded to your
bucket.

4. Test your function, first with a dummy event, and then using the trigger.

By completing these steps, you’ll learn how to configure a Lambda function to run whenever
objects are added to or deleted from an Amazon S3 bucket. You can complete this tutorial using
only the Amazon Web Services Management Console.

Prerequisites

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Tutorial: Use an S3 trigger 1307

http://www.amazonaws.cn/

Amazon Lambda Developer Guide

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Create an Amazon S3 bucket

To create an Amazon S3 bucket

1. Open the Amazon S3 console and select the Buckets page.

2. Choose Create bucket.

3. Under General configuration, do the following:

Tutorial: Use an S3 trigger 1308

http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://console.amazonaws.cn/s3

Amazon Lambda Developer Guide

a. For Bucket name, enter a globally unique name that meets the Amazon S3 Bucket naming
rules. Bucket names can contain only lower case letters, numbers, dots (.), and hyphens (-).

b. For Amazon Region, choose a Region. Later in the tutorial, you must create your Lambda
function in the same Region.

4. Leave all other options set to their default values and choose Create bucket.

Upload a test object to your bucket

To upload a test object

1. Open the Buckets page of the Amazon S3 console and choose the bucket you created during
the previous step.

2. Choose Upload.

3. Choose Add files and select the object that you want to upload. You can select any file (for
example, HappyFace.jpg).

4. Choose Open, then choose Upload.

Later in the tutorial, you’ll test your Lambda function using this object.

Tutorial: Use an S3 trigger 1309

https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucketnamingrules.html
https://console.amazonaws.cn/s3/buckets

Amazon Lambda Developer Guide

Create a permissions policy

Create a permissions policy that allows Lambda to get objects from an Amazon S3 bucket and to
write to Amazon CloudWatch Logs.

To create the policy

1. Open the Policies page of the IAM console.

2. Choose Create Policy.

3. Choose the JSON tab, and then paste the following custom policy into the JSON editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:CreateLogStream"
],
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::*/*"
 }
]

Tutorial: Use an S3 trigger 1310

https://console.amazonaws.cn/iam/home#/policies

Amazon Lambda Developer Guide

}

4. Choose Next: Tags.

5. Choose Next: Review.

6. Under Review policy, for the policy Name, enter s3-trigger-tutorial.

7. Choose Create policy.

Create an execution role

An execution role is an Amazon Identity and Access Management (IAM) role that grants a Lambda
function permission to access Amazon services and resources. In this step, create an execution role
using the permissions policy that you created in the previous step.

To create an execution role and attach your custom permissions policy

1. Open the Roles page of the IAM console.

2. Choose Create role.

3. For the type of trusted entity, choose Amazon service, then for the use case, choose Lambda.

4. Choose Next.

5. In the policy search box, enter s3-trigger-tutorial.

6. In the search results, select the policy that you created (s3-trigger-tutorial), and then
choose Next.

7. Under Role details, for the Role name, enter lambda-s3-trigger-role, then choose
Create role.

Tutorial: Use an S3 trigger 1311

https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

Create the Lambda function

Create a Lambda function in the console using the Python 3.12 runtime.

To create the Lambda function

1. Open the Functions page of the Lambda console.

2. Make sure you're working in the same Amazon Web Services Region you created your Amazon
S3 bucket in. You can change your Region using the drop-down list at the top of the screen.

3. Choose Create function.

4. Choose Author from scratch

5. Under Basic information, do the following:

a. For Function name, enter s3-trigger-tutorial

b. For Runtime, choose Python 3.12.

c. For Architecture, choose x86_64.

6. In the Change default execution role tab, do the following:

Tutorial: Use an S3 trigger 1312

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

a. Expand the tab, then choose Use an existing role.

b. Select the lambda-s3-trigger-role you created earlier.

7. Choose Create function.

Deploy the function code

This tutorial uses the Python 3.12 runtime, but we’ve also provided example code files for other
runtimes. You can select the tab in the following box to see the code for the runtime you’re
interested in.

The Lambda function retrieves the key name of the uploaded object and the name of the bucket
from the event parameter it receives from Amazon S3. The function then uses the get_object
method from the Amazon SDK for Python (Boto3) to retrieve the object's metadata, including the
content type (MIME type) of the uploaded object.

To deploy the function code

1. Choose the Python tab in the following box and copy the code.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Tutorial: Use an S3 trigger 1313

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3/client/get_object.html
https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon Lambda Developer Guide

Consuming an S3 event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Threading.Tasks;
using Amazon.Lambda.Core;
using Amazon.S3;
using System;
using Amazon.Lambda.S3Events;
using System.Web;

// Assembly attribute to enable the Lambda function's JSON input to be
 converted into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace S3Integration
{
 public class Function
 {
 private static AmazonS3Client _s3Client;
 public Function() : this(null)
 {
 }

 internal Function(AmazonS3Client s3Client)
 {
 _s3Client = s3Client ?? new AmazonS3Client();
 }

 public async Task<string> Handler(S3Event evt, ILambdaContext
 context)
 {
 try
 {
 if (evt.Records.Count <= 0)
 {
 context.Logger.LogLine("Empty S3 Event received");
 return string.Empty;
 }

 var bucket = evt.Records[0].S3.Bucket.Name;

Tutorial: Use an S3 trigger 1314

Amazon Lambda Developer Guide

 var key =
 HttpUtility.UrlDecode(evt.Records[0].S3.Object.Key);

 context.Logger.LogLine($"Request is for {bucket} and {key}");

 var objectResult = await _s3Client.GetObjectAsync(bucket,
 key);

 context.Logger.LogLine($"Returning {objectResult.Key}");

 return objectResult.Key;
 }
 catch (Exception e)
 {
 context.Logger.LogLine($"Error processing request -
 {e.Message}");

 return string.Empty;
 }
 }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming an S3 event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"

Tutorial: Use an S3 trigger 1315

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon Lambda Developer Guide

 "log"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/s3"
)

func handler(ctx context.Context, s3Event events.S3Event) error {
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 log.Printf("failed to load default config: %s", err)
 return err
 }
 s3Client := s3.NewFromConfig(sdkConfig)

 for _, record := range s3Event.Records {
 bucket := record.S3.Bucket.Name
 key := record.S3.Object.URLDecodedKey
 headOutput, err := s3Client.HeadObject(ctx, &s3.HeadObjectInput{
 Bucket: &bucket,
 Key: &key,
 })
 if err != nil {
 log.Printf("error getting head of object %s/%s: %s", bucket, key, err)
 return err
 }
 log.Printf("successfully retrieved %s/%s of type %s", bucket, key,
 *headOutput.ContentType)
 }

 return nil
}

func main() {
 lambda.Start(handler)
}

Tutorial: Use an S3 trigger 1316

Amazon Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming an S3 event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import software.amazon.awssdk.services.s3.model.HeadObjectRequest;
import software.amazon.awssdk.services.s3.model.HeadObjectResponse;
import software.amazon.awssdk.services.s3.S3Client;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.S3Event;
import
 com.amazonaws.services.lambda.runtime.events.models.s3.S3EventNotification.S3EventNotificationRecord;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class Handler implements RequestHandler<S3Event, String> {
 private static final Logger logger =
 LoggerFactory.getLogger(Handler.class);
 @Override
 public String handleRequest(S3Event s3event, Context context) {
 try {
 S3EventNotificationRecord record = s3event.getRecords().get(0);
 String srcBucket = record.getS3().getBucket().getName();
 String srcKey = record.getS3().getObject().getUrlDecodedKey();

 S3Client s3Client = S3Client.builder().build();

Tutorial: Use an S3 trigger 1317

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda#readme

Amazon Lambda Developer Guide

 HeadObjectResponse headObject = getHeadObject(s3Client, srcBucket,
 srcKey);

 logger.info("Successfully retrieved " + srcBucket + "/" + srcKey +
 " of type " + headObject.contentType());

 return "Ok";
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 private HeadObjectResponse getHeadObject(S3Client s3Client, String
 bucket, String key) {
 HeadObjectRequest headObjectRequest = HeadObjectRequest.builder()
 .bucket(bucket)
 .key(key)
 .build();
 return s3Client.headObject(headObjectRequest);
 }
}

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming an S3 event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
const aws = require('aws-sdk');

const s3 = new aws.S3({ apiVersion: '2006-03-01' });

exports.handler = async (event, context) => {

Tutorial: Use an S3 trigger 1318

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon Lambda Developer Guide

 // Get the object from the event and show its content type
 const bucket = event.Records[0].s3.bucket.name;
 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\
+/g, ' '));
 const params = {
 Bucket: bucket,
 Key: key,
 };
 try {
 const { ContentType } = await s3.headObject(params).promise();
 console.log('CONTENT TYPE:', ContentType);
 return ContentType;
 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}.
 Make sure they exist and your bucket is in the same region as this
 function.`;
 console.log(message);
 throw new Error(message);
 }
};

Consuming an S3 event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { S3Event } from 'aws-lambda';
import { S3Client, HeadObjectCommand } from '@aws-sdk/client-s3';

const s3 = new S3Client({ region: process.env.AWS_REGION });

export const handler = async (event: S3Event): Promise<string | undefined> =>
 {
 // Get the object from the event and show its content type
 const bucket = event.Records[0].s3.bucket.name;
 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/
g, ' '));
 const params = {
 Bucket: bucket,
 Key: key,
 };
 try {

Tutorial: Use an S3 trigger 1319

Amazon Lambda Developer Guide

 const { ContentType } = await s3.send(new HeadObjectCommand(params));
 console.log('CONTENT TYPE:', ContentType);
 return ContentType;
 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}. Make
 sure they exist and your bucket is in the same region as this function.`;
 console.log(message);
 throw new Error(message);
 }
};

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming an S3 event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import json
import urllib.parse
import boto3

print('Loading function')

s3 = boto3.client('s3')

def lambda_handler(event, context):
 #print("Received event: " + json.dumps(event, indent=2))

 # Get the object from the event and show its content type
 bucket = event['Records'][0]['s3']['bucket']['name']

Tutorial: Use an S3 trigger 1320

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon Lambda Developer Guide

 key = urllib.parse.unquote_plus(event['Records'][0]['s3']['object']
['key'], encoding='utf-8')
 try:
 response = s3.get_object(Bucket=bucket, Key=key)
 print("CONTENT TYPE: " + response['ContentType'])
 return response['ContentType']
 except Exception as e:
 print(e)
 print('Error getting object {} from bucket {}. Make sure they
 exist and your bucket is in the same region as this function.'.format(key,
 bucket))
 raise e

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Consuming an S3 event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::s3::S3Event;
use aws_sdk_s3::{Client};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

/// Main function
#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

Tutorial: Use an S3 trigger 1321

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon Lambda Developer Guide

 // Initialize the AWS SDK for Rust
 let config = aws_config::load_from_env().await;
 let s3_client = Client::new(&config);

 let res = run(service_fn(|request: LambdaEvent<S3Event>| {
 function_handler(&s3_client, request)
 })).await;

 res
}

async fn function_handler(
 s3_client: &Client,
 evt: LambdaEvent<S3Event>
) -> Result<(), Error> {
 tracing::info!(records = ?evt.payload.records.len(), "Received request
 from SQS");

 if evt.payload.records.len() == 0 {
 tracing::info!("Empty S3 event received");
 }

 let bucket =
 evt.payload.records[0].s3.bucket.name.as_ref().expect("Bucket name to
 exist");
 let key = evt.payload.records[0].s3.object.key.as_ref().expect("Object
 key to exist");

 tracing::info!("Request is for {} and object {}", bucket, key);

 let s3_get_object_result = s3_client
 .get_object()
 .bucket(bucket)
 .key(key)
 .send()
 .await;

 match s3_get_object_result {
 Ok(_) => tracing::info!("S3 Get Object success, the s3GetObjectResult
 contains a 'body' property of type ByteStream"),
 Err(_) => tracing::info!("Failure with S3 Get Object request")
 }

Tutorial: Use an S3 trigger 1322

Amazon Lambda Developer Guide

 Ok(())
}

2. In the Code source pane on the Lambda console, paste the code into the lambda_function.py
file.

3. Choose Deploy.

Create the Amazon S3 trigger

To create the Amazon S3 trigger

1. In the Function overview pane, choose Add trigger.

Tutorial: Use an S3 trigger 1323

Amazon Lambda Developer Guide

2. Select S3.

3. Under Bucket, select the bucket you created earlier in the tutorial.

4. Under Event types, be sure that All object create events is selected.

5. Under Recursive invocation, select the check box to acknowledge that using the same Amazon
S3 bucket for input and output is not recommended.

6. Choose Add.

Test your Lambda function with a dummy event

To test the Lambda function with a dummy event

1. In the Lambda console page for your function, choose the Test tab.

Tutorial: Use an S3 trigger 1324

Amazon Lambda Developer Guide

2. For Event name, enter MyTestEvent.

3. In the Event JSON, paste the following test event. Be sure to replace these values:

• Replace us-east-1 with the region you created your Amazon S3 bucket in.

• Replace both instances of my-bucket with the name of your own Amazon S3 bucket.

• Replace test%2FKey with the name of the test object you uploaded to your bucket earlier
(for example, HappyFace.jpg).

{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventSource": "aws:s3",
 "awsRegion": "us-east-1",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "responseElements": {
 "x-amz-request-id": "EXAMPLE123456789",
 "x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/
mnopqrstuvwxyzABCDEFGH"
 },
 "s3": {
 "s3SchemaVersion": "1.0",
 "configurationId": "testConfigRule",
 "bucket": {
 "name": "my-bucket",
 "ownerIdentity": {

Tutorial: Use an S3 trigger 1325

Amazon Lambda Developer Guide

 "principalId": "EXAMPLE"
 },
 "arn": "arn:aws:s3:::my-bucket"
 },
 "object": {
 "key": "test%2Fkey",
 "size": 1024,
 "eTag": "0123456789abcdef0123456789abcdef",
 "sequencer": "0A1B2C3D4E5F678901"
 }
 }
 }
]
}

4. Choose Save.

5. Choose Test.

6. If your function runs successfully, you’ll see output similar to the following in the Execution
results tab.

Response
"image/jpeg"

Function Logs
START RequestId: 12b3cae7-5f4e-415e-93e6-416b8f8b66e6 Version: $LATEST
2021-02-18T21:40:59.280Z 12b3cae7-5f4e-415e-93e6-416b8f8b66e6 INFO INPUT
 BUCKET AND KEY: { Bucket: 'my-bucket', Key: 'HappyFace.jpg' }
2021-02-18T21:41:00.215Z 12b3cae7-5f4e-415e-93e6-416b8f8b66e6 INFO CONTENT
 TYPE: image/jpeg
END RequestId: 12b3cae7-5f4e-415e-93e6-416b8f8b66e6
REPORT RequestId: 12b3cae7-5f4e-415e-93e6-416b8f8b66e6 Duration: 976.25 ms
 Billed Duration: 977 ms Memory Size: 128 MB Max Memory Used: 90 MB Init
 Duration: 430.47 ms

Request ID
12b3cae7-5f4e-415e-93e6-416b8f8b66e6

Tutorial: Use an S3 trigger 1326

Amazon Lambda Developer Guide

Test the Lambda function with the Amazon S3 trigger

To test your function with the configured trigger, upload an object to your Amazon S3 bucket using
the console. To verify that your Lambda function ran as expected, use CloudWatch Logs to view
your function’s output.

To upload an object to your Amazon S3 bucket

1. Open the Buckets page of the Amazon S3 console and choose the bucket that you created
earlier.

2. Choose Upload.

3. Choose Add files and use the file selector to choose an object you want to upload. This object
can be any file you choose.

4. Choose Open, then choose Upload.

To verify the function invocation using CloudWatch Logs

1. Open the CloudWatch console.

2. Make sure you're working in the same Amazon Web Services Region you created your Lambda
function in. You can change your Region using the drop-down list at the top of the screen.

Tutorial: Use an S3 trigger 1327

https://console.amazonaws.cn/s3/buckets
https://console.amazonaws.cn/cloudwatch/home

Amazon Lambda Developer Guide

3. Choose Logs, then choose Log groups.

4. Choose the log group for your function (/aws/lambda/s3-trigger-tutorial).

5. Under Log streams, choose the most recent log stream.

6. If your function was invoked correctly in response to your Amazon S3 trigger, you’ll see output
similar to the following. The CONTENT TYPE you see depends on the type of file you uploaded
to your bucket.

2022-05-09T23:17:28.702Z 0cae7f5a-b0af-4c73-8563-a3430333cc10 INFO CONTENT
 TYPE: image/jpeg

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

To delete the execution role

1. Open the Roles page of the IAM console.

Tutorial: Use an S3 trigger 1328

https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the S3 bucket

1. Open the Amazon S3 console.

2. Select the bucket you created.

3. Choose Delete.

4. Enter the name of the bucket in the text input field.

5. Choose Delete bucket.

Next steps

In Tutorial: Using an Amazon S3 trigger to create thumbnail images, the Amazon S3 trigger invokes
a function that creates a thumbnail image for each image file that is uploaded to a bucket. This
tutorial requires a moderate level of Amazon and Lambda domain knowledge. It demonstrates how
to create resources using the Amazon Command Line Interface (Amazon CLI) and how to create
a .zip file archive deployment package for the function and its dependencies.

Tutorial: Using an Amazon S3 trigger to create thumbnail images

In this tutorial, you create and configure a Lambda function that resizes images added to an
Amazon Simple Storage Service (Amazon S3) bucket. When you add an image file to your bucket,
Amazon S3 invokes your Lambda function. The function then creates a thumbnail version of the
image and outputs it to a different Amazon S3 bucket.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1329

https://console.amazonaws.cn/s3/home#

Amazon Lambda Developer Guide

To complete this tutorial, you carry out the following steps:

1. Create source and destination Amazon S3 buckets and upload a sample image.

2. Create a Lambda function that resizes an image and outputs a thumbnail to an Amazon S3
bucket.

3. Configure a Lambda trigger that invokes your function when objects are uploaded to your source
bucket.

4. Test your function, first with a dummy event, and then by uploading an image to your source
bucket.

By completing these steps, you’ll learn how to use Lambda to carry out a file processing task
on objects added to an Amazon S3 bucket. You can complete this tutorial using the Amazon
Command Line Interface (Amazon CLI) or the Amazon Web Services Management Console.

If you're looking for a simpler example to learn how to configure an Amazon S3 trigger for Lambda,
you can try Tutorial: Using an Amazon S3 trigger to invoke a Lambda function.

Topics

• Prerequisites

• Create two Amazon S3 buckets

• Upload a test image to your source bucket

• Create a permissions policy

• Create an execution role

Tutorial: Use an Amazon S3 trigger to create thumbnails 1330

https://docs.amazonaws.cn/lambda/latest/dg/with-s3-example.html

Amazon Lambda Developer Guide

• Create the function deployment package

• Create the Lambda function

• Configure Amazon S3 to invoke the function

• Test your Lambda function with a dummy event

• Test your function using the Amazon S3 trigger

• Clean up your resources

Prerequisites

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

Tutorial: Use an Amazon S3 trigger to create thumbnails 1331

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html

Amazon Lambda Developer Guide

• Example IAM identity-based policies

If you want to use the Amazon CLI to complete the tutorial, install the latest version of the Amazon
Command Line Interface.

For your Lambda function code, you can use Python or Node.js. Install the language support tools
and a package manager for the language that you want to use.

Create two Amazon S3 buckets

First create two Amazon S3 buckets. The first bucket is the source bucket you will upload your
images to. The second bucket is used by Lambda to save the resized thumbnail when you invoke
your function.

Amazon Web Services Management Console

To create the Amazon S3 buckets (console)

1. Open the Buckets page of the Amazon S3 console.

2. Choose Create bucket.

3. Under General configuration, do the following:

a. For Bucket name, enter a globally unique name that meets the Amazon S3 Bucket
naming rules. Bucket names can contain only lower case letters, numbers, dots (.), and
hyphens (-).

b. For Amazon Web Services Region, choose the Amazon Web Services Region closest to
your geographical location. Later in the tutorial, you must create your Lambda function
in the same Amazon Web Services Region, so make a note of the region you chose.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1332

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://console.amazonaws.cn/s3/buckets
https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.amazonaws.cn/general/latest/gr/lambda-service.html

Amazon Lambda Developer Guide

4. Leave all other options set to their default values and choose Create bucket.

5. Repeat steps 1 to 4 to create your destination bucket. For Bucket name, enter
SOURCEBUCKET-resized, where SOURCEBUCKET is the name of the source bucket you
just created.

Amazon CLI

To create the Amazon S3 buckets (Amazon CLI)

1. Run the following CLI command to create your source bucket. The name you choose for
your bucket must be globally unique and follow the Amazon S3 Bucket naming rules.
Names can only contain lower case letters, numbers, dots (.), and hyphens (-). For region
and LocationConstraint, choose the Amazon Web Services Region closest to your
geographical location.

aws s3api create-bucket --bucket SOURCEBUCKET --region us-west-2 \
--create-bucket-configuration LocationConstraint=us-west-2

Later in the tutorial, you must create your Lambda function in the same Amazon Web
Services Region as your source bucket, so make a note of the region you chose.

2. Run the following command to create your destination bucket. For the bucket name, you
must use SOURCEBUCKET-resized, where SOURCEBUCKET is the name of the source
bucket you created in step 1. For region and LocationConstraint, choose the same
Amazon Web Services Region you used to create your source bucket.

aws s3api create-bucket --bucket SOURCEBUCKET-resized --region us-west-2 \
--create-bucket-configuration LocationConstraint=us-west-2

Tutorial: Use an Amazon S3 trigger to create thumbnails 1333

https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.amazonaws.cn/general/latest/gr/lambda-service.html

Amazon Lambda Developer Guide

Upload a test image to your source bucket

Later in the tutorial, you’ll test your Lambda function by invoking it using the Amazon CLI or the
Lambda console. To confirm that your function is operating correctly, your source bucket needs to
contain a test image. This image can be any JPG or PNG file you choose.

Amazon Web Services Management Console

To upload a test image to your source bucket (console)

1. Open the Buckets page of the Amazon S3 console.

2. Select the source bucket you created in the previous step.

3. Choose Upload.

4. Choose Add files and use the file selector to choose the object you want to upload.

5. Choose Open, then choose Upload.

Amazon CLI

To upload a test image to your source bucket (Amazon CLI)

• From the directory containing the image you want to upload, run the following CLI
command. Replace the --bucket parameter with the name of your source bucket. For the
--key and --body parameters, use the filename of your test image.

aws s3api put-object --bucket SOURCEBUCKET --key HappyFace.jpg --body ./
HappyFace.jpg

Tutorial: Use an Amazon S3 trigger to create thumbnails 1334

https://console.amazonaws.cn/s3/buckets

Amazon Lambda Developer Guide

Create a permissions policy

The first step in creating your Lambda function is to create a permissions policy. This policy gives
your function the permissions it needs to access other Amazon resources. For this tutorial, the
policy gives Lambda read and write permissions for Amazon S3 buckets and allows it to write to
Amazon CloudWatch Logs.

Amazon Web Services Management Console

To create the policy (console)

1. Open the Policies page of the Amazon Identity and Access Management (IAM) console.

2. Choose Create policy.

3. Choose the JSON tab, and then paste the following custom policy into the JSON editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:CreateLogStream"
],
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Effect": "Allow",
 "Action": [

Tutorial: Use an Amazon S3 trigger to create thumbnails 1335

https://console.amazonaws.cn/iamv2/home#policies

Amazon Lambda Developer Guide

 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::*/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::*/*"
 }
]
}

4. Choose Next.

5. Under Policy details, for Policy name, enter LambdaS3Policy.

6. Choose Create policy.

Amazon CLI

To create the policy (Amazon CLI)

1. Save the following JSON in a file named policy.json.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:CreateLogStream"
],
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::*/*"

Tutorial: Use an Amazon S3 trigger to create thumbnails 1336

Amazon Lambda Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::*/*"
 }
]
}

2. From the directory you saved the JSON policy document in, run the following CLI
command.

aws iam create-policy --policy-name LambdaS3Policy --policy-document file://
policy.json

Create an execution role

An execution role is an IAM role that grants a Lambda function permission to access Amazon Web
Services and resources. To give your function read and write access to an Amazon S3 bucket, you
attach the permissions policy you created in the previous step.

Amazon Web Services Management Console

To create an execution role and attach your permissions policy (console)

1. Open the Roles page of the (IAM) console.

2. Choose Create role.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1337

https://console.amazonaws.cn/iamv2/home#roles

Amazon Lambda Developer Guide

3. For Trusted entity type, select Amazon Web Service, and for Use case, select Lambda.

4. Choose Next.

5. Add the permissions policy you created in the previous step by doing the following:

a. In the policy search box, enter LambdaS3Policy.

b. In the search results, select the check box for LambdaS3Policy.

c. Choose Next.

6. Under Role details, for the Role name enter LambdaS3Role.

7. Choose Create role.

Amazon CLI

To create an execution role and attach your permissions policy (Amazon CLI)

1. Save the following JSON in a file named trust-policy.json. This trust policy
allows Lambda to use the role’s permissions by giving the service principal
lambda.amazonaws.com permission to call the Amazon Security Token Service (Amazon
STS) AssumeRole action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. From the directory you saved the JSON trust policy document in, run the following CLI
command to create the execution role.

aws iam create-role --role-name LambdaS3Role --assume-role-policy-document
 file://trust-policy.json

Tutorial: Use an Amazon S3 trigger to create thumbnails 1338

Amazon Lambda Developer Guide

3. To attach the permissions policy you created in the previous step, run the following CLI
command. Replace the Amazon Web Services account number in the policy’s ARN with your
own account number.

aws iam attach-role-policy --role-name LambdaS3Role --policy-arn
 arn:aws:iam::123456789012:policy/LambdaS3Policy

Create the function deployment package

To create your function, you create a deployment package containing your function code and its
dependencies. For this CreateThumbnail function, your function code uses a separate library
for the image resizing. Follow the instructions for your chosen language to create a deployment
package containing the required library.

Node.js

To create the deployment package (Node.js)

1. Create a directory named lambda-s3 for your function code and dependencies and
navigate into it.

mkdir lambda-s3
cd lambda-s3

2. Save the following function code in a file named index.mjs. Make sure to replace 'us-
west-2' with the Amazon Web Services Region in which you created your own source and
destination buckets.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1339

Amazon Lambda Developer Guide

// dependencies
import { S3Client, GetObjectCommand, PutObjectCommand } from '@aws-sdk/client-
s3';

import { Readable } from 'stream';

import sharp from 'sharp';
import util from 'util';

// create S3 client
const s3 = new S3Client({region: 'us-west-2'});

// define the handler function
export const handler = async (event, context) => {

// Read options from the event parameter and get the source bucket
console.log("Reading options from event:\n", util.inspect(event, {depth: 5}));
 const srcBucket = event.Records[0].s3.bucket.name;

// Object key may have spaces or unicode non-ASCII characters
const srcKey = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/
g, " "));
const dstBucket = srcBucket + "-resized";
const dstKey = "resized-" + srcKey;

// Infer the image type from the file suffix
const typeMatch = srcKey.match(/\.([^.]*)$/);
if (!typeMatch) {
 console.log("Could not determine the image type.");
 return;
}

// Check that the image type is supported
const imageType = typeMatch[1].toLowerCase();
if (imageType != "jpg" && imageType != "png") {
 console.log(`Unsupported image type: ${imageType}`);
 return;
}

// Get the image from the source bucket. GetObjectCommand returns a stream.
try {
 const params = {

Tutorial: Use an Amazon S3 trigger to create thumbnails 1340

Amazon Lambda Developer Guide

 Bucket: srcBucket,
 Key: srcKey
 };
 var response = await s3.send(new GetObjectCommand(params));
 var stream = response.Body;

// Convert stream to buffer to pass to sharp resize function.
 if (stream instanceof Readable) {
 var content_buffer = Buffer.concat(await stream.toArray());

 } else {
 throw new Error('Unknown object stream type');
 }

} catch (error) {
 console.log(error);
 return;
}

// set thumbnail width. Resize will set the height automatically to maintain
 aspect ratio.
const width = 200;

// Use the sharp module to resize the image and save in a buffer.
try {
 var output_buffer = await sharp(content_buffer).resize(width).toBuffer();

} catch (error) {
 console.log(error);
 return;
}

// Upload the thumbnail image to the destination bucket
try {
 const destparams = {
 Bucket: dstBucket,
 Key: dstKey,
 Body: output_buffer,
 ContentType: "image"
 };

 const putResult = await s3.send(new PutObjectCommand(destparams));

Tutorial: Use an Amazon S3 trigger to create thumbnails 1341

Amazon Lambda Developer Guide

 } catch (error) {
 console.log(error);
 return;
 }

 console.log('Successfully resized ' + srcBucket + '/' + srcKey +
 ' and uploaded to ' + dstBucket + '/' + dstKey);
 };

3. In your lambda-s3 directory, install the sharp library using npm. Note that the latest
version of sharp (0.33) isn't compatible with Lambda. Install version 0.32.6 to complete this
tutorial.

npm install sharp@0.32.6

The npm install command creates a node_modules directory for your modules. After
this step, your directory structure should look like the following.

lambda-s3
|- index.mjs
|- node_modules
| |- base64js
| |- bl
| |- buffer
...
|- package-lock.json
|- package.json

4. Create a .zip deployment package containing your function code and its dependencies. In
MacOS and Linux, run the following command.

zip -r function.zip .

In Windows, use your preferred zip utility to create a .zip file. Ensure that your index.mjs,
package.json, and package-lock.json files and your node_modules directory are all
at the root of your .zip file.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1342

Amazon Lambda Developer Guide

Python

To create the deployment package (Python)

1. Save the example code as a file named lambda_function.py.

import boto3
import os
import sys
import uuid
from urllib.parse import unquote_plus
from PIL import Image
import PIL.Image

s3_client = boto3.client('s3')

def resize_image(image_path, resized_path):
 with Image.open(image_path) as image:
 image.thumbnail(tuple(x / 2 for x in image.size))
 image.save(resized_path)

def lambda_handler(event, context):
 for record in event['Records']:
 bucket = record['s3']['bucket']['name']
 key = unquote_plus(record['s3']['object']['key'])
 tmpkey = key.replace('/', '')
 download_path = '/tmp/{}{}'.format(uuid.uuid4(), tmpkey)
 upload_path = '/tmp/resized-{}'.format(tmpkey)
 s3_client.download_file(bucket, key, download_path)
 resize_image(download_path, upload_path)
 s3_client.upload_file(upload_path, '{}-resized'.format(bucket), 'resized-
{}'.format(key))

2. In the same directory in which you created your lambda_function.py file, create a new
directory named package and install the Pillow (PIL) library and the Amazon SDK for
Python (Boto3). Although the Lambda Python runtime includes a version of the Boto3
SDK, we recommend that you add all of your function's dependencies to your deployment
package, even if they are included in the runtime. For more information, see Runtime
dependencies in Python.

mkdir package
pip install \

Tutorial: Use an Amazon S3 trigger to create thumbnails 1343

https://pypi.org/project/Pillow/
https://docs.amazonaws.cn/lambda/latest/dg/python-package.html#python-package-dependencies
https://docs.amazonaws.cn/lambda/latest/dg/python-package.html#python-package-dependencies

Amazon Lambda Developer Guide

--platform manylinux2014_x86_64 \
--target=package \
--implementation cp \
--python-version 3.9 \
--only-binary=:all: --upgrade \
pillow boto3

The Pillow library contains C/C++ code. By using the --platform
manylinux_2014_x86_64 and --only-binary=:all: options, pip will download and
install a version of Pillow that contains pre-compiled binaries compatible with the Amazon
Linux 2 operating system. This ensures that your deployment package will work in the
Lambda execution environment, regardless of the operating system and architecture of
your local build machine.

3. Create a .zip file containing your application code and the Pillow and Boto3 libraries. In
Linux or MacOS, run the following commands from your command line interface.

cd package
zip -r ../lambda_function.zip .
cd ..
zip lambda_function.zip lambda_function.py

In Windows, use your preferred zip tool to create the lambda_function.zip file. Make
sure that your lambda_function.py file and the folders containing your dependencies
are all at the root of the .zip file.

You can also create your deployment package using a Python virtual environment. See Working
with .zip file archives for Python Lambda functions

Tutorial: Use an Amazon S3 trigger to create thumbnails 1344

Amazon Lambda Developer Guide

Create the Lambda function

You can create your Lambda function using either the Amazon CLI or the Lambda console. Follow
the instructions for your chosen language to create the function.

Amazon Web Services Management Console

To create the function (console)

To create your Lambda function using the console, you first create a basic function containing
some ‘Hello world’ code. You then replace this code with your own function code by uploading
the.zip or JAR file you created in the previous step.

1. Open the Functions page of the Lambda console.

2. Make sure you're working in the same Amazon Web Services Region you created your
Amazon S3 bucket in. You can change your region using the drop-down list at the top of
the screen.

3. Choose Create function.

4. Choose Author from scratch.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1345

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

5. Under Basic information, do the following:

a. For Function name, enter CreateThumbnail.

b. For Runtimechoose either Node.js 18.x or Python 3.9 according to the language you
chose for your function.

c. For Architecture, choose x86_64.

6. In the Change default execution role tab, do the following:

a. Expand the tab, then choose Use an existing role.

b. Select the LambdaS3Role you created earlier.

7. Choose Create function.

To upload the function code (console)

1. In the Code source pane, choose Upload from.

2. Choose .zip file.

3. Choose Upload.

4. In the file selector, select your .zip file and choose Open.

5. Choose Save.

Amazon CLI

To create the function (Amazon CLI)

• Run the CLI command for the language you chose. For the role parameter, make sure to
replace 123456789012 with your own Amazon Web Services account ID. For the region
parameter, replace us-west-2 with the region you created your Amazon S3 buckets in.

• For Node.js, run the following command from the directory containing your
function.zip file.

aws lambda create-function --function-name CreateThumbnail \
--zip-file fileb://function.zip --handler index.handler --runtime nodejs18.x \
--timeout 10 --memory-size 1024 \
--role arn:aws:iam::123456789012:role/LambdaS3Role --region us-west-2

Tutorial: Use an Amazon S3 trigger to create thumbnails 1346

Amazon Lambda Developer Guide

• For Python, run the following command from the directory containing your
lambda_function.zip file.

aws lambda create-function --function-name CreateThumbnail \
--zip-file fileb://lambda_function.zip --handler
 lambda_function.lambda_handler \
--runtime python3.9 --timeout 10 --memory-size 1024 \
--role arn:aws:iam::123456789012:role/LambdaS3Role --region us-west-2

Configure Amazon S3 to invoke the function

For your Lambda function to run when you upload an image to your source bucket, you need to
configure a trigger for your function. You can configure the Amazon S3 trigger using either the
console or the Amazon CLI.

Important

This procedure configures the Amazon S3 bucket to invoke your function every time that an
object is created in the bucket. Be sure to configure this only on the source bucket. If your
Lambda function creates objects in the same bucket that invokes it, your function can be
invoked continuously in a loop. This can result in un expected charges being billed to your
Amazon Web Services account.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1347

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway

Amazon Lambda Developer Guide

Amazon Web Services Management Console

To configure the Amazon S3 trigger (console)

1. Open the Functions page of the Lambda console and choose your function
(CreateThumbnail).

2. Choose Add trigger.

3. Select S3.

4. Under Bucket, select your source bucket.

5. Under Event types, select All object create events.

6. Under Recursive invocation, select the check box to acknowledge that using the same
Amazon S3 bucket for input and output is not recommended. You can learn more about
recursive invocation patterns in Lambda by reading Recursive patterns that cause run-away
Lambda functions in Serverless Land.

7. Choose Add.

When you create a trigger using the Lambda console, Lambda automatically creates a
resource based policy to give the service you select permission to invoke your function.

Amazon CLI

To configure the Amazon S3 trigger (Amazon CLI)

1. For your Amazon S3 source bucket to invoke your function when you add an image file,
you first need to configure permissions for your function using a resource based policy. A
resource-based policy statement gives other Amazon Web Services permission to invoke
your function. To give Amazon S3 permission to invoke your function, run the following CLI
command. Be sure to replace the source-account parameter with your own Amazon Web
Services account ID and to use your own source bucket name.

aws lambda add-permission --function-name CreateThumbnail \
--principal s3.amazonaws.com --statement-id s3invoke --action
 "lambda:InvokeFunction" \
--source-arn arn:aws:s3:::SOURCEBUCKET \
--source-account 123456789012

Tutorial: Use an Amazon S3 trigger to create thumbnails 1348

https://console.amazonaws.cn/lambda/home#/functions
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/recursive-runaway
https://docs.amazonaws.cn/lambda/latest/dg/access-control-resource-based.html
https://docs.amazonaws.cn/lambda/latest/dg/access-control-resource-based.html

Amazon Lambda Developer Guide

The policy you define with this command allows Amazon S3 to invoke your function only
when an action takes place on your source bucket.

Note

Although Amazon S3 bucket names are globally unique, when using resource-
based policies it is best practice to specify that the bucket must belong to your
account. This is because if you delete a bucket, it is possible for another Amazon
Web Services account to create a bucket with the same Amazon Resource Name
(ARN).

2. Save the following JSON in a file named notification.json. When applied to your
source bucket, this JSON configures the bucket to send a notification to your Lambda
function every time a new object is added. Replace the Amazon Web Services account
number and Amazon Web Services Region in the Lambda function ARN with your own
account number and region.

{
"LambdaFunctionConfigurations": [
 {
 "Id": "CreateThumbnailEventConfiguration",
 "LambdaFunctionArn": "arn:aws:lambda:us-
west-2:123456789012:function:CreateThumbnail",
 "Events": ["s3:ObjectCreated:Put"]
 }
]
}

3. Run the following CLI command to apply the notification settings in the JSON file you
created to your source bucket. Replace SOURCEBUCKET with the name of your own source
bucket.

aws s3api put-bucket-notification-configuration --bucket SOURCEBUCKET \
--notification-configuration file://notification.json

To learn more about the put-bucket-notification-configuration command and
the notification-configuration option, see put-bucket-notification-configuration in
the Amazon CLI Command Reference.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1349

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/put-bucket-notification-configuration.html

Amazon Lambda Developer Guide

Test your Lambda function with a dummy event

Before you test your whole setup by adding an image file to your Amazon S3 source bucket, you
test that your Lambda function is working correctly by invoking it with a dummy event. An event in
Lambda is a JSON-formatted document that contains data for your function to process. When your
function is invoked by Amazon S3, the event sent to your function contains information such as the
bucket name, bucket ARN, and object key.

Amazon Web Services Management Console

To test your Lambda function with a dummy event (console)

1. Open the Functions page of the Lambda console and choose your function
(CreateThumbnail).

2. Choose the Test tab.

3. To create your test event, in the Test event pane, do the following:

a. Under Test event action, select Create new event.

b. For Event name, enter myTestEvent.

c. For Template, select S3 Put.

d. Replace the values for the following parameters with your own values.

• For awsRegion, replace us-east-1 with the Amazon Web Services Region you
created your Amazon S3 buckets in.

• For name, replace example-bucket with the name of your own Amazon S3 source
bucket.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1350

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

• For key, replace test%2Fkey with the filename of the test object you uploaded to
your source bucket in the step Upload a test image to your source bucket.

{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventSource": "aws:s3",
 "awsRegion": "us-east-1",
 "eventTime": "1970-01-01T00:00:00.000Z",
 "eventName": "ObjectCreated:Put",
 "userIdentity": {
 "principalId": "EXAMPLE"
 },
 "requestParameters": {
 "sourceIPAddress": "127.0.0.1"
 },
 "responseElements": {
 "x-amz-request-id": "EXAMPLE123456789",
 "x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/
mnopqrstuvwxyzABCDEFGH"
 },
 "s3": {
 "s3SchemaVersion": "1.0",
 "configurationId": "testConfigRule",
 "bucket": {
 "name": "example-bucket",
 "ownerIdentity": {
 "principalId": "EXAMPLE"
 },
 "arn": "arn:aws:s3:::example-bucket"
 },
 "object": {
 "key": "test%2Fkey",
 "size": 1024,
 "eTag": "0123456789abcdef0123456789abcdef",
 "sequencer": "0A1B2C3D4E5F678901"
 }
 }
 }
]
}

Tutorial: Use an Amazon S3 trigger to create thumbnails 1351

Amazon Lambda Developer Guide

e. Choose Save.

4. In the Test event pane, choose Test.

5. To check the your function has created a resized verison of your image and stored it in your
target Amazon S3 bucket, do the following:

a. Open the Buckets page of the Amazon S3 console.

b. Choose your target bucket and confirm that your resized file is listed in the Objects
pane.

Amazon CLI

To test your Lambda function with a dummy event (Amazon CLI)

1. Save the following JSON in a file named dummyS3Event.json. Replace the values for the
following parameters with your own values:

1. For awsRegion, replace us-west-2 with the Amazon Web Services Region you created
your Amazon S3 buckets in.

2. For name, replace SOURCEBUCKET with the name of your own Amazon S3 source bucket.

3. For key, replace HappyFace.jpg with the filename of the test object you uploaded to
your source bucket in the step Upload a test image to your source bucket.

{
 "Records":[
 {
 "eventVersion":"2.0",
 "eventSource":"aws:s3",
 "awsRegion":"us-west-2",
 "eventTime":"1970-01-01T00:00:00.000Z",
 "eventName":"ObjectCreated:Put",
 "userIdentity":{
 "principalId":"AIDAJDPLRKLG7UEXAMPLE"
 },
 "requestParameters":{
 "sourceIPAddress":"127.0.0.1"
 },
 "responseElements":{
 "x-amz-request-id":"C3D13FE58DE4C810",

Tutorial: Use an Amazon S3 trigger to create thumbnails 1352

https://console.amazonaws.cn/s3/buckets

Amazon Lambda Developer Guide

 "x-amz-id-2":"FMyUVURIY8/IgAtTv8xRjskZQpcIZ9KG4V5Wp6S7S/
JRWeUWerMUE5JgHvANOjpD"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"testConfigRule",
 "bucket":{
 "name":"SOURCEBUCKET",
 "ownerIdentity":{
 "principalId":"A3NL1KOZZKExample"
 },
 "arn":"arn:aws:s3:::SOURCEBUCKET"
 },
 "object":{
 "key":"HappyFace.jpg",
 "size":1024,
 "eTag":"d41d8cd98f00b204e9800998ecf8427e",
 "versionId":"096fKKXTRTtl3on89fVO.nfljtsv6qko"
 }
 }
 }
]
}

2. From the directory you saved your dummyS3Event.json file in, invoke the function
by running the following CLI command. This command invokes your Lambda function
synchronously by specifying RequestResponse as the value of the invocation-type
parameter. To learn more about synchronous and asynchronous invocation, see Invoking
Lambda functions.

aws lambda invoke --function-name CreateThumbnail \
--invocation-type RequestResponse --cli-binary-format raw-in-base64-out \
--payload file://dummyS3Event.json outputfile.txt

The cli-binary-format option is required if you are using version 2 of the Amazon CLI. To
make this the default setting, run aws configure set cli-binary-format raw-
in-base64-out. For more information, see Amazon CLI supported global command line
options.

3. Verify that your function has created a thumbnail version of your image and saved
it to your target Amazon S3 bucket. Run the following CLI command, replacing
SOURCEBUCKET-resized with the name of your own destination bucket.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1353

https://docs.amazonaws.cn/lambda/latest/dg/lambda-invocation.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-invocation.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

aws s3api list-objects-v2 --bucket SOURCEBUCKET-resized

You should see output similar to the following. The Key parameter shows the filename of
your resized image file.

{
 "Contents": [
 {
 "Key": "resized-HappyFace.jpg",
 "LastModified": "2023-06-06T21:40:07+00:00",
 "ETag": "\"d8ca652ffe83ba6b721ffc20d9d7174a\"",
 "Size": 2633,
 "StorageClass": "STANDARD"
 }
]
}

Test your function using the Amazon S3 trigger

Now that you’ve confirmed your Lambda function is operating correctly, you’re ready to test your
complete setup by adding an image file to your Amazon S3 source bucket. When you add your
image to the source bucket, your Lambda function should be automatically invoked. Your function
creates a resized version of the file and stores it in your target bucket.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1354

Amazon Lambda Developer Guide

Amazon Web Services Management Console

To test your Lambda function using the Amazon S3 trigger (console)

1. To upload an image to your Amazon S3 bucket, do the following:

a. Open the Buckets page of the Amazon S3 console and choose your source bucket.

b. Choose Upload.

c. Choose Add files and use the file selector to choose the image file you want to upload.
Your image object can be any .jpg or .png file.

d. Choose Open, then choose Upload.

2. Verify that Lambda has saved a resized version of your image file in your target bucket by
doing the following:

a. Navigate back to the Buckets page of the Amazon S3 console and choose your
destination bucket.

b. In the Objects pane, you should now see two resized image files, one from each test
of your Lambda function. To download your resized image, select the file, then choose
Download.

Amazon CLI

To test your Lambda function using the Amazon S3 trigger (Amazon CLI)

1. From the directory containing the image you want to upload, run the following CLI
command. Replace the --bucket parameter with the name of your source bucket. For the
--key and --body parameters, use the filename of your test image. Your test image can
be any .jpg or .png file.

aws s3api put-object --bucket SOURCEBUCKET --key SmileyFace.jpg --body ./
SmileyFace.jpg

2. Verify that your function has created a thumbnail version of your image and saved
it to your target Amazon S3 bucket. Run the following CLI command, replacing
SOURCEBUCKET-resized with the name of your own destination bucket.

aws s3api list-objects-v2 --bucket SOURCEBUCKET-resized

Tutorial: Use an Amazon S3 trigger to create thumbnails 1355

https://console.amazonaws.cn/s3/buckets
https://console.amazonaws.cn/s3/buckets

Amazon Lambda Developer Guide

If your function runs successfully, you’ll see output similar to the following. Your target
bucket should now contain two resized files.

{
 "Contents": [
 {
 "Key": "resized-HappyFace.jpg",
 "LastModified": "2023-06-07T00:15:50+00:00",
 "ETag": "\"7781a43e765a8301713f533d70968a1e\"",
 "Size": 2763,
 "StorageClass": "STANDARD"
 },
 {
 "Key": "resized-SmileyFace.jpg",
 "LastModified": "2023-06-07T00:13:18+00:00",
 "ETag": "\"ca536e5a1b9e32b22cd549e18792cdbc\"",
 "Size": 1245,
 "StorageClass": "STANDARD"
 }
]
}

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

To delete the policy that you created

1. Open the Policies page of the IAM console.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1356

https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/iam/home#/policies

Amazon Lambda Developer Guide

2. Select the policy that you created (AWSLambdaS3Policy).

3. Choose Policy actions, Delete.

4. Choose Delete.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the S3 bucket

1. Open the Amazon S3 console.

2. Select the bucket you created.

3. Choose Delete.

4. Enter the name of the bucket in the text input field.

5. Choose Delete bucket.

Tutorial: Use an Amazon S3 trigger to create thumbnails 1357

https://console.amazonaws.cn/iam/home#/roles
https://console.amazonaws.cn/s3/home#

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon S3 batch operations

You can use Amazon S3 batch operations to invoke a Lambda function on a large set of Amazon
S3 objects. Amazon S3 tracks the progress of batch operations, sends notifications, and stores a
completion report that shows the status of each action.

To run a batch operation, you create an Amazon S3 batch operations job. When you create the job,
you provide a manifest (the list of objects) and configure the action to perform on those objects.

When the batch job starts, Amazon S3 invokes the Lambda function synchronously for each object
in the manifest. The event parameter includes the names of the bucket and the object.

The following example shows the event that Amazon S3 sends to the Lambda function for an
object that is named customerImage1.jpg in the examplebucket bucket.

Example Amazon S3 batch request event

{
"invocationSchemaVersion": "1.0",
 "invocationId": "YXNkbGZqYWRmaiBhc2RmdW9hZHNmZGpmaGFzbGtkaGZza2RmaAo",
 "job": {
 "id": "f3cc4f60-61f6-4a2b-8a21-d07600c373ce"
 },
 "tasks": [
 {
 "taskId": "dGFza2lkZ29lc2hlcmUK",
 "s3Key": "customerImage1.jpg",
 "s3VersionId": "1",
 "s3BucketArn": "arn:aws:s3:::examplebucket"
 }
]
}

Your Lambda function must return a JSON object with the fields as shown in the following
example. You can copy the invocationId and taskId from the event parameter. You can return
a string in the resultString. Amazon S3 saves the resultString values in the completion
report.

Example Amazon S3 batch request response

S3 Batch 1358

https://docs.amazonaws.cn/AmazonS3/latest/dev/batch-ops-operations.html

Amazon Lambda Developer Guide

{
 "invocationSchemaVersion": "1.0",
 "treatMissingKeysAs" : "PermanentFailure",
 "invocationId" : "YXNkbGZqYWRmaiBhc2RmdW9hZHNmZGpmaGFzbGtkaGZza2RmaAo",
 "results": [
 {
 "taskId": "dGFza2lkZ29lc2hlcmUK",
 "resultCode": "Succeeded",
 "resultString": "[\"Alice\", \"Bob\"]"
 }
]
}

Invoking Lambda functions from Amazon S3 batch operations

You can invoke the Lambda function with an unqualified or qualified function ARN. If you want
to use the same function version for the entire batch job, configure a specific function version in
the FunctionARN parameter when you create your job. If you configure an alias or the $LATEST
qualifier, the batch job immediately starts calling the new version of the function if the alias or
$LATEST is updated during the job execution.

Note that you can't reuse an existing Amazon S3 event-based function for batch operations. This
is because the Amazon S3 batch operation passes a different event parameter to the Lambda
function and expects a return message with a specific JSON structure.

In the resource-based policy that you create for the Amazon S3 batch job, ensure that you set
permission for the job to invoke your Lambda function.

In the execution role for the function, set a trust policy for Amazon S3 to assume the role when it
runs your function.

If your function uses the Amazon SDK to manage Amazon S3 resources, you need to add Amazon
S3 permissions in the execution role.

When the job runs, Amazon S3 starts multiple function instances to process the Amazon S3 objects
in parallel, up to the concurrency limit of the function. Amazon S3 limits the initial ramp-up of
instances to avoid excess cost for smaller jobs.

If the Lambda function returns a TemporaryFailure response code, Amazon S3 retries the
operation.

Invoking Lambda functions from Amazon S3 batch operations 1359

https://docs.amazonaws.cn/AmazonS3/latest/userguide/batch-ops-iam-role-policies.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/batch-ops-iam-role-policies.html

Amazon Lambda Developer Guide

For more information about Amazon S3 batch operations, see Performing batch operations in the
Amazon S3 Developer Guide.

For an example of how to use a Lambda function in Amazon S3 batch operations, see Invoking a
Lambda function from Amazon S3 batch operations in the Amazon S3 Developer Guide.

Invoking Lambda functions from Amazon S3 batch operations 1360

https://docs.amazonaws.cn/AmazonS3/latest/dev/batch-ops.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/batch-ops-invoke-lambda.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/batch-ops-invoke-lambda.html

Amazon Lambda Developer Guide

Transforming S3 Objects with S3 Object Lambda

With S3 Object Lambda you can add your own code to Amazon S3 GET, HEAD, and LIST requests
to modify and process data before it is returned to an application. You can use custom code to
modify the data returned by standard S3 GET, HEAD, or LIST requests to filter rows, dynamically
resize images, redact confidential data, and more. Powered by Amazon Lambda functions, your
code runs on infrastructure that is fully managed by Amazon, eliminating the need to create and
store derivative copies of your data or to run proxies, all with no changes required to applications.

For more information, see Transforming objects with S3 Object Lambda.

Tutorials

• Transforming data for your application with Amazon S3 Object Lambda

• Detecting and redacting PII data with Amazon S3 Object Lambda and Amazon Comprehend

• Using Amazon S3 Object Lambda to Dynamically Watermark Images as They Are Retrieved

S3 Object Lambda 1361

https://docs.amazonaws.cn/AmazonS3/latest/userguide/transforming-objects.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/tutorial-s3-object-lambda-uppercase.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/tutorial-s3-object-lambda-redact-pii.html
https://www.amazonaws.cn/getting-started/hands-on/amazon-s3-object-lambda-to-dynamically-watermark-images/?ref=docs_gateway/amazons3/tutorials.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Secrets Manager

Your Amazon Lambda function can interact with Amazon Secrets Manager using the Secrets
Manager API or any of the Amazon Software Development Kits (SDKs). You can also use the
Amazon Parameters and Secrets Lambda Extension to retrieve and cache Amazon Secrets Manager
secrets in Lambda functions without using an SDK. See Use Amazon Secrets Manager secrets in
Amazon Lambda functions for more information.

Secrets Manager 1362

https://docs.amazonaws.cn/secretsmanager/latest/apireference/Welcome.html
https://docs.amazonaws.cn/secretsmanager/latest/apireference/Welcome.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/retrieving-secrets_lambda.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/retrieving-secrets_lambda.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon SES

When you use Amazon SES to receive messages, you can configure Amazon SES to call your
Lambda function when messages arrive. The service can then invoke your Lambda function by
passing in the incoming email event, which in reality is an Amazon SES message in an Amazon SNS
event, as a parameter.

Example Amazon SES message event

{
 "Records": [
 {
 "eventVersion": "1.0",
 "ses": {
 "mail": {
 "commonHeaders": {
 "from": [
 "Jane Doe <janedoe@example.com>"
],
 "to": [
 "johndoe@example.com"
],
 "returnPath": "janedoe@example.com",
 "messageId": "<0123456789example.com>",
 "date": "Wed, 7 Oct 2015 12:34:56 -0700",
 "subject": "Test Subject"
 },
 "source": "janedoe@example.com",
 "timestamp": "1970-01-01T00:00:00.000Z",
 "destination": [
 "johndoe@example.com"
],
 "headers": [
 {
 "name": "Return-Path",
 "value": "<janedoe@example.com>"
 },
 {
 "name": "Received",
 "value": "from mailer.example.com (mailer.example.com [203.0.113.1])
 by inbound-smtp.us-west-2.amazonaws.com with SMTP id o3vrnil0e2ic for
 johndoe@example.com; Wed, 07 Oct 2015 12:34:56 +0000 (UTC)"
 },

SES 1363

Amazon Lambda Developer Guide

 {
 "name": "DKIM-Signature",
 "value": "v=1; a=rsa-sha256; c=relaxed/relaxed; d=example.com;
 s=example; h=mime-version:from:date:message-id:subject:to:content-type;
 bh=jX3F0bCAI7sIbkHyy3mLYO28ieDQz2R0P8HwQkklFj4=; b=sQwJ+LMe9RjkesGu
+vqU56asvMhrLRRYrWCbV"
 },
 {
 "name": "MIME-Version",
 "value": "1.0"
 },
 {
 "name": "From",
 "value": "Jane Doe <janedoe@example.com>"
 },
 {
 "name": "Date",
 "value": "Wed, 7 Oct 2015 12:34:56 -0700"
 },
 {
 "name": "Message-ID",
 "value": "<0123456789example.com>"
 },
 {
 "name": "Subject",
 "value": "Test Subject"
 },
 {
 "name": "To",
 "value": "johndoe@example.com"
 },
 {
 "name": "Content-Type",
 "value": "text/plain; charset=UTF-8"
 }
],
 "headersTruncated": false,
 "messageId": "o3vrnil0e2ic28tr"
 },
 "receipt": {
 "recipients": [
 "johndoe@example.com"
],
 "timestamp": "1970-01-01T00:00:00.000Z",

SES 1364

Amazon Lambda Developer Guide

 "spamVerdict": {
 "status": "PASS"
 },
 "dkimVerdict": {
 "status": "PASS"
 },
 "processingTimeMillis": 574,
 "action": {
 "type": "Lambda",
 "invocationType": "Event",
 "functionArn": "arn:aws-cn:lambda:us-west-2:111122223333:function:Example"
 },
 "spfVerdict": {
 "status": "PASS"
 },
 "virusVerdict": {
 "status": "PASS"
 }
 }
 },
 "eventSource": "aws:ses"
 }
]
}

For more information, see Lambda action in the Amazon SES Developer Guide.

SES 1365

https://docs.amazonaws.cn/ses/latest/DeveloperGuide/receiving-email-action-lambda.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon SNS

You can use a Lambda function to process Amazon Simple Notification Service (Amazon SNS)
notifications. Amazon SNS supports Lambda functions as a target for messages sent to a topic. You
can subscribe your function to topics in the same account or in other Amazon accounts.

Amazon SNS invokes your function asynchronously with an event that contains a message and
metadata.

Example Amazon SNS message event

{
 "Records": [
 {
 "EventVersion": "1.0",
 "EventSubscriptionArn": "arn:aws-cn:sns:cn-north-1:123456789012:sns-
lambda:21be56ed-a058-49f5-8c98-aedd2564c486",
 "EventSource": "aws:sns",
 "Sns": {
 "SignatureVersion": "1",
 "Timestamp": "2019-01-02T12:45:07.000Z",
 "Signature": "tcc6faL2yUC6dgZdmrwh1Y4cGa/ebXEkAi6RibDsvpi+tE/1+82j...65r==",
 "SigningCertUrl": "https://sns.cn-north-1.amazonaws.com.cn/
SimpleNotificationService-ac565b8b1a6c5d002d285f9598aa1d9b.pem",
 "MessageId": "95df01b4-ee98-5cb9-9903-4c221d41eb5e",
 "Message": "Hello from SNS!",
 "MessageAttributes": {
 "Test": {
 "Type": "String",
 "Value": "TestString"
 },
 "TestBinary": {
 "Type": "Binary",
 "Value": "TestBinary"
 }
 },
 "Type": "Notification",
 "UnsubscribeUrl": "https://sns.cn-north-1.amazonaws.com.cn/?
Action=Unsubscribe&SubscriptionArn=arn:aws-cn:sns:cn-north-1:123456789012:test-
lambda:21be56ed-a058-49f5-8c98-aedd2564c486",
 "TopicArn":"arn:aws-cn:sns:cn-north-1:123456789012:sns-lambda",
 "Subject": "TestInvoke"
 }

SNS 1366

Amazon Lambda Developer Guide

 }
]
}

For asynchronous invocation, Lambda queues the message and handles retries. If Amazon SNS
can't reach Lambda or the message is rejected, Amazon SNS retries at increasing intervals over
several hours. For details, see Reliability in the Amazon SNS FAQs.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of batches can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the Amazon Knowledge Center.

To perform cross-account Amazon SNS deliveries to Lambda, you must authorize Amazon SNS
to invoke your Lambda function. In turn, Amazon SNS must allow the Amazon account with the
Lambda function to subscribe to the Amazon SNS topic. For example, if the Amazon SNS topic is
in account A and the Lambda function is in account B, both accounts must grant permissions to
the other to access their respective resources. Since not all the options for setting up cross-account
permissions are available from the Amazon Web Services Management Console, you must use the
Amazon Command Line Interface (Amazon CLI) for setup.

For more information, see Fanout to Lambda functions in the Amazon Simple Notification Service
Developer Guide.

Input types for Amazon SNS events

For input type examples for Amazon SNS events in Java, .NET, and Go, see the following on the
Amazon GitHub repository:

• SNSEvent.java

• SNSEvent.cs

• sns.go

Topics

• Tutorial: Using Amazon Lambda with Amazon Simple Notification Service

SNS 1367

https://www.amazonaws.cn/sns/faqs/#Reliability
https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://docs.amazonaws.cn/sns/latest/dg/sns-lambda-as-subscriber.html
https://github.com/aws/aws-lambda-java-libs/blob/master/aws-lambda-java-events/src/main/java/com/amazonaws/services/lambda/runtime/events/SNSEvent.java
https://github.com/aws/aws-lambda-dotnet/blob/master/Libraries/src/Amazon.Lambda.SNSEvents/SNSEvent.cs
https://github.com/aws/aws-lambda-go/blob/master/events/sns.go

Amazon Lambda Developer Guide

• Sample function code

Tutorial: Using Amazon Lambda with Amazon Simple Notification
Service

In this tutorial, you use a Lambda function in one Amazon Web Services account to subscribe to
an Amazon Simple Notification Service (Amazon SNS) topic in a separate Amazon Web Services
account. When you publish messages to your Amazon SNS topic, your Lambda function reads the
contents of the message and outputs it to Amazon CloudWatch Logs. To complete this tutorial, you
use the Amazon Command Line Interface (Amazon CLI).

To complete this tutorial, you perform the following steps:

• In account A, create an Amazon SNS topic.

• In account B, create a Lambda function that will read messages from the topic.

• In account B, create a subscription to the topic.

• Publish messages to the Amazon SNS topic in account A and confirm that the Lambda function
in account B outputs them to CloudWatch Logs.

By completing these steps, you will learn how to configure an Amazon SNS topic to invoke a
Lambda function. You will also learn how to create an Amazon Identity and Access Management
(IAM) policy that gives permission for a resource in another Amazon Web Services account to
invoke Lambda.

Tutorial 1368

Amazon Lambda Developer Guide

In the tutorial, you use two separate Amazon Web Services accounts. The Amazon CLI commands
illustrate this by using two named profiles called accountA and accountB, each configured for
use with a different Amazon Web Services account. To learn how to configure the Amazon CLI to
use different profiles, see Configuration and credential file settings in the Amazon Command Line
Interface User Guide for Version 2. Be sure to configure the same default Amazon Web Services
Region for both profiles.

If the Amazon CLI profiles you create for the two Amazon Web Services accounts use different
names, or if you use the default profile and one named profile, modify the Amazon CLI commands
in the following steps as needed.

Prerequisites

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

Tutorial 1369

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-files.html
http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html

Amazon Lambda Developer Guide

• Access management for Amazon resources

• Example IAM identity-based policies

Install the Amazon Command Line Interface

If you have not yet installed the Amazon Command Line Interface, follow the steps at Installing or
updating the latest version of the Amazon CLI to install it.

The tutorial requires a command line terminal or shell to run commands. In Linux and macOS, use
your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux.

Create an Amazon SNS topic (account A)

To create the topic

• In account A, create an Amazon SNS standard topic using the following Amazon CLI command.

aws sns create-topic --name sns-topic-for-lambda --profile accountA

You should see output similar to the following.

{
 "TopicArn": "arn:aws:sns:us-west-2:123456789012:sns-topic-for-lambda"

Tutorial 1370

https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Lambda Developer Guide

}

Make a note of the Amazon Resource Name (ARN) of your topic. You’ll need it later in the
tutorial when you add permissions to your Lambda function to subscribe to the topic.

Create a function execution role (account B)

An execution role is an IAM role that grants a Lambda function permission to access Amazon
services and resources. Before you create your function in account B, you create a role that gives
the function basic permissions to write logs to CloudWatch Logs. We’ll add the permissions to read
from your Amazon SNS topic in a later step.

To create an execution role

1. In account B open the roles page in the IAM console.

2. Choose Create role.

3. For Trusted entity type, choose Amazon service.

4. For Use case, choose Lambda.

5. Choose Next.

6. Add a basic permissions policy to the role by doing the following:

a. In the Permissions policies search box, enter AWSLambdaBasicExecutionRole.

b. Choose Next.

7. Finalize the role creation by doing the following:

a. Under Role details, enter lambda-sns-role for Role name.

b. Choose Create role.

Tutorial 1371

https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

Create a Lambda function (account B)

Create a Lambda function that processes your Amazon SNS messages. The function code logs the
message contents of each record to Amazon CloudWatch Logs.

This tutorial uses the Node.js 18.x runtime, but we've also provided example code in other runtime
languages. You can select the tab in the following box to see code for the runtime you're interested
in. The JavaScript code you'll use in this step is in the first example shown in the JavaScript tab.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SNSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SnsIntegration;

Tutorial 1372

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

public class Function
{
 public async Task FunctionHandler(SNSEvent evnt, ILambdaContext context)
 {
 foreach (var record in evnt.Records)
 {
 await ProcessRecordAsync(record, context);
 }
 context.Logger.LogInformation("done");
 }

 private async Task ProcessRecordAsync(SNSEvent.SNSRecord record,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed record
 {record.Sns.Message}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Tutorial 1373

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

Consuming an SNS event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, snsEvent events.SNSEvent) {
 for _, record := range snsEvent.Records {
 processMessage(record)
 }
 fmt.Println("done")
}

func processMessage(record events.SNSEventRecord) {
 message := record.SNS.Message
 fmt.Printf("Processed message: %s\n", message)
 // TODO: Process your record here
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Tutorial 1374

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda#readme

Amazon Lambda Developer Guide

Consuming an SNS event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SNSEvent;
import com.amazonaws.services.lambda.runtime.events.SNSEvent.SNSRecord;

import java.util.Iterator;
import java.util.List;

public class SNSEventHandler implements RequestHandler<SNSEvent, Boolean> {
 LambdaLogger logger;

 @Override
 public Boolean handleRequest(SNSEvent event, Context context) {
 logger = context.getLogger();
 List<SNSRecord> records = event.getRecords();
 if (!records.isEmpty()) {
 Iterator<SNSRecord> recordsIter = records.iterator();
 while (recordsIter.hasNext()) {
 processRecord(recordsIter.next());
 }
 }
 return Boolean.TRUE;
 }

 public void processRecord(SNSRecord record) {
 try {
 String message = record.getSNS().getMessage();
 logger.log("message: " + message);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

}

Tutorial 1375

Amazon Lambda Developer Guide

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record) {
 try {
 const message = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

Consuming an SNS event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SNSEvent, Context, SNSHandler, SNSEventRecord } from "aws-lambda";

Tutorial 1376

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

export const functionHandler: SNSHandler = async (
 event: SNSEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record: SNSEventRecord): Promise<any> {
 try {
 const message: string = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

/*
Since native PHP support for AWS Lambda is not available, we are utilizing Bref's
 PHP functions runtime for AWS Lambda.

Tutorial 1377

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

For more information on Bref's PHP runtime for Lambda, refer to: https://bref.sh/
docs/runtimes/function

Another approach would be to create a custom runtime.
A practical example can be found here: https://aws.amazon.com/blogs/apn/aws-
lambda-custom-runtime-for-php-a-practical-example/
*/

// Additional composer packages may be required when using Bref or any other PHP
 functions runtime.
// require __DIR__ . '/vendor/autoload.php';

use Bref\Context\Context;
use Bref\Event\Sns\SnsEvent;
use Bref\Event\Sns\SnsHandler;

class Handler extends SnsHandler
{
 public function handleSns(SnsEvent $event, Context $context): void
 {
 foreach ($event->getRecords() as $record) {
 $message = $record->getMessage();

 // TODO: Implement your custom processing logic here
 // Any exception thrown will be logged and the invocation will be
 marked as failed

 echo "Processed Message: $message" . PHP_EOL;
 }
 }
}

return new Handler();

Tutorial 1378

Amazon Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event, context):
 for record in event['Records']:
 process_message(record)
 print("done")

def process_message(record):
 try:
 message = record['Sns']['Message']
 print(f"Processed message {message}")
 # TODO; Process your record here

 except Exception as e:
 print("An error occurred")
 raise e

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Tutorial 1379

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

Consuming an SNS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].map { |record| process_message(record) }
end

def process_message(record)
 message = record['Sns']['Message']
 puts("Processing message: #{message}")
rescue StandardError => e
 puts("Error processing message: #{e}")
 raise
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::sns::SnsEvent;
use aws_lambda_events::sns::SnsRecord;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};
use tracing::info;

// Built with the following dependencies:
// aws_lambda_events = { version = "0.10.0", default-features = false, features
 = ["sns"] }
// lambda_runtime = "0.8.1"
// tokio = { version = "1", features = ["macros"] }

Tutorial 1380

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

// tracing = { version = "0.1", features = ["log"] }
// tracing-subscriber = { version = "0.3", default-features = false, features =
 ["fmt"] }

async fn function_handler(event: LambdaEvent<SnsEvent>) -> Result<(), Error> {
 for event in event.payload.records {
 process_record(&event)?;
 }

 Ok(())
}

fn process_record(record: &SnsRecord) -> Result<(), Error> {
 info!("Processing SNS Message: {}", record.sns.message);

 // Implement your record handling code here.

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

To create the function

1. Create a directory for the project, and then switch to that directory.

mkdir sns-tutorial
cd sns-tutorial

2. Copy the sample JavaScript code into a new file named index.js.

3. Create a deployment package using the following zip command.

Tutorial 1381

Amazon Lambda Developer Guide

zip function.zip index.js

4. Run the following Amazon CLI command to create your Lambda function in account B.

aws lambda create-function --function-name Function-With-SNS \
--zip-file fileb://function.zip --handler index.handler --runtime nodejs18.x \
--role arn:aws:iam::<AccountB_ID>:role/lambda-sns-role \
--timeout 60 --profile accountB

You should see output similar to the following.

{
 "FunctionName": "Function-With-SNS",
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:Function-With-
SNS",
 "Runtime": "nodejs18.x",
 "Role": "arn:aws:iam::123456789012:role/lambda_basic_role",
 "Handler": "index.handler",
 ...
 "RuntimeVersionConfig": {
 "RuntimeVersionArn": "arn:aws:lambda:us-
west-2::runtime:7d5f06b69c951da8a48b926ce280a9daf2e8bb1a74fc4a2672580c787d608206"
 }
}

5. Record the Amazon Resource Name (ARN) of your function. You’ll need it later in the tutorial
when you add permissions to allow Amazon SNS to invoke your function.

Add permissions to function (account B)

Tutorial 1382

Amazon Lambda Developer Guide

For Amazon SNS to invoke your function, you need to grant it permission in a statement on a
resource-based policy. You add this statement using the Amazon CLI add-permission command.

To grant Amazon SNS permission to invoke your function

• In account B, run the following Amazon CLI command using the ARN for your Amazon SNS
topic you recorded earlier.

aws lambda add-permission --function-name Function-With-SNS \
--source-arn arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-lambda \
--statement-id function-with-sns --action "lambda:InvokeFunction" \
--principal sns.amazonaws.com --profile accountB

You should see output similar to the following.

{
 "Statement": "{\"Condition\":{\"ArnLike\":{\"AWS:SourceArn\":
 \"arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-lambda\"}},
 \"Action\":[\"lambda:InvokeFunction\"],
 \"Resource\":\"arn:aws:lambda:us-east-1:<AccountB_ID>:function:Function-With-
SNS\",
 \"Effect\":\"Allow\",\"Principal\":{\"Service\":\"sns.amazonaws.com\"},
 \"Sid\":\"function-with-sns\"}"
}

Note

If the account with the Amazon SNS topic is hosted in an opt-in Amazon Web Services
Region, you need to specify the region in the principal. For example, if you're working with
an Amazon SNS topic in the Asia Pacific (Hong Kong) region, you need to specify sns.ap-
east-1.amazonaws.com instead of sns.amazonaws.com for the principal.

Tutorial 1383

https://docs.amazonaws.cn/accounts/latest/reference/manage-acct-regions.html
https://docs.amazonaws.cn/accounts/latest/reference/manage-acct-regions.html

Amazon Lambda Developer Guide

Grant cross-account permission for Amazon SNS subscription (account A)

For your Lambda function in account B to subscribe to the Amazon SNS topic you created in
account A, you need to grant permission for account B to subscribe to your topic. You grant this
permission using the Amazon CLI add-permission command.

To grant permission for account B to subscribe to the topic

• In account A, run the following Amazon CLI command. Use the ARN for the Amazon SNS topic
you recorded earlier.

aws sns add-permission --label lambda-access --aws-account-id <AccountB_ID> \
--topic-arn arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-lambda \
--action-name Subscribe ListSubscriptionsByTopic --profile accountA

Create a subscription (account B)

In account B, you now subscribe your Lambda function to the Amazon SNS topic you created at
the beginning of the tutorial in account A. When a message is sent to this topic (sns-topic-for-
lambda), Amazon SNS invokes your Lambda function Function-With-SNS in account B.

Tutorial 1384

Amazon Lambda Developer Guide

To create a subscription

• In account B, run the following Amazon CLI command. Use your default region you created
your topic in and the ARNs for your topic and Lambda function.

aws sns subscribe --protocol lambda \
--region us-east-1 \
--topic-arn arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-lambda \
--notification-endpoint arn:aws:lambda:us-east-1:<AccountB_ID>:function:Function-
With-SNS \
--profile accountB

You should see output similar to the following.

{
 "SubscriptionArn": "arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-
lambda:5d906xxxx-7c8x-45dx-a9dx-0484e31c98xx"
}

Publish messages to topic (account A and account B)

Now that your Lambda function in account B is subscribed to your Amazon SNS topic in account A,
it’s time to test your setup by publishing messages to your topic. To confirm that Amazon SNS has
invoked your Lambda function, you use CloudWatch Logs to view your function’s output.

To publish a message to your topic and view your function's output

1. Enter Hello World into a text file and save it as message.txt.

2. From the same directory you saved your text file in, run the following Amazon CLI command in
account A. Use the ARN for your own topic.

Tutorial 1385

Amazon Lambda Developer Guide

aws sns publish --message file://message.txt --subject Test \
--topic-arn arn:aws:sns:us-east-1:<AccountA_ID>:sns-topic-for-lambda \
--profile accountA

This will return a message ID with a unique identifier, indicating that Amazon SNS has
accepted the message. Amazon SNS then attempts to deliver the message to the topic’s
subscribers. To confirm that Amazon SNS has invoked your Lambda function, use CloudWatch
Logs to view your function’s output:

3. In account B, open the Log groups page of the Amazon CloudWatch console.

4. Choose the log group for your function (/aws/lambda/Function-With-SNS).

5. Choose the most recent log stream.

6. If your function was correctly invoked, you’ll see output similar to the following showing the
contents of the message you published to your topic.

2023-07-31T21:42:51.250Z c1cba6b8-ade9-4380-aa32-d1a225da0e48 INFO Processed
 message Hello World
2023-07-31T21:42:51.250Z c1cba6b8-ade9-4380-aa32-d1a225da0e48 INFO done

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

In Account A, clean up your Amazon SNS topic.

To delete the Amazon SNS topic

1. Open the Topics page of the Amazon SNS console.

2. Select the topic you created.

3. Choose Delete.

4. Enter delete me in the text input field.

5. Choose Delete.

In Account B, clean up your execution role, Lambda function, and Amazon SNS subscription.

Tutorial 1386

https://console.amazonaws.cn/cloudwatch/home#logsV2:log-groups
https://console.amazonaws.cn/sns/home#topics:

Amazon Lambda Developer Guide

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

To delete the Amazon SNS subscription

1. Open the Subscriptions page of the Amazon SNS console.

2. Select the subscription you created.

3. Choose Delete, Delete.

Sample function code

Sample code is available for the following languages.

Topics

• Node.js

• Java 11

• Go

• Python 3

Node.js

The following example processes a message from Amazon SNS and sends the content of that
message to the logs.

Sample code 1387

https://console.amazonaws.cn/iam/home#/roles
https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/sns/home#subscriptions:

Amazon Lambda Developer Guide

Example index.js

console.log('Loading function');

exports.handler = function(event, context, callback) {
// console.log('Received event:', JSON.stringify(event, null, 4));

 var message = event.Records[0].Sns.Message;
 console.log('Message received from SNS:', message);
 callback(null, "Success");
};

Zip up the sample code to create a deployment package. For instructions, see Deploy Node.js
Lambda functions with .zip file archives.

Java 11

The following example processes a message from Amazon SNS and sends the content of that
message to the logs.

Example LogEvent.java

package example;

import java.text.SimpleDateFormat;
import java.util.Calendar;

import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.events.SNSEvent;

public class LogEvent implements RequestHandler<SNSEvent, Object> {
 public Object handleRequest(SNSEvent request, Context context){
 String timeStamp = new SimpleDateFormat("yyyy-MM-
dd_HH:mm:ss").format(Calendar.getInstance().getTime());
 context.getLogger().log("Invocation started: " + timeStamp);
 context.getLogger().log(request.getRecords().get(0).getSNS().getMessage());

 timeStamp = new SimpleDateFormat("yyyy-MM-
dd_HH:mm:ss").format(Calendar.getInstance().getTime());
 context.getLogger().log("Invocation completed: " + timeStamp);
 return null;

Sample code 1388

Amazon Lambda Developer Guide

 }
}

Dependencies

• aws-lambda-java-core

• aws-lambda-java-events

Build the code with the Lambda library dependencies to create a deployment package. For
instructions, see Deploy Java Lambda functions with .zip or JAR file archives.

Go

The following example processes a message from Amazon SNS and sends the content of that
message to the logs.

Example lambda_handler.go

package main

import (
 "context"
 "fmt"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-lambda-go/events"
)

func handler(ctx context.Context, snsEvent events.SNSEvent) {
 for _, record := range snsEvent.Records {
 snsRecord := record.SNS
 fmt.Printf("[%s %s] Message = %s \n", record.EventSource, snsRecord.Timestamp,
 snsRecord.Message)
 }
}

func main() {
 lambda.Start(handler)
}

Build the executable with go build and create a deployment package. For instructions, see
Deploy Go Lambda functions with .zip file archives.

Sample code 1389

Amazon Lambda Developer Guide

Python 3

The following example processes a message from Amazon SNS and sends the content of that
message to the logs.

Example lambda_handler.py

from __future__ import print_function
import json
print('Loading function')

def lambda_handler(event, context):
 #print("Received event: " + json.dumps(event, indent=2))
 message = event['Records'][0]['Sns']['Message']
 print("From SNS: " + message)
 return message

Zip up the sample code to create a deployment package. For instructions, see Working with .zip file
archives for Python Lambda functions.

Sample code 1390

Amazon Lambda Developer Guide

Using Lambda with Amazon SQS

Note

If you want to send data to a target other than a Lambda function or enrich the data before
sending it, see Amazon EventBridge Pipes.

You can use a Lambda function to process messages in an Amazon Simple Queue Service (Amazon
SQS) queue. Lambda event source mappings support standard queues and first-in, first-out (FIFO)
queues. With Amazon SQS, you can offload tasks from one component of your application by
sending them to a queue and processing them asynchronously.

Lambda polls the queue and invokes your Lambda function synchronously with an event that
contains queue messages. Lambda reads messages in batches and invokes your function once for
each batch. When your function successfully processes a batch, Lambda deletes its messages from
the queue.

When Lambda reads a batch, the messages stay in the queue but are hidden for the length of
the queue's visibility timeout. If your function successfully processes the batch, Lambda deletes
the messages from the queue. By default, if your function encounters an error while processing
a batch, all messages in that batch become visible in the queue again after the visibility timeout
expires. For this reason, your function code must be able to process the same message multiple
times without unintended side effects.

Warning

Lambda event source mappings process each event at least once, and duplicate processing
of batches can occur. To avoid potential issues related to duplicate events, we strongly
recommend that you make your function code idempotent. To learn more, see How do I
make my Lambda function idempotent in the Amazon Knowledge Center.

To prevent Lambda from processing a message multiple times, you can either configure your
event source mapping to include batch item failures in your function response, or you can use
the Amazon SQS API action DeleteMessage to remove messages from the queue as your Lambda
function successfully processes them. For more information on using the Amazon SQS API, see the
Amazon Simple Queue Service API Reference.

SQS 1391

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://repost.aws/knowledge-center/lambda-function-idempotent
https://repost.aws/knowledge-center/lambda-function-idempotent
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_DeleteMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/

Amazon Lambda Developer Guide

Example standard queue message event

Example Amazon SQS message event (standard queue)

{
 "Records": [
 {
 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",
 "body": "Test message.",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws-cn:sqs:us-west-2:123456789012:my-queue",
 "awsRegion": "us-west-2"
 },
 {
 "messageId": "2e1424d4-f796-459a-8184-9c92662be6da",
 "receiptHandle": "AQEBzWwaftRI0KuVm4tP+/7q1rGgNqicHq...",
 "body": "Test message.",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082650636",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082650649"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws-cn:sqs:us-west-2:123456789012:my-queue",
 "awsRegion": "us-west-2"
 }
]
}

By default, Lambda polls up to 10 messages in your queue at once and sends that batch to your
function. To avoid invoking the function with a small number of records, you can tell the event

Example standard queue message event 1392

Amazon Lambda Developer Guide

source to buffer records for up to 5 minutes by configuring a batch window. Before invoking the
function, Lambda continues to poll messages from the SQS standard queue until the batch window
expires, the invocation payload size quota is reached, or the configured maximum batch size is
reached.

If you're using a batch window and your SQS queue contains very low traffic, Lambda might wait
for up to 20 seconds before invoking your function. This is true even if you set a batch window
lower than 20 seconds.

Note

In Java, you might experience null pointer errors when deserializing JSON. This could
be due to how case of "Records" and "eventSourceARN" is converted by the JSON object
mapper.

Example FIFO queue message event

For FIFO queues, records contain additional attributes that are related to deduplication and
sequencing.

Example Amazon SQS message event (FIFO queue)

{
 "Records": [
 {
 "messageId": "11d6ee51-4cc7-4302-9e22-7cd8afdaadf5",
 "receiptHandle": "AQEBBX8nesZEXmkhsmZeyIE8iQAMig7qw...",
 "body": "Test message.",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1573251510774",
 "SequenceNumber": "18849496460467696128",
 "MessageGroupId": "1",
 "SenderId": "AIDAIO23YVJENQZJOL4VO",
 "MessageDeduplicationId": "1",
 "ApproximateFirstReceiveTimestamp": "1573251510774"
 },
 "messageAttributes": {},
 "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
 "eventSource": "aws:sqs",

Example FIFO queue message event 1393

Amazon Lambda Developer Guide

 "eventSourceARN": "arn:aws-cn:sqs:us-west-2:123456789012:fifo.fifo",
 "awsRegion": "us-west-2"
 }
]
}

Configuring a queue to use with Lambda

Create an SQS queue to serve as an event source for your Lambda function. Then configure the
queue to allow time for your Lambda function to process each batch of events—and for Lambda to
retry in response to throttling errors as it scales up.

To allow your function time to process each batch of records, set the source queue's visibility
timeout to at least six times the timeout that you configure on your function. The extra time allows
for Lambda to retry if your function is throttled while processing a previous batch.

If your function fails to process a message multiple times, Amazon SQS can send it to a dead-
letter queue. If your function returns an error, all items in the batch return to the queue. After the
visibility timeout occurs, Lambda receives the message again. To send messages to a second queue
after a number of receives, configure a dead-letter queue on your source queue.

Note

Make sure that you configure the dead-letter queue on the source queue, not on the
Lambda function. The dead-letter queue that you configure on a function is used for the
function's asynchronous invocation queue, not for event source queues.

If your function returns an error, or can't be invoked because it's at maximum concurrency,
processing might succeed with additional attempts. To give messages a better chance to be
processed before sending them to the dead-letter queue, set the maxReceiveCount on the source
queue's redrive policy to at least 5.

Execution role permissions

The AWSLambdaSQSQueueExecutionRole Amazon managed policy includes the permissions that
Lambda needs to read from your Amazon SQS queue. Add this managed policy to your function's
execution role.

Configuring a queue to use with Lambda 1394

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-configure-create-queue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaSQSQueueExecutionRole.html

Amazon Lambda Developer Guide

Optionally, if you're using an encrypted queue, you also need to add the following permission to
your execution role:

• kms:Decrypt

Add permissions and create the event source mapping

Create an event source mapping to tell Lambda to send items from your queue to a Lambda
function. You can create multiple event source mappings to process items from multiple queues
with a single function. When Lambda invokes the target function, the event can contain multiple
items, up to a configurable maximum batch size.

To configure your function to read from Amazon SQS, attach the
AWSLambdaSQSQueueExecutionRole Amazon managed policy to your execution role and then
create an SQS trigger.

To add permissions and create a trigger

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose the Configuration tab, and then choose Permissions.

4. Under Role name, choose the link to your execution role. This link opens the role in the IAM
console.

5. Choose Add permissions, and then choose Attach policies.

6. In the search field, enter AWSLambdaSQSQueueExecutionRole. Add this policy to your
execution role. This is an Amazon managed policy that contains the permissions your function
needs to read from an Amazon SQS queue. For more information about this policy, see
AWSLambdaSQSQueueExecutionRole in the Amazon Managed Policy Reference.

Create the event source mapping 1395

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaSQSQueueExecutionRole.html
https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaSQSQueueExecutionRole.html

Amazon Lambda Developer Guide

7. Go back to your function in the Lambda console. Under Function overview, choose Add
trigger.

8. Choose a trigger type.

9. Configure the required options, and then choose Add.

Lambda supports the following options for Amazon SQS event sources:

SQS queue

The Amazon SQS queue to read records from.

Enable trigger

The status of the event source mapping. Enable trigger is selected by default.

Batch size

The maximum number of records to send to the function in each batch. For a standard queue,
this can be up to 10,000 records. For a FIFO queue, the maximum is 10. For a batch size over
10, you must also set the batch window (MaximumBatchingWindowInSeconds) to at least 1
second.

Configure your function timeout to allow enough time to process an entire batch of items. If
items take a long time to process, choose a smaller batch size. A large batch size can improve
efficiency for workloads that are very fast or have a lot of overhead. If you configure reserved
concurrency on your function, set a minimum of five concurrent executions to reduce the
chance of throttling errors when Lambda invokes your function.

Lambda passes all of the records in the batch to the function in a single call, as long as the total
size of the events doesn't exceed the invocation payload size quota for synchronous invocation
(6 MB). Both Lambda and Amazon SQS generate metadata for each record. This additional
metadata is counted towards the total payload size and can cause the total number of records

Create the event source mapping 1396

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/configurations#timeouts

Amazon Lambda Developer Guide

sent in a batch to be lower than your configured batch size. The metadata fields that Amazon
SQS sends can be variable in length. For more information about the Amazon SQS metadata
fields, see the ReceiveMessage API operation documentation in the Amazon Simple Queue
Service API Reference.

Batch window

The maximum amount of time to gather records before invoking the function, in seconds. This
applies only to standard queues.

If you're using a batch window greater than 0 seconds, you must account for the
increased processing time in your queue's visibility timeout. We recommend setting
your queue's visibility timeout to six times your function timeout, plus the value of
MaximumBatchingWindowInSeconds. This allows time for your Lambda function to process
each batch of events and to retry in the event of a throttling error.

When messages become available, Lambda starts processing messages in batches. Lambda
starts processing five batches at a time with five concurrent invocations of your function. If
messages are still available, Lambda adds up to 300 more instances of your function a minute,
up to a maximum of 1,000 function instances. To learn more about function scaling and
concurrency, see Lambda function scaling.

To process more messages, you can optimize your Lambda function for higher throughput. See
Understanding how Amazon Lambda scales with Amazon SQS standard queues.

Maximum concurrency

The maximum number of concurrent functions that the event source can invoke. For more
information, see Configuring maximum concurrency for Amazon SQS event sources.

Filter criteria

Add filter criteria to control which events Lambda sends to your function for processing. For
more information, see Lambda event filtering.

Scaling and processing

For standard queues, Lambda uses long polling to poll a queue until it becomes active. When
messages are available, Lambda starts processing five batches at a time with five concurrent
invocations of your function. If messages are still available, Lambda increases the number of

Scaling and processing 1397

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-concurrency.html
https://amazonaws-china.com/blogs/compute/understanding-how-aws-lambda-scales-when-subscribed-to-amazon-sqs-queues/%23:~:text=If%20there%20are%20more%20messages,messages%20from%20the%20SQS%20queue.
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-short-and-long-polling.html#sqs-long-polling

Amazon Lambda Developer Guide

processes that are reading batches by up to 300 more instances per minute. The maximum number
of batches that an event source mapping can process simultaneously is 1,000.

For FIFO queues, Lambda sends messages to your function in the order that it receives them. When
you send a message to a FIFO queue, you specify a message group ID. Amazon SQS ensures that
messages in the same group are delivered to Lambda in order. When Lambda reads your messages
into batches, each batch may contain messages from more than one message group, but the order
of the messages is maintained. If your function returns an error, the function attempts all retries on
the affected messages before Lambda receives additional messages from the same group.

Your function can scale in concurrency to the number of active message groups. For more
information, see SQS FIFO as an event source on the Amazon Compute Blog.

Configuring maximum concurrency for Amazon SQS event sources

The maximum concurrency setting limits the number of concurrent instances of the function that
an Amazon SQS event source can invoke. Maximum concurrency is an event source-level setting.
If you have multiple Amazon SQS event sources mapped to one function, each event source can
have a separate maximum concurrency setting. You can use maximum concurrency to prevent one
queue from using all of the function's reserved concurrency or the rest of the account's concurrency
quota. There is no charge for configuring maximum concurrency on an Amazon SQS event source.

Importantly, maximum concurrency and reserved concurrency are two independent settings.
Don't set maximum concurrency higher than the function's reserved concurrency. If you configure
maximum concurrency, make sure that your function's reserved concurrency is greater than or
equal to the total maximum concurrency for all Amazon SQS event sources on the function.
Otherwise, Lambda may throttle your messages.

If maximum concurrency is not set, Lambda can scale your Amazon SQS event source up to your
account's total concurrency quota, which is 1,000 by default.

Note

For FIFO queues, concurrent invocations are capped either by the number of message
group IDs (messageGroupId) or the maximum concurrency setting—whichever is lower.
For example, if you have six message group IDs and maximum concurrency is set to 10, your
function can have a maximum of six concurrent invocations.

You can configure maximum concurrency on new and existing Amazon SQS event source mappings.

Maximum concurrency 1398

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/using-messagegroupid-property.html
https://www.amazonaws.cn/blogs/compute/new-for-aws-lambda-sqs-fifo-as-an-event-source/
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/using-messagegroupid-property.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/using-messagegroupid-property.html

Amazon Lambda Developer Guide

Configure maximum concurrency using the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Under Function overview, choose SQS. This opens the Configuration tab.

4. Select the Amazon SQS trigger and choose Edit.

5. For Maximum concurrency, enter a number between 2 and 1,000. To turn off maximum
concurrency, leave the box empty.

6. Choose Save.

Configure maximum concurrency using the Amazon Command Line Interface (Amazon CLI)

Use the update-event-source-mapping command with the --scaling-config option. Example:

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --scaling-config '{"MaximumConcurrency":5}'

To turn off maximum concurrency, enter an empty value for --scaling-config:

aws lambda update-event-source-mapping \
 --uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --scaling-config "{}"

Configure maximum concurrency using the Lambda API

Use the CreateEventSourceMapping or UpdateEventSourceMapping action with a ScalingConfig
object.

Event source mapping APIs

To manage an event source with the Amazon Command Line Interface (Amazon CLI) or an Amazon
SDK, you can use the following API operations:

• CreateEventSourceMapping

• ListEventSourceMappings

• GetEventSourceMapping

Event source mapping APIs 1399

https://console.amazonaws.cn/lambda/home#/functions
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-event-source-mapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_ScalingConfig.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://www.amazonaws.cn/getting-started/tools-sdks/
https://www.amazonaws.cn/getting-started/tools-sdks/
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListEventSourceMappings.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetEventSourceMapping.html

Amazon Lambda Developer Guide

• UpdateEventSourceMapping

• DeleteEventSourceMapping

The following example uses the Amazon CLI to map a function named my-function to an
Amazon SQS queue that is specified by its Amazon Resource Name (ARN), with a batch size of 5
and a batch window of 60 seconds.

aws lambda create-event-source-mapping --function-name my-function --batch-size 5 \
--maximum-batching-window-in-seconds 60 \
--event-source-arn arn:aws-cn:sqs:us-west-2:123456789012:my-queue

You should see the following output:

{
 "UUID": "2b733gdc-8ac3-cdf5-af3a-1827b3b11284",
 "BatchSize": 5,
 "MaximumBatchingWindowInSeconds": 60,
 "EventSourceArn": "arn:aws-cn:sqs:us-west-2:123456789012:my-queue",
 "FunctionArn": "arn:aws-cn:lambda:us-west-2:123456789012:function:my-function",
 "LastModified": 1541139209.351,
 "State": "Creating",
 "StateTransitionReason": "USER_INITIATED"
}

Backoff strategy for failed invocations

When an invocation fails, Lambda attempts to retry the invocation while implementing a backoff
strategy. The backoff strategy differs slightly depending on whether Lambda encountered the
failure due to an error in your function code, or due to throttling.

• If your function code caused the error, Lambda will stop processing and retrying the invocation.
In the meantime, Lambda gradually backs off, reducing the amount of concurrency allocated
to your Amazon SQS event source mapping. After your queue's visibility timeout runs out, the
message will again reappear in the queue.

• If the invocation fails due to throttling, Lambda gradually backs off retries by reducing the
amount of concurrency allocated to your Amazon SQS event source mapping. Lambda continues
to retry the message until the message's timestamp exceeds your queue's visibility timeout, at
which point Lambda drops the message.

Backoff strategy for failed invocations 1400

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteEventSourceMapping.html

Amazon Lambda Developer Guide

Implementing partial batch responses

When your Lambda function encounters an error while processing a batch, all messages in that
batch become visible in the queue again by default, including messages that Lambda processed
successfully. As a result, your function can end up processing the same message several times.

To avoid reprocessing successfully processed messages in a failed batch, you can configure your
event source mapping to make only the failed messages visible again. This is called a partial
batch response. To turn on partial batch responses, specify ReportBatchItemFailures for
the FunctionResponseTypes action when configuring your event source mapping. This lets your
function return a partial success, which can help reduce the number of unnecessary retries on
records.

When ReportBatchItemFailures is activated, Lambda doesn't scale down message polling
when function invocations fail. If you expect some messages to fail—and you don't want those
failures to impact the message processing rate—use ReportBatchItemFailures.

Note

Keep the following in mind when using partial batch responses:

• If your function throws an exception, the entire batch is considered a complete failure.

• If you're using this feature with a FIFO queue, your function should stop processing
messages after the first failure and return all failed and unprocessed messages in
batchItemFailures. This helps preserve the ordering of messages in your queue.

To activate partial batch reporting

1. Review the Best practices for implementing partial batch responses.

2. Run the following command to activate ReportBatchItemFailures for your function. To
retrieve your event source mapping's UUID, run the list-event-source-mappings Amazon CLI
command.

aws lambda update-event-source-mapping \
--uuid "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
--function-response-types "ReportBatchItemFailures"

Implementing partial batch responses 1401

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html#lambda-UpdateEventSourceMapping-request-FunctionResponseTypes
https://docs.amazonaws.cn/prescriptive-guidance/latest/lambda-event-filtering-partial-batch-responses-for-sqs/best-practices-partial-batch-responses.html
https://docs.amazonaws.cn/cli/latest/reference/lambda/list-event-source-mappings.html

Amazon Lambda Developer Guide

3. Update your function code to catch all exceptions and return failed messages in a
batchItemFailures JSON response. The batchItemFailures response must include a list
of message IDs, as itemIdentifier JSON values.

For example, suppose you have a batch of five messages, with message IDs id1, id2, id3,
id4, and id5. Your function successfully processes id1, id3, and id5. To make messages id2
and id4 visible again in your queue, your function should return the following response:

{
 "batchItemFailures": [
 {
 "itemIdentifier": "id2"
 },
 {
 "itemIdentifier": "id4"
 }
]
}

Here are some examples of function code that return the list of failed message IDs in the
batch:

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

Implementing partial batch responses 1402

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

// Assembly attribute to enable the Lambda function's JSON input to be
 converted into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]
namespace sqsSample;

public class Function
{
 public async Task<SQSBatchResponse> FunctionHandler(SQSEvent evnt,
 ILambdaContext context)
 {
 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 List<SQSBatchResponse.BatchItemFailure>();
 foreach(var message in evnt.Records)
 {
 try
 {
 //process your message
 await ProcessMessageAsync(message, context);
 }
 catch (System.Exception)
 {
 //Add failed message identifier to the batchItemFailures list
 batchItemFailures.Add(new
 SQSBatchResponse.BatchItemFailure{ItemIdentifier=message.MessageId});
 }
 }
 return new SQSBatchResponse(batchItemFailures);
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 if (String.IsNullOrEmpty(message.Body))
 {
 throw new Exception("No Body in SQS Message.");
 }
 context.Logger.LogInformation($"Processed message {message.Body}");
 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
}

Implementing partial batch responses 1403

Amazon Lambda Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "encoding/json"
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, sqsEvent events.SQSEvent)
 (map[string]interface{}, error) {
 batchItemFailures := []map[string]interface{}{}

 for _, message := range sqsEvent.Records {

 if /* Your message processing condition here */ {
 batchItemFailures = append(batchItemFailures, map[string]interface{}
{"itemIdentifier": message.MessageId})
 }
 }

 sqsBatchResponse := map[string]interface{}{
 "batchItemFailures": batchItemFailures,
 }
 return sqsBatchResponse, nil
}

Implementing partial batch responses 1404

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSBatchResponse;

import java.util.ArrayList;
import java.util.List;

public class ProcessSQSMessageBatch implements RequestHandler<SQSEvent,
 SQSBatchResponse> {
 @Override
 public SQSBatchResponse handleRequest(SQSEvent sqsEvent, Context context)
 {

 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<SQSBatchResponse.BatchItemFailure>();
 String messageId = "";
 for (SQSEvent.SQSMessage message : sqsEvent.getRecords()) {
 try {
 //process your message
 messageId = message.getMessageId();

Implementing partial batch responses 1405

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures#readme

Amazon Lambda Developer Guide

 } catch (Exception e) {
 //Add failed message identifier to the batchItemFailures
 list
 batchItemFailures.add(new
 SQSBatchResponse.BatchItemFailure(messageId));
 }
 }
 return new SQSBatchResponse(batchItemFailures);
 }
}

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
export const handler = async (event, context) => {
 const batchItemFailures = [];

 for (const record of event.Records) {
 try {
 await processMessageAsync(record, context);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }
 }

 return { batchItemFailures };
};

async function processMessageAsync(record, context) {
 if (record.body && record.body.includes("error")) {

Implementing partial batch responses 1406

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

 throw new Error("There is an error in the SQS Message.");
 }
 console.log(`Processed message: ${record.body}`);
}

Reporting SQS batch item failures with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { APIGatewayProxyEvent, APIGatewayProxyResult, Context } from 'aws-
lambda';

export const handler = async (event: APIGatewayProxyEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 const batchItemFailures: { ItemIdentifier: string }[] = [];

 for (const record of event.Records) {
 try {
 await processMessageAsync(record, context);
 } catch (error) {
 batchItemFailures.push({ ItemIdentifier: record.messageId });
 }
 }

 return {
 statusCode: 200,
 body: JSON.stringify({ batchItemFailures }),
 };
};

async function processMessageAsync(record: any, context: Context):
 Promise<void> {
 if (!record.body) {
 throw new Error('No Body in SQS Message.');
 }
 context.log(`Processed message ${record.body}`);
}

Implementing partial batch responses 1407

Amazon Lambda Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

use Bref\Context\Context;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends SqsHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handleSqs(SqsEvent $event, Context $context): void
 {
 $this->logger->info("Processing SQS records");
 $records = $event->getRecords();

 foreach ($records as $record) {

Implementing partial batch responses 1408

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

 try {
 // Assuming the SQS message is in JSON format
 $message = json_decode($record->getBody(), true);
 $this->logger->info(json_encode($message));
 // TODO: Implement your custom processing logic here
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $this->markAsFailed($record);
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords SQS
 records");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import json
def lambda_handler(event, context):
 if event:
 batch_item_failures = []
 sqs_batch_response = {}

Implementing partial batch responses 1409

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

 for record in event["Records"]:
 try:
 # process message
 except Exception as e:
 batch_item_failures.append({"itemIdentifier":
 record['messageId']})

 sqs_batch_response["batchItemFailures"] = batch_item_failures
 return sqs_batch_response

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'json'

def lambda_handler(event:, context:)
 if event
 batch_item_failures = []
 sqs_batch_response = {}

 event["Records"].each do |record|
 begin
 # process message
 rescue StandardError => e
 batch_item_failures << {"itemIdentifier" => record['messageId']}
 end
 end

 sqs_batch_response["batchItemFailures"] = batch_item_failures
 return sqs_batch_response

Implementing partial batch responses 1410

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and
run in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::{
 event::sqs::{SqsBatchResponse, SqsEvent},
 sqs::{BatchItemFailure, SqsMessage},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn process_record(_: &SqsMessage) -> Result<(), Error> {
 Err(Error::from("Error processing message"))
}

async fn function_handler(event: LambdaEvent<SqsEvent>) ->
 Result<SqsBatchResponse, Error> {
 let mut batch_item_failures = Vec::new();
 for record in event.payload.records {
 match process_record(&record).await {
 Ok(_) => (),
 Err(_) => batch_item_failures.push(BatchItemFailure {
 item_identifier: record.message_id.unwrap(),
 }),
 }
 }

 Ok(SqsBatchResponse {

Implementing partial batch responses 1411

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

 batch_item_failures,
 })
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 run(service_fn(function_handler)).await
}

If the failed events do not return to the queue, see How do I troubleshoot Lambda function SQS
ReportBatchItemFailures? in the Amazon Knowledge Center.

Success and failure conditions

Lambda treats a batch as a complete success if your function returns any of the following:

• An empty batchItemFailures list

• A null batchItemFailures list

• An empty EventResponse

• A null EventResponse

Lambda treats a batch as a complete failure if your function returns any of the following:

• An invalid JSON response

• An empty string itemIdentifier

• A null itemIdentifier

• An itemIdentifier with a bad key name

• An itemIdentifier value with a message ID that doesn't exist

CloudWatch metrics

To determine whether your function is correctly reporting batch item failures, you can monitor the
NumberOfMessagesDeleted and ApproximateAgeOfOldestMessage Amazon SQS metrics in
Amazon CloudWatch.

Implementing partial batch responses 1412

https://aws.amazon.com/premiumsupport/knowledge-center/lambda-sqs-report-batch-item-failures/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-sqs-report-batch-item-failures/

Amazon Lambda Developer Guide

• NumberOfMessagesDeleted tracks the number of messages removed from your queue. If this
drops to 0, this is a sign that your function response is not correctly returning failed messages.

• ApproximateAgeOfOldestMessage tracks how long the oldest message has stayed in your
queue. A sharp increase in this metric can indicate that your function is not correctly returning
failed messages.

Amazon SQS configuration parameters

All Lambda event source types share the same CreateEventSourceMapping and
UpdateEventSourceMapping API operations. However, only some of the parameters apply to
Amazon SQS.

Event source parameters that apply to Amazon SQS

Parameter Required Default Notes

BatchSize N 10 For standard queues,
the maximum
is 10,000. For
FIFO queues, the
maximum is 10.

Enabled N true

EventSourceArn Y The ARN of the data
stream or a stream
consumer

FunctionName Y

FilterCriteria N Lambda event
filtering

FunctionResponseTy
pes

N To let your function
report specific
failures in a batch,
include the value
ReportBat
chItemFailures

Amazon SQS configuration parameters 1413

https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html

Amazon Lambda Developer Guide

Parameter Required Default Notes

in FunctionR
esponseTypes .
For more informati
on, see Implement
ing partial batch
responses.

MaximumBa
tchingWindowInSeco
nds

N 0

ScalingConfig N Configuring
maximum concurren
cy for Amazon SQS
event sources

Tutorial: Using Lambda with Amazon SQS

In this tutorial, you create a Lambda function that consumes messages from an Amazon Simple
Queue Service (Amazon SQS) queue. The Lambda function runs whenever a new message is added
to the queue. The function writes the messages to an Amazon CloudWatch Logs stream. The
following diagram shows the Amazon resources you use to complete the tutorial.

To complete this tutorial, you carry out the following steps:

Tutorial 1414

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html

Amazon Lambda Developer Guide

1. Create a Lambda function that writes messages to CloudWatch Logs.

2. Create an Amazon SQS queue.

3. Create a Lambda event source mapping. The event source mapping reads the Amazon SQS
queue and invokes your Lambda function when a new message is added.

4. Test the setup by adding messages to your queue and monitoring the results in CloudWatch
Logs.

Prerequisites

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Tutorial 1415

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html

Amazon Lambda Developer Guide

Install the Amazon Command Line Interface

If you have not yet installed the Amazon Command Line Interface, follow the steps at Installing or
updating the latest version of the Amazon CLI to install it.

The tutorial requires a command line terminal or shell to run commands. In Linux and macOS, use
your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux.

Create the execution role

An execution role is an Amazon Identity and Access Management (IAM) role that grants a Lambda
function permission to access Amazon services and resources. To allow your function to read items
from Amazon SQS, attach the AWSLambdaSQSQueueExecutionRole permissions policy.

To create an execution role and attach an Amazon SQS permissions policy

1. Open the Roles page of the IAM console.

2. Choose Create role.

3. For Trusted entity type, choose Amazon service.

4. For Use case, choose Lambda.

5. Choose Next.

Tutorial 1416

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

6. In the Permissions policies search box, enter AWSLambdaSQSQueueExecutionRole.

7. Select the AWSLambdaSQSQueueExecutionRole policy, and then choose Next.

8. Under Role details, for Role name, enter lambda-sqs-role, then choose Create role.

After role creation, note down the Amazon Resource Name (ARN) of your execution role. You'll
need it in later steps.

Create the function

Create a Lambda function that processes your Amazon SQS messages. The function code logs the
body of the Amazon SQS message to CloudWatch Logs.

This tutorial uses the Node.js 18.x runtime, but we've also provided example code in other runtime
languages. You can select the tab in the following box to see code for the runtime you're interested
in. The JavaScript code you'll use in this step is in the first example shown in the JavaScript tab.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Tutorial 1417

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SqsIntegrationSampleCode
{
 public async Task FunctionHandler(SQSEvent evnt, ILambdaContext context)
 {
 foreach (var message in evnt.Records)
 {
 await ProcessMessageAsync(message, context);
 }

 context.Logger.LogInformation("done");
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed message {message.Body}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }

 }
}

Tutorial 1418

Amazon Lambda Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package integration_sqs_to_lambda

import (
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(event events.SQSEvent) error {
 for _, record := range event.Records {
 err := processMessage(record)
 if err != nil {
 return err
 }
 }
 fmt.Println("done")
 return nil
}

func processMessage(record events.SQSMessage) error {
 fmt.Printf("Processed message %s\n", record.Body)
 // TODO: Do interesting work based on the new message
 return nil
}

func main() {
 lambda.Start(handler)
}

Tutorial 1419

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSEvent.SQSMessage;

public class Function implements RequestHandler<SQSEvent, Void> {
 @Override
 public Void handleRequest(SQSEvent sqsEvent, Context context) {
 for (SQSMessage msg : sqsEvent.getRecords()) {
 processMessage(msg, context);
 }
 context.getLogger().log("done");
 return null;
 }

 private void processMessage(SQSMessage msg, Context context) {
 try {
 context.getLogger().log("Processed message " + msg.getBody());

 // TODO: Do interesting work based on the new message

 } catch (Exception e) {
 context.getLogger().log("An error occurred");
 throw e;
 }

Tutorial 1420

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda#readme

Amazon Lambda Developer Guide

 }
}

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message) {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

Consuming an SQS event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, Context, SQSHandler, SQSRecord } from "aws-lambda";

Tutorial 1421

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

export const functionHandler: SQSHandler = async (
 event: SQSEvent,
 context: Context
): Promise<void> => {
 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message: SQSRecord): Promise<any> {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;

Tutorial 1422

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

use Bref\Event\InvalidLambdaEvent;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends SqsHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws InvalidLambdaEvent
 */
 public function handleSqs(SqsEvent $event, Context $context): void
 {
 foreach ($event->getRecords() as $record) {
 $body = $record->getBody();
 // TODO: Do interesting work based on the new message
 }
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Python.

Tutorial 1423

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event, context):
 for message in event['Records']:
 process_message(message)
 print("done")

def process_message(message):
 try:
 print(f"Processed message {message['body']}")
 # TODO: Do interesting work based on the new message
 except Exception as err:
 print("An error occurred")
 raise err

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].each do |message|
 process_message(message)
 end
 puts "done"
end

def process_message(message)
 begin
 puts "Processed message #{message['body']}"
 # TODO: Do interesting work based on the new message

Tutorial 1424

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

 rescue StandardError => err
 puts "An error occurred"
 raise err
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::sqs::SqsEvent;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<SqsEvent>) -> Result<(), Error> {
 event.payload.records.iter().for_each(|record| {
 // process the record
 tracing::info!("Message body: {}",
 record.body.as_deref().unwrap_or_default())
 });

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()

Tutorial 1425

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

 .init();

 run(service_fn(function_handler)).await
}

To create a Node.js Lambda function

1. Create a directory for the project, and then switch to that directory.

mkdir sqs-tutorial
cd sqs-tutorial

2. Copy the sample JavaScript code into a new file named index.js.

3. Create a deployment package using the following zip command.

zip function.zip index.js

4. Create a Lambda function using the create-function Amazon CLI command. For the role
parameter, enter the ARN of the execution role that you created earlier.

aws lambda create-function --function-name ProcessSQSRecord \
--zip-file fileb://function.zip --handler index.handler --runtime nodejs18.x \
--role arn:aws-cn:iam::111122223333:role/lambda-sqs-role

Test the function

Invoke your Lambda function manually using the invoke Amazon CLI command and a sample
Amazon SQS event.

Tutorial 1426

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html

Amazon Lambda Developer Guide

To invoke the Lambda function with a sample event

1. Save the following JSON as a file named input.json. This JSON simulates an event that
Amazon SQS might send to your Lambda function, where "body" contains the actual message
from the queue. In this example, the message is "test".

Example Amazon SQS event

This is a test event—you don't need to change the message or the account number.

{
 "Records": [
 {
 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",
 "body": "test",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },
 "messageAttributes": {},
 "md5OfBody": "098f6bcd4621d373cade4e832627b4f6",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws-cn:sqs:us-east-1:111122223333:my-queue",
 "awsRegion": "us-east-1"
 }
]
}

2. Run the following invoke Amazon CLI command. This command returns CloudWatch logs in
the response. For more information about retrieving logs, see Accessing logs with the Amazon
CLI.

aws lambda invoke --function-name ProcessSQSRecord --payload file://input.json out
 --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.

Tutorial 1427

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html

Amazon Lambda Developer Guide

For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

3. Find the INFO log in the response. This is where the Lambda function logs the message body.
You should see logs that look like this:

2023-09-11T22:45:04.271Z 348529ce-2211-4222-9099-59d07d837b60 INFO Processed
 message test
2023-09-11T22:45:04.288Z 348529ce-2211-4222-9099-59d07d837b60 INFO done

Create an Amazon SQS queue

Create an Amazon SQS queue that the Lambda function can use as an event source.

To create a queue

1. Open the Amazon SQS console.

2. Choose Create queue.

3. Enter a name for the queue. Leave all other options at the default settings.

4. Choose Create queue.

After creating the queue, note down its ARN. You need this in the next step when you associate the
queue with your Lambda function.

Tutorial 1428

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://console.amazonaws.cn/sqs

Amazon Lambda Developer Guide

Configure the event source

Connect the Amazon SQS queue to your Lambda function by creating an event source mapping.
The event source mapping reads the Amazon SQS queue and invokes your Lambda function when
a new message is added.

To create a mapping between your Amazon SQS queue and your Lambda function, use the create-
event-source-mapping Amazon CLI command. Example:

aws lambda create-event-source-mapping --function-name ProcessSQSRecord --batch-size
 10 \
--event-source-arn arn:aws-cn:sqs:us-east-1:111122223333:my-queue

To get a list of your event source mappings, use the list-event-source-mappings command.
Example:

aws lambda list-event-source-mappings --function-name ProcessSQSRecord

Tutorial 1429

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-event-source-mapping.html
https://awscli.amazonaws.com/v2/documentation/api/2.1.29/reference/lambda/list-event-source-mappings.html

Amazon Lambda Developer Guide

Send a test message

To send an Amazon SQS message to the Lambda function

1. Open the Amazon SQS console.

2. Choose the queue that you created earlier.

3. Choose Send and receive messages.

4. Under Message body, enter a test message, such as "this is a test message."

5. Choose Send message.

Lambda polls the queue for updates. When there is a new message, Lambda invokes your function
with this new event data from the queue. If the function handler returns without exceptions,
Lambda considers the message successfully processed and begins reading new messages in the
queue. After successfully processing a message, Lambda automatically deletes it from the queue.
If the handler throws an exception, Lambda considers the batch of messages not successfully
processed, and Lambda invokes the function with the same batch of messages.

Tutorial 1430

https://console.amazonaws.cn/sqs

Amazon Lambda Developer Guide

Check the CloudWatch logs

To confirm that the function processed the message

1. Open the Functions page of the Lambda console.

2. Choose the ProcessSQSRecord function.

3. Choose Monitor.

4. Choose View CloudWatch logs.

5. In the CloudWatch console, choose the Log stream for the function.

6. Find the INFO log. This is where the Lambda function logs the message body. You should see
the message that you sent from the Amazon SQS queue. Example:

2023-09-11T22:49:12.730Z b0c41e9c-0556-5a8b-af83-43e59efeec71 INFO Processed
 message this is a test message.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

Tutorial 1431

https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

4. Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

To delete the Amazon SQS queue

1. Sign in to the Amazon Web Services Management Console and open the Amazon SQS console
at https://console.amazonaws.cn/sqs/.

2. Select the queue you created.

3. Choose Delete.

4. Enter confirm in the text input field.

5. Choose Delete.

Tutorial: Using a cross-account Amazon SQS queue as an event source

In this tutorial, you create a Lambda function that consumes messages from an Amazon Simple
Queue Service (Amazon SQS) queue in a different Amazon account. This tutorial involves two
Amazon accounts: Account A refers to the account that contains your Lambda function, and
Account B refers to the account that contains the Amazon SQS queue.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the Amazon Command Line Interface (Amazon CLI)
version 2. Commands and the expected output are listed in separate blocks:

aws --version

SQS cross-account tutorial 1432

https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/sqs/
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html

Amazon Lambda Developer Guide

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

Create the execution role (Account A)

In Account A, create an execution role that gives your function permission to access the required
Amazon resources.

To create an execution role

1. Open the Roles page in the Amazon Identity and Access Management (IAM) console.

2. Choose Create role.

3. Create a role with the following properties.

• Trusted entity – Amazon Lambda

• Permissions – AWSLambdaSQSQueueExecutionRole

• Role name – cross-account-lambda-sqs-role

The AWSLambdaSQSQueueExecutionRole policy has the permissions that the function needs to
read items from Amazon SQS and to write logs to Amazon CloudWatch Logs.

Create the function (Account A)

In Account A, create a Lambda function that processes your Amazon SQS messages. The following
Node.js 18 code example writes each message to a log in CloudWatch Logs.

SQS cross-account tutorial 1433

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

Note

For code examples in other languages, see Sample Amazon SQS function code.

Example index.mjs

export const handler = async function(event, context) {
 event.Records.forEach(record => {
 const { body } = record;
 console.log(body);
 });
 return {};
}

To create the function

Note

Following these steps creates a function in Node.js 18. For other languages, the steps are
similar, but some details are different.

1. Save the code example as a file named index.mjs.

2. Create a deployment package.

zip function.zip index.mjs

3. Create the function using the create-function Amazon Command Line Interface (Amazon
CLI) command.

aws lambda create-function --function-name CrossAccountSQSExample \
--zip-file fileb://function.zip --handler index.handler --runtime nodejs18.x \
--role arn:aws-cn:iam::<AccountA_ID>:role/cross-account-lambda-sqs-role

Test the function (Account A)

In Account A, test your Lambda function manually using the invoke Amazon CLI command and a
sample Amazon SQS event.

SQS cross-account tutorial 1434

Amazon Lambda Developer Guide

If the handler returns normally without exceptions, Lambda considers the message to be
successfully processed and begins reading new messages in the queue. After successfully
processing a message, Lambda automatically deletes it from the queue. If the handler throws
an exception, Lambda considers the batch of messages not successfully processed, and Lambda
invokes the function with the same batch of messages.

1. Save the following JSON as a file named input.txt.

{
 "Records": [
 {
 "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
 "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a...",
 "body": "test",
 "attributes": {
 "ApproximateReceiveCount": "1",
 "SentTimestamp": "1545082649183",
 "SenderId": "AIDAIENQZJOLO23YVJ4VO",
 "ApproximateFirstReceiveTimestamp": "1545082649185"
 },
 "messageAttributes": {},
 "md5OfBody": "098f6bcd4621d373cade4e832627b4f6",
 "eventSource": "aws:sqs",
 "eventSourceARN": "arn:aws-cn:sqs:us-east-1:111122223333:example-
queue",
 "awsRegion": "us-east-1"
 }
]
}

The preceding JSON simulates an event that Amazon SQS might send to your Lambda
function, where "body" contains the actual message from the queue.

2. Run the following invoke Amazon CLI command.

aws lambda invoke --function-name CrossAccountSQSExample \
--cli-binary-format raw-in-base64-out \
--payload file://input.txt outputfile.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.

SQS cross-account tutorial 1435

Amazon Lambda Developer Guide

For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

3. Verify the output in the file outputfile.txt.

Create an Amazon SQS queue (Account B)

In Account B, create an Amazon SQS queue that the Lambda function in Account A can use as an
event source.

To create a queue

1. Open the Amazon SQS console.

2. Choose Create queue.

3. Create a queue with the following properties.

• Type – Standard

• Name – LambdaCrossAccountQueue

• Configuration – Keep the default settings.

• Access policy – Choose Advanced. Paste in the following JSON policy:

{
 "Version": "2012-10-17",
 "Id": "Queue1_Policy_UUID",
 "Statement": [{
 "Sid":"Queue1_AllActions",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::<AccountA_ID>:role/cross-account-lambda-sqs-role"
]
 },
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:us-east-1:<AccountB_ID>:LambdaCrossAccountQueue"
 }
]
}

This policy grants the Lambda execution role in Account A permissions to consume
messages from this Amazon SQS queue.

SQS cross-account tutorial 1436

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://console.amazonaws.cn/sqs

Amazon Lambda Developer Guide

4. After creating the queue, record its Amazon Resource Name (ARN). You need this in the next
step when you associate the queue with your Lambda function.

Configure the event source (Account A)

In Account A, create an event source mapping between the Amazon SQS queue in Account B and
your Lambda function by running the following create-event-source-mapping Amazon CLI
command.

aws lambda create-event-source-mapping --function-name CrossAccountSQSExample --batch-
size 10 \
--event-source-arn arn:aws-cn:sqs:us-east-1:<AccountB_ID>:LambdaCrossAccountQueue

To get a list of your event source mappings, run the following command.

aws lambda list-event-source-mappings --function-name CrossAccountSQSExample \
--event-source-arn arn:aws-cn:sqs:us-east-1:<AccountB_ID>:LambdaCrossAccountQueue

Test the setup

You can now test the setup as follows:

1. In Account B, open the Amazon SQS console.

2. Choose LambdaCrossAccountQueue, which you created earlier.

3. Choose Send and receive messages.

4. Under Message body, enter a test message.

5. Choose Send message.

Your Lambda function in Account A should receive the message. Lambda will continue to poll the
queue for updates. When there is a new message, Lambda invokes your function with this new
event data from the queue. Your function runs and creates logs in Amazon CloudWatch. You can
view the logs in the CloudWatch console.

Clean up your resources

You can now delete the resources that you created for this tutorial, unless you want to retain them.
By deleting Amazon resources that you're no longer using, you prevent unnecessary charges to
your Amazon Web Services account.

SQS cross-account tutorial 1437

https://console.amazonaws.cn/sqs
https://console.amazonaws.cn/cloudwatch

Amazon Lambda Developer Guide

In Account A, clean up your execution role and Lambda function.

To delete the execution role

1. Open the Roles page of the IAM console.

2. Select the execution role that you created.

3. Choose Delete.

4. Enter the name of the role in the text input field and choose Delete.

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

In Account B, clean up the Amazon SQS queue.

To delete the Amazon SQS queue

1. Sign in to the Amazon Web Services Management Console and open the Amazon SQS console
at https://console.amazonaws.cn/sqs/.

2. Select the queue you created.

3. Choose Delete.

4. Enter confirm in the text input field.

5. Choose Delete.

Sample Amazon SQS function code

Sample code is available for the following languages.

Topics

• Node.js

• Java

• C#

Sample code 1438

https://console.amazonaws.cn/iam/home#/roles
https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/sqs/

Amazon Lambda Developer Guide

• Go

• Python

Node.js

The following is example code that receives an Amazon SQS event message as input and processes
it. For illustration, the code writes some of the incoming event data to CloudWatch Logs.

Example index.js

exports.handler = async function(event, context) {
 event.Records.forEach(record => {
 const { body } = record;
 console.log(body);
 });
 return {};
}

Zip up the sample code to create a deployment package. For instructions, see Deploy Node.js
Lambda functions with .zip file archives.

Java

The following is example Java code that receives an Amazon SQS event message as input and
processes it. For illustration, the code writes some of the incoming event data to CloudWatch Logs.

In the code, handleRequest is the handler. The handler uses the predefined SQSEvent class that
is defined in the aws-lambda-java-events library.

Example Handler.java

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSEvent.SQSMessage;

public class Handler implements RequestHandler<SQSEvent, Void>{
 @Override
 public Void handleRequest(SQSEvent event, Context context)

Sample code 1439

Amazon Lambda Developer Guide

 {
 for(SQSMessage msg : event.getRecords()){
 System.out.println(new String(msg.getBody()));
 }
 return null;
 }
}

Dependencies

• aws-lambda-java-core

• aws-lambda-java-events

Build the code with the Lambda library dependencies to create a deployment package. For
instructions, see Deploy Java Lambda functions with .zip or JAR file archives.

C#

The following is example C# code that receives an Amazon SQS event message as input and
processes it. For illustration, the code writes some of the incoming event data to the console.

In the code, handleRequest is the handler. The handler uses the predefined SQSEvent class that
is defined in the AWS.Lambda.SQSEvents library.

Example ProcessingSQSRecords.cs

[assembly: LambdaSerializer(typeof(Amazon.Lambda.Serialization.Json.JsonSerializer))]

namespace SQSLambdaFunction
{
 public class SQSLambdaFunction
 {
 public string HandleSQSEvent(SQSEvent sqsEvent, ILambdaContext context)
 {
 Console.WriteLine($"Beginning to process {sqsEvent.Records.Count}
 records...");

 foreach (var record in sqsEvent.Records)
 {
 Console.WriteLine($"Message ID: {record.MessageId}");
 Console.WriteLine($"Event Source: {record.EventSource}");

Sample code 1440

Amazon Lambda Developer Guide

 Console.WriteLine($"Record Body:");
 Console.WriteLine(record.Body);
 }

 Console.WriteLine("Processing complete.");

 return $"Processed {sqsEvent.Records.Count} records.";
 }
 }
}

Replace the Program.cs in a .NET Core project with the above sample. For instructions, see Build
and deploy C# Lambda functions with .zip file archives.

Go

The following is example Go code that receives an Amazon SQS event message as input and
processes it. For illustration, the code writes some of the incoming event data to CloudWatch Logs.

In the code, handler is the handler. The handler uses the predefined SQSEvent class that is
defined in the aws-lambda-go-events library.

Example ProcessSQSRecords.go

package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, sqsEvent events.SQSEvent) error {
 for _, message := range sqsEvent.Records {
 fmt.Printf("The message %s for event source %s = %s \n", message.MessageId,
 message.EventSource, message.Body)
 }

 return nil
}

Sample code 1441

Amazon Lambda Developer Guide

func main() {
 lambda.Start(handler)
}

Build the executable with go build and create a deployment package. For instructions, see
Deploy Go Lambda functions with .zip file archives.

Python

The following is example Python code that accepts an Amazon SQS record as input and processes
it. For illustration, the code writes to some of the incoming event data to CloudWatch Logs.

Example ProcessSQSRecords.py

from __future__ import print_function

def lambda_handler(event, context):
 for record in event['Records']:
 print("test")
 payload = record["body"]
 print(str(payload))

Zip up the sample code to create a deployment package. For instructions, see Working with .zip file
archives for Python Lambda functions.

Amazon SAM template for an Amazon SQS application

You can build this application using Amazon SAM. To learn more about creating Amazon SAM
templates, see Amazon SAM template basics in the Amazon Serverless Application Model Developer
Guide.

Below is a sample Amazon SAM template for the Lambda application from the tutorial. Copy the
text below to a .yaml file and save it next to the ZIP package you created previously. Note that the
Handler and Runtime parameter values should match the ones you used when you created the
function in the previous section.

Example template.yaml

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Sample template 1442

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-template-basics.html

Amazon Lambda Developer Guide

Description: Example of processing messages on an SQS queue with Lambda
Resources:
 MySQSQueueFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs18.x
 Events:
 MySQSEvent:
 Type: SQS
 Properties:
 Queue: !GetAtt MySqsQueue.Arn
 BatchSize: 10
 MySqsQueue:
 Type: AWS::SQS::Queue
 Properties:
 QueueName: my-queue

For information on how to package and deploy your serverless application using the package and
deploy commands, see Deploying serverless applications in the Amazon Serverless Application
Model Developer Guide.

Sample template 1443

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-deploying.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon VPC Lattice

You can register your Lambda functions as targets within an Amazon VPC Lattice service network.
By doing this, your Lambda function becomes a service within the network, and clients that have
access to the VPC Lattice service network can call your service. If your Lambda function needs to
access services within a service network, you can connect your function to a VPC that's already
associated with the service network. Having your services live within a VPC Lattice network can
help you more easily discover, connect, access, and monitor them.

Topics

• VPC Lattice concepts

• Prerequisites and permissions

• Limitations

• Registering your Lambda function with a VPC Lattice network

• Updating the target of a service in a VPC Lattice network

• Deregistering a Lambda function target

• Cross-account networking

• Receiving events from VPC Lattice

• Sending responses back to VPC Lattice

• Monitoring a service in a VPC Lattice network

VPC Lattice concepts

Throughout this guide, we'll frequently refer to the following VPC Lattice terms:

• Service – A service is any software application that can run on an instance, container, or within a
serverless function. This topic focuses only on services built using Lambda functions.

• Service network – A service network is a logical boundary containing a network of services. This
topic covers how to configure your Lambda functions as services within a VPC Lattice service
network.

• Target group – A target group is a collection of compute type destinations that run a service.
Target groups for Lambda can contain only one Lambda function as the target. You cannot have
a target group with multiple functions as targets.

VPC Lattice 1444

https://docs.amazonaws.cn/vpc-lattice/latest/ug/service-networks.html
https://docs.amazonaws.cn/vpc-lattice/latest/ug/how-it-works.html

Amazon Lambda Developer Guide

• Listener – A listener is a process that receives traffic and routes it to different target groups
within the service network.

• Listener rule – A listener rule encompasses the priority, actions, and conditions that a listener
uses to determine where to route traffic. Each listener has a default listener rule, and a listener
can have multiple listener rules. A listener rule can contain the following:

• Protocol – The protocol that the listener uses to send the request to the destination. Can be
either HTTP or HTTPS.

• Port – The port that the listener polls for incoming requests. Can be between 1 and 65535
inclusive.

• Path – The path to the target resource. For the default listener rule, path is the default path of
/. A listener rule can have 6 paths at maximum, including the default path.

• Priority – A listener uses the priority of a path to determine which path to route traffic to. A
lower number denotes higher priority. The default path has the lowest priority. If you add a
new path, VPC Lattice assigns it at the second lowest priority by default. This is just above the
priority of the default path, but at a lower priority than all other non-default paths.

In addition, we'll refer to the following Amazon Identity and Access Management (IAM) entities:

• Network owner – The network owner is the IAM role that owns the VPC Lattice service network.

• Service owner – The service owner is the IAM role that owns the service built using a Lambda
function. The service owner and the network owner do not have to be the same entity.

Using Lambda with VPC Lattice and VPC-enabled functions

By default, Lambda functions cannot access any private resources in a VPC. When you configure a
Lambda function to connect to private subnets in a VPC, you're allowing the VPC-enabled function
to access resources within that VPC. In other words, you're only focusing on the scope of a single
VPC.

Lambda functions registered as services in a VPC Lattice network are not the same as VPC-enabled
functions, but they can be complementary to each other. When you register a Lambda function
as a service in a VPC Lattice network, you're creating an ingress path to your function from one or
more VPCs. Additionally, your function may have an optional egress path to another VPC.

When registering a Lambda function as a service, you're focusing on the ingress scenario. This
encompasses the specific listener rule configurations that listeners use to route traffic to your

VPC Lattice concepts 1445

Amazon Lambda Developer Guide

service. From there, your Lambda function may communicate with other Amazon services within
your VPC through a Hyperplane ENI (elastic network interface). The following diagram illustrates
this, where the Lambda function is a service within the VPC Lattice network.

Prerequisites and permissions

This topic assumes that you have both a VPC Lattice service network and a Lambda function. If you
don't already have a VPC Lattice service network, refer to the VPC Lattice user guide to create one.

When you register your Lambda function as a target via the Lambda console or Amazon Command
Line Interface (Amazon CLI), Lambda automatically adds the necessary permissions for you.

For Lambda to automatically add permissions for you, so that you can successfully create a Lambda
function as a target of a Lambda service, your role must have the following IAM permissions:

• AddPermission

• CreateListener

• CreateService

• CreateServiceNetworkServiceAssociation

Prerequisites and permissions 1446

https://docs.amazonaws.cn/lambda/latest/dg/foundation-networking.html#foundation-nw-eni
https://docs.amazonaws.cn/vpc-lattice/latest/ug/service-networks.html#create-service-network
https://docs.amazonaws.cn/lambda/latest/api/API_AddPermission.html

Amazon Lambda Developer Guide

• CreateTargetGroup

• ListServiceNetworks (required for console workflow only)

• RegisterTargets

To update an existing service in a VPC Lattice network to point to a Lambda function, your role
must have the following IAM permissions:

• CreateService

• ListListeners (required for console workflow only)

• ListServices (required for console workflow only)

• RegisterTargets

You can also manually add the permission using the following Amazon CLI command:

aws lambda add-permission
 --function-name my-function \
 --action lambda:InvokeFunction \
 --statement-id allow-vpc-lattice \
 --principal vpc-lattice.amazonaws.com
 --source-arn target-group-arn

Limitations

When using Lambda functions with VPC Lattice networks, keep in mind the following limitations:

• The Lambda function and the target group must be in the same account and in the same Region.

• The maximum size of the request body that you can forward to a service created using a Lambda
function is 6 MB.

• The maximum size of the response JSON that the Lambda function can return is 6 MB.

• You an choose HTTP and HTTPS protocols only.

Registering your Lambda function with a VPC Lattice network

You can register any existing Lambda function with a VPC Lattice network using the Amazon
console or Amazon CLI. After registering the function as a service, it can immediately start
receiving requests.

Limitations 1447

Amazon Lambda Developer Guide

To register a Lambda function with a VPC Lattice network (console)

1. Open the Function page of the Lambda console.

2. Choose the name of the function you want to register.

3. Under Function overview, choose Add trigger.

4. In the dropdown menu, select VPC Lattice Application Network.

5. For Intent, choose Create new.

6. For Service name, enter a name for your service.

7. For VPC Lattice network, select the service network that you want to associate this Lambda
function with. You can also enter the full Amazon Resource Name (ARN) of the service
network. If you don't have an existing service network, you can choose the link in the
description, which takes you to the Amazon VPC console where you can create a VPC Lattice
network.

Note

You don't need to select a VPC Lattice network to finish setting up the trigger.
However, if you create the trigger without selecting a network, clients cannot access
your service until you associate it with a VPC Lattice network.

8. For Listener, configure the following settings:

• Listener name – Enter a name for your listener

• Protocol – The protocol that the listener uses to send the request to the destination. Can be
either HTTP or HTTPS.

• Port – The port that the listener polls for incoming requests. Can be between 1 and 65535
inclusive.

• Choose Add Listener. VPC Lattice will create a default routing with the default path /. After
service creation, you cannot change its name, protocol, and port settings, but you can still
define new routing paths.

9. Choose Add.

To register a Lambda function with a VPC Lattice network (Amazon CLI)

1. Create a service using the create-service command. Note down the service's ARN in the
response. You'll need it in the next steps.

Registering your Lambda function with a VPC Lattice network 1448

https://console.aws.amazon.com/lambda/home#/functions

Amazon Lambda Developer Guide

aws vpc-lattice create-service --name my-vpc-lattice-service

2. Create a target group using the create-target-group command. Note down the target
group's ARN in the response. You'll need it in the next steps.

aws vpc-lattice create-target-group \
 --name my-vpc-lattice-target-group \
 --type LAMBDA

Note

By default, this command creates a target group that sends events with the V1 event
structure to your Lambda function. To send a V2 event structure that's compatible
with Amazon API Gateway, specify the LambdaEventStructureVersion option.
For example, append --lambda-event-structure-version V2 to the end of the
previous command.

3. Create a listener within the service network using the create-listener command. New
listeners automatically use the default path of /. Replace the value of the service parameter
with your service's ARN from step 1. Replace the value of TargetGroupArn in the default-
action parameter with your target group ARN from step 2.

aws vpc-lattice create-listener \
 --name https
 --service-identifier svc-0e2f2665e1cebb720 \
 --protocol HTTPS \
 --default-action
 forward='{targetGroups={targetGroupIdentifier=tg-0e2f2665e1cebb720}}'

4. Register your Lambda function as a target using the register-targets command. Replace
the value of the target-group-arn parameter with your target group ARN from step 2.
Replace the value of Id in the targets parameter with the ARN of your Lambda function.

aws vpc-lattice register-targets \
 --target-group-identifier arn:aws:vpc-lattice:us-
west-2:123456789012:targetgroup/tg-0e2f2665e1cebb720 \
 --targets id=arn:aws:lambda:us-west-2:123456789012:function:my-function

Registering your Lambda function with a VPC Lattice network 1449

Amazon Lambda Developer Guide

Note

In the previous register-targets command, if your Lambda function doesn't
already explicitly allow VPC Lattice to invoke it, VPC Lattice attaches the necessary
permissions to your function's execution role automatically. To allow VPC Lattice
to automatically attach permissions, your role needs to have the AddPermission
permission.

5. Associate the service with the service network using the create-service-network-
service-association command. Replace the value of the service parameter with your
service ARN from step 1. Replace the value of the service-network parameter with the ARN
of your VPC Lattice service network.

aws vpc-lattice create-service-network-service-association \
 --service-identifier arn:aws:vpc-lattice:us-west-2:123456789012:service/
svc-0b9b89d907bc8668c \
 --service-network-identifier arn:aws:vpc-lattice:us-
west-2:123456789012:servicenetwork/03d622a31e5154247

Updating the target of a service in a VPC Lattice network

You can update any existing service within a VPC Lattice network to point to a Lambda function
target. You can do this by adding a new routing path using the Amazon console or Amazon CLI.
When you add a new path, VPC Lattice assigns that path the second lowest priority, just above the
default path (lowest priority).

To update the target of a service to point to a Lambda function (console)

1. Open the Function page of the Lambda console.

2. Choose the name of the function you want to register.

3. Under Function overview, choose Add trigger.

4. In the dropdown menu, select VPC Lattice Application Network.

5. For Intent, choose Select existing.

6. For Service name, choose an existing service.

7. For Listener, choose an existing listener.

Updating the target of a service in a VPC Lattice network 1450

https://docs.amazonaws.cn/lambda/latest/api/API_AddPermission.html
https://console.aws.amazon.com/lambda/home#/functions

Amazon Lambda Developer Guide

8. For Rule name, enter a name for the new rule.

9. For Path, define a new routing path for the listener.

10. Choose Add.

For the following steps, you'll need the ARN of your service, as well as the ARN of the listener that
you want to add a new rule for.

1. Create a new target group using the create-target-group command. Note down the
target group's ARN in the response, as you'll need it for future steps.

aws vpc-lattice create-target-group \
 --name my-vpc-lattice-target-group \
 --type LAMBDA

2. Create a new rule for your existing listener using the create-rule command. This command
assumes that your conditions are in a file called conditions-pattern.json in your current
directory. Replace the value of the listener-arn parameter with the ARN of your listener.
Replace the value of TargetGroupArn in the actions parameter with your target group ARN
from step 1.

aws vpc-lattice create-rule \
 --name my-rule
 --priority 1 \
 --listener-identifier listener-0e9af499f72e5251b \
 --service-identifier svc-01755f67d3a427803
 --match httpMatch='{pathMatch={match={prefix="/test"}}}'
 --default action
 forward='{targetGroups=[{targetGroupIdentifier=tg-042d5b70f1e743940}]}'

3. Register your Lambda function as a target using the register-targets command. Replace
the value of the target-group-arn parameter with your target group ARN from step 2.
Replace the value of Id in the targets parameter with the ARN of your Lambda function.

aws vpc-lattice register-targets \
 --target-group-identifier arn:aws:vpc-lattice:us-
west-2:123456789012:targetgroup/tg-0e2f2665e1cebb720 \
 --targets id=arn:aws:lambda:us-west-2:123456789012:function:my-new-function

Updating the target of a service in a VPC Lattice network 1451

Amazon Lambda Developer Guide

Deregistering a Lambda function target

To deregister a Lambda function target in a VPC Lattice network, use the VPC console. For more
information, see the VPC Lattice user guide.

Alternatively, you can use the following Amazon CLI command:

aws vpc-lattice deregister-targets \
 --target-group-identifier arn:aws:vpc-lattice:us-west-2:123456789012:targetgroup/
tg-0e2f2665e1cebb720 \
 --targets id=arn:aws:lambda:us-west-2:123456789012:function:my-new-function

You cannot deregister a service built using Lambda functions from the Lambda console.

Cross-account networking

Services within your VPC Lattice service network don't have to all be in the same Amazon account.
In addition, the VPC Lattice service network itself can reside in a different account. This means
that you can associate a service built using Lambda functions with a service network in a different
Amazon account. You'll need specific permissions from the network owner to create these service
associations. For more information about permissions required, see Prepare to call the VPC Lattice
API in the Amazon VPC Lattice user guide.

You can create an association between a Lambda function with a service network in a different
account through the Amazon console. To do this, instead of choosing the VPC Lattice network
from the dropdown menu (this only displays networks in your account), paste the full ARN of the
network.

In general, you can create an association between any service and any service network with the
create-service-network-service-association Amazon CLI command. This means you
can manage your service networks in a central account and have services built using Lambda
functions in other accounts across your Amazon organization. In the following example, note that
the service and service-network live in two different accounts:

aws vpc-lattice create-service-network-service-association \
 --service arn:aws:vpc-lattice:us-west-2:123456789012:service/svc-0b9b89d907bc8668c
 \
 --service-network arn:aws:vpc-lattice:us-
west-2:444455556666:servicenetwork/03d622a31e5154247

Deregistering a Lambda function target 1452

https://docs.amazonaws.cn/vpc-lattice/latest/ug/setting-up.html#setting-up-install-preview
https://docs.amazonaws.cn/vpc-lattice/latest/ug/setting-up.html#setting-up-install-preview

Amazon Lambda Developer Guide

Receiving events from VPC Lattice

The VPC Lattice service routes Lambda invocation requests over HTTP and HTTPS. The event
structure version that your function receives depends on your LambdaEventStructureVersion
setting when you created your target group.

Sample V1 event structure

The following is an example V1 event that your Lambda function might receive from VPC Lattice, in
JSON format:

{
 "raw_path": "/path/to/resource",
 "method": "GET|POST|HEAD|...",
 "headers": {"header-key": "header-value", ... },
 "query_string_parameters": {"key": "value", ...},
 "body": "request-body",
 "is_base64_encoded": true|false
}

If the content-encoding header is not present, Base64 encoding depends on the content type.
For the content types, text/*, application/json, application/xml, and application/
javascript, the service sends the body as is and sets isBase64Encoded to false.

Note

The request body can have a maximum size of 1023 KiB if sent in plaintext, or 767 KiB if
base64 encoded. The list of request headers can have a maximum of 50 key-value pairs.

Sample V2 event structure

The following is an example V2 event that your Lambda function might receive from VPC Lattice, in
JSON format:

{
 "version": "2.0",
 "path": "/",
 "method": "GET|POST|HEAD|...",

Receiving events from VPC Lattice 1453

https://docs.amazonaws.cn/vpc-lattice/latest/APIReference/API_CreateTargetGroup.html

Amazon Lambda Developer Guide

 "headers": {"header-key": "header-value", ... },
 "requestContext": {
 "serviceNetworkArn": "arn:aws-cn:vpc-
lattice:region:123456789012:servicenetwork/sn-0bf3f2882e9cc805a",
 "serviceArn": "arn:aws-cn:vpc-
lattice:region:123456789012:service/svc-0a40eebed65f8d69c",
 "targetGroupArn": "arn:aws-cn:vpc-
lattice:region:123456789012:targetgroup/tg-6d0ecf831eec9f09",
 "identity": {
 "sourceVpcArn": "arn:aws-
cn:ec2:region:123456789012:vpc/vpc-0b8276c84697e7339",
 "type" : "AWS_IAM",
 "principal": "arn:aws:sts::123456789012:assumed-role/example-
role/057d00f8b51257ba3c853a0f248943cf",
 "sessionName": "057d00f8b51257ba3c853a0f248943cf",
 "x509SanDns": "example.com"
 },
 "region": "region",
 "timeEpoch": "1690497599177430"
 }
}

Sending responses back to VPC Lattice

When you send a response from your Lambda function back to VPC Lattice, the response must
include the Base64 encoding status, status code, and relevant headers. The body is optional. The
following is an example response in JSON format:

{
 "isBase64Encoded": false,
 "statusCode": 200,
 "statusDescription": "200 OK",
 "headers": {
 "Set-Cookie": "cookies",
 "Content-Type": "application/json"
 },
 "body": "Hello from Lambda (optional)"
}

To include binary content in the response body, you must Base64 encode the content and set
isBase64Encoded to true. This tells VPC Lattice to decode the content before sending the
response to the client.

Sending responses back to VPC Lattice 1454

Amazon Lambda Developer Guide

VPC Lattice doesn't honor hop-by-hop headers such as Connection or Transfer-Encoding.
Also, you can omit the Content-Length header because VPC Lattice automatically computes it
before sending responses to clients.

Note

The response body can have a maximum size of 1023 KiB if sent in plaintext, or 767 KiB if
base64 encoded. The list of response headers can have a maximum of 50 key-value pairs.

Monitoring a service in a VPC Lattice network

To monitor services built using Lambda functions in a VPC Lattice network, VPC Lattice provides
Amazon CloudWatch metrics, Amazon CloudTrail logs, and access logs. These tools can help
you track key performance metrics such as the total number of requests to your service and the
number of connection timeouts.

By default, Lambda automatically emits metrics to CloudWatch and event history logs to
CloudTrail. Access logs are optional, and Lambda deactivates them by default. For more
information on monitoring, see Monitoring Amazon VPC Lattice in the VPC Lattice user guide.

Monitoring a service in a VPC Lattice network 1455

https://docs.amazonaws.cn/vpc-lattice/latest/ug/monitoring-overview.html

Amazon Lambda Developer Guide

Best practices for working with Amazon Lambda
functions

The following are recommended best practices for using Amazon Lambda:

Topics

• Function code

• Function configuration

• Function scalability

• Metrics and alarms

• Working with streams

• Security best practices

For more information about best practices for Lambda applications, see Application design in
Serverless Land. You can also reach out to your Amazon account team and request an architectural
review.

Function code

• Separate the Lambda handler from your core logic. This allows you to make a more unit-
testable function. In Node.js this may look like:

exports.myHandler = function(event, context, callback) {
 var foo = event.foo;
 var bar = event.bar;
 var result = MyLambdaFunction (foo, bar);

 callback(null, result);
}

function MyLambdaFunction (foo, bar) {
 // MyLambdaFunction logic here
}

• Take advantage of execution environment reuse to improve the performance of your
function. Initialize SDK clients and database connections outside of the function handler, and

Function code 1456

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/application-design

Amazon Lambda Developer Guide

cache static assets locally in the /tmp directory. Subsequent invocations processed by the same
instance of your function can reuse these resources. This saves cost by reducing function run
time.

To avoid potential data leaks across invocations, don’t use the execution environment to store
user data, events, or other information with security implications. If your function relies on a
mutable state that can’t be stored in memory within the handler, consider creating a separate
function or separate versions of a function for each user.

• Use a keep-alive directive to maintain persistent connections. Lambda purges idle connections
over time. Attempting to reuse an idle connection when invoking a function will result in a
connection error. To maintain your persistent connection, use the keep-alive directive associated
with your runtime. For an example, see Reusing Connections with Keep-Alive in Node.js.

• Use environment variables to pass operational parameters to your function. For example, if
you are writing to an Amazon S3 bucket, instead of hard-coding the bucket name you are writing
to, configure the bucket name as an environment variable.

• Control the dependencies in your function's deployment package. The Amazon Lambda
execution environment contains a number of libraries such as the Amazon SDK for the Node.js
and Python runtimes (a full list can be found here: Lambda runtimes). To enable the latest set
of features and security updates, Lambda will periodically update these libraries. These updates
may introduce subtle changes to the behavior of your Lambda function. To have full control of
the dependencies your function uses, package all of your dependencies with your deployment
package.

• Minimize your deployment package size to its runtime necessities. This will reduce the
amount of time that it takes for your deployment package to be downloaded and unpacked
ahead of invocation. For functions authored in Java or .NET Core, avoid uploading the entire
Amazon SDK library as part of your deployment package. Instead, selectively depend on the
modules which pick up components of the SDK you need (e.g. DynamoDB, Amazon S3 SDK
modules and Lambda core libraries).

• Reduce the time it takes Lambda to unpack deployment packages authored in Java by putting
your dependency .jar files in a separate /lib directory. This is faster than putting all your
function’s code in a single jar with a large number of .class files. See Deploy Java Lambda
functions with .zip or JAR file archives for instructions.

• Minimize the complexity of your dependencies. Prefer simpler frameworks that load quickly
on execution environment startup. For example, prefer simpler Java dependency injection (IoC)
frameworks like Dagger or Guice, over more complex ones like Spring Framework.

Function code 1457

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/node-reusing-connections.html
https://github.com/aws/aws-lambda-java-libs
https://google.github.io/dagger/
https://github.com/google/guice
https://github.com/spring-projects/spring-framework

Amazon Lambda Developer Guide

• Avoid using recursive code in your Lambda function, wherein the function automatically
calls itself until some arbitrary criteria is met. This could lead to unintended volume of
function invocations and escalated costs. If you do accidentally do so, set the function reserved
concurrency to 0 immediately to throttle all invocations to the function, while you update the
code.

• Do not use non-documented, non-public APIs in your Lambda function code. For Amazon
Lambda managed runtimes, Lambda periodically applies security and functional updates to
Lambda's internal APIs. These internal API updates may be backwards-incompatible, leading to
unintended consequences such as invocation failures if your function has a dependency on these
non-public APIs. See the API reference for a list of publicly available APIs.

• Write idempotent code. Writing idempotent code for your functions ensures that duplicate
events are handled the same way. Your code should properly validate events and gracefully
handle duplicate events. For more information, see How do I make my Lambda function
idempotent?.

• Avoid using the Java DNS cache. Lambda functions already cache DNS responses. If you use
another DNS cache, then you might experience connection timeouts.

The java.util.logging.Logger class can indirectly enable the JVM DNS cache. To override
the default settings, set networkaddress.cache.ttl to 0 before initializing logger. Example:

public class MyHandler {
 // first set TTL property
 static{
 java.security.Security.setProperty("networkaddress.cache.ttl" , "0");
 }
 // then instantiate logger
 var logger = org.apache.logging.log4j.LogManager.getLogger(MyHandler.class);
}

To prevent UnknownHostException failures, we recommend setting
networkaddress.cache.negative.ttl to 0. You can set this property for a Lambda
function with the AWS_LAMBDA_JAVA_NETWORKADDRESS_CACHE_NEGATIVE_TTL=0
environment variable.

Disabling the JVM DNS cache does not disable Lambda's managed DNS caching.

Function code 1458

https://docs.amazonaws.cn/lambda/latest/api/welcome.html
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/net/InetAddress.html#inetaddress-caching-heading

Amazon Lambda Developer Guide

Function configuration

• Performance testing your Lambda function is a crucial part in ensuring you pick the optimum
memory size configuration. Any increase in memory size triggers an equivalent increase in CPU
available to your function. The memory usage for your function is determined per-invoke and
can be viewed in Amazon CloudWatch. On each invoke a REPORT: entry will be made, as shown
below:

REPORT RequestId: 3604209a-e9a3-11e6-939a-754dd98c7be3 Duration: 12.34 ms Billed
 Duration: 100 ms Memory Size: 128 MB Max Memory Used: 18 MB

By analyzing the Max Memory Used: field, you can determine if your function needs more
memory or if you over-provisioned your function's memory size.

To find the right memory configuration for your functions, we recommend using the open
source Amazon Lambda Power Tuning project. For more information, see Amazon Lambda Power
Tuning on GitHub.

To optimize function performance, we also recommend deploying libraries that can leverage
Advanced Vector Extensions 2 (AVX2). This allows you to process demanding workloads,
including machine learning inferencing, media processing, high performance computing (HPC),
scientific simulations, and financial modeling. For more information, see Creating faster Amazon
Lambda functions with AVX2.

• Load test your Lambda function to determine an optimum timeout value. It is important to
analyze how long your function runs so that you can better determine any problems with a
dependency service that may increase the concurrency of the function beyond what you expect.
This is especially important when your Lambda function makes network calls to resources that
may not handle Lambda's scaling.

• Use most-restrictive permissions when setting IAM policies. Understand the resources and
operations your Lambda function needs, and limit the execution role to these permissions. For
more information, see Lambda resource access permissions.

• Be familiar with Lambda quotas. Payload size, file descriptors and /tmp space are often
overlooked when determining runtime resource limits.

• Delete Lambda functions that you are no longer using. By doing so, the unused functions won't
needlessly count against your deployment package size limit.

Function configuration 1459

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatchLogs.html
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-avx2.html
https://amazonaws-china.com/blogs/compute/creating-faster-aws-lambda-functions-with-avx2/
https://amazonaws-china.com/blogs/compute/creating-faster-aws-lambda-functions-with-avx2/

Amazon Lambda Developer Guide

• If you are using Amazon Simple Queue Service as an event source, make sure the value of the
function's expected invocation time does not exceed the Visibility Timeout value on the queue.
This applies both to CreateFunction and UpdateFunctionConfiguration.

• In the case of CreateFunction, Amazon Lambda will fail the function creation process.

• In the case of UpdateFunctionConfiguration, it could result in duplicate invocations of the
function.

Function scalability

• Be familiar with your upstream and downstream throughput constraints. While Lambda
functions scale seamlessly with load, upstream and downstream dependencies may not have
the same throughput capabilities. If you need to limit how high your function can scale, you can
configure reserved concurrency on your function.

• Build in throttle tolerance. If your synchronous function experiences throttling due to traffic
exceeding Lambda's scaling rate, you can use the following strategies to improve throttle
tolerance:

• Use timeouts, retries, and backoff with jitter. Implementing these strategies smooth out
retried invocations, and helps ensure Lambda can scale up within seconds to minimize end-
user throttling.

• Use provisioned concurrency. Provisioned concurrency is the number of pre-initialized
execution environments that Lambda allocates to your function. Lambda handles incoming
requests using provisioned concurrency when available. Lambda can also scale your function
above and beyond your provisioned concurrency setting if required. Configuring provisioned
concurrency incurs additional charges to your Amazon account.

Metrics and alarms

• Use Working with Lambda function metrics and CloudWatch Alarms instead of creating or
updating a metric from within your Lambda function code. It's a much more efficient way to
track the health of your Lambda functions, allowing you to catch issues early in the development
process. For instance, you can configure an alarm based on the expected duration of your
Lambda function invocation in order to address any bottlenecks or latencies attributable to your
function code.

Function scalability 1460

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Lambda Developer Guide

• Leverage your logging library and Amazon Lambda Metrics and Dimensions to catch app
errors (e.g. ERR, ERROR, WARNING, etc.)

• Use Amazon Cost Anomaly Detection to detect unusual activity on your account. Cost Anomaly
Detection uses machine learning to continuously monitor your cost and usage while minimizing
false positive alerts. Cost Anomaly Detection uses data from Amazon Cost Explorer, which has a
delay of up to 24 hours. As a result, it can take up to 24 hours to detect an anomaly after usage
occurs. To get started with Cost Anomaly Detection, you must first sign up for Cost Explorer.
Then, access Cost Anomaly Detection.

Working with streams

• Test with different batch and record sizes so that the polling frequency of each event source is
tuned to how quickly your function is able to complete its task. The CreateEventSourceMapping
BatchSize parameter controls the maximum number of records that can be sent to your function
with each invoke. A larger batch size can often more efficiently absorb the invoke overhead
across a larger set of records, increasing your throughput.

By default, Lambda invokes your function as soon as records are available. If the batch that
Lambda reads from the event source has only one record in it, Lambda sends only one record
to the function. To avoid invoking the function with a small number of records, you can tell the
event source to buffer records for up to 5 minutes by configuring a batching window. Before
invoking the function, Lambda continues to read records from the event source until it has
gathered a full batch, the batching window expires, or the batch reaches the payload limit of 6
MB. For more information, see Batching behavior.

Warning

Lambda event source mappings process each event at least once, and duplicate
processing of batches can occur. To avoid potential issues related to duplicate events, we
strongly recommend that you make your function code idempotent. To learn more, see
How do I make my Lambda function idempotent in the Amazon Knowledge Center.

• Increase Kinesis stream processing throughput by adding shards. A Kinesis stream is composed
of one or more shards. Lambda will poll each shard with at most one concurrent invocation.
For example, if your stream has 100 active shards, there will be at most 100 Lambda function
invocations running concurrently. Increasing the number of shards will directly increase the
number of maximum concurrent Lambda function invocations and can increase your Kinesis

Working with streams 1461

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/lam-metricscollected.html
https://docs.amazonaws.cn/cost-management/latest/userguide/manage-ad.html
https://docs.amazonaws.cn/cost-management/latest/userguide/ce-enable.html
https://docs.amazonaws.cn/cost-management/latest/userguide/settingup-ad.html#access-ad
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://repost.aws/knowledge-center/lambda-function-idempotent

Amazon Lambda Developer Guide

stream processing throughput. If you are increasing the number of shards in a Kinesis stream,
make sure you have picked a good partition key (see Partition Keys) for your data, so that related
records end up on the same shards and your data is well distributed.

• Use Amazon CloudWatch on IteratorAge to determine if your Kinesis stream is being processed.
For example, configure a CloudWatch alarm with a maximum setting to 30000 (30 seconds).

Security best practices

• Monitor your usage of Amazon Lambda as it relates to security best practices by using
Amazon Security Hub. Security Hub uses security controls to evaluate resource configurations
and security standards to help you comply with various compliance frameworks. For more
information about using Security Hub to evaluate Lambda resources, see Amazon Lambda
controls in the Amazon Security Hub User Guide.

• Monitor Lambda network activity logs using Amazon GuardDuty Lambda Protection.
GuardDuty Lambda protection helps you identify potential security threats when Lambda
functions are invoked in your Amazon Web Services account. For example, if one of your
functions queries an IP address that is associated with cryptocurrency-related activity. GuardDuty
monitors the network activity logs that are generated when a Lambda function is invoked. To
learn more, see Lambda protection in the Amazon GuardDuty User Guide.

Security best practices 1462

https://docs.amazonaws.cn/streams/latest/dev/key-concepts.html#partition-key
https://docs.amazonaws.cn/streams/latest/dev/monitoring-with-cloudwatch.html
https://docs.amazonaws.cn/securityhub/latest/userguide/lambda-controls.html
https://docs.amazonaws.cn/securityhub/latest/userguide/lambda-controls.html
https://docs.amazonaws.cn/guardduty/latest/ug/lambda-protection.html

Amazon Lambda Developer Guide

Lambda resource access permissions

You can use Amazon Identity and Access Management (IAM) to manage access to the Lambda API
and resources such as functions and layers. For users and applications in your account that use
Lambda, you can create IAM policies that apply to users, groups, or roles.

Every Lambda function has an IAM role called an execution role. In this role, you can attach a
policy that defines the permissions that your function needs to access other Amazon services
and resources. At a minimum, your function needs access to Amazon CloudWatch Logs for log
streaming. If your function calls other service APIs with the Amazon SDK, you must include the
necessary permissions in the execution role's policy. Lambda also uses the execution role to get
permission to read from event sources when you use an event source mapping to invoke your
function.

To give other accounts and Amazon services permission to use your Lambda resources, use a
resource-based policy. Lambda resources include functions, versions, aliases, and layer versions.
When a user tries to access a Lambda resource, Lambda considers both the user's identity-based
policies and the resource's resource-based policy. When an Amazon service such as Amazon Simple
Storage Service (Amazon S3) calls your Lambda function, Lambda considers only the resource-
based policy.

To manage permissions for users and applications in your account, we recommend using an
Amazon managed policy. You can use these managed policies as-is, or as a starting point for
writing your own more restrictive policies. Policies can restrict user permissions by the resource
that an action affects, and by additional optional conditions. For more information, see Resources
and conditions for Lambda actions.

If your Lambda functions contain calls to other Amazon resources, you might also want to restrict
which functions can access those resources. To do this, include the lambda:SourceFunctionArn
condition key in an IAM identity-based policy or service control policy (SCP) for the target resource.
For more information, see Working with Lambda execution environment credentials.

For more information about IAM, see the IAM User Guide.

For more information about applying security principles to Lambda applications, see Security in
Serverless Land.

Topics

1463

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction.html
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/security-ops

Amazon Lambda Developer Guide

• Lambda execution role

• Identity-based IAM policies for Lambda

• Attribute-based access control for Lambda

• Using resource-based policies for Lambda

• Resources and conditions for Lambda actions

• Using permissions boundaries for Amazon Lambda applications

1464

Amazon Lambda Developer Guide

Lambda execution role

A Lambda function's execution role is an Amazon Identity and Access Management (IAM) role that
grants the function permission to access Amazon services and resources. For example, you might
create an execution role that has permission to send logs to Amazon CloudWatch and upload
trace data to Amazon X-Ray. This page provides information on how to create, view, and manage a
Lambda function's execution role.

You provide an execution role when you create a function. When you invoke your function,
Lambda automatically provides your function with temporary credentials by assuming this
role. You don't have to call sts:AssumeRole in your function code.

In order for Lambda to properly assume your execution role, the role's trust policy must specify
the Lambda service principal (lambda.amazonaws.com) as a trusted service.

To view a function's execution role

1. Open the Functions page of the Lambda console.

2. Choose the name of a function.

3. Choose Configuration, and then choose Permissions.

4. Under Resource summary, review the services and resources that the function can access.

5. Choose a service from the dropdown list to see permissions related to that service.

You can add or remove permissions from a function's execution role at any time, or configure your
function to use a different role. Add permissions for any services that your function calls with the
Amazon SDK, and for services that Lambda uses to enable optional features.

When you add permissions to your function, update its code or configuration as well. This forces
running instances of your function, which have outdated credentials, to stop and be replaced.

Topics

• Creating an execution role in the IAM console

• Grant least privilege access to your Lambda execution role

• Managing roles with the IAM API

• Session duration for temporary security credentials

• Amazon managed policies for Lambda features

Execution role 1465

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

• Working with Lambda execution environment credentials

Creating an execution role in the IAM console

By default, Lambda creates an execution role with minimal permissions when you create a function
in the Lambda console. You can also create an execution role in the IAM console.

To create an execution role in the IAM console

1. Open the Roles page in the IAM console.

2. Choose Create role.

3. Under Use case, choose Lambda.

4. Choose Next.

5. Select the Amazon managed policies AWSLambdaBasicExecutionRole and
AWSXRayDaemonWriteAccess.

6. Choose Next.

7. Enter a Role name and then choose Create role.

For detailed instructions, see Creating a role for an Amazon service (console) in the IAM User Guide.

Grant least privilege access to your Lambda execution role

When you first create an IAM role for your Lambda function during the development phase, you
might sometimes grant permissions beyond what is required. Before publishing your function
in the production environment, as a best practice, adjust the policy to include only the required
permissions. For more information, see Apply least-privilege permissions in the IAM User Guide.

Use IAM Access Analyzer to help identify the required permissions for the IAM execution role policy.
IAM Access Analyzer reviews your Amazon CloudTrail logs over the date range that you specify and
generates a policy template with only the permissions that the function used during that time. You
can use the template to create a managed policy with fine-grained permissions, and then attach
it to the IAM role. That way, you grant only the permissions that the role needs to interact with
Amazon resources for your specific use case.

For more information, see Generate policies based on access activity in the IAM User Guide.

Creating an execution role in the IAM console 1466

https://console.amazonaws.cn/iam/home#/roles
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_generate-policy.html

Amazon Lambda Developer Guide

Managing roles with the IAM API

To create an execution role with the Amazon Command Line Interface (Amazon CLI), use the
create-role command. When using this command, you can specify the trust policy inline. A role's
trust policy gives the specified principals permission to assume the role. In the following example,
you grant the Lambda service principal permission to assume your role. Note that requirements for
escaping quotes in the JSON string may vary depending on your shell.

aws iam create-role --role-name lambda-ex --assume-role-policy-document '{"Version":
 "2012-10-17","Statement": [{ "Effect": "Allow", "Principal": {"Service":
 "lambda.amazonaws.com"}, "Action": "sts:AssumeRole"}]}'

You can also define the trust policy for the role using a separate JSON file. In the following
example, trust-policy.json is a file in the current directory.

Example trust-policy.json

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

aws iam create-role --role-name lambda-ex --assume-role-policy-document file://trust-
policy.json

You should see the following output:

{
 "Role": {
 "Path": "/",
 "RoleName": "lambda-ex",
 "RoleId": "AROAQFOXMPL6TZ6ITKWND",

Managing roles with the IAM API 1467

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#delegation

Amazon Lambda Developer Guide

 "Arn": "arn:aws-cn:iam::123456789012:role/lambda-ex",
 "CreateDate": "2020-01-17T23:19:12Z",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }
}

Note

Lambda automatically assumes your execution role when you invoke your function. You
should avoid calling sts:AssumeRole manually in your function code. If your use case
requires that the role assumes itself, you must include the role itself as a trusted principal
in your role's trust policy. For more information on how to modify a role trust policy, see
Modifying a role trust policy (console) in the IAM User Guide.

To add permissions to the role, use the attach-policy-to-role command. Start by adding the
AWSLambdaBasicExecutionRole managed policy.

aws iam attach-role-policy --role-name lambda-ex --policy-arn arn:aws-
cn:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Session duration for temporary security credentials

Lambda assumes the execution role associated with your function to fetch temporary security
credentials which are then available as environment variables during a function's invocation. If you
use these temporary credentials outside of Lambda, such as to create a presigned Amazon S3 URL,
you can't control the session duration. The IAM maximum session duration setting doesn't apply to
sessions that are assumed by Amazon services such as Lambda. Use the sts:AssumeRole action if
you need control over session duration.

Session duration for temporary security credentials 1468

https://docs.amazonaws.cn/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRole.html

Amazon Lambda Developer Guide

Amazon managed policies for Lambda features

The following Amazon managed policies provide permissions that are required to use Lambda
features.

Change Description Date

AWSLambdaMSKExecut
ionRole – Lambda added
the kafka:DescribeClusterV2
permission to this policy.

AWSLambdaMSKExecut
ionRole grants permissio
ns to read and access records
from an Amazon Managed
Streaming for Apache Kafka
(Amazon MSK) cluster,
manage elastic network
interfaces (ENIs), and write to
CloudWatch Logs.

June 17, 2022

AWSLambdaBasicExec
utionRole – Lambda started
tracking changes to this
policy.

AWSLambdaBasicExec
utionRole grants
permissions to upload logs to
CloudWatch.

February 14, 2022

AWSLambdaDynamoDBE
xecutionRole – Lambda
started tracking changes to
this policy.

AWSLambdaDynamoDBE
xecutionRole grants
permissions to read records
from an Amazon DynamoDB
stream and write to
CloudWatch Logs.

February 14, 2022

AWSLambdaKinesisEx
ecutionRole – Lambda
started tracking changes to
this policy.

AWSLambdaKinesisEx
ecutionRole grants
permissions to read events
from an Amazon Kinesis
data stream and write to
CloudWatch Logs.

February 14, 2022

AWSLambdaMSKExecut
ionRole – Lambda started

AWSLambdaMSKExecut
ionRole grants permissio

February 14, 2022

Amazon managed policies for Lambda features 1469

https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaMSKExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaMSKExecutionRole
https://docs.amazonaws.cn/MSK/2.0/APIReference/v2-clusters-clusterarn.html#v2-clusters-clusterarnget
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaKinesisExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaKinesisExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaMSKExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaMSKExecutionRole

Amazon Lambda Developer Guide

Change Description Date

tracking changes to this
policy.

ns to read and access records
from an Amazon Managed
Streaming for Apache Kafka
(Amazon MSK) cluster,
manage elastic network
interfaces (ENIs), and write to
CloudWatch Logs.

AWSLambdaSQSQueueE
xecutionRole – Lambda
started tracking changes to
this policy.

AWSLambdaSQSQueueE
xecutionRole grants
permissions to read a
message from an Amazon
Simple Queue Service
(Amazon SQS) queue and
write to CloudWatch Logs.

February 14, 2022

AWSLambdaVPCAccess
ExecutionRole – Lambda
started tracking changes to
this policy.

AWSLambdaVPCAccess
ExecutionRole grants
permissions to manage ENIs
within an Amazon VPC and
write to CloudWatch Logs.

February 14, 2022

AWSXRayDaemonWrite
Access – Lambda started
tracking changes to this
policy.

AWSXRayDaemonWrite
Access grants permissions
to upload trace data to X-Ray.

February 14, 2022

CloudWatchLambdaIn
sightsExecutionRolePolicy
– Lambda started tracking
changes to this policy.

CloudWatchLambdaIn
sightsExecutionRol
ePolicy grants permissio
ns to write runtime metrics to
CloudWatch Lambda Insights.

February 14, 2022

Amazon managed policies for Lambda features 1470

https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaSQSQueueExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaSQSQueueExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/AWSXRayDaemonWriteAccess
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/CloudWatchLambdaInsightsExecutionRolePolicy
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/CloudWatchLambdaInsightsExecutionRolePolicy

Amazon Lambda Developer Guide

Change Description Date

AmazonS3ObjectLamb
daExecutionRolePolicy –
Lambda started tracking
changes to this policy.

AmazonS3ObjectLamb
daExecutionRolePol
icy grants permissions to
interact with Amazon Simple
Storage Service (Amazon S3)
object Lambda and to write
to CloudWatch Logs.

February 14, 2022

For some features, the Lambda console attempts to add missing permissions to your execution
role in a customer managed policy. These policies can become numerous. To avoid creating
extra policies, add the relevant Amazon managed policies to your execution role before enabling
features.

When you use an event source mapping to invoke your function, Lambda uses the execution role to
read event data. For example, an event source mapping for Kinesis reads events from a data stream
and sends them to your function in batches.

When a service assumes a role in your account, you can include the aws:SourceAccount and
aws:SourceArn global condition context keys in your role trust policy to limit access to the role
to only requests that are generated by expected resources. For more information, see Cross-service
confused deputy prevention for Amazon Security Token Service.

You can use event source mappings with the following services:

Services that Lambda reads events from

• Amazon DynamoDB

• Amazon Kinesis

• Amazon MQ

• Amazon Managed Streaming for Apache Kafka (Amazon MSK)

• Self-managed Apache Kafka

• Amazon Simple Queue Service (Amazon SQS)

• Amazon DocumentDB (with MongoDB compatibility) (Amazon DocumentDB)

Amazon managed policies for Lambda features 1471

https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonS3ObjectLambdaExecutionRolePolicy
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonS3ObjectLambdaExecutionRolePolicy
https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html#cross-service-confused-deputy-prevention
https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html#cross-service-confused-deputy-prevention

Amazon Lambda Developer Guide

In addition to the Amazon managed policies, the Lambda console provides templates for creating
a custom policy with permissions for additional use cases. When you create a function in the
Lambda console, you can choose to create a new execution role with permissions from one or more
templates. These templates are also applied automatically when you create a function from a
blueprint, or when you configure options that require access to other services. Example templates
are available in this guide's GitHub repository.

Working with Lambda execution environment credentials

It's common for your Lambda function code to make API requests to other Amazon services.
To make these requests, Lambda generates an ephemeral set of credentials by assuming your
function's execution role. These credentials are available as environment variables during your
function's invocation. When working with Amazon SDKs, you don't need to provide credentials
for the SDK directly in code. By default, the credential provider chain sequentially checks each
place where you can set credentials and selects the first one available—usually the environment
variables (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN).

Lambda injects the source function ARN into the credentials context if the request is an Amazon
API request that comes from within your execution environment. Lambda also injects the source
function ARN for the following Amazon API requests that Lambda makes on your behalf outside of
your execution environment:

Service Action Reason

CloudWatch Logs CreateLogGroup ,
CreateLogStream ,
PutLogEvents

To store logs into a
CloudWatch Logs log group

X-Ray PutTraceSegments To send trace data to X-Ray

Amazon EFS ClientMount To connect your function to
an Amazon Elastic File System
(Amazon EFS) file system

Other Amazon API calls that Lambda makes outside of your execution environment on your behalf
using the same execution role don't contain the source function ARN. Examples of such API calls
outside the execution environment include:

Working with Lambda execution environment credentials 1472

https://github.com/awsdocs/aws-lambda-developer-guide/tree/master/iam-policies

Amazon Lambda Developer Guide

• Calls to Amazon Key Management Service (Amazon KMS) to automatically encrypt and decrypt
your environment variables.

• Calls to Amazon Elastic Compute Cloud (Amazon EC2) to create elastic network interfaces (ENIs)
for a VPC-enabled function.

• Calls to Amazon services, such as Amazon Simple Queue Service (Amazon SQS), to read from an
event source that's set up as an event source mapping.

With the source function ARN in the credentials context, you can verify whether a call
to your resource came from a specific Lambda function's code. To verify this, use the
lambda:SourceFunctionArn condition key in an IAM identity-based policy or service control
policy (SCP).

Note

You cannot use the lambda:SourceFunctionArn condition key in resource-based
policies.

With this condition key in your identity-based policies or SCPs, you can implement security controls
for the API actions that your function code makes to other Amazon services. This has a few key
security applications, such as helping you identify the source of a credential leak.

Note

The lambda:SourceFunctionArn condition key is different from the
lambda:FunctionArn and aws:SourceArn condition keys. The lambda:FunctionArn
condition key applies only to event source mappings and helps define which functions your
event source can invoke. The aws:SourceArn condition key applies only to policies where
your Lambda function is the target resource, and helps define which other Amazon services
and resources can invoke that function. The lambda:SourceFunctionArn condition key
can apply to any identity-based policy or SCP to define the specific Lambda functions that
have permissions to make specific Amazon API calls to other resources.

To use lambda:SourceFunctionArn in your policy, include it as a condition with any of the ARN
condition operators. The value of the key must be a valid ARN.

Working with Lambda execution environment credentials 1473

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_ARN
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_ARN

Amazon Lambda Developer Guide

For example, suppose your Lambda function code makes an s3:PutObject call that targets a
specific Amazon S3 bucket. You might want to allow only one specific Lambda function to have
s3:PutObject access that bucket. In this case, your function's execution role should have a policy
attached that looks like this:

Example policy granting a specific Lambda function access to an Amazon S3 resource

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExampleSourceFunctionArn",
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::lambda_bucket/*",
 "Condition": {
 "ArnEquals": {
 "lambda:SourceFunctionArn": "arn:aws:lambda:us-
east-1:123456789012:function:source_lambda"
 }
 }
 }
]
}

This policy allows only s3:PutObject access if the source is the Lambda function with ARN
arn:aws:lambda:us-east-1:123456789012:function:source_lambda. This policy doesn't
allow s3:PutObject access to any other calling identity. This is true even if a different function or
entity makes an s3:PutObject call with the same execution role.

Note

The lambda:SourceFunctionARN condition key doesn't support Lambda function
versions or function aliases. If you use the ARN for a particular function version or alias,
your function won't have permission to take the action you specify. Be sure to use the
unqualified ARN for your function without a version or alias suffix.

Working with Lambda execution environment credentials 1474

Amazon Lambda Developer Guide

You can also use lambda:SourceFunctionArn in service control policies. For example, suppose
you want to restrict access to your bucket to either a single Lambda function's code or to calls from
a specific Amazon Virtual Private Cloud (VPC). The following SCP illustrates this.

Example policy denying access to Amazon S3 under specific conditions

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:*"
],
 "Resource": "arn:aws:s3:::lambda_bucket/*",
 "Effect": "Deny",
 "Condition": {
 "StringNotEqualsIfExists": {
 "aws:SourceVpc": [
 "vpc-12345678"
]
 },
 "ArnNotEqualsIfExists": {
 "lambda:SourceFunctionArn": "arn:aws:lambda:us-
east-1:123456789012:function:source_lambda"
 }
 }
 }
]
}

This policy denies all S3 actions unless they come from a specific Lambda function with ARN
arn:aws:lambda:*:123456789012:function:source_lambda, or unless they come
from the specified VPC. The StringNotEqualsIfExists operator tells IAM to process this
condition only if the aws:SourceVpc key is present in the request. Similarly, IAM considers the
ArnNotEqualsIfExists operator only if the lambda:SourceFunctionArn exists.

Working with Lambda execution environment credentials 1475

https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html

Amazon Lambda Developer Guide

Identity-based IAM policies for Lambda

You can use identity-based policies in Amazon Identity and Access Management (IAM) to grant
users in your account access to Lambda. Identity-based policies can apply to users directly, or
to groups and roles that are associated with a user. You can also grant users in another account
permission to assume a role in your account and access your Lambda resources. This page shows an
example of how identity-based policies can be used for function development.

Lambda provides Amazon managed policies that grant access to Lambda API actions and, in some
cases, access to other Amazon services used to develop and manage Lambda resources. Lambda
updates these managed policies as needed to ensure that your users have access to new features
when they're released.

• AWSLambda_FullAccess – Grants full access to Lambda actions and other Amazon services
used to develop and maintain Lambda resources. This policy was created by scoping down the
previous policy AWSLambdaFullAccess.

• AWSLambda_ReadOnlyAccess – Grants read-only access to Lambda resources. This policy was
created by scoping down the previous policy AWSLambdaReadOnlyAccess.

• AWSLambdaRole – Grants permissions to invoke Lambda functions.

Amazon managed policies grant permission to API actions without restricting the Lambda
functions or layers that a user can modify. For finer-grained control, you can create your own
policies that limit the scope of a user's permissions.

Sections

• Function development

• Layer development and use

• Cross-account roles

• Condition keys for VPC settings

Function development

Use identity-based policies to allow users to perform operations on Lambda functions.

User policies 1476

Amazon Lambda Developer Guide

Note

For a function defined as a container image, the user permission to access the image MUST
be configured in the Amazon Elastic Container Registry For an example, see Amazon ECR
permissions.

The following shows an example of a permissions policy with limited scope. It allows a user to
create and manage Lambda functions named with a designated prefix (intern-), and configured
with a designated execution role.

Example Function development policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadOnlyPermissions",
 "Effect": "Allow",
 "Action": [
 "lambda:GetAccountSettings",
 "lambda:GetEventSourceMapping",
 "lambda:GetFunction",
 "lambda:GetFunctionConfiguration",
 "lambda:GetFunctionCodeSigningConfig",
 "lambda:GetFunctionConcurrency",
 "lambda:ListEventSourceMappings",
 "lambda:ListFunctions",
 "lambda:ListTags",
 "iam:ListRoles"
],
 "Resource": "*"
 },
 {
 "Sid": "DevelopFunctions",
 "Effect": "Allow",
 "NotAction": [
 "lambda:AddPermission",
 "lambda:PutFunctionConcurrency"
],
 "Resource": "arn:aws-cn:lambda:*:*:function:intern-*"
 },

Function development 1477

Amazon Lambda Developer Guide

 {
 "Sid": "DevelopEventSourceMappings",
 "Effect": "Allow",
 "Action": [
 "lambda:DeleteEventSourceMapping",
 "lambda:UpdateEventSourceMapping",
 "lambda:CreateEventSourceMapping"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "lambda:FunctionArn": "arn:aws-cn:lambda:*:*:function:intern-*"
 }
 }
 },
 {
 "Sid": "PassExecutionRole",
 "Effect": "Allow",
 "Action": [
 "iam:ListRolePolicies",
 "iam:ListAttachedRolePolicies",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:PassRole",
 "iam:SimulatePrincipalPolicy"
],
 "Resource": "arn:aws-cn:iam::*:role/intern-lambda-execution-role"
 },
 {
 "Sid": "ViewLogs",
 "Effect": "Allow",
 "Action": [
 "logs:*"
],
 "Resource": "arn:aws-cn:logs:*:*:log-group:/aws/lambda/intern-*"
 }
]
}

The permissions in the policy are organized into statements based on the resources and conditions
that they support.

Function development 1478

Amazon Lambda Developer Guide

• ReadOnlyPermissions – The Lambda console uses these permissions when you browse and
view functions. They don't support resource patterns or conditions.

 "Action": [
 "lambda:GetAccountSettings",
 "lambda:GetEventSourceMapping",
 "lambda:GetFunction",
 "lambda:GetFunctionConfiguration",
 "lambda:GetFunctionCodeSigningConfig",
 "lambda:GetFunctionConcurrency",
 "lambda:ListEventSourceMappings",
 "lambda:ListFunctions",
 "lambda:ListTags",
 "iam:ListRoles"
],
 "Resource": "*"

• DevelopFunctions – Use any Lambda action that operates on functions prefixed with
intern-, except AddPermission and PutFunctionConcurrency. AddPermission
modifies the resource-based policy on the function and can have security implications.
PutFunctionConcurrency reserves scaling capacity for a function and can take capacity away
from other functions.

 "NotAction": [
 "lambda:AddPermission",
 "lambda:PutFunctionConcurrency"
],
 "Resource": "arn:aws-cn:lambda:*:*:function:intern-*"

• DevelopEventSourceMappings – Manage event source mappings on functions that are
prefixed with intern-. These actions operate on event source mappings, but you can restrict
them by function with a condition.

 "Action": [
 "lambda:DeleteEventSourceMapping",
 "lambda:UpdateEventSourceMapping",
 "lambda:CreateEventSourceMapping"
],
 "Resource": "*",

Function development 1479

Amazon Lambda Developer Guide

 "Condition": {
 "StringLike": {
 "lambda:FunctionArn": "arn:aws-cn:lambda:*:*:function:intern-*"
 }
 }

• PassExecutionRole – View and pass only a role named intern-lambda-execution-role,
which must be created and managed by a user with IAM permissions. PassRole is used when
you assign an execution role to a function.

 "Action": [
 "iam:ListRolePolicies",
 "iam:ListAttachedRolePolicies",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:PassRole",
 "iam:SimulatePrincipalPolicy"
],
 "Resource": "arn:aws-cn:iam::*:role/intern-lambda-execution-role"

• ViewLogs – Use CloudWatch Logs to view logs for functions that are prefixed with intern-.

 "Action": [
 "logs:*"
],
 "Resource": "arn:aws-cn:logs:*:*:log-group:/aws/lambda/intern-*"

This policy allows a user to get started with Lambda, without putting other users' resources at risk.
It doesn't allow a user to configure a function to be triggered by or call other Amazon services,
which requires broader IAM permissions. It also doesn't include permission to services that don't
support limited-scope policies, like CloudWatch and X-Ray. Use the read-only policies for these
services to give the user access to metrics and trace data.

When you configure triggers for your function, you need access to use the Amazon service that
invokes your function. For example, to configure an Amazon S3 trigger, you need permission to use
the Amazon S3 actions that manage bucket notifications. Many of these permissions are included
in the AWSLambdaFullAccess managed policy. Example policies are available in this guide's GitHub
repository.

Function development 1480

https://github.com/awsdocs/aws-lambda-developer-guide/tree/master/iam-policies
https://github.com/awsdocs/aws-lambda-developer-guide/tree/master/iam-policies

Amazon Lambda Developer Guide

Layer development and use

The following policy grants a user permission to create layers and use them with functions. The
resource patterns allow the user to work in any Amazon Region and with any layer version, as long
as the name of the layer starts with test-.

Example layer development policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PublishLayers",
 "Effect": "Allow",
 "Action": [
 "lambda:PublishLayerVersion"
],
 "Resource": "arn:aws-cn:lambda:*:*:layer:test-*"
 },
 {
 "Sid": "ManageLayerVersions",
 "Effect": "Allow",
 "Action": [
 "lambda:GetLayerVersion",
 "lambda:DeleteLayerVersion"
],
 "Resource": "arn:aws-cn:lambda:*:*:layer:test-*:*"
 }
]
}

You can also enforce layer use during function creation and configuration with the
lambda:Layer condition. For example, you can prevent users from using layers published
by other accounts. The following policy adds a condition to the CreateFunction and
UpdateFunctionConfiguration actions to require that any layers specified come from account
123456789012.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ConfigureFunctions",

Layer development and use 1481

Amazon Lambda Developer Guide

 "Effect": "Allow",
 "Action": [
 "lambda:CreateFunction",
 "lambda:UpdateFunctionConfiguration"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringLike": {
 "lambda:Layer": [
 "arn:aws-cn:lambda:*:123456789012:layer:*:*"
]
 }
 }
 }
]
}

To ensure that the condition applies, verify that no other statements grant the user permission to
these actions.

Cross-account roles

You can apply any of the preceding policies and statements to a role, which you can then share
with another account to give it access to your Lambda resources. Unlike a user, a role doesn't have
credentials for authentication. Instead, it has a trust policy that specifies who can assume the role
and use its permissions.

You can use cross-account roles to give accounts that you trust access to Lambda actions and
resources. If you just want to grant permission to invoke a function or use a layer, use resource-
based policies instead.

For more information, see IAM roles in the IAM User Guide.

Condition keys for VPC settings

You can use condition keys for VPC settings to provide additional permission controls for your
Lambda functions. For example, you can enforce that all Lambda functions in your organization are
connected to a VPC. You can also specify the subnets and security groups that the functions are
allowed to use, or are denied from using.

For more information, see the section called “Using IAM condition keys for VPC settings”.

Cross-account roles 1482

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html

Amazon Lambda Developer Guide

Attribute-based access control for Lambda

With attribute-based access control (ABAC), you can use tags to control access to your Lambda
functions. You can attach tags to a Lambda function, pass them in certain API requests, or attach
them to the Amazon Identity and Access Management (IAM) principal making the request. For
more information about how Amazon grants attribute-based access, see Controlling access to
Amazon resources using tags in the IAM User Guide.

You can use ABAC to grant least privilege without specifying an Amazon Resource Name (ARN) or
ARN pattern in the IAM policy. Instead, you can specify a tag in the condition element of an IAM
policy to control access. Scaling is easier with ABAC because you don't have to update your IAM
policies when you create new functions. Instead, add tags to the new functions to control access.

In Lambda, tags work at the function level. Tags aren't supported for layers, code signing
configurations, or event source mappings. When you tag a function, those tags apply to all versions
and aliases associated with the function. For information about how to tag functions, see Using
tags on Lambda functions.

You can use the following condition keys to control function actions:

• aws:ResourceTag/tag-key: Control access based on the tags that are attached to Lambda
functions.

• aws:RequestTag/tag-key: Require tags to be present in a request, such as when creating a new
function.

• aws:PrincipalTag/tag-key: Control what the IAM principal (the person making the request) is
allowed to do based on the tags that are attached to their IAM user or role.

• aws:TagKeys: Control whether specific tag keys can be used in a request.

For a complete list of Lambda actions that support ABAC, see Function actions and check the
Condition column in the table.

The following steps demonstrate one way to set up permissions using ABAC. In this example
scenario, you'll create four IAM permissions policies. Then, you'll attach these policies to a new IAM
role. Finally, you'll create an IAM user and give that user permission to assume the new role.

Control access using tags 1483

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principaltag
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_tags_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_tags_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys

Amazon Lambda Developer Guide

Prerequisites

Make sure that you have a Lambda execution role. You'll use this role when you grant IAM
permissions and when you create a Lambda function.

Step 1: Require tags on new functions

When using ABAC with Lambda, it's a best practice to require that all functions have tags. This
helps ensure that your ABAC permissions policies work as expected.

Create an IAM policy similar to the following example. This policy uses the aws:RequestTag/tag-
key, aws:ResourceTag/tag-key, and aws:TagKeys condition keys to require that new functions and
the IAM principal creating the functions both have the project tag. The ForAllValues modifier
ensures that project is the only allowed tag. If you don't include the ForAllValues modifier,
users can add other tags to the function as long as they also pass project.

Example – Require tags on new functions

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "lambda:CreateFunction",
 "lambda:TagResource"
],
 "Resource": "arn:aws:lambda:*:*:function:*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/project": "${aws:PrincipalTag/project}",
 "aws:ResourceTag/project": "${aws:PrincipalTag/project}"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": "project"
 }
 }
 }
}

Prerequisites 1484

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-json-editor
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys

Amazon Lambda Developer Guide

Step 2: Allow actions based on tags attached to a Lambda function and
IAM principal

Create a second IAM policy using the aws:ResourceTag/tag-key condition key to require the
principal's tag to match the tag that's attached to the function. The following example policy
allows principals with the project tag to invoke functions with the project tag. If a function has
any other tags, the action is denied.

Example – Require matching tags on function and IAM principal

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction",
 "lambda:GetFunction"
],
 "Resource": "arn:aws:lambda:*:*:function:*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/project": "${aws:PrincipalTag/project}"
 }
 }
 }
]
}

Step 3: Grant list permissions

Create a policy that allows the principal to list Lambda functions and IAM roles. This allows the
principal to see all Lambda functions and IAM roles on the console and when calling the API
actions.

Example – Grant Lambda and IAM list permissions

{
 "Version": "2012-10-17",
 "Statement": [

Step 2: Control actions using tags 1485

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Lambda Developer Guide

 {
 "Sid": "AllResourcesLambdaNoTags",
 "Effect": "Allow",
 "Action": [
 "lambda:GetAccountSettings",
 "lambda:ListFunctions",
 "iam:ListRoles"
],
 "Resource": "*"
 }
]
}

Step 4: Grant IAM permissions

Create a policy that allows iam:PassRole. This permission is required when you assign an execution
role to a function. In the following example policy, replace the example ARN with the ARN of your
Lambda execution role.

Note

Do not use the ResourceTag condition key in a policy with the iam:PassRole action.
You cannot use the tag on an IAM role to control access to who can pass that role. For more
information about permissions required to pass a role to a service, see Granting a user
permissions to pass a role to an Amazon service.

Example – Grant permission to pass the execution role

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws-cn:iam::111122223333:role/lambda-ex"
 }
]

Step 4: Grant IAM permissions 1486

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_passrole.html

Amazon Lambda Developer Guide

}

Step 5: Create the IAM role

It's a best practice to use roles to delegate permissions. Create an IAM role called abac-project-
role:

• On Step 1: Select trusted entity: Choose Amazon account and then choose This account.

• On Step 2: Add permissions: Attach the four IAM policies that you created in the previous steps.

• On Step 3: Name, review, and create: Choose Add tag. For Key, enter project. Don't enter a
Value.

Step 6: Create the IAM user

Create an IAM user called abac-test-user. In the Set permissions section, choose Attach
existing policies directly and then choose Create policy. Enter the following policy definition.
Replace 111122223333 with your Amazon account ID. This policy allows abac-test-user to
assume abac-project-role.

Example – Allow IAM user to assume ABAC role

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws-cn:iam::111122223333:role/abac-project-role"
 }
}

Step 7: Test the permissions

1. Sign in to the Amazon console as abac-test-user. For more information, see Sign in as an
IAM user.

2. Switch to the abac-project-role role. For more information, see Switching to a role
(console).

3. Create a Lambda function:

Step 5: Create the IAM role 1487

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#delegate-using-roles
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.amazonaws.cn/general/latest/gr/acct-identifiers.html#FindingYourAccountIdentifiers
https://docs.amazonaws.cn/IAM/latest/UserGuide/console.html#user-sign-in-page
https://docs.amazonaws.cn/IAM/latest/UserGuide/console.html#user-sign-in-page
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html

Amazon Lambda Developer Guide

• Under Permissions, choose Change default execution role, and then for Execution role,
choose Use an existing role. Choose the same execution role that you used in Step 4: Grant
IAM permissions.

• Under Advanced settings, choose Enable tags and then choose Add new tag. For Key, enter
project. Don't enter a Value.

4. Test the function.

5. Create a second Lambda function and add a different tag, such as environment. This
operation should fail because the ABAC policy that you created in Step 1: Require tags on new
functions only allows the principal to create functions with the project tag.

6. Create a third function without tags. This operation should fail because the ABAC policy that
you created in Step 1: Require tags on new functions doesn't allow the principal to create
functions without tags.

This authorization strategy allows you to control access without creating new policies for each
new user. To grant access to new users, simply give them permission to assume the role that
corresponds to their assigned project.

Step 8: Clean up your resources

To delete the IAM role

1. Open the Roles page of the IAM console.

2. Select the role that you created in step 5.

3. Choose Delete.

4. To confirm deletion, enter the role name in the text input field.

5. Choose Delete.

To delete the IAM user

1. Open the Users page of the IAM console.

2. Select the IAM user that you created in step 6.

3. Choose Delete.

4. To confirm deletion, enter the user name in the text input field.

5. Choose Delete user.

Step 8: Clean up your resources 1488

https://console.amazonaws.cn/iam/home#/roles
https://console.amazonaws.cn/iam/home#/users

Amazon Lambda Developer Guide

To delete the Lambda function

1. Open the Functions page of the Lambda console.

2. Select the function that you created.

3. Choose Actions, Delete.

4. Type delete in the text input field and choose Delete.

Step 8: Clean up your resources 1489

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Using resource-based policies for Lambda

Lambda supports resource-based permissions policies for Lambda functions and layers. Resource-
based policies let you grant usage permission to other Amazon accounts or organizations on a per-
resource basis. You also use a resource-based policy to allow an Amazon service to invoke your
function on your behalf.

For Lambda functions, you can grant an account permission to invoke or manage a function.
You can also use a single resource-based policy to grant permissions to an entire organization in
Amazon Organizations. You can also use resource-based policies to grant invoke permission to an
Amazon service that invokes a function in response to activity in your account.

To view a function's resource-based policy

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Permissions.

4. Scroll down to Resource-based policy and then choose View policy document. The resource-
based policy shows the permissions that are applied when another account or Amazon service
attempts to access the function. The following example shows a statement that allows
Amazon S3 to invoke a function named my-function for a bucket named my-bucket in
account 123456789012.

Example Resource-based policy

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Sid": "lambda-allow-s3-my-function",
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com.cn"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws-cn:lambda:cn-north-1:123456789012:function:my-
function",
 "Condition": {
 "StringEquals": {

Resource-based policies 1490

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

 "AWS:SourceAccount": "123456789012"
 },
 "ArnLike": {
 "AWS:SourceArn": "arn:aws-cn:s3:::my-bucket"
 }
 }
 }
]
}

For Lambda layers, you can only use a resource-based policy on a specific layer version, instead
of the entire layer. In addition to policies that grant permission to a single account or multiple
accounts, for layers, you can also grant permission to all accounts in an organization.

Note

You can only update resource-based policies for Lambda resources within the scope of the
AddPermission and AddLayerVersionPermission API actions. Currently, you can't author
policies for your Lambda resources in JSON, or use conditions that don't map to parameters
for those actions.

Resource-based policies apply to a single function, version, alias, or layer version. They grant
permission to one or more services and accounts. For trusted accounts that you want to have access
to multiple resources, or to use API actions that resource-based policies don't support, you can use
cross-account roles.

Topics

• Supported API actions

• Granting function access to Amazon services

• Granting function access to an organization

• Granting function access to other accounts

• Granting layer access to other accounts

• Cleaning up resource-based policies

Resource-based policies 1491

https://docs.amazonaws.cn/lambda/latest/api/API_AddPermission.html
https://docs.amazonaws.cn/lambda/latest/api/API_AddLayerVersionPermission.html

Amazon Lambda Developer Guide

Supported API actions

The following Lambda API actions support resource-based policies:

• CreateAlias

• DeleteAlias

• DeleteFunction

• DeleteFunctionConcurrency

• DeleteFunctionEventInvokeConfig

• DeleteProvisionedConcurrencyConfig

• GetAlias

• GetFunction

• GetFunctionConcurrency

• GetFunctionConfiguration

• GetFunctionEventInvokeConfig

• GetPolicy

• GetProvisionedConcurrencyConfig

• Invoke

• ListAliases

• ListFunctionEventInvokeConfigs

• ListProvisionedConcurrencyConfigs

• ListTags

• ListVersionsByFunction

• PublishVersion

• PutFunctionConcurrency

• PutFunctionEventInvokeConfig

• PutProvisionedConcurrencyConfig

• TagResource

• UntagResource

• UpdateAlias

• UpdateFunctionCode

Supported API actions 1492

https://docs.amazonaws.cn/lambda/latest/api/API_CreateAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionConcurrency.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteProvisionedConcurrencyConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConcurrency.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetPolicy.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetProvisionedConcurrencyConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListAliases.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListFunctionEventInvokeConfigs.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListProvisionedConcurrencyConfigs.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListTags.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListVersionsByFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_PublishVersion.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionConcurrency.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutProvisionedConcurrencyConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_TagResource.html
https://docs.amazonaws.cn/lambda/latest/api/API_UntagResource.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html

Amazon Lambda Developer Guide

• UpdateFunctionEventInvokeConfig

Granting function access to Amazon services

When you use an Amazon service to invoke your function, you grant permission in a statement
on a resource-based policy. You can apply the statement to the entire function to be invoked or
managed, or limit the statement to a single version or alias.

Note

When you add a trigger to your function with the Lambda console, the console updates
the function's resource-based policy to allow the service to invoke it. To grant permissions
to other accounts or services that aren't available in the Lambda console, you can use the
Amazon CLI.

Add a statement with the add-permission command. The simplest resource-based policy
statement allows a service to invoke a function. The following command grants Amazon SNS
permission to invoke a function named my-function.

aws lambda add-permission --function-name my-function --action lambda:InvokeFunction --
statement-id sns \
--principal sns.amazonaws.com.cn --output text

You should see the following output:

{"Sid":"sns","Effect":"Allow","Principal":
{"Service":"sns.amazonaws.com.cn"},"Action":"lambda:InvokeFunction","Resource":"arn:aws-
cn:lambda:cn-north-1:123456789012:function:my-function"}

This lets Amazon SNS call the lambda:Invoke API for the function, but it doesn't restrict the
Amazon SNS topic that triggers the invocation. To ensure that your function is only invoked by a
specific resource, specify the Amazon Resource Name (ARN) of the resource with the source-arn
option. The following command only allows Amazon SNS to invoke the function for subscriptions
to a topic named my-topic.

aws lambda add-permission --function-name my-function --action lambda:InvokeFunction --
statement-id sns-my-topic \

Granting function access to Amazon services 1493

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionEventInvokeConfig.html

Amazon Lambda Developer Guide

--principal sns.amazonaws.com.cn --source-arn arn:aws-cn:sns:cn-
north-1:123456789012:my-topic

Some services can invoke functions in other accounts. If you specify a source ARN that has your
account ID in it, that isn't an issue. For Amazon S3, however, the source is a bucket whose ARN
doesn't have an account ID in it. It's possible that you could delete the bucket and another account
could create a bucket with the same name. Use the source-account option with your account ID
to ensure that only resources in your account can invoke the function.

aws lambda add-permission --function-name my-function --action lambda:InvokeFunction --
statement-id s3-account \
--principal s3.amazonaws.com.cn --source-arn arn:aws-cn:s3:::my-bucket-123456 --source-
account 123456789012

Granting function access to an organization

To grant permissions to an organization in Amazon Organizations, specify the organization ID as
the principal-org-id. The following AddPermission Amazon CLI command grants invocation
access to all users in organization o-a1b2c3d4e5f.

aws lambda add-permission --function-name example \
--statement-id PrincipalOrgIDExample --action lambda:InvokeFunction \
--principal * --principal-org-id o-a1b2c3d4e5f

Note

In this command, Principal is *. This means that all users in the organization o-
a1b2c3d4e5f get function invocation permissions. If you specify an Amazon account or
role as the Principal, then only that principal gets function invocation permissions, but
only if they are also part of the o-a1b2c3d4e5f organization.

This command creates a resource-based policy that looks like the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PrincipalOrgIDExample",

Granting function access to an organization 1494

https://docs.amazonaws.cn/lambda/latest/api/API_AddPermission.html

Amazon Lambda Developer Guide

 "Effect": "Allow",
 "Principal": "*",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws-cn:lambda:us-west-2:123456789012:function:example",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalOrgID": "o-a1b2c3d4e5f"
 }
 }
 }
]
}

For more information, see aws:PrincipalOrgID in the Amazon Identity and Access Management
user guide.

Granting function access to other accounts

To grant permissions to another Amazon account, specify the account ID as the principal. The
following example grants account 111122223333 permission to invoke my-function with the
prod alias.

aws lambda add-permission --function-name my-function:prod --statement-id xaccount --
action lambda:InvokeFunction \
--principal 111122223333 --output text

You should see the following output:

{"Sid":"xaccount","Effect":"Allow","Principal":{"AWS":"arn:aws-
cn:iam::111122223333:root"},"Action":"lambda:InvokeFunction","Resource":"arn:aws-
cn:lambda:us-east-2:123456789012:function:my-function"}

The resource-based policy grants permission for the other account to access the function, but
doesn't allow users in that account to exceed their permissions. Users in the other account must
have the corresponding user permissions to use the Lambda API.

To limit access to a user or role in another account, specify the full ARN of the identity as the
principal. For example, arn:aws-cn:iam::123456789012:user/developer.

The alias limits which version the other account can invoke. It requires the other account to include
the alias in the function ARN.

Granting function access to other accounts 1495

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalorgid

Amazon Lambda Developer Guide

aws lambda invoke --function-name arn:aws-cn:lambda:us-west-2:123456789012:function:my-
function:prod out

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "1"
}

The function owner can then update the alias to point to a new version without the caller needing
to change the way they invoke your function. This ensures that the other account doesn't need
to change its code to use the new version, and it only has permission to invoke the version of the
function associated with the alias.

You can grant cross-account access for most API actions that operate on an existing function. For
example, you could grant access to lambda:ListAliases to let an account get a list of aliases, or
lambda:GetFunction to let them download your function code. Add each permission separately,
or use lambda:* to grant access to all actions for the specified function.

To grant other accounts permission for multiple functions, or for actions that don't operate on a
function, we recommend that you use IAM roles.

Granting layer access to other accounts

To grant layer-usage permission to another account, add a statement to the layer version's
permissions policy using the add-layer-version-permission command. In each statement, you can
grant permission to a single account, all accounts, or an organization.

The following example grants account 111122223333 access to version 2 of the bash-runtime
layer.

aws lambda add-layer-version-permission --layer-name bash-runtime --statement-id
 xaccount \
--action lambda:GetLayerVersion --principal 111122223333 --version-number 2 --output
 text

You should see output similar to the following:

Granting layer access to other accounts 1496

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/add-layer-version-permission.html

Amazon Lambda Developer Guide

e210ffdc-e901-43b0-824b-5fcd0dd26d16 {"Sid":"xaccount","Effect":"Allow","Principal":
{"AWS":"arn:aws-
cn:iam::111122223333:root"},"Action":"lambda:GetLayerVersion","Resource":"arn:aws-
cn:lambda:us-east-1:123456789012:layer:bash-runtime:2"}

Permissions apply only to a single layer version. Repeat the process each time that you create a
new layer version.

To grant permission to all accounts in an organization, use the organization-id option. The
following example grants all accounts in an organization permission to use version 3 of a layer.

aws lambda add-layer-version-permission --layer-name my-layer \
--statement-id engineering-org --version-number 3 --principal '*' \
--action lambda:GetLayerVersion --organization-id o-t194hfs8cz --output text

You should see the following output:

b0cd9796-d4eb-4564-939f-de7fe0b42236 {"Sid":"engineering-
org","Effect":"Allow","Principal":"*","Action":"lambda:GetLayerVersion","Resource":"arn:aws-
cn:lambda:us-east-2:123456789012:layer:my-layer:3","Condition":{"StringEquals":
{"aws:PrincipalOrgID":"o-t194hfs8cz"}}}"

To grant permission to all Amazon accounts, use * for the principal, and omit the organization ID.
For multiple accounts or organizations, you need to add multiple statements.

Cleaning up resource-based policies

To view a function's resource-based policy, use the get-policy command.

aws lambda get-policy --function-name my-function --output text

You should see the following output:

{"Version":"2012-10-17","Id":"default","Statement":
[{"Sid":"sns","Effect":"Allow","Principal":
{"Service":"s3.amazonaws.com.cn"},"Action":"lambda:InvokeFunction","Resource":"arn:aws-
cn:lambda:cn-north-1:123456789012:function:my-function","Condition":{"ArnLike":
{"AWS:SourceArn":"arn:aws-cn:sns:us-east-2:123456789012:lambda*"}}}]} 7c681fc9-
b791-4e91-acdf-eb847fdaa0f0

Cleaning up resource-based policies 1497

Amazon Lambda Developer Guide

For versions and aliases, append the version number or alias to the function name.

aws lambda get-policy --function-name my-function:PROD

To remove permissions from your function, use remove-permission.

aws lambda remove-permission --function-name example --statement-id sns

Use the get-layer-version-policy command to view the permissions on a layer.

aws lambda get-layer-version-policy --layer-name my-layer --version-number 3 --output
 text

You should see the following output:

b0cd9796-d4eb-4564-939f-de7fe0b42236 {"Sid":"engineering-
org","Effect":"Allow","Principal":"*","Action":"lambda:GetLayerVersion","Resource":"arn:aws-
cn:lambda:us-west-2:123456789012:layer:my-layer:3","Condition":{"StringEquals":
{"aws:PrincipalOrgID":"o-t194hfs8cz"}}}"

Use remove-layer-version-permission to remove statements from the policy.

aws lambda remove-layer-version-permission --layer-name my-layer --version-number 3 --
statement-id engineering-org

Cleaning up resource-based policies 1498

Amazon Lambda Developer Guide

Resources and conditions for Lambda actions

You can restrict the scope of a user's permissions by specifying resources and conditions in
an Amazon Identity and Access Management (IAM) policy. Each action in a policy supports a
combination of resource and condition types that varies depending on the behavior of the action.

Every IAM policy statement grants permission to an action that's performed on a resource. When
the action doesn't act on a named resource, or when you grant permission to perform the action
on all resources, the value of the resource in the policy is a wildcard (*). For many actions, you can
restrict the resources that a user can modify by specifying the Amazon Resource Name (ARN) of a
resource, or an ARN pattern that matches multiple resources.

To restrict permissions by resource, specify the resource by ARN.

Lambda resource ARN format

• Function – arn:aws-cn:lambda:us-west-2:123456789012:function:my-function

• Function version – arn:aws-cn:lambda:us-west-2:123456789012:function:my-
function:1

• Function alias – arn:aws-cn:lambda:us-west-2:123456789012:function:my-
function:TEST

• Event source mapping – arn:aws-cn:lambda:us-west-2:123456789012:event-source-
mapping:fa123456-14a1-4fd2-9fec-83de64ad683de6d47

• Layer – arn:aws-cn:lambda:us-west-2:123456789012:layer:my-layer

• Layer version – arn:aws-cn:lambda:us-west-2:123456789012:layer:my-layer:1

For example, the following policy allows a user in Amazon Web Services account 123456789012 to
invoke a function named my-function in the US West (Oregon) Amazon Region.

Example invoke function policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Invoke",
 "Effect": "Allow",
 "Action": [

Resources and conditions 1499

Amazon Lambda Developer Guide

 "lambda:InvokeFunction"
],
 "Resource": "arn:aws-cn:lambda:us-west-2:123456789012:function:my-function"
 }
]
}

This is a special case where the action identifier (lambda:InvokeFunction) differs from the
API operation (Invoke). For other actions, the action identifier is the operation name prefixed by
lambda:.

Sections

• Policy conditions

• Function resource names

• Function actions

• Event source mapping actions

• Layer actions

Policy conditions

Conditions are an optional policy element that applies additional logic to determine if an action
is allowed. In addition to common conditions that all actions support, Lambda defines condition
types that you can use to restrict the values of additional parameters on some actions.

For example, the lambda:Principal condition lets you restrict the service or account that a user
can grant invocation access to on a function's resource-based policy. The following policy lets a
user grant permission to Amazon Simple Notification Service (Amazon SNS) topics to invoke a
function named test.

Example manage function policy permissions

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ManageFunctionPolicy",
 "Effect": "Allow",
 "Action": [
 "lambda:AddPermission",

Policy conditions 1500

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Lambda Developer Guide

 "lambda:RemovePermission"
],
 "Resource": "arn:aws-cn:lambda:us-west-2:123456789012:function:test:*",
 "Condition": {
 "StringEquals": {
 "lambda:Principal": "sns.amazonaws.com"
 }
 }
 }
]
}

The condition requires that the principal is Amazon SNS and not another service or account. The
resource pattern requires that the function name is test and includes a version number or alias.
For example, test:v1.

For more information on resources and conditions for Lambda and other Amazon services, see
Actions, resources, and condition keys for Amazon services in the Service Authorization Reference.

Function resource names

You reference a Lambda function in a policy statement using an Amazon Resource Name (ARN).
The format of a function ARN depends on whether you are referencing the whole function
(unqualified) or a function version or alias (qualified).

When making Lambda API calls, users can specify a version or alias by passing a version ARN or
alias ARN in the GetFunction FunctionName parameter, or by setting a value in the GetFunction
Qualifier parameter. Lambda makes authorization decisions by comparing the resource element
in the IAM policy with both the FunctionName and Qualifier passed in API calls. If there is a
mismatch, Lambda denies the request.

Whether you are allowing or denying an action on your function, you must use the correct function
ARN types in your policy statement to achieve the results that you expect. For example, if your
policy references the unqualified ARN, Lambda accepts requests that reference the unqualified ARN
but denies requests that reference a qualified ARN.

Note

You can't use a wildcard character (*) to match the account ID. For more information on
accepted syntax, see IAM JSON policy reference in the IAM User Guide.

Function resource names 1501

https://docs.amazonaws.cn/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunction.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html

Amazon Lambda Developer Guide

Example allowing invocation of an unqualified ARN

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-west-2:123456789012:function:myFunction"
 }
]
}

If your policy references a specific qualified ARN, Lambda accepts requests that reference that ARN
but denies requests that reference the unqualified ARN or a different qualified ARN, for example,
myFunction:2.

Example allowing invocation of a specific qualified ARN

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-west-2:123456789012:function:myFunction:1"
 }
]
}

If your policy references any qualified ARN using :*, Lambda accepts any qualified ARN but denies
requests that reference the unqualified ARN.

Example allowing invocation of any qualified ARN

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-west-2:123456789012:function:myFunction:*"

Function resource names 1502

Amazon Lambda Developer Guide

 }
]
}

If your policy references any ARN using *, Lambda accepts any qualified or unqualified ARN.

Example allowing invocation of any qualified or unqualified ARN

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-west-2:123456789012:function:myFunction*"
 }
]
}

Function actions

Actions that operate on a function can be restricted to a specific function by function, version, or
alias ARN, as described in the following table. Actions that don't support resource restrictions are
granted for all resources (*).

Function actions

Action Resource Condition

AddPermission

RemovePermission

Function

Function version

Function alias

lambda:Principal

aws:ResourceTag/${TagKey}

lambda:FunctionUrl
AuthType

Invoke

Permission: lambda:In
vokeFunction

Function

Function version

Function alias

aws:ResourceTag/${TagKey}

lambda:EventSourceToken

Function actions 1503

https://docs.amazonaws.cn/lambda/latest/api/API_AddPermission.html
https://docs.amazonaws.cn/lambda/latest/api/API_RemovePermission.html
https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html

Amazon Lambda Developer Guide

Action Resource Condition

CreateFunction Function lambda:CodeSigning
ConfigArn

lambda:Layer

lambda:VpcIds

lambda:SubnetIds

lambda:SecurityGroupIds

aws:ResourceTag/${TagKey}

aws:RequestTag/${TagKey}

aws:TagKeys

UpdateFunctionConfiguration Function lambda:CodeSigning
ConfigArn

lambda:Layer

lambda:VpcIds

lambda:SubnetIds

lambda:SecurityGroupIds

aws:ResourceTag/${TagKey}

Function actions 1504

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html

Amazon Lambda Developer Guide

Action Resource Condition

CreateAlias

DeleteAlias

DeleteFunction

DeleteFunctionCodeSigningConfig

DeleteFunctionConcurrency

GetAlias

GetFunction

GetFunctionCodeSigningConfig

GetFunctionConcurrency

GetFunctionConfiguration

GetPolicy

ListProvisionedConcurrencyConfigs

ListAliases

ListTags

ListVersionsByFunction

PublishVersion

PutFunctionCodeSigningConfig

PutFunctionConcurrency

UpdateAlias

UpdateFunctionCode

Function aws:ResourceTag/${TagKey}

Function actions 1505

https://docs.amazonaws.cn/lambda/latest/api/API_CreateAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionConcurrency.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConcurrency.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetPolicy.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListProvisionedConcurrencyConfigs.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListAliases.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListTags.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListVersionsByFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_PublishVersion.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionCodeSigningConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionConcurrency.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateAlias.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html

Amazon Lambda Developer Guide

Action Resource Condition

CreateFunctionUrlConfig

DeleteFunctionUrlConfig

GetFunctionUrlConfig

UpdateFunctionUrlConfig

Function

Function alias

lambda:FunctionUrl
AuthType

lambda:FunctionArn

aws:ResourceTag/${TagKey}

ListFunctionUrlConfigs Function lambda:FunctionUrl
AuthType

DeleteFunctionEventInvokeConfig

GetFunctionEventInvokeConfig

ListFunctionEventInvokeConfigs

PutFunctionEventInvokeConfig

UpdateFunctionEventInvokeConfig

Function aws:ResourceTag/${TagKey}

DeleteProvisionedConcurrenc
yConfig

GetProvisionedConcurrencyConfig

PutProvisionedConcurrencyConfig

Function alias

Function version

aws:ResourceTag/${TagKey}

GetAccountSettings

ListFunctions

* None

TagResource Function aws:ResourceTag/${TagKey}

aws:RequestTag/${TagKey}

aws:TagKeys

Function actions 1506

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionUrlConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListFunctionUrlConfigs.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListFunctionEventInvokeConfigs.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionEventInvokeConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteProvisionedConcurrencyConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteProvisionedConcurrencyConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetProvisionedConcurrencyConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutProvisionedConcurrencyConfig.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetAccountSettings.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListFunctions.html
https://docs.amazonaws.cn/lambda/latest/api/API_TagResource.html

Amazon Lambda Developer Guide

Action Resource Condition

UntagResource Function aws:ResourceTag/${TagKey}

aws:TagKeys

Event source mapping actions

For event source mappings, you can restrict delete and update permissions to a specific event
source. The lambda:FunctionArn condition lets you restrict which functions a user can configure
an event source to invoke.

For these actions, the resource is the event source mapping, so Lambda provides a condition that
lets you restrict permission based on the function that the event source mapping invokes.

Event source mapping actions

Action Resource Condition

DeleteEventSourceMapping

UpdateEventSourceMapping

Event source mapping lambda:Fu
nctionArn

CreateEventSourceMapping

GetEventSourceMapping

* lambda:Fu
nctionArn

ListEventSourceMappings * None

Layer actions

Layer actions let you restrict the layers that a user can manage or use with a function. Actions
related to layer use and permissions act on a version of a layer, while PublishLayerVersion acts
on a layer name. You can use either with wildcards to restrict the layers that a user can work with
by name.

Event source mapping actions 1507

https://docs.amazonaws.cn/lambda/latest/api/API_UntagResource.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetEventSourceMapping.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListEventSourceMappings.html

Amazon Lambda Developer Guide

Note

The GetLayerVersion action also covers GetLayerVersionByArn. Lambda does not support
GetLayerVersionByArn as an IAM action.

Layer actions

Action Resource Condition

AddLayerVersionPermission

RemoveLayerVersionPermission

GetLayerVersion

GetLayerVersionPolicy

DeleteLayerVersion

Layer version None

ListLayerVersions

PublishLayerVersion

Layer None

ListLayers * None

Layer actions 1508

https://docs.amazonaws.cn/lambda/latest/api/API_GetLayerVersion.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetLayerVersionByArn.html
https://docs.amazonaws.cn/lambda/latest/api/API_AddLayerVersionPermission.html
https://docs.amazonaws.cn/lambda/latest/api/API_RemoveLayerVersionPermission.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetLayerVersion.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetLayerVersionPolicy.html
https://docs.amazonaws.cn/lambda/latest/api/API_DeleteLayerVersion.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListLayerVersions.html
https://docs.amazonaws.cn/lambda/latest/api/API_PublishLayerVersion.html
https://docs.amazonaws.cn/lambda/latest/api/API_ListLayers.html

Amazon Lambda Developer Guide

Using permissions boundaries for Amazon Lambda applications

When you create an application in the Amazon Lambda console, Lambda applies a permissions
boundary to the application's IAM roles. The permissions boundary limits the scope of the execution
role that the application's template creates for each of its functions, and any roles that you add to
the template. The permissions boundary prevents users with write access to the application's Git
repository from escalating the application's permissions beyond the scope of its own resources.

The application templates in the Lambda console include a global property that applies a
permissions boundary to all functions that they create.

Globals:
 Function:
 PermissionsBoundary: !Sub 'arn:${Amazon::Partition}:iam::
${Amazon::AccountId}:policy/${AppId}-${Amazon::Region}-PermissionsBoundary'

The boundary limits the permissions of the functions' roles. You can add permissions to a function's
execution role in the template, but that permission is only effective if it's also allowed by the
permissions boundary. The role that Amazon CloudFormation assumes to deploy the application
enforces the use of the permissions boundary. That role only has permission to create and pass
roles that have the application's permissions boundary attached.

By default, an application's permissions boundary enables functions to perform actions on the
resources in the application. For example, if the application includes an Amazon DynamoDB
table, the boundary allows access to any API action that can be restricted to operate on specific
tables with resource-level permissions. You can only use actions that don't support resource-level
permissions if they're specifically permitted in the boundary. These include Amazon CloudWatch
Logs and Amazon X-Ray API actions for logging and tracing.

Example permissions boundary

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "*"
],
 "Resource": [

Permissions boundaries 1509

Amazon Lambda Developer Guide

 "arn:aws-cn:lambda:us-east-2:123456789012:function:my-app-
getAllItemsFunction-*",
 "arn:aws-cn:lambda:us-east-2:123456789012:function:my-app-
getByIdFunction-*",
 "arn:aws-cn:lambda:us-east-2:123456789012:function:my-app-
putItemFunction-*",
 "arn:aws-cn:dynamodb:us-east-1:123456789012:table/my-app-SampleTable-*"
],
 "Effect": "Allow",
 "Sid": "StackResources"
 },
 {
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:PutLogEvents",
 "xray:Put*"
],
 "Resource": "*",
 "Effect": "Allow",
 "Sid": "StaticPermissions"
 },
 ...
]
}

To access other resources or API actions, you or an administrator must expand the permissions
boundary to include those resources. You might also need to update the execution role or
deployment role of an application to allow the use of additional actions.

• Permissions boundary – Extend the application's permissions boundary when you add resources
to your application, or the execution role needs access to more actions. In IAM, add resources
to the boundary to allow the use of API actions that support resource-level permissions on
that resource's type. For actions that don't support resource-level permissions, add them in a
statement that isn't scoped to any resource.

• Execution role – Extend a function's execution role when it needs to use additional actions. In
the application template, add policies to the execution role. The intersection of permissions in
the boundary and execution role is granted to the function.

• Deployment role – Extend the application's deployment role when it needs additional
permissions to create or configure resources. In IAM, add policies to the application's deployment

Permissions boundaries 1510

Amazon Lambda Developer Guide

role. The deployment role needs the same user permissions that you need to deploy or update
an application in Amazon CloudFormation.

For a tutorial that walks through adding resources to an application and extending its permissions,
see ???.

For more information, see Permissions boundaries for IAM entities in the IAM User Guide.

Permissions boundaries 1511

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon Lambda Developer Guide

Security in Amazon Lambda

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from a
data center and network architecture that is built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use
securely. Third-party auditors regularly test and verify the effectiveness of our security as part
of the Amazon compliance programs. To learn about the compliance programs that apply to
Amazon Lambda, see Amazon Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the Amazon service that you use.
You are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Lambda. The following topics show you how to configure Lambda to meet your security and
compliance objectives. You also learn how to use other Amazon services that help you to monitor
and secure your Lambda resources.

For more information about applying security principles to Lambda applications, see Security in
Serverless Land.

Topics

• Data protection in Amazon Lambda

• Identity and Access Management for Amazon Lambda

• Governance for Amazon Lambda

• Compliance validation for Amazon Lambda

• Resilience in Amazon Lambda

• Infrastructure security in Amazon Lambda

1512

https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/programs/
https://www.amazonaws.cn/compliance/services-in-scope/
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/security-ops

Amazon Lambda Developer Guide

Data protection in Amazon Lambda

The Amazon shared responsibility model applies to data protection in Amazon Lambda. As
described in this model, Amazon is responsible for protecting the global infrastructure that runs all
of the Amazon Web Services Cloud. You are responsible for maintaining control over your content
that is hosted on this infrastructure. You are also responsible for the security configuration and
management tasks for the Amazon Web Services that you use. For more information about data
privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect Amazon Web Services account
credentials and set up individual users with Amazon IAM Identity Center or Amazon Identity and
Access Management (IAM). That way, each user is given only the permissions necessary to fulfill
their job duties. We also recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with Amazon resources. We require TLS 1.2 and recommend TLS
1.3.

• Set up API and user activity logging with Amazon CloudTrail.

• Use Amazon encryption solutions, along with all default security controls within Amazon Web
Services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing Amazon through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Lambda or other Amazon Web Services using the console, API, Amazon
CLI, or Amazon SDKs. Any data that you enter into tags or free-form text fields used for names
may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request to
that server.

Sections

• Encryption in transit

Data protection 1513

https://aws.amazon.com/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/data-privacy-faq
https://www.amazonaws.cn/compliance/fips/

Amazon Lambda Developer Guide

• Encryption at rest

Encryption in transit

Lambda API endpoints only support secure connections over HTTPS. When you manage Lambda
resources with the Amazon Web Services Management Console,Amazon SDK, or the Lambda API,
all communication is encrypted with Transport Layer Security (TLS). For a full list of API endpoints,
see Amazon Regions and endpoints in the Amazon Web Services General Reference.

When you connect your function to a file system, Lambda uses encryption in transit for all
connections. For more information, see Data encryption in Amazon EFS in the Amazon Elastic File
System User Guide.

When you use environment variables, you can enable console encryption helpers to use client-
side encryption to protect the environment variables in transit. For more information, see Securing
environment variables.

Encryption at rest

Lambda always encrypts environment variables at rest. By default, Lambda uses an Amazon KMS
key that Lambda creates in your account to encrypt your environment variables. This Amazon
managed key is named aws/lambda.

On a per-function basis, you can optionally configure Lambda to use a customer managed key
instead of the default Amazon managed key to encrypt your environment variables. For more
information, see Securing environment variables.

Lambda always encrypts files that you upload to Lambda, including deployment packages and
layer archives.

Amazon CloudWatch Logs and Amazon X-Ray also encrypt data by default, and can be configured
to use a customer managed key. For details, see Encrypt log data in CloudWatch Logs and Data
protection in Amazon X-Ray.

Identity and Access Management for Amazon Lambda

Amazon Identity and Access Management (IAM) is an Amazon Web Service that helps an
administrator securely control access to Amazon resources. IAM administrators control who can

Encryption in transit 1514

https://docs.amazonaws.cn/general/latest/gr/rande.html
https://docs.amazonaws.cn/efs/latest/ug/encryption.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.amazonaws.cn/xray/latest/devguide/xray-console-encryption.html
https://docs.amazonaws.cn/xray/latest/devguide/xray-console-encryption.html

Amazon Lambda Developer Guide

be authenticated (signed in) and authorized (have permissions) to use Lambda resources. IAM is an
Amazon Web Service that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Lambda works with IAM

• Identity-based policy examples for Amazon Lambda

• Amazon managed policies for Amazon Lambda

• Troubleshooting Amazon Lambda identity and access

Audience

How you use Amazon Identity and Access Management (IAM) differs, depending on the work that
you do in Lambda.

Service user – If you use the Lambda service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more Lambda features to do your
work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in Lambda,
see Troubleshooting Amazon Lambda identity and access.

Service administrator – If you're in charge of Lambda resources at your company, you probably
have full access to Lambda. It's your job to determine which Lambda features and resources your
service users should access. You must then submit requests to your IAM administrator to change
the permissions of your service users. Review the information on this page to understand the
basic concepts of IAM. To learn more about how your company can use IAM with Lambda, see How
Amazon Lambda works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Lambda. To view example Lambda identity-based policies
that you can use in IAM, see Identity-based policy examples for Amazon Lambda.

Audience 1515

Amazon Lambda Developer Guide

Authenticating with identities

Authentication is how you sign in to Amazon using your identity credentials. You must be
authenticated (signed in to Amazon) as the Amazon Web Services account root user, as an IAM user,
or by assuming an IAM role.

If you access Amazon programmatically, Amazon provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use Amazon tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing Amazon API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, Amazon recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Using multi-factor authentication
(MFA) in Amazon in the IAM User Guide.

Amazon Web Services account root user

When you create an Amazon Web Services account, you begin with one sign-in identity that has
complete access to all Amazon Web Services and resources in the account. This identity is called
the Amazon Web Services account root user and is accessed by signing in with the email address
and password that you used to create the account. We strongly recommend that you don't use the
root user for your everyday tasks. Safeguard your root user credentials and use them to perform
the tasks that only the root user can perform. For the complete list of tasks that require you to sign
in as the root user, see Tasks that require root user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to
use federation with an identity provider to access Amazon Web Services by using temporary
credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the
Amazon Directory Service, or any user that accesses Amazon Web Services by using credentials
provided through an identity source. When federated identities access Amazon Web Services
accounts, they assume roles, and the roles provide temporary credentials.

Authenticating with identities 1516

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/root-user-tasks.html

Amazon Lambda Developer Guide

IAM users and groups

An IAM user is an identity within your Amazon Web Services account that has specific permissions
for a single person or application. Where possible, we recommend relying on temporary credentials
instead of creating IAM users who have long-term credentials such as passwords and access keys.
However, if you have specific use cases that require long-term credentials with IAM users, we
recommend that you rotate access keys. For more information, see Rotate access keys regularly for
use cases that require long-term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your Amazon Web Services account that has specific permissions.
It is similar to an IAM user, but is not associated with a specific person. You can temporarily assume
an IAM role in the Amazon Web Services Management Console by switching roles. You can assume
a role by calling an Amazon CLI or Amazon API operation or by using a custom URL. For more
information about methods for using roles, see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider in
the IAM User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-

Authenticating with identities 1517

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.amazonaws.cn/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html

Amazon Lambda Developer Guide

account access. However, with some Amazon Web Services, you can attach a policy directly to a
resource (instead of using a role as a proxy). To learn the difference between roles and resource-
based policies for cross-account access, see How IAM roles differ from resource-based policies in
the IAM User Guide.

• Cross-service access – Some Amazon Web Services use features in other Amazon Web Services.
For example, when you make a call in a service, it's common for that service to run applications
in Amazon EC2 or store objects in Amazon S3. A service might do this using the calling principal's
permissions, using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
Amazon, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of
the principal calling an Amazon Web Service, combined with the requesting Amazon Web
Service to make requests to downstream services. FAS requests are only made when a service
receives a request that requires interactions with other Amazon Web Services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details
when making FAS requests, see Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an Amazon Web Service in
the IAM User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an Amazon
Web Service. The service can assume the role to perform an action on your behalf. Service-
linked roles appear in your Amazon Web Services account and are owned by the service. An
IAM administrator can view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making Amazon CLI or
Amazon API requests. This is preferable to storing access keys within the EC2 instance. To assign
an Amazon role to an EC2 instance and make it available to all of its applications, you create
an instance profile that is attached to the instance. An instance profile contains the role and
enables programs that are running on the EC2 instance to get temporary credentials. For more
information, see Using an IAM role to grant permissions to applications running on Amazon EC2
instances in the IAM User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Authenticating with identities 1518

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id.html#id_which-to-choose_role

Amazon Lambda Developer Guide

Managing access using policies

You control access in Amazon by creating policies and attaching them to Amazon identities or
resources. A policy is an object in Amazon that, when associated with an identity or resource,
defines their permissions. Amazon evaluates these policies when a principal (user, root user, or role
session) makes a request. Permissions in the policies determine whether the request is allowed or
denied. Most policies are stored in Amazon as JSON documents. For more information about the
structure and contents of JSON policy documents, see Overview of JSON policies in the IAM User
Guide.

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform
the operation. For example, suppose that you have a policy that allows the iam:GetRole action.
A user with that policy can get role information from the Amazon Web Services Management
Console, the Amazon CLI, or the Amazon API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your Amazon Web Services
account. Managed policies include Amazon managed policies and customer managed policies. To
learn how to choose between a managed policy or an inline policy, see Choosing between managed
policies and inline policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that

Managing access using policies 1519

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

Amazon Lambda Developer Guide

support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal in
a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon
Web Services.

Resource-based policies are inline policies that are located in that service. You can't use Amazon
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, Amazon WAF, and Amazon VPC are examples of services that support ACLs. To learn
more about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service
Developer Guide.

Other policy types

Amazon supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in Amazon Organizations. Amazon Organizations
is a service for grouping and centrally managing multiple Amazon Web Services accounts that
your business owns. If you enable all features in an organization, then you can apply service
control policies (SCPs) to any or all of your accounts. The SCP limits permissions for entities in
member accounts, including each Amazon Web Services account root user. For more information
about Organizations and SCPs, see How SCPs work in the Amazon Organizations User Guide.

Managing access using policies 1520

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/acl-overview.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_about-scps.html

Amazon Lambda Developer Guide

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how Amazon determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Lambda works with IAM

Before you use IAM to manage access to Lambda, learn what IAM features are available to use with
Lambda.

IAM features you can use with Amazon Lambda

IAM feature Lambda support

Identity-based policies Yes

Resource-based policies Yes

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Forward access sessions (FAS) No

Service roles Yes

How Amazon Lambda works with IAM 1521

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Lambda Developer Guide

IAM feature Lambda support

Service-linked roles Partial

To get a high-level view of how Lambda and other Amazon services work with most IAM features,
see Amazon services that work with IAM in the IAM User Guide.

Identity-based policies for Lambda

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Lambda

To view examples of Lambda identity-based policies, see Identity-based policy examples for
Amazon Lambda.

Resource-based policies within Lambda

Supports resource-based policies Yes

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified

How Amazon Lambda works with IAM 1522

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html

Amazon Lambda Developer Guide

principal can perform on that resource and under what conditions. You must specify a principal in
a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon
Web Services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different Amazon Web Services accounts, an IAM administrator in the trusted account
must also grant the principal entity (user or role) permission to access the resource. They grant
permission by attaching an identity-based policy to the entity. However, if a resource-based policy
grants access to a principal in the same account, no additional identity-based policy is required. For
more information, see How IAM roles differ from resource-based policies in the IAM User Guide.

You can attach a resource-based policy to a Lambda function or layer. This policy defines which
principals can perform actions on the function or layer.

To learn how to attach a resource-based policy to a function or layer, see Using resource-based
policies for Lambda.

Policy actions for Lambda

Supports policy actions Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated Amazon API
operation. There are some exceptions, such as permission-only actions that don't have a matching
API operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Lambda actions, see Actions defined by Amazon Lambda in the Service Authorization
Reference.

Policy actions in Lambda use the following prefix before the action:

How Amazon Lambda works with IAM 1523

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awslambda.html#awslambda-actions-as-permissions

Amazon Lambda Developer Guide

lambda

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "lambda:action1",
 "lambda:action2"
]

To view examples of Lambda identity-based policies, see Identity-based policy examples for
Amazon Lambda.

Policy resources for Lambda

Supports policy resources Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Lambda resource types and their ARNs, see Resource types defined by Amazon
Lambda in the Service Authorization Reference. To learn with which actions you can specify the ARN
of each resource, see Actions defined by Amazon Lambda.

To view examples of Lambda identity-based policies, see Identity-based policy examples for
Amazon Lambda.

How Amazon Lambda works with IAM 1524

https://docs.amazonaws.cn/general/latest/gr/aws-arns-and-namespaces.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awslambda.html#awslambda-resources-for-iam-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awslambda.html#awslambda-resources-for-iam-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awslambda.html#awslambda-actions-as-permissions

Amazon Lambda Developer Guide

Policy condition keys for Lambda

Supports service-specific policy condition keys Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, Amazon evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, Amazon evaluates the condition using a logical OR operation. All
of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

Amazon supports global condition keys and service-specific condition keys. To see all Amazon
global condition keys, see Amazon global condition context keys in the IAM User Guide.

To see a list of Lambda condition keys, see Condition keys for Amazon Lambda in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions defined by Amazon Lambda.

To view examples of Lambda identity-based policies, see Identity-based policy examples for
Amazon Lambda.

ACLs in Lambda

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

How Amazon Lambda works with IAM 1525

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awslambda.html#awslambda-policy-keys
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awslambda.html#awslambda-actions-as-permissions

Amazon Lambda Developer Guide

ABAC with Lambda

Supports ABAC (tags in policies) Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In Amazon, these attributes are called tags. You can attach tags to IAM entities (users
or roles) and to many Amazon resources. Tagging entities and resources is the first step of ABAC.
Then you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

For more information about tagging Lambda resources, see Attribute-based access control for
Lambda.

Using temporary credentials with Lambda

Supports temporary credentials Yes

Some Amazon Web Services don't work when you sign in using temporary credentials. For
additional information, including which Amazon Web Services work with temporary credentials,
see Amazon Web Services that work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the Amazon Web Services Management
Console using any method except a user name and password. For example, when you access

How Amazon Lambda works with IAM 1526

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Lambda Developer Guide

Amazon using your company's single sign-on (SSO) link, that process automatically creates
temporary credentials. You also automatically create temporary credentials when you sign in to the
console as a user and then switch roles. For more information about switching roles, see Switching
to a role (console) in the IAM User Guide.

You can manually create temporary credentials using the Amazon CLI or Amazon API. You can then
use those temporary credentials to access Amazon. Amazon recommends that you dynamically
generate temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Forward access sessions for Lambda

Supports forward access sessions (FAS) No

When you use an IAM user or role to perform actions in Amazon, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in
a different service. FAS uses the permissions of the principal calling an Amazon Web Service,
combined with the requesting Amazon Web Service to make requests to downstream services.
FAS requests are only made when a service receives a request that requires interactions with other
Amazon Web Services or resources to complete. In this case, you must have permissions to perform
both actions. For policy details when making FAS requests, see Forward access sessions.

Service roles for Lambda

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an Amazon Web Service in the IAM User Guide.

In Lambda, a service role is known as an execution role.

Warning

Changing the permissions for an execution role might break Lambda functionality.

How Amazon Lambda works with IAM 1527

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Lambda Developer Guide

Service-linked roles for Lambda

Supports service-linked roles Partial

A service-linked role is a type of service role that is linked to an Amazon Web Service. The service
can assume the role to perform an action on your behalf. Service-linked roles appear in your
Amazon Web Services account and are owned by the service. An IAM administrator can view, but
not edit the permissions for service-linked roles.

Lambda doesn't have service-linked roles, but Lambda@Edge does. For more information, see
Service-Linked Roles for Lambda@Edge in the Amazon CloudFront Developer Guide.

For details about creating or managing service-linked roles, see Amazon services that work with
IAM. Find a service in the table that includes a Yes in the Service-linked role column. Choose the
Yes link to view the service-linked role documentation for that service.

Identity-based policy examples for Amazon Lambda

By default, users and roles don't have permission to create or modify Lambda resources. They also
can't perform tasks by using the Amazon Web Services Management Console, Amazon Command
Line Interface (Amazon CLI), or Amazon API. To grant users permission to perform actions on the
resources that they need, an IAM administrator can create IAM policies. The administrator can then
add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Lambda, including the format of the ARNs
for each of the resource types, see Actions, resources, and condition keys for Amazon Lambda in
the Service Authorization Reference.

Topics

• Policy best practices

• Using the Lambda console

• Allow users to view their own permissions

Identity-based policy examples 1528

https://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-permissions.html#using-service-linked-roles
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awslambda.html

Amazon Lambda Developer Guide

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Lambda resources
in your account. These actions can incur costs for your Amazon Web Services account. When you
create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with Amazon managed policies and move toward least-privilege permissions
– To get started granting permissions to your users and workloads, use the Amazon managed
policies that grant permissions for many common use cases. They are available in your Amazon
Web Services account. We recommend that you reduce permissions further by defining Amazon
customer managed policies that are specific to your use cases. For more information, see Amazon
managed policies or Amazon managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition
to specify that all requests must be sent using SSL. You can also use conditions to grant access
to service actions if they are used through a specific Amazon Web Service, such as Amazon
CloudFormation. For more information, see IAM JSON policy elements: Condition in the IAM
User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a
root user in your Amazon Web Services account, turn on MFA for additional security. To require
MFA when API operations are called, add MFA conditions to your policies. For more information,
see Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Identity-based policy examples 1529

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html

Amazon Lambda Developer Guide

Using the Lambda console

To access the Amazon Lambda console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Lambda resources in your Amazon
Web Services account. If you create an identity-based policy that is more restrictive than the
minimum required permissions, the console won't function as intended for entities (users or roles)
with that policy.

You don't need to allow minimum console permissions for users that are making calls only to
the Amazon CLI or the Amazon API. Instead, allow access to only the actions that match the API
operation that they're trying to perform.

For an example policy that grants minimal access for function development, see Function
development. In addition to Lambda APIs, the Lambda console uses other services to display
trigger configuration and let you add new triggers. If your users use Lambda with other services,
they need access to those services as well. For details on configuring other services with Lambda,
see Using Amazon Lambda with other services.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the Amazon CLI or Amazon API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws-cn:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",

Identity-based policy examples 1530

Amazon Lambda Developer Guide

 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Amazon managed policies for Amazon Lambda

An Amazon managed policy is a standalone policy that is created and administered by Amazon.
Amazon managed policies are designed to provide permissions for many common use cases so that
you can start assigning permissions to users, groups, and roles.

Keep in mind that Amazon managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all Amazon customers to use. We recommend that
you reduce permissions further by defining customer managed policies that are specific to your
use cases.

You cannot change the permissions defined in Amazon managed policies. If Amazon updates
the permissions defined in an Amazon managed policy, the update affects all principal identities
(users, groups, and roles) that the policy is attached to. Amazon is most likely to update an Amazon
managed policy when a new Amazon Web Service is launched or new API operations become
available for existing services.

For more information, see Amazon managed policies in the IAM User Guide.

Topics

• Amazon managed policy: AWSLambda_FullAccess

• Amazon managed policy: AWSLambda_ReadOnlyAccess

• Amazon managed policy: AWSLambdaBasicExecutionRole

Amazon managed policies 1531

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon Lambda Developer Guide

• Amazon managed policy: AWSLambdaDynamoDBExecutionRole

• Amazon managed policy: AWSLambdaENIManagementAccess

• Amazon managed policy: AWSLambdaExecute

• Amazon managed policy: AWSLambdaInvocation-DynamoDB

• Amazon managed policy: AWSLambdaKinesisExecutionRole

• Amazon managed policy: AWSLambdaMSKExecutionRole

• Amazon managed policy: AWSLambdaRole

• Amazon managed policy: AWSLambdaSQSQueueExecutionRole

• Amazon managed policy: AWSLambdaVPCAccessExecutionRole

• Lambda updates to Amazon managed policies

Amazon managed policy: AWSLambda_FullAccess

This policy grants full access to Lambda actions. It also grants permissions to other Amazon
services that are used to develop and maintain Lambda resources.

You can attach the AWSLambda_FullAccess policy to your users, groups, and roles.

Permissions details

This policy includes the following permissions:

• lambda – Allows principals full access to Lambda.

• cloudformation – Allows principals to describe Amazon CloudFormation stacks and list the
resources in those stacks.

• cloudwatch – Allows principals to list Amazon CloudWatch metrics and get metric data.

• ec2 – Allows principals to describe security groups, subnets, and VPCs.

• iam – Allows principals to get policies, policy versions, roles, role policies, attached role policies,
and the list of roles. This policy also allows principals to pass roles to Lambda. The PassRole
permission is used when you assign an execution role to a function.

• kms – Allows principals to list aliases.

• logs – Allows principals to describe Amazon CloudWatch log groups. For log groups that are
associated with a Lambda function, this policy allows the principal to describe log streams, get
log events, and filter log events.

• states – Allows principals to describe and list Amazon Step Functions state machines.

Amazon managed policies 1532

Amazon Lambda Developer Guide

• tag – Allows principals to get resources based on their tags.

• xray – Allows principals to get Amazon X-Ray trace summaries and retrieve a list of traces
specified by ID.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambda_FullAccess in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AWSLambda_ReadOnlyAccess

This policy grants read-only access to Lambda resources and to other Amazon services that are
used to develop and maintain Lambda resources.

You can attach the AWSLambda_ReadOnlyAccess policy to your users, groups, and roles.

Permissions details

This policy includes the following permissions:

• lambda – Allows principals to get and list all resources.

• cloudformation – Allows principals to describe and list Amazon CloudFormation stacks and
list the resources in those stacks.

• cloudwatch – Allows principals to list Amazon CloudWatch metrics and get metric data.

• ec2 – Allows principals to describe security groups, subnets, and VPCs.

• iam – Allows principals to get policies, policy versions, roles, role policies, attached role policies,
and the list of roles.

• kms – Allows principals to list aliases.

• logs – Allows principals to describe Amazon CloudWatch log groups. For log groups that are
associated with a Lambda function, this policy allows the principal to describe log streams, get
log events, and filter log events.

• states – Allows principals to describe and list Amazon Step Functions state machines.

• tag – Allows principals to get resources based on their tags.

• xray – Allows principals to get Amazon X-Ray trace summaries and retrieve a list of traces
specified by ID.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambda_ReadOnlyAccess in the Amazon Managed Policy Reference Guide.

Amazon managed policies 1533

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambda_FullAccess.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambda_ReadOnlyAccess.html

Amazon Lambda Developer Guide

Amazon managed policy: AWSLambdaBasicExecutionRole

This policy grants permissions to upload logs to CloudWatch Logs.

You can attach the AWSLambdaBasicExecutionRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaBasicExecutionRole in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AWSLambdaDynamoDBExecutionRole

This policy grants permissions to read records from an Amazon DynamoDB stream and write to
CloudWatch Logs.

You can attach the AWSLambdaDynamoDBExecutionRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaDynamoDBExecutionRole in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AWSLambdaENIManagementAccess

This policy grants permissions to create, describe, and delete elastic network interfaces used by a
VPC-enabled Lambda function.

You can attach the AWSLambdaENIManagementAccess policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaENIManagementAccess in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AWSLambdaExecute

This policy grants PUT and GET access to Amazon Simple Storage Service and full access to
CloudWatch Logs.

You can attach the AWSLambdaExecute policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaExecute in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AWSLambdaInvocation-DynamoDB

This policy grants read access to Amazon DynamoDB Streams.

Amazon managed policies 1534

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaBasicExecutionRole.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaDynamoDBExecutionRole.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaENIManagementAccess.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaExecute.html

Amazon Lambda Developer Guide

You can attach the AWSLambdaInvocation-DynamoDB policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaInvocation-DynamoDB in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AWSLambdaKinesisExecutionRole

This policy grants permissions to read events from an Amazon Kinesis data stream and write to
CloudWatch Logs.

You can attach the AWSLambdaKinesisExecutionRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaKinesisExecutionRole in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AWSLambdaMSKExecutionRole

This policy grants permissions to read and access records from an Amazon Managed Streaming for
Apache Kafka cluster, manage elastic network interfaces, and write to CloudWatch Logs.

You can attach the AWSLambdaMSKExecutionRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaMSKExecutionRole in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AWSLambdaRole

This policy grants permissions to invoke Lambda functions.

You can attach the AWSLambdaRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaRole in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AWSLambdaSQSQueueExecutionRole

This policy grants permissions to read and delete messages from an Amazon Simple Queue Service
queue, and grants write permissions to CloudWatch Logs.

You can attach the AWSLambdaSQSQueueExecutionRole policy to your users, groups, and roles.

Amazon managed policies 1535

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaInvocation-DynamoDB.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaKinesisExecutionRole.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaMSKExecutionRole.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaRole.html

Amazon Lambda Developer Guide

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaSQSQueueExecutionRole in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AWSLambdaVPCAccessExecutionRole

This policy grants permissions to manage elastic network interfaces within an Amazon Virtual
Private Cloud and write to CloudWatch Logs.

You can attach the AWSLambdaVPCAccessExecutionRole policy to your users, groups, and roles.

For more information about this policy, including the JSON policy document and policy versions,
see AWSLambdaVPCAccessExecutionRole in the Amazon Managed Policy Reference Guide.

Lambda updates to Amazon managed policies

Change Description Date

AWSLambdaVPCAccess
ExecutionRole – Change

Lambda updated the
AWSLambdaVPCAccess
ExecutionRole policy to
allow the action ec2:Descr
ibeSubnets .

January 5, 2024

AWSLambda_ReadOnlyAccess
– Change

Lambda updated the
AWSLambda_ReadOnly
Access policy to allow
principals to list Amazon
CloudFormation stacks.

July 27, 2023

Amazon Lambda started
tracking changes

Amazon Lambda started
tracking changes for its
Amazon managed policies.

July 27, 2023

Troubleshooting Amazon Lambda identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Lambda and IAM.

Topics

Troubleshooting 1536

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaSQSQueueExecutionRole.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambdaVPCAccessExecutionRole.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSLambda_ReadOnlyAccess.html

Amazon Lambda Developer Guide

• I am not authorized to perform an action in Lambda

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my Amazon Web Services account to access my Lambda
resources

I am not authorized to perform an action in Lambda

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
lambda:GetWidget permissions.

User: arn:aws-cn:iam::123456789012:user/mateojackson is not authorized to perform:
 lambda:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the lambda:GetWidget action.

If you need help, contact your Amazon administrator. Your administrator is the person who
provided you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Lambda.

Some Amazon Web Services allow you to pass an existing role to that service instead of creating a
new service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Lambda. However, the action requires the service to have permissions that
are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws-cn:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

Troubleshooting 1537

Amazon Lambda Developer Guide

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your Amazon administrator. Your administrator is the person who
provided you with your sign-in credentials.

I want to allow people outside of my Amazon Web Services account to access my
Lambda resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Lambda supports these features, see How Amazon Lambda works with IAM.

• To learn how to provide access to your resources across Amazon Web Services accounts that you
own, see Providing access to an IAM user in another Amazon Web Services account that you own
in the IAM User Guide.

• To learn how to provide access to your resources to third-party Amazon Web Services accounts,
see Providing access to Amazon Web Services accounts owned by third parties in the IAM User
Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Governance for Amazon Lambda

To build and deploy serverless, cloud-native applications, you must allow for agility and speed
to market with appropriate governance and guardrails. You set business-level priorities, maybe
emphasizing agility as the top priority, or alternatively emphasizing risk aversion via governance,
guardrails, and controls. Realistically, you won't have an "either/or" strategy but an "and" strategy
that balances both agility and guardrails in your software development lifecycle. No matter where
these requirements fall in your company's lifecycle, governance capabilities are likely to become an
implementation requirement in your processes and toolchains.

Governance 1538

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Lambda Developer Guide

Here are a few examples of governance controls that an organization might implement for
Lambda:

• Lambda functions must not be publicly accessible.

• Lambda functions must be attached to a VPC.

• Lambda functions should not use deprecated runtimes.

• Lambda functions must be tagged with a set of required tags.

• Lambda layers must not be accessible outside of the organization.

• Lambda functions with an attached security group must have matching tags between the
function and security group.

• Lambda functions with an attached layer must use an approved version

• Lambda environment variables must be encrypted at rest with a customer managed key.

The following diagram is an example of an in-depth governance strategy that implements controls
and policy throughout the software development and deployment process:

The following topics explain how to implement controls for developing and deploying Lambda
functions in your organization, both for the startup and the enterprise. Your organization might

Governance 1539

Amazon Lambda Developer Guide

already have tools in place. The following topics take a modular approach to these controls, so that
you can pick and choose the components you actually need.

Topics

• Proactive controls for Lambda with Amazon CloudFormation Guard

• Proactive controls for Lambda with Amazon Config

• Detective controls for Lambda with Amazon Config

• Lambda code signing with Amazon Signer

• Lambda code scanning with Amazon Inspector

• Implement observability for Lambda security and compliance

Governance 1540

Amazon Lambda Developer Guide

Proactive controls for Lambda with Amazon CloudFormation Guard

Amazon CloudFormation Guard is an open-source, general-purpose, policy-as-code evaluation tool.
This can be used for preventative governance and compliance by validating Infrastructure as Code
(IaC) templates and service compositions against policy rules. These rules can be customized based
on your team or organizational requirements. For Lambda functions, the Guard rules can be used
to control resource creation and configuration updates by defining the required property settings
needed while creating or updating a Lambda function.

Compliance administrators define the list of controls and governance policies that are required for
deploying and updating Lambda functions. Platform administrators implement the controls in CI/
CD pipelines, as pre-commit validation webhooks with code repositories, and provide developers
with command line tools for validating templates and code on local workstations. Developers
author code, validate templates with command line tools, and then commit code to repositories,
which are then automatically validated via the CI/CD pipelines prior to deployment into an Amazon
environment.

Guard allows you to write your rules and implement your controls with a domain-specific language
as follows.

For example, suppose you want to ensure that developers choose only the latest runtimes. You
could specify two different policies, one to identify runtimes that are already deprecated and
another to identify runtimes that are to be deprecated soon. To do this, you might write the
following etc/rules.guard file:

Proactive controls with Guard 1541

https://docs.amazonaws.cn/cfn-guard/latest/ug/what-is-guard.html
https://docs.amazonaws.cn/cfn-guard/latest/ug/writing-rules.html

Amazon Lambda Developer Guide

let lambda_functions = Resources.*[
 Type == "AWS::Lambda::Function"
]

rule lambda_already_deprecated_runtime when %lambda_functions !empty {
 %lambda_functions {
 Properties {
 when Runtime exists {
 Runtime !in ["dotnetcore3.1", "nodejs12.x", "python3.6", "python2.7",
 "dotnet5.0", "dotnetcore2.1", "ruby2.5", "nodejs10.x", "nodejs8.10", "nodejs4.3",
 "nodejs6.10", "dotnetcore1.0", "dotnetcore2.0", "nodejs4.3-edge", "nodejs"] <<Lambda
 function is using a deprecated runtime.>>
 }
 }
 }
}

rule lambda_soon_to_be_deprecated_runtime when %lambda_functions !empty {
 %lambda_functions {
 Properties {
 when Runtime exists {
 Runtime !in ["nodejs16.x", "nodejs14.x", "python3.7", "java8",
 "dotnet7", "go1.x", "ruby2.7", "provided"] <<Lambda function is using a runtime that
 is targeted for deprecation.>>
 }
 }
 }
}

Now suppose you write the following iac/lambda.yaml CloudFormation template that defines a
Lambda function:

 Fn:
 Type: AWS::Lambda::Function
 Properties:
 Runtime: python3.7
 CodeUri: src
 Handler: fn.handler
 Role: !GetAtt FnRole.Arn
 Layers:
 - arn:aws-cn:lambda:us-east-1:111122223333:layer:LambdaInsightsExtension:35

Proactive controls with Guard 1542

Amazon Lambda Developer Guide

After installing the Guard utility, validate your template:

cfn-guard validate --rules etc/rules.guard --data iac/lambda.yaml

The output looks like this:

lambda.yaml Status = FAIL
FAILED rules
rules.guard/lambda_soon_to_be_deprecated_runtime

Evaluating data lambda.yaml against rules rules.guard
Number of non-compliant resources 1
Resource = Fn {
 Type = AWS::Lambda::Function
 Rule = lambda_soon_to_be_deprecated_runtime {
 ALL {
 Check = Runtime not IN
 ["nodejs16.x","nodejs14.x","python3.7","java8","dotnet7","go1.x","ruby2.7","provided"]
 {
 ComparisonError {
 Message = Lambda function is using a runtime that is targeted for
 deprecation.
 Error = Check was not compliant as property [/Resources/
Fn/Properties/Runtime[L:88,C:15]] was not present in [(resolved, Path=[L:0,C:0]
 Value=["nodejs16.x","nodejs14.x","python3.7","java8","dotnet7","go1.x","ruby2.7","provided"])]
 }
 PropertyPath = /Resources/Fn/Properties/Runtime[L:88,C:15]
 Operator = NOT IN
 Value = "python3.7"
 ComparedWith =
 [["nodejs16.x","nodejs14.x","python3.7","java8","dotnet7","go1.x","ruby2.7","provided"]]
 Code:
 86. Fn:
 87. Type: AWS::Lambda::Function
 88. Properties:
 89. Runtime: python3.7
 90. CodeUri: src
 91. Handler: fn.handler

 }
 }
 }
}

Proactive controls with Guard 1543

https://docs.amazonaws.cn/cfn-guard/latest/ug/setting-up.html

Amazon Lambda Developer Guide

Guard allows your developers to see from their local developer workstations that they need to
update the template to use a runtime that is allowed by the organization. This happens prior
to committing to a code repository and subsequently failing checks within a CI/CD pipeline. As
a result, your developers get this feedback on how to develop compliant templates and shift
their time to writing code that delivers business value. This control can be applied on the local
developer workstation, in a pre-commit validation webhook, and/or in the CI/CD pipeline prior to
deployment.

Caveats

If you're using Amazon Serverless Application Model (Amazon SAM) templates to define
Lambda functions, be aware that you need to update the Guard rule to search for the
AWS::Serverless::Function resource type as follows.

let lambda_functions = Resources.*[
 Type == "AWS::Serverless::Function"
]

Guard also expects the properties to be included within the resource definition. Meanwhile,
Amazon SAM templates allow for properties to be specified in a separate Globals section.
Properties that are defined in the Globals section are not validated with your Guard rules.

As outlined in the Guard troubleshooting documentation, be aware that Guard doesn't support
short-form intrinsics like !GetAtt or !Sub and instead requires using the expanded forms:
Fn::GetAtt and Fn::Sub. (The earlier example doesn't evaluate the Role property, so the short-
form intrinsic was used for simplicity.)

Proactive controls with Guard 1544

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-specification-template-anatomy-globals.html
https://docs.amazonaws.cn/cfn-guard/latest/ug/troubleshooting.html

Amazon Lambda Developer Guide

Proactive controls for Lambda with Amazon Config

It is essential to ensure compliance in your serverless applications as early in the development
process as possible. In this topic, we cover how to implement preventative controls using Amazon
Config. This allows you to implement compliance checks earlier in the development process and
enables you to implement the same controls in your CI/CD pipelines. This also standardizes your
controls in a centrally managed repository of rules so that you can apply your controls consistently
across your Amazon accounts.

For example, suppose your compliance administrators defined a requirement to ensure that all
Lambda functions include Amazon X-Ray tracing. With Amazon Config's proactive mode, you can
run compliance checks on your Lambda function resources before deployment, reducing the risk
of deploying improperly configured Lambda functions and saving developers time by giving them
faster feedback on infrastructure as code templates. The following is a visualization of the flow for
preventative controls with Amazon Config:

Consider a requirement that all Lambda functions must have tracing enabled. In response, the
platform team identifies the need for a specific Amazon Config rule to run proactively across all

Proactive controls with Amazon Config 1545

https://docs.amazonaws.cn/config/latest/developerguide/WhatIsConfig.html
https://docs.amazonaws.cn/config/latest/developerguide/WhatIsConfig.html

Amazon Lambda Developer Guide

accounts. This rule flags any Lambda function that lacks a configured X-Ray tracing configuration
as a non-compliant resource. The team develops a rule, packages it in a conformance pack, and
deploys the conformance pack across all Amazon accounts to ensure that all accounts in the
organization uniformly apply these controls. You can write the rule in Amazon CloudFormation
Guard 2.x.x syntax, which takes the following form:

rule name when condition { assertion }

The following is a sample Guard rule that checks to ensure Lambda functions has tracing enabled:

rule lambda_tracing_check {
 when configuration.tracingConfig exists {
 configuration.tracingConfig.mode == "Active"
 }
}

The platform team takes further action by mandating that every Amazon CloudFormation
deployment invokes a pre-create/update hook. They assume full responsibility for developing this
hook and configuring the pipeline, strengthening the centralized control of compliance rules and
sustaining their consistent application across all deployments. To develop, package, and register
a hook, see Developing Amazon CloudFormation Hooks in the CloudFormation Command Line
Interface (CFN-CLI) documentation. You can use the CloudFormation CLI to create the hook project:

cfn init

This command asks you for some basic information about your hook project and creates a project
with following files in it:

README.md
<hook-name>.json
rpdk.log
src/handler.py
template.yml
hook-role.yaml

As a hook developer, you need to add the desired target resource type in the <hook-name>.json
configuration file. In the configuration below, a hook is configured to execute before any Lambda
function is created using CloudFormation. You can add similar handlers for preUpdate and
preDelete actions as well.

Proactive controls with Amazon Config 1546

https://docs.amazonaws.cn/config/latest/developerguide/conformance-packs.html
https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/hooks-structure.html
https://docs.amazonaws.cn/cloudformation-cli/latest/hooks-userguide/hooks-develop.html
https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/initiating-hooks-project-python.html

Amazon Lambda Developer Guide

 "handlers": {
 "preCreate": {
 "targetNames": [
 "AWS::Lambda::Function"
],
 "permissions": []
 }
 }

You also need to ensure that the CloudFormation hook has appropriate permissions to call the
Amazon Config APIs. You can do that by updating the role definition file named hook-role.yaml.
The role definition file has the following trust policy by default, which allows CloudFormation to
assume the role.

 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - hooks.cloudformation.amazonaws.com
 - resources.cloudformation.amazonaws.com

To allow this hook to call config APIs, you must add following permissions to the Policy statement.
Then you submit the hook project using the cfn submit command, where CloudFormation
creates a role for you with the required permissions.

 Policies:
 - PolicyName: HookTypePolicy
 PolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Action:
 - "config:Describe*"
 - "config:Get*"
 - "config:List*"
 - "config:SelectResourceConfig"
 Resource: "*

Proactive controls with Amazon Config 1547

Amazon Lambda Developer Guide

Next, you need to write a Lambda function in a src/handler.py file. Within this file, you
find methods named preCreate, preUpdate, and preDelete already created when you
initiated the project. You aim to write a common, reusable function that calls the Amazon Config
StartResourceEvaluation API in proactive mode using the Amazon SDK for Python (Boto3).
This API call takes resource properties as input and evaluates the resource against the rule
definition.

def validate_lambda_tracing_config(resource_type, function_properties:
 MutableMapping[str, Any]) -> ProgressEvent:
 LOG.info("Fetching proactive data")
 config_client = boto3.client('config')
 resource_specs = {
 'ResourceId': 'MyFunction',
 'ResourceType': resource_type,
 'ResourceConfiguration': json.dumps(function_properties),
 'ResourceConfigurationSchemaType': 'CFN_RESOURCE_SCHEMA'
 }
 LOG.info("Resource Specifications:", resource_specs)
 eval_response = config_client.start_resource_evaluation(EvaluationMode='PROACTIVE',
 ResourceDetails=resource_specs, EvaluationTimeout=60)
 ResourceEvaluationId = eval_response.ResourceEvaluationId
 compliance_response =
 config_client.get_compliance_details_by_resource(ResourceEvaluationId=ResourceEvaluationId)
 LOG.info("Compliance Verification:",
 compliance_response.EvaluationResults[0].ComplianceType)
 if "NON_COMPLIANT" == compliance_response.EvaluationResults[0].ComplianceType:
 return ProgressEvent(status=OperationStatus.FAILED, message="Lambda function
 found with no tracing enabled : FAILED", errorCode=HandlerErrorCode.NonCompliant)
 else:
 return ProgressEvent(status=OperationStatus.SUCCESS, message="Lambda function
 found with tracing enabled : PASS.")

Now you can call the common function from the handler for the pre-create hook. Here's an
example of the handler:

@hook.handler(HookInvocationPoint.CREATE_PRE_PROVISION)
def pre_create_handler(
 session: Optional[SessionProxy],
 request: HookHandlerRequest,
 callback_context: MutableMapping[str, Any],
 type_configuration: TypeConfigurationModel
) -> ProgressEvent:

Proactive controls with Amazon Config 1548

Amazon Lambda Developer Guide

 LOG.info("Starting execution of the hook")
 target_name = request.hookContext.targetName
 LOG.info("Target Name:", target_name)
 if "AWS::Lambda::Function" == target_name:
 return validate_lambda_tracing_config(target_name,
 request.hookContext.targetModel.get("resourceProperties")
)
 else:
 raise exceptions.InvalidRequest(f"Unknown target type: {target_name}")

After this step you can register the hook and configure it to listen to all Amazon Lambda function
creation events.

A developer prepares the infrastructure as code (IaC) template for a serverless microservice using
Lambda. This preparation includes adherence to internal standards, followed by locally testing and
committing the template to the repository. Here's an example IaC template:

 MyLambdaFunction:
 Type: 'AWS::Lambda::Function'
 Properties:
 Handler: index.handler
 Role: !GetAtt LambdaExecutionRole.Arn
 FunctionName: MyLambdaFunction
 Code:
 ZipFile: |
 import json

 def handler(event, context):
 return {
 'statusCode': 200,
 'body': json.dumps('Hello World!')
 }
 Runtime: python3.8
 TracingConfig:
 Mode: PassThrough
 MemorySize: 256
 Timeout: 10

As part of the CI/CD process, when the CloudFormation template is deployed, the CloudFormation
service invokes the pre-create/update hook right before provisioning AWS::Lambda::Function
resource type. The hook utilizes Amazon Config rules running in proactive mode to verify that the
Lambda function configuration includes the mandated tracing configuration. The response from

Proactive controls with Amazon Config 1549

Amazon Lambda Developer Guide

the hook determines the next step. If compliant, the hook signals success, and CloudFormation
proceeds to provision the resources. If not, the CloudFormation stack deployment fails, the pipeline
comes to an immediate halt, and the system records the details for subsequent review. Compliance
notifications are sent to the relevant stakeholders.

You can find the hook success/fail information in the CloudFormation console:

If you have logs enabled for your CloudFormation hook, you can capture the hook evaluation
result. Here is a sample log for a hook with a failed status, indicating that the Lambda function
does not have X-Ray enabled:

Proactive controls with Amazon Config 1550

Amazon Lambda Developer Guide

If the developer chooses to change the IaC to update TracingConfig Mode value to Active
and redeploy, the hook executes successfully and the stack proceeds with creating the Lambda
resource.

In this way, you can implement preventative controls with Amazon Config in proactive mode when
developing and deploying serverless resources in your Amazon accounts. By integrating Amazon
Config rules into the CI/CD pipeline, you can identify and optionally block non-compliant resource
deployments, such as Lambda functions that lack an active tracing configuration. This ensures that
only resources that comply with the latest governance policies are deployed into your Amazon
environments.

Proactive controls with Amazon Config 1551

Amazon Lambda Developer Guide

Detective controls for Lambda with Amazon Config

In addition to proactive evaluation, Amazon Config can also reactively detect resource deployments
and configurations that do not comply with your governance policies. This is important because
governance policies evolve as your organization learns and implements new best practices.

Consider a scenario where you set a brand new policy when deploying or updating Lambda
functions: All Lambda functions must always use a specific, approved Lambda layer version. You
can configure Amazon Config to monitor new or updated functions for layer configurations. If
Amazon Config detects a function that is not using an approved layer version, it flags the function
as a non-compliant resource. You can optionally configure Amazon Config to automatically
remediate the resource by specifying a remediation action using an Amazon Systems Manager
automation document. For example, you could write an automation document in Python using
the Amazon SDK for Python (Boto3), which updates the non-compliant function to point to the
approved layer version. Thus, Amazon Config serves as both a detective and corrective control,
automating compliance management.

Let's break down this process into three important implementation phases:

Phase 1: Identify access resources

Start by activating Amazon Config across your accounts and configuring it to record Amazon
Lambda functions. This allows Amazon Config to observe when Lambda functions are created or
updated. You can then configure custom policy rules to check for specific policy violations, which
use Amazon CloudFormation Guard syntax. Guard rules take the following general form:

Detective controls with Amazon Config 1552

https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config_develop-rules_cfn-guard.html

Amazon Lambda Developer Guide

rule name when condition { assertion }

Below is a sample rule that checks to ensure that a layer is not set to an old layer version:

rule desiredlayer when configuration.layers !empty {
 some configuration.layers[*].arn != CONFIG_RULE_PARAMETERS.OldLayerArn
}

Let's understand the rule syntax and structure:

• Rule name: The name of the rule in the provided example is desiredlayer.

• Condition: This clause specifies the condition under which the rule should be checked. In the
provided example, the condition is configuration.layers !empty. This means the resource
should be evaluated only when the layers property in the configuration isn't empty.

• Assertion: After the when clause, an assertion determines what the rule checks. The assertion
some configuration.layers[*].arn != CONFIG_RULE_PARAMETERS.OldLayerArn
checks if any of the Lambda layer ARNs do not match the OldLayerArn value. If they do not
match, the assertion is true and the rule passes; otherwise, it fails.

CONFIG_RULE_PARAMETERS is a special set of parameters that is configured with the Amazon
Config rule. In this case, OldLayerArn is a parameter inside CONFIG_RULE_PARAMETERS. This
allows users to provide a specific ARN value that they consider old or deprecated, and then the rule
checks if any Lambda functions are using this old ARN.

Phase 2: Visualize and design

Amazon Config gathers configuration data and stores that data in Amazon Simple Storage Service
(Amazon S3) buckets. You can use Amazon Athena to query this data directly from your S3
buckets. With Athena, you can aggregate this data at the organizational level, generating a holistic
view of your resource configurations across all your accounts. To set up aggregation of resource
configuration data, see Visualizing Amazon Config data using Athena and Amazon QuickSight on
the Amazon Cloud Operations and Management blog.

The following is a sample Athena query to identify all Lambda functions using a particular layer
ARN:

WITH unnested AS (

Detective controls with Amazon Config 1553

https://aws.amazon.com/athena/
https://amazonaws-china.com/blogs/mt/visualizing-aws-config-data-using-amazon-athena-and-amazon-quicksight/

Amazon Lambda Developer Guide

 SELECT
 item.awsaccountid AS account_id,
 item.awsregion AS region,
 item.configuration AS lambda_configuration,
 item.resourceid AS resourceid,
 item.resourcename AS resourcename,
 item.configuration AS configuration,
 json_parse(item.configuration) AS lambda_json
 FROM
 default.aws_config_configuration_snapshot,
 UNNEST(configurationitems) as t(item)
 WHERE
 "dt" = 'latest'
 AND item.resourcetype = 'AWS::Lambda::Function'
)

 SELECT DISTINCT
 region as Region,
 resourcename as FunctionName,
 json_extract_scalar(lambda_json, '$.memorySize') AS memory_size,
 json_extract_scalar(lambda_json, '$.timeout') AS timeout,
 json_extract_scalar(lambda_json, '$.version') AS version
 FROM
 unnested
 WHERE
 lambda_configuration LIKE '%arn:aws-cn:lambda:us-
east-1:111122223333:layer:AnyGovernanceLayer:24%'

Here are results from the query:

Detective controls with Amazon Config 1554

Amazon Lambda Developer Guide

With the Amazon Config data aggregated across the organization, you can then create a dashboard
using Amazon QuickSight. By importing your Athena results into Amazon QuickSight, you can
visualize how well your Lambda functions adhere to the layer version rule. This dashboard can
highlight compliant and non-compliant resources, which helps you to determine your enforcement
policy, as outlined in the next section. The following image is an example dashboard that reports
on the distribution of layer versions applied to functions within the organization.

Phase 3: Implement and enforce

You can now optionally pair your layer version rule that you created in phase 1 with a remediation
action via a Systems Manager automation document, which you author as a Python script written
with Amazon SDK for Python (Boto3). The script calls the UpdateFunctionConfiguration API
action for each Lambda function, updating the function configuration with the new layer ARN.
Alternatively, you could have the script submit a pull request to the code repository to update the
layer ARN. This way future code deployments are also updated with the correct layer ARN.

Detective controls with Amazon Config 1555

https://aws.amazon.com/quicksight/
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html

Amazon Lambda Developer Guide

Lambda code signing with Amazon Signer

Amazon Signer is a fully managed code-signing service that allows you to validate your code
against a digital signature to confirm that code is unaltered and from a trusted publisher. Amazon
Signer can be used in conjunction with Amazon Lambda to verify that functions and layers are
unaltered prior to deployment into your Amazon environments. This protects your organization
from malicious actors who might have gained credentials to create new or update existing
functions.

To set up code signing for your Lambda functions, start by creating an S3 bucket with versioning
enabled. After that, create a signing profile with Amazon Signer, specify Lambda as the platform
and then specify a period of days in which the signing profile is valid. Example:

 Signer:
 Type: AWS::Signer::SigningProfile
 Properties:
 PlatformId: AWSLambda-SHA384-ECDSA
 SignatureValidityPeriod:
 Type: DAYS
 Value: !Ref pValidDays

Then use the signing profile and create a signing configuration with Lambda. You have to specify
what to do when the signing configuration sees an artifact that does not match a digital signature
that it expected: warn (but allow the deployment) or enforce (and block the deployment). The
example below is configured to enforce and block deployments.

 SigningConfig:
 Type: AWS::Lambda::CodeSigningConfig
 Properties:
 AllowedPublishers:
 SigningProfileVersionArns:
 - !GetAtt Signer.ProfileVersionArn
 CodeSigningPolicies:
 UntrustedArtifactOnDeployment: Enforce

You now have Amazon Signer configured with Lambda to block untrusted deployments. Let's
assume you've finished coding a feature request and are now ready to deploy the function. The first
step is to zip the code up with the appropriate dependencies and then sign the artifact using the
signing profile that you created. You can do this by uploading the zip artifact to the S3 bucket and
then starting a signing job.

Code signing 1556

https://docs.amazonaws.cn/signer/latest/developerguide/Welcome.html

Amazon Lambda Developer Guide

aws signer start-signing-job \
--source 's3={bucketName=your-versioned-bucket,key=your-prefix/your-zip-
artifact.zip,version=QyaJ3c4qa50LXV.9VaZgXHlsGbvCXxpT}' \
--destination 's3={bucketName=your-versioned-bucket,prefix=your-prefix/}' \
--profile-name your-signer-id

You get an output as follows, where the jobId is the object that is created in the destination
bucket and prefix and jobOwner is the 12-digit Amazon Web Services account ID where the job
was run.

{
 "jobId": "87a3522b-5c0b-4d7d-b4e0-4255a8e05388",
 "jobOwner": "111122223333"
 }

And now you can deploy your function using the signed S3 object and the code signing
configuration that you created.

 Fn:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: s3://your-versioned-bucket/your-prefix/87a3522b-5c0b-4d7d-
b4e0-4255a8e05388.zip
 Handler: fn.handler
 Role: !GetAtt FnRole.Arn
 CodeSigningConfigArn: !Ref pSigningConfigArn

You can alternatively test a function deployment with the original unsigned source zip artifact. The
deployment should fail with the following message:

Lambda cannot deploy the function. The function or layer might be signed using a
 signature that the client is not configured to accept. Check the provided signature
 for unsigned.

If you are building and deploying your functions using the Amazon Serverless Application Model
(Amazon SAM), the package command handles uploading the zip artifact to S3 and also starts
the signing job and gets the signed artifact. You can do this with the following command and
parameters:

sam package -t your-template.yaml \

Code signing 1557

Amazon Lambda Developer Guide

--output-template-file your-output.yaml \
--s3-bucket your-versioned-bucket \
--s3-prefix your-prefix \
--signing-profiles your-signer-id

Amazon Signer helps you verify that zip artifacts that are deployed into your accounts are trusted
for deployment. You can include the process above in your CI/CD pipelines and require that all
functions have a code signing configuration attached using the techniques outlined in previous
topics. By using code signing with your Lambda function deployments, you prevent malicious
actors who might have gotten credentials to create or update functions from injecting malicious
code in your functions.

Code signing 1558

Amazon Lambda Developer Guide

Lambda code scanning with Amazon Inspector

Amazon Inspector is a vulnerability management service that continually scans workloads for
known software vulnerabilities and unintended network exposure. Amazon Inspector creates a
finding that describes the vulnerability, identifies the affected resource, rates the severity of the
vulnerability, and provides remediation guidance.

Amazon Inspector support provides continuous, automated security vulnerability assessments for
Lambda functions and layers. Amazon Inspector provides two scan types for Lambda:

• Lambda standard scanning (default): Scans application dependencies within a Lambda function
and its layers for package vulnerabilities.

• Lambda code scanning: Scans the custom application code in your functions and layers for code
vulnerabilities. You can either activate Lambda standard scanning or activate Lambda standard
scanning together with Lambda code scanning.

To enable Amazon Inspector, navigate to the Amazon Inspector console, expand the Settings
section, and choose Account Management. On the Accounts tab, choose Activate, and then select
one of the scan options.

You can enable Amazon Inspector for multiple accounts and delegate permissions to manage
Amazon Inspector for the organization to specific accounts while setting up Amazon Inspector.
While enabling, you need to grant Amazon Inspector permissions by creating the role:
AWSServiceRoleForAmazonInspector2. The Amazon Inspector console allows you to create
this role using a one-click option.

For Lambda standard scanning, Amazon Inspector initiates vulnerability scans of Lambda functions
in the following situations:

• As soon as Amazon Inspector discovers an existing Lambda function.

• When you deploy a new Lambda function.

• When you deploy an update to the application code or dependencies of an existing Lambda
function or its layers.

• Whenever Amazon Inspector adds a new common vulnerabilities and exposures (CVE) item to its
database, and that CVE is relevant to your function.

Code scanning 1559

https://aws.amazon.com/inspector/
https://docs.amazonaws.cn/inspector/latest/user/findings-types.html#findings-types-package
https://docs.amazonaws.cn/inspector/latest/user/findings-types.html#findings-types-code
https://docs.amazonaws.cn/inspector/latest/user/findings-types.html#findings-types-code
https://console.amazonaws.cn/inspector/

Amazon Lambda Developer Guide

For Lambda code scanning, Amazon Inspector evaluates your Lambda function application
code using automated reasoning and machine learning that analyzes your application code for
overall security compliance. If Amazon Inspector detects a vulnerability in your Lambda function
application code, Amazon Inspector produces a detailed Code Vulnerability finding. For a list of
possible detections, see the Amazon CodeGuru Detector Library.

To view the findings, go to the Amazon Inspector console. On the Findings menu, choose By
Lambda function to display the security scan results that were performed on Lambda functions.

To exclude a Lambda function from standard scanning, tag the function with the following key-
value pair:

• Key:InspectorExclusion

• Value:LambdaStandardScanning

To exclude a Lambda function from code scans, tag the function with the following key-value pair:

• Key:InspectorCodeExclusion

• Value:LambdaCodeScanning

For example, as shown in following image, Amazon Inspector automatically detects vulnerabilities
and categorizes the findings of type Code Vulnerability, which indicates that the vulnerability is
in the code of the function, and not in one of the code-dependent libraries. You can check these
details for a specific function or multiple functions at once.

Code scanning 1560

https://docs.amazonaws.cn/codeguru/detector-library/
https://console.amazonaws.cn/inspector/

Amazon Lambda Developer Guide

You can dive further into each of these findings and learn how to remediate the issue.

Code scanning 1561

Amazon Lambda Developer Guide

Code scanning 1562

Amazon Lambda Developer Guide

While working with your Lambda functions, ensure that you comply with the naming conventions
for your Lambda functions. For more information, see Using Lambda environment variables.

You are responsible for the remediation suggestions that you accept. Always review remediation
suggestions before accepting them. You might need to make edits to remediation suggestions to
ensure that your code does what you intended.

Code scanning 1563

Amazon Lambda Developer Guide

Implement observability for Lambda security and compliance

Amazon Config is a useful tool to find and fix non-compliant Amazon Serverless resources. Every
change you make to your serverless resources is recorded in Amazon Config. Additionally, Amazon
Config allows you to store configuration snapshot data on S3. You can use Amazon Athena and
Amazon QuickSight to make dashboards and see Amazon Config data. In Detective controls for
Lambda with Amazon Config, we discussed how we can visualize a certain configuration like
Lambda layers. This topic expands on these concepts.

Visibility into Lambda configurations

You can use queries to pull important configurations like Amazon Web Services account ID, Region,
Amazon X-Ray tracing configuration, VPC configuration, memory size, runtime, and tags. Here is a
sample query you can use to pull this information from Athena:

WITH unnested AS (
 SELECT
 item.awsaccountid AS account_id,
 item.awsregion AS region,
 item.configuration AS lambda_configuration,
 item.resourceid AS resourceid,
 item.resourcename AS resourcename,
 item.configuration AS configuration,
 json_parse(item.configuration) AS lambda_json
 FROM
 default.aws_config_configuration_snapshot,
 UNNEST(configurationitems) as t(item)
 WHERE
 "dt" = 'latest'
 AND item.resourcetype = 'AWS::Lambda::Function'
)

 SELECT DISTINCT
 account_id,
 tags,
 region as Region,
 resourcename as FunctionName,
 json_extract_scalar(lambda_json, '$.memorySize') AS memory_size,
 json_extract_scalar(lambda_json, '$.timeout') AS timeout,
 json_extract_scalar(lambda_json, '$.runtime') AS version
 json_extract_scalar(lambda_json, '$.vpcConfig.SubnetIds') AS vpcConfig
 json_extract_scalar(lambda_json, '$.tracingConfig.mode') AS tracingConfig

Observability 1564

Amazon Lambda Developer Guide

 FROM
 unnested

You can use the query to build an Amazon QuickSight dashboard and visualize the data. To
aggregate Amazon resource configuration data, create tables in Athena, and build Amazon
QuickSight dashboards on the data from Athena, see Visualizing Amazon Config data using Athena
and Amazon QuickSight on the Amazon Cloud Operations and Management blog. Notably, this
query also retrieves tag information for the functions. This allows for deeper insights into your
workloads and environments, especially if you employ custom tags.

For more information on actions that you can take, see the Addressing the observability findings
section later in this topic.

Visibility into Lambda compliance

With the data generated by Amazon Config, you can create organization-level dashboards to
monitor compliance. This allows for consistent tracking and monitoring of:

• Compliance packs by compliance score

• Rules by non-compliant resources

Observability 1565

https://amazonaws-china.com/blogs/mt/visualizing-aws-config-data-using-amazon-athena-and-amazon-quicksight/
https://amazonaws-china.com/blogs/mt/visualizing-aws-config-data-using-amazon-athena-and-amazon-quicksight/

Amazon Lambda Developer Guide

• Compliance status

Check each rule to identify non-compliant resources for that rule. For example, if your organization
mandates that all Lambda functions must be associated with a VPC and if you have deployed an
Amazon Config rule to identify compliance, you can select the lambda-inside-vpc rule in the list
above.

Observability 1566

Amazon Lambda Developer Guide

For more information on actions that you can take, see the Addressing the observability findings
section below.

Visibility into Lambda function boundaries using Security Hub

To ensure that Amazon services including Lambda are used securely, Amazon introduced the
Foundational Security Best Practices v1.0.0. This set of best practices provides clear guidelines
for securing resources and data in the Amazon environment, emphasizing the importance of
maintaining a strong security posture. The Amazon Security Hub complements this by offering a
unified security and compliance center. It aggregates, organizes, and prioritizes security findings

Observability 1567

Amazon Lambda Developer Guide

from multiple Amazon services like Amazon Inspector, Amazon Identity and Access Management
Access Analyzer, and Amazon GuardDuty.

If you have Security Hub, Amazon Inspector, IAM Access Analyzer, and GuardDuty enabled within
your Amazon organization, Security Hub automatically aggregates findings from these services.
For instance, let's consider Amazon Inspector. Using Security Hub, you can efficiently identify
code and package vulnerabilities in Lambda functions. In the Security Hub console, navigate to
the bottom section labeled Latest findings from Amazon integrations. Here, you can view and
analyze findings sourced from various integrated Amazon services.

To see details, choose the See findings link in the second column. This displays a list of findings
filtered by product, such as Amazon Inspector. To limit your search to Lambda functions, set
ResourceType to AwsLambdaFunction. This displays findings from Amazon Inspector related to
Lambda functions.

Observability 1568

Amazon Lambda Developer Guide

For GuardDuty, you can identify suspicious network traffic patterns. Such anomalies might suggest
the existence of potentially malicious code within your Lambda function.

With IAM Access Analyzer, you can check policies, especially those with condition statements that
grant function access to external entities. Moreover, IAM Access Analyzer evaluates permissions set
when using the AddPermission operation in the Lambda API alongside an EventSourceToken.

Addressing the observability findings

Given the wide-ranging configurations possible for Lambda functions and their distinct
requirements, a standardized automation solution for remediation might not suit every situation.
Additionally, changes are implemented differently across various environments. If you encounter
any configuration that seems non-compliant, consider the following guidelines:

1. Tagging strategy

We recommend implementing a comprehensive tagging strategy. Each Lambda function
should be tagged with key information such as:

• Owner: The person or team responsible for the function.

• Environment: Production, staging, development, or sandbox.

• Application: The broader context to which this function belongs, if applicable.

2. Owner outreach

Observability 1569

https://docs.amazonaws.cn/lambda/latest/api/API_AddPermission.html

Amazon Lambda Developer Guide

Instead of automating the breaking changes (like VPC configuration adjustment), proactively
contact the owners of non-compliant functions (identified by the owner tag) providing them
sufficient time to either:

• Adjust non-compliant configurations on Lambda functions.

• Provide an explanation and request an exception, or refine the compliance standards.

3. Maintain a configuration management database (CMDB)

While tags can provide immediate context, maintaining a centralized CMDB can provide deeper
insights. It can hold more granular information about each Lambda function, its dependencies,
and other critical metadata. A CMDB is an invaluable resource for auditing, compliance checks,
and identifying function owners.

As the landscape of serverless infrastructure continually evolves, it's essential to adopt a proactive
stance towards monitoring. With tools like Amazon Config, Security Hub, and Amazon Inspector,
potential anomalies or non-compliant configurations can be swiftly identified. However, tools
alone cannot ensure total compliance or optimal configurations. It's crucial to pair these tools with
well-documented processes and best practices.

• Feedback loop: Once remediation steps are undertaken, ensure there's a feedback loop. This
means periodically revisiting non-compliant resources to confirm if they've been updated or are
still running with the same issues.

• Documentation: Always document the observations, actions taken, and any exceptions granted.
Proper documentation not only helps during audits but also aids in enhancing the process for
better compliance and security in the future.

• Training and awareness: Ensure that all stakeholders, especially Lambda function owners, are
regularly trained and made aware of best practices, organizational policies, and compliance
mandates. Regular workshops, webinars, or training sessions can go a long way in ensuring
everyone is on the same page when it comes to security and compliance.

In conclusion, while tools and technologies provide robust capabilities to detect and flag potential
issues, the human element—understanding, communication, training, and documentation—
remains pivotal. Together, they form a potent combination to ensure that your Lambda functions
and broader infrastructure remain compliant, secure, and optimized for your business needs.

Observability 1570

Amazon Lambda Developer Guide

Compliance validation for Amazon Lambda

Third-party auditors assess the security and compliance of Amazon Lambda as part of multiple
Amazon compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of Amazon services in scope of specific compliance programs, see Amazon services in
scope by compliance program. For general information, see Amazon compliance programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading reports in Amazon artifact.

Your compliance responsibility when using Lambda is determined by the sensitivity of your data,
your company's compliance objectives, and applicable laws and regulations. You can implement
governance controls to ensure that your company's Lambda functions meet your compliance
requirements. For more information, see Governance for Amazon Lambda.

Resilience in Amazon Lambda

The Amazon global infrastructure is built around Amazon Regions and Availability Zones. Amazon
Regions provide multiple physically separated and isolated Availability Zones, which are connected
with low-latency, high-throughput, and highly redundant networking. With Availability Zones,
you can design and operate applications and databases that automatically fail over between
Availability Zones without interruption. Availability Zones are more highly available, fault tolerant,
and scalable than traditional single or multiple data center infrastructures.

For more information about Amazon Regions and Availability Zones, see Amazon global
infrastructure.

In addition to the Amazon global infrastructure, Lambda offers several features to help support
your data resiliency and backup needs.

• Versioning – You can use versioning in Lambda to save your function's code and configuration as
you develop it. Together with aliases, you can use versioning to perform blue/green and rolling
deployments. For details, see Lambda function versions.

• Scaling – When your function receives a request while it's processing a previous request, Lambda
launches another instance of your function to handle the increased load. Lambda automatically
scales to handle 1,000 concurrent executions per Region, a quota that can be increased if
needed. For details, see Lambda function scaling.

Compliance validation 1571

https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/compliance/programs/
https://docs.amazonaws.cn/artifact/latest/ug/downloading-documents.html
https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/about-aws/global-infrastructure/

Amazon Lambda Developer Guide

• High availability – Lambda runs your function in multiple Availability Zones to ensure that it is
available to process events in case of a service interruption in a single zone. If you configure your
function to connect to a virtual private cloud (VPC) in your account, specify subnets in multiple
Availability Zones to ensure high availability. For details, see Connecting outbound networking to
resources in a VPC.

• Reserved concurrency – To make sure that your function can always scale to handle additional
requests, you can reserve concurrency for it. Setting reserved concurrency for a function ensures
that it can scale to, but not exceed, a specified number of concurrent invocations. This ensures
that you don't lose requests due to other functions consuming all of the available concurrency.
For details, see Configuring reserved concurrency.

• Retries – For asynchronous invocations and a subset of invocations triggered by other services,
Lambda automatically retries on error with delays between retries. Other clients and Amazon
services that invoke functions synchronously are responsible for performing retries. For details,
see Error handling and automatic retries in Amazon Lambda.

• Dead-letter queue – For asynchronous invocations, you can configure Lambda to send requests
to a dead-letter queue if all retries fail. A dead-letter queue is an Amazon SNS topic or Amazon
SQS queue that receives events for troubleshooting or reprocessing. For details, see Dead-letter
queues.

Infrastructure security in Amazon Lambda

As a managed service, Amazon Lambda is protected by Amazon global network security. For
information about Amazon security services and how Amazon protects infrastructure, see Amazon
Cloud Security. To design your Amazon environment using the best practices for infrastructure
security, see Infrastructure Protection in Security Pillar Amazon Well‐Architected Framework.

You use Amazon published API calls to access Lambda through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Infrastructure security 1572

https://www.amazonaws.cn/security/
https://www.amazonaws.cn/security/
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html

Amazon Lambda Developer Guide

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

Infrastructure security 1573

https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html

Amazon Lambda Developer Guide

Monitoring and troubleshooting Lambda functions

Amazon Lambda integrates with other Amazon services to help you monitor and troubleshoot
your Lambda functions. Lambda automatically monitors Lambda functions on your behalf and
reports metrics through Amazon CloudWatch. To help you monitor your code when it runs, Lambda
automatically tracks the number of requests, the invocation duration per request, and the number
of requests that result in an error.

You can use other Amazon services to troubleshoot your Lambda functions. This section describes
how to use these Amazon services to monitor, trace, debug, and troubleshoot your Lambda
functions and applications. For details about function logging and errors in each runtime, see
individual runtime sections.

For more information about monitoring Lambda applications, see Monitoring and observability in
Serverless Land.

Sections

• Monitoring functions on the Lambda console

• Working with Lambda function metrics

• Using Amazon CloudWatch logs with Amazon Lambda

• Using Amazon Lambda with Amazon X-Ray

• Using Lambda Insights in Amazon CloudWatch

• Using CodeGuru Profiler with your Lambda function

• Example workflows using other Amazon services

1574

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/monitoring-observability

Amazon Lambda Developer Guide

Monitoring functions on the Lambda console

The Lambda service monitors functions on your behalf and sends metrics to Amazon CloudWatch.
The Lambda console creates monitoring graphs for these metrics and shows them on the
Monitoring page for each Lambda function.

The Lambda console provides a single pane view of metrics, logs, and traces. The console provides
filters for time range, time zone, and refresh options that apply to all panes universally. You
can easily correlate metrics, logs, and traces, reducing the mean time to recovery (MTTR) when
troubleshooting errors in your Lambda functions.

Pricing

CloudWatch has a perpetual free tier. Beyond the free tier threshold, CloudWatch charges for
metrics, dashboards, alarms, logs, and insights. For more information, see Amazon CloudWatch
pricing.

Using the Lambda console

You can monitor your Lambda functions and applications on the Lambda console.

To monitor a function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Monitor tab.

Types of monitoring graphs

The following section describes the monitoring graphs on the Lambda console.

Lambda monitoring graphs

• Invocations – The number of times that the function was invoked.

• Duration – The average, minimum, and maximum amount of time your function code spends
processing an event.

• Error count and success rate (%) – The number of errors and the percentage of invocations that
completed without error.

Monitoring console 1575

https://www.amazonaws.cn/cloudwatch/pricing/
https://www.amazonaws.cn/cloudwatch/pricing/
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

• Throttles – The number of times that an invocation failed due to concurrency limits.

• IteratorAge – For stream event sources, the age of the last item in the batch when Lambda
received it and invoked the function.

• Async delivery failures – The number of errors that occurred when Lambda attempted to write
to a destination or dead-letter queue.

• Concurrent executions – The number of function instances that are processing events.

Viewing graphs on the Lambda console

The following section describes how to view CloudWatch monitoring graphs on the Lambda
console, and open the CloudWatch metrics dashboard.

To view monitoring graphs for a function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Monitor tab.

4. Choose from the predefined time ranges, or choose a custom time range.

5. To see the definition of a graph in CloudWatch, choose the three vertical dots (Widget
actions), and then choose View in metrics to open the Metrics dashboard on the CloudWatch
console.

Viewing graphs on the Lambda console 1576

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Viewing queries on the CloudWatch Logs console

The following section describes how to view and add reports from CloudWatch Logs Insights to a
custom dashboard on the CloudWatch Logs console.

To view reports for a function

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Monitor tab.

4. Choose View logs in CloudWatch.

5. Choose View in Logs Insights.

6. Choose from the predefined time ranges, or choose a custom time range.

7. Choose Run query.

8. (Optional) Choose Save.

Viewing queries on the CloudWatch Logs console 1577

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

What's next?

• Learn about the metrics that Lambda records and sends to CloudWatch in Working with Lambda
function metrics.

• Learn how to use CloudWatch Lambda Insights to collect and aggregate Lambda function
runtime performance metrics and logs in Using Lambda Insights in Amazon CloudWatch.

What's next? 1578

Amazon Lambda Developer Guide

Working with Lambda function metrics

When your Amazon Lambda function finishes processing an event, Lambda sends metrics about
the invocation to Amazon CloudWatch. There is no charge for these metrics.

On the CloudWatch console, you can build graphs and dashboards with these metrics. You can
set alarms to respond to changes in utilization, performance, or error rates. Lambda sends metric
data to CloudWatch in 1-minute intervals. For more immediate insight into your Lambda function,
you can create high-resolution custom metrics as described in Serverless Land. Charges apply for
custom metrics and CloudWatch alarms. For more information, see Amazon CloudWatch Pricing.

This page describes the Lambda function invocation, performance, and concurrency metrics
available on the CloudWatch console.

Sections

• Viewing metrics on the CloudWatch console

• Types of metrics

Viewing metrics on the CloudWatch console

You can use the CloudWatch console to filter and sort function metrics by function name, alias, or
version.

To view metrics on the CloudWatch console

1. Open the Metrics page (AWS/Lambda namespace) of the CloudWatch console.

2. On the Browse tab, under Metrics, choose any of the following dimensions:

• By Function Name (FunctionName) – View aggregate metrics for all versions and aliases of
a function.

• By Resource (Resource) – View metrics for a version or alias of a function.

• By Executed Version (ExecutedVersion) – View metrics for a combination of alias and
version. Use the ExecutedVersion dimension to compare error rates for two versions of a
function that are both targets of a weighted alias.

• Across All Functions (none) – View aggregate metrics for all functions in the current
Amazon Web Services Region.

3. Choose a metric, then choose Add to graph or another graphing option.

Function metrics 1579

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/custom-metrics
https://www.amazonaws.cn/cloudwatch/pricing/
https://console.amazonaws.cn/cloudwatch/home?region=us-east-1#metricsV2:graph=~();namespace=~'AWS*2fLambda

Amazon Lambda Developer Guide

By default, graphs use the Sum statistic for all metrics. To choose a different statistic and customize
the graph, use the options on the Graphed metrics tab.

Note

The timestamp on a metric reflects when the function was invoked. Depending on the
duration of the invocation, this can be several minutes before the metric is emitted. For
example, if your function has a 10-minute timeout, then look more than 10 minutes in the
past for accurate metrics.

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

Types of metrics

The following section describes the types of Lambda metrics available on the CloudWatch console.

Invocation metrics

Invocation metrics are binary indicators of the outcome of a Lambda function invocation. For
example, if the function returns an error, then Lambda sends the Errors metric with a value of
1. To get a count of the number of function errors that occurred each minute, view the Sum of the
Errors metric with a period of 1 minute.

Note

View the following invocation metrics with the Sum statistic.

• Invocations – The number of times that your function code is invoked, including successful
invocations and invocations that result in a function error. Invocations aren't recorded if
the invocation request is throttled or otherwise results in an invocation error. The value of
Invocations equals the number of requests billed.

• Errors – The number of invocations that result in a function error. Function errors include
exceptions that your code throws and exceptions that the Lambda runtime throws. The runtime
returns errors for issues such as timeouts and configuration errors. To calculate the error rate,
divide the value of Errors by the value of Invocations. Note that the timestamp on an error
metric reflects when the function was invoked, not when the error occurred.

Types of metrics 1580

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Amazon Lambda Developer Guide

• DeadLetterErrors – For asynchronous invocation, the number of times that Lambda attempts
to send an event to a dead-letter queue (DLQ) but fails. Dead-letter errors can occur due to
misconfigured resources or size limits.

• DestinationDeliveryFailures – For asynchronous invocation and supported event source
mappings, the number of times that Lambda attempts to send an event to a destination but
fails. For event source mappings, Lambda supports destinations for stream sources (DynamoDB
and Kinesis). Delivery errors can occur due to permissions errors, misconfigured resources, or size
limits. Errors can also occur if the destination you have configured is an unsupported type such
as an Amazon SQS FIFO queue or an Amazon SNS FIFO topic.

• Throttles – The number of invocation requests that are throttled. When all function instances
are processing requests and no concurrency is available to scale up, Lambda rejects additional
requests with a TooManyRequestsException error. Throttled requests and other invocation
errors don't count as either Invocations or Errors.

• OversizedRecordCount – For Amazon DocumentDB event sources, the number of events your
function receives from your change stream that are over 6 MB in size. Lambda drops the message
and emits this metric.

• ProvisionedConcurrencyInvocations – The number of times that your function code is
invoked using provisioned concurrency.

• ProvisionedConcurrencySpilloverInvocations – The number of times that your
function code is invoked using standard concurrency when all provisioned concurrency is in use.

• RecursiveInvocationsDropped – The number of times that Lambda has stopped invocation
of your function because it's detected that your function is part of an infinite recursive loop.
Lambda recursive loop detection monitors how many times a function is invoked as part of a
chain of requests by tracking metadata added by supported Amazon SDKs. If your function is
invoked as part of a chain of requests more than 16 times, Lambda drops the next invocation.

Performance metrics

Performance metrics provide performance details about a single function invocation. For example,
the Duration metric indicates the amount of time in milliseconds that your function spends
processing an event. To get a sense of how fast your function processes events, view these metrics
with the Average or Max statistic.

Types of metrics 1581

https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventsourcemapping.html
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventsourcemapping.html

Amazon Lambda Developer Guide

• Duration – The amount of time that your function code spends processing an event. The billed
duration for an invocation is the value of Duration rounded up to the nearest millisecond.
Duration does not include cold start time.

• PostRuntimeExtensionsDuration – The cumulative amount of time that the runtime spends
running code for extensions after the function code has completed.

• IteratorAge – For DynamoDB, Kinesis, and Amazon DocumentDB event sources, the age of
the last record in the event. This metric measures the time between when a stream receives the
record and when the event source mapping sends the event to the function.

• OffsetLag – For self-managed Apache Kafka and Amazon Managed Streaming for Apache
Kafka (Amazon MSK) event sources, the difference in offset between the last record written to a
topic and the last record that your function's consumer group processed. Though a Kafka topic
can have multiple partitions, this metric measures the offset lag at the topic level.

Duration also supports percentile (p) statistics. Use percentiles to exclude outlier values that skew
Average and Maximum statistics. For example, the p95 statistic shows the maximum duration of
95 percent of invocations, excluding the slowest 5 percent. For more information, see Percentiles in
the Amazon CloudWatch User Guide.

Concurrency metrics

Lambda reports concurrency metrics as an aggregate count of the number of instances processing
events across a function, version, alias, or Amazon Web Services Region. To see how close you are
to hitting concurrency limits, view these metrics with the Max statistic.

• ConcurrentExecutions – The number of function instances that are processing events. If this
number reaches your concurrent executions quota for the Region, or the reserved concurrency
limit on the function, then Lambda throttles additional invocation requests.

• ProvisionedConcurrentExecutions – The number of function instances that are processing
events using provisioned concurrency. For each invocation of an alias or version with provisioned
concurrency, Lambda emits the current count.

• ProvisionedConcurrencyUtilization – For a version or alias, the value of
ProvisionedConcurrentExecutions divided by the total amount of provisioned
concurrency configured. For example, if you configure a provisioned concurrency of 10
for your function, and your ProvisionedConcurrentExecutions is 7, then your
ProvisionedConcurrencyUtilization is 0.7.

Types of metrics 1582

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Percentiles

Amazon Lambda Developer Guide

• UnreservedConcurrentExecutions – For a Region, the number of events that functions
without reserved concurrency are processing.

• ClaimedAccountConcurrency – For a Region, the amount of concurrency that is
unavailable for on-demand invocations. ClaimedAccountConcurrency is equal to
UnreservedConcurrentExecutions plus the amount of allocated concurrency (i.e. the total
reserved concurrency plus total provisioned concurrency). For more information, see Working
with the ClaimedAccountConcurrency metric.

Asynchronous invocation metrics

Asynchronous invocation metrics provide details about asynchronous invocations from event
sources and direct invocations. You can set thresholds and alarms to notify you of certain changes.
For example, when there's an undesired increase in the number of events queued for processing
(AsyncEventsReceived). Or, when an event has been waiting a long time to be processed
(AsyncEventAge).

• AsyncEventsReceived – The number of events that Lambda successfully queues for
processing. This metric provides insight into the number of events that a Lambda function
receives. Monitor this metric and set alarms for thresholds to check for issues. For example, to
detect an undesirable number of events sent to Lambda, and to quickly diagnose issues resulting
from incorrect trigger or function configurations. Mismatches between AsyncEventsReceived
and Invocations can indicate a disparity in processing, events being dropped, or a potential
queue backlog.

• AsyncEventAge – The time between when Lambda successfully queues the event and when
the function is invoked. The value of this metric increases when events are being retried due to
invocation failures or throttling. Monitor this metric and set alarms for thresholds on different
statistics for when a queue buildup occurs. To troubleshoot an increase in this metric, look at the
Errors metric to identify function errors and the Throttles metric to identify concurrency
issues.

• AsyncEventsDropped – The number of events that are dropped without successfully executing
the function. If you configure a dead-letter queue (DLQ) or OnFailure destination, then events
are sent there before they're dropped. Events are dropped for various reasons. For example,
events can exceed the maximum event age or exhaust the maximum retry attempts, or reserved
concurrency might be set to 0. To troubleshoot why events are dropped, look at the Errors
metric to identify function errors and the Throttles metric to identify concurrency issues.

Types of metrics 1583

Amazon Lambda Developer Guide

Using Amazon CloudWatch logs with Amazon Lambda

Amazon Lambda automatically monitors Lambda functions on your behalf to help you
troubleshoot failures in your functions. As long as your function's execution role has the necessary
permissions, Lambda captures logs for all requests handled by your function and sends them to
Amazon CloudWatch Logs.

You can insert logging statements into your code to help you validate that your code is working
as expected. Lambda automatically integrates with CloudWatch Logs and sends all logs from your
code to a CloudWatch logs group associated with a Lambda function.

By default, Lambda sends logs to a log group named /aws/lambda/<function name>. If
you want your function to send logs to another group, you can configure this using the Lambda
console, the Amazon Command Line Interface (Amazon CLI) or the Lambda API. See the section
called “Configuring CloudWatch log groups” to learn more.

You can view logs for Lambda functions using the Lambda console, the CloudWatch console, the
Amazon Command Line Interface (Amazon CLI), or the CloudWatch API.

Note

It may take 5 to 10 minutes for logs to show up after a function invocation.

Section

• Prerequisites

• Pricing

• Configuring advanced logging controls for your Lambda function

• Accessing logs with the Lambda console

• Accessing logs with the Amazon CLI

• Runtime function logging

• What's next?

Function logs 1584

Amazon Lambda Developer Guide

Prerequisites

Your execution role needs permission to upload logs to CloudWatch Logs. You can add CloudWatch
Logs permissions using the AWSLambdaBasicExecutionRole Amazon managed policy provided
by Lambda. To add this policy to your role, run the following command:

aws iam attach-role-policy --role-name your-role --policy-arn arn:aws:iam::aws:policy/
service-role/AWSLambdaBasicExecutionRole

For more information, see Amazon managed policies for Lambda features.

Pricing

There is no additional charge for using Lambda logs; however, standard CloudWatch Logs charges
apply. For more information, see CloudWatch pricing.

Configuring advanced logging controls for your Lambda function

To give you more control over how your functions’ logs are captured, processed, and consumed,
Lambda offers the following logging configuration options:

• Log format - select between plain text and structured JSON format for your function’s logs

• Log level - for JSON structured logs, choose the detail level of the logs Lambda sends to
CloudWatch, such as ERROR, DEBUG, or INFO

• Log group - choose the CloudWatch log group your function sends logs to

Configuring JSON and plain text log formats

Capturing your log outputs as JSON key value pairs makes it easier to search and filter when
debugging your functions. With JSON formatted logs, you can also add tags and contextual
information to your logs. This can help you to perform automated analysis of large volumes of log
data. Unless your development workflow relies on existing tooling that consumes Lambda logs in
plain text, we recommend that you select JSON for your log format.

For all Lambda managed runtimes, you can choose whether your function's system logs are sent to
CloudWatch Logs in unstructured plain text or JSON format. System logs are the logs that Lambda
generates and are sometimes known as platform event logs.

Prerequisites 1585

http://www.amazonaws.cn/cloudwatch/pricing/

Amazon Lambda Developer Guide

For supported runtimes, when you use one of the supported built-in logging methods, Lambda can
also output your function's application logs (the logs your function code generates) in structured
JSON format. When you configure your function's log format for these runtimes, the configuration
you choose applies to both system and application logs.

For supported runtimes, if your function uses a supported logging library or method, you don't
need to make any changes to your existing code for Lambda to capture logs in structured JSON.

Note

Using JSON log formatting adds additional metadata and encodes log messages as JSON
objects containing a series of key value pairs. Because of this, the size of your function's log
messages can increase.

Supported runtimes and logging methods

Lambda currently supports the option to output JSON structured application logs for the following
runtimes.

Runtime Supported versions

Java All Java runtimes except Java 8 on Amazon
Linux 1

Node.js Node.js 16 and later

Python Python 3.7 and later

For Lambda to send your function's application logs to CloudWatch in structured JSON format,
your function must use the following built-in logging tools to output logs:

• Java - the LambdaLogger logger or Log4j2.

• Node.js - The console methods console.trace, console.debug, console.log,
console.info, console.error, and console.warn

• Python - the standard Python logging library

Configuring advanced logging controls for your Lambda function 1586

Amazon Lambda Developer Guide

For more information about using advanced logging controls with supported runtimes, see the
section called “Logging”, the section called “Logging”, and the section called “Logging”.

For other managed Lambda runtimes, Lambda currently only natively supports capturing system
logs in structured JSON format. However, you can still capture application logs in structured JSON
format in any runtime by using logging tools such as Powertools for Amazon Lambda that output
JSON formatted log outputs.

Default log formats

Currently, the default log format for all Lambda runtimes is plain text.

If you’re already using logging libraries like Powertools for Amazon Lambda to generate your
function logs in JSON structured format, you don’t need to change your code if you select JSON
log formatting. Lambda doesn’t double-encode any logs that are already JSON encoded, so your
function’s application logs will continue to be captured as before.

JSON format for system logs

When you configure your function's log format as JSON, each system log item (platform event) is
captured as a JSON object that contains key value pairs with the following keys:

• "time" - the time the log message was generated

• "type" - the type of event being logged

• "record" - the contents of the log output

The format of the "record" value varies according to the type of event being logged. For more
information see the section called “Telemetry API Event object types”. For more information
about the log levels assigned to system log events, see the section called “System log level event
mapping”.

For comparison, the following two examples show the same log output in both plain text and
structured JSON formats. Note that in most cases, system log events contain more information
when output in JSON format than when output in plain text.

Example plain text:

2023-03-13 18:56:24.046000 fbe8c1 INIT_START Runtime Version:
 python:3.9.v18 Runtime Version ARN: arn:aws:lambda:eu-
west-1::runtime:edb5a058bfa782cb9cedc6d534ac8b8c193bc28e9a9879d9f5ebaaf619cd0fc0

Configuring advanced logging controls for your Lambda function 1587

Amazon Lambda Developer Guide

Example structured JSON:

{
 "time": "2023-03-13T18:56:24.046Z",
 "type": "platform.initStart",
 "record": {
 "initializationType": "on-demand",
 "phase": "init",
 "runtimeVersion": "python:3.9.v18",
 "runtimeVersionArn": "arn:aws:lambda:eu-
west-1::runtime:edb5a058bfa782cb9cedc6d534ac8b8c193bc28e9a9879d9f5ebaaf619cd0fc0"
 }
}

Note

The the section called “Telemetry API” always emits platform events such as START and
REPORT in JSON format. Configuring the format of the system logs Lambda sends to
CloudWatch doesn’t affect Lambda Telemetry API behavior.

JSON format for application logs

When you configure your function's log format as JSON, application log outputs written using
supported logging libraries and methods are captured as a JSON object that contains key value
pairs with the following keys.

• "timestamp" - the time the log message was generated

• "level" - the log level assigned to the message

• "message" - the contents of the log message

• "requestId" (Python and Node.js) or "AWSrequestId" (Java) - the unique request ID for the
function invocation

Depending on the runtime and logging method that your function uses, this JSON object may also
contain additional key pairs. For example, in Node.js, if your function uses console methods to log
error objects using multiple arguments, The JSON object will contain extra key value pairs with the
keys errorMessage, errorType, and stackTrace. To learn more about JSON formatted logs in

Configuring advanced logging controls for your Lambda function 1588

Amazon Lambda Developer Guide

different Lambda runtimes, see the section called “Logging”, the section called “Logging”, and the
section called “Logging”.

Note

The key Lambda uses for the timestamp value is different for system logs and application
logs. For system logs, Lambda uses the key "time" to maintain consistency with Telemetry
API. For application logs, Lambda follows the conventions of the supported runtimes and
uses "timestamp".

For comparison, the following two examples show the same log output in both plain text and
structured JSON formats.

Example plain text:

2023-10-27T19:17:45.586Z 79b4f56e-95b1-4643-9700-2807f4e68189 INFO some log message

Example structured JSON:

{
 "timestamp":"2023-10-27T19:17:45.586Z",
 "level":"INFO",
 "message":"some log message",
 "requestId":"79b4f56e-95b1-4643-9700-2807f4e68189"
}

Setting your function's log format

To configure the log format for your function, you can use the Lambda console or the Amazon
Command Line Interface (Amazon CLI). You can also configure a function’s log format using
the CreateFunction and UpdateFunctionConfiguration Lambda API commands, the Amazon
Serverless Application Model (Amazon SAM) AWS::Serverless::Function resource, and the Amazon
CloudFormation AWS::Lambda::Function resource.

Changing your function’s log format doesn’t affect existing logs stored in CloudWatch Logs. Only
new logs will use the updated format.

If you change your function's log format to JSON and do not set log level, then Lambda
automatically sets your function's application log level and system log level to INFO. This means

Configuring advanced logging controls for your Lambda function 1589

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

Amazon Lambda Developer Guide

that Lambda sends only log outputs of level INFO and lower to CloudWatch Logs. To learn more
about application and system log-level filtering see the section called “Log-level filtering”

Note

For Python runtimes, when your function's log format is set to plain text, the default log-
level setting is WARN. This means that Lambda only sends log outputs of level WARN and
lower to CloudWatch Logs. Changing your function's log format to JSON changes this
default behavior. To learn more about logging in Python, see the section called “Logging”.

For Node.js functions that emit embedded metric format (EMF) logs, changing your function's log
format to JSON could result in CloudWatch being unable to recognize your metrics.

Important

If your function uses Powertools for Amazon Lambda (TypeScript) or the open-sourced
EMF client libraries to emit EMF logs, update your Powertools and EMF libraries to the
latest versions to ensure that CloudWatch can continue to parse your logs correctly. If you
switch to the JSON log format, we also recommend that you carry out testing to ensure
compatibility with your function's embedded metrics. For further advice about node.js
functions that emit EMF logs, see the section called “Using embedded metric format (EMF)
client libraries with structured JSON logs”.

To configure a function’s log format (console)

1. Open the Functions page of the Lambda console.

2. Choose a function

3. On the function configuration page, choose Monitoring and operations tools.

4. In the Logging configuration pane, choose Edit.

5. Under Log content, for Log format select either Text or JSON.

6. Choose Save.

Configuring advanced logging controls for your Lambda function 1590

https://github.com/aws-powertools/powertools-lambda-typescript
https://github.com/awslabs/aws-embedded-metrics-node
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

To change the log format of an existing function (Amazon CLI)

• To change the log format of an existing function, use the update-function-
configuration command. Set the LogFormat option in LoggingConfig to either JSON or
Text.

aws lambda update-function-configuration \
--function-name myFunction --logging-config LogFormat=JSON

To set log format when you create a function (Amazon CLI)

• To configure log format when you create a new function, use the --logging-config option
in the create-function command. Set LogFormat to either JSON or Text. The following
example command creates a function using the Node.js 18 runtime that outputs logs in
structured JSON.

If you don’t specify a log format when you create a function, Lambda will use the default log
format for the runtime version you select. For information about default logging formats, see
the section called “Default log formats”.

aws lambda create-function --function-name myFunction --runtime nodejs18.x \
--handler index.handler --zip-file fileb://function.zip \
--role arn:aws:iam::123456789012:role/LambdaRole --logging-config LogFormat=JSON

Log-level filtering

Lambda can filter your function's logs so that only logs of a certain detail level or lower are sent to
CloudWatch Logs. You can configure log-level filtering separately for your function's system logs
(the logs that Lambda generates) and application logs (the logs that your function code generates).

For the section called “Supported runtimes and logging methods”, you don't need to make any
changes to your function code for Lambda to filter your function's application logs.

For all other runtimes and logging methods , your function code must output log events to stdout
or stderr as JSON formatted objects that contain a key value pair with the key "level". For
example, Lambda interprets the following output to stdout as a DEBUG level log.

Configuring advanced logging controls for your Lambda function 1591

Amazon Lambda Developer Guide

print('{"level": "debug", "msg": "my debug log", "timestamp":
 "2023-11-02T16:51:31.587199Z"}')

If the "level" value field is invalid or missing, Lambda will assign the log output the level INFO.
For Lambda to use the timestamp field, you must specify the time in valid RFC 3339 timestamp
format. If you don't supply a valid timestamp, Lambda will assign the log the level INFO and add a
timestamp for you.

When naming the timestamp key, follow the conventions of the runtime you are using. Lambda
supports most common naming conventions used by the managed runtimes. For example, in
functions that use the .NET runtime, Lambda recognizes the key "Timestamp".

Note

To use log-level filtering, your function must be configured to use the JSON log format.
The default log format for all Lambda managed runtimes is currently plain text. To learn
how to configure your function's log format to JSON, see the section called “Setting your
function's log format”.

For application logs (the logs generated by your function code), you can choose between the
following log levels.

Log level Standard usage

TRACE (most detail) The most fine-grained information used to
trace the path of your code's execution

DEBUG Detailed information for system debugging

INFO Messages that record the normal operation of
your function

WARN Messages about potential errors that may lead
to unexpected behavior if unaddressed

ERROR Messages about problems that prevent the
code from performing as expected

Configuring advanced logging controls for your Lambda function 1592

https://www.ietf.org/rfc/rfc3339.txt

Amazon Lambda Developer Guide

Log level Standard usage

FATAL (least detail) Messages about serious errors that cause the
application to stop functioning

When you select a log level, Lambda sends logs at that level and lower to CloudWatch Logs. For
example, if you set a function’s application log level to WARN, Lambda doesn’t send log outputs at
the INFO and DEBUG levels. The default application log level for log filtering is INFO.

When Lambda filters your function’s application logs, log messages with no level will be assigned
the log level INFO.

For system logs (the logs generated by the Lambda service), you can choose between the following
log levels.

Log level Usage

DEBUG (most detail) Detailed information for system debugging

INFO Messages that record the normal operation of
your function

WARN (least detail) Messages about potential errors that may lead
to unexpected behavior if unaddressed

When you select a log level, Lambda sends logs at that level and lower. For example, if you set a
function’s system log level to INFO, Lambda doesn’t send log outputs at the DEBUG level.

By default, Lambda sets the system log level to INFO. With this setting, Lambda automatically
sends "start" and "report" log messages to CloudWatch. To receive more or less detailed
system logs, change the log level to DEBUG or WARN. To see a list of the log levels that Lambda
maps different system log events to, see the section called “System log level event mapping”.

Configuring log-level filtering

To configure application and system log-level filtering for your function, you can use the Lambda
console or the Amazon Command Line Interface (Amazon CLI). You can also configure a function’s

Configuring advanced logging controls for your Lambda function 1593

Amazon Lambda Developer Guide

log level using the CreateFunction and UpdateFunctionConfiguration Lambda API commands, the
Amazon Serverless Application Model (Amazon SAM) AWS::Serverless::Function resource, and the
Amazon CloudFormation AWS::Lambda::Function resource.

Note that if you set your function's log level in your code, this setting takes precedence over any
other log level settings you configure. For example, if you use the Python logging setLevel()
method to set your function's logging level to INFO, this setting takes precedence over a setting of
WARN that you configure using the Lambda console.

To configure an existing function’s application or system log level (console)

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. On the function configuration page, choose Monitoring and operations tools.

4. In the Logging configuration pane, choose Edit.

5. Under Log content, for Log format ensure JSON is selected.

6. Using the radio buttons, select your desired Application log level and System log level for
your function.

7. Choose Save.

To configure an existing function’s application or system log level (Amazon CLI)

• To change the application or system log level of an existing function, use the update-
function-configuration command. Set --system-log-level to one of DEBUG, INFO,
or WARN. Set --application-log-level to one of DEBUG, INFO, WARN, ERROR, or FATAL.

aws lambda update-function-configuration \
--function-name myFunction --system-log-level WARN \
--application-log-level ERROR

To configure log-level filtering when you create a function

• To configure log-level filtering when you create a new function, use the --system-log-
level and --application-log-level options in the create-function command. Set --
system-log-level to one of DEBUG, INFO, or WARN. Set --application-log-level to
one of DEBUG, INFO, WARN, WARN, or FATAL.

Configuring advanced logging controls for your Lambda function 1594

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

aws lambda create-function --function-name myFunction --runtime nodejs18.x \
--handler index.handler --zip-file fileb://function.zip \
--role arn:aws:iam::123456789012:role/LambdaRole --system-log-level WARN \
--application-log-level ERROR

System log level event mapping

For system level log events generated by Lambda, the following table defines the log level
assigned to each event. To learn more about the events listed in the table, see the section called
“Event schema reference”

Event name Condition Assigned log level

initStart runtimeVersion is set INFO

initStart runtimeVersion is not set DEBUG

initRuntimeDone status=success DEBUG

initRuntimeDone status!=success WARN

initReport initializationType=snapstart INFO

initReport initializationType!=snapstart DEBUG

initReport status!=success WARN

restoreStart runtimeVersion is set INFO

restoreStart runtimeVersion is not set DEBUG

restoreRuntimeDone status=success DEBUG

restoreRuntimeDone status!=success WARN

restoreReport status=success INFO

restoreReport status!=success WARN

start - INFO

Configuring advanced logging controls for your Lambda function 1595

Amazon Lambda Developer Guide

Event name Condition Assigned log level

runtimeDone status=success DEBUG

runtimeDone status!=success WARN

report status=success INFO

report status!=success WARN

extension state=success INFO

extension state!=success WARN

logSubscription - INFO

telemetrySubscription - INFO

logsDropped - WARN

Note

The the section called “Telemetry API” always emits the complete set of platform events.
Configuring the level of the system logs Lambda sends to CloudWatch doesn’t affect
Lambda Telemetry API behavior.

Application log-level filtering with custom runtimes

When you configure application log-level filtering for your function, behind the scenes Lambda
sets the application log level in the runtime using the AWS_LAMBDA_LOG_LEVEL environment
variable. Lambda also sets your function's log format using the AWS_LAMBDA_LOG_FORMAT
environment variable. You can use these variables to integrate Lambda advanced logging controls
into a custom runtime.

For the ability to configure logging settings for a function using a custom runtime with the Lambda
console, Amazon CLI, and Lambda APIs, configure your custom runtime to check the value of these
environment variables. You can then configure your runtime's loggers in accordance with the log
format and log levels you select.

Configuring advanced logging controls for your Lambda function 1596

Amazon Lambda Developer Guide

Configuring CloudWatch log groups

By default, CloudWatch automatically creates a log group named /aws/lambda/<function
name> for your function when it's first invoked. To configure your function to send logs to an
existing log group, or to create a new log group for your function, you can use the Lambda console
or the Amazon CLI. You can also configure custom log groups using the CreateFunction and
UpdateFunctionConfiguration Lambda API commands and the Amazon Serverless Application
Model (Amazon SAM) Amazon::Serverless::Function resource.

You can configure multiple Lambda functions to send logs to the same CloudWatch log group.
For example, you could use a single log group to store logs for all of the Lambda functions that
make up a particular application. When you use a custom log group for a Lambda function, the
log streams Lambda creates include the function name and function version. This ensures that the
mapping between log messages and functions is preserved, even if you use the same log group for
multiple functions.

The log stream naming format for custom log groups follows this convention:

YYYY/MM/DD/<function_name>[<function_version>][<execution_environment_GUID>]

Note that when configuring a custom log group, the name you select for your log group must
follow the CloudWatch Logs naming rules. Additionally, custom log group names mustn't begin
with the string aws/. If you create a custom log group beginning with aws/, Lambda won't be able
to create the log group. As a result of this, your function's logs won't be sent to CloudWatch.

To change a function’s log group (console)

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. On the function configuration page, choose Monitoring and operations tools.

4. In the Logging configuration pane, choose Edit.

5. In the Logging group pane, for CloudWatch log group, choose Custom.

6. Under Custom log group, enter the name of the CloudWatch log group you want your
function to send logs to. If you enter the name of an existing log group, then your function will
use that group. If no log group exists with the name that you enter, then Lambda will create a
new log group for your function with that name.

Configuring advanced logging controls for your Lambda function 1597

https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_CreateLogGroup.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

To change a function's log group (Amazon CLI)

• To change the log group of an existing function, use the update-function-configuration
command. If you specify the name of an existing log group, then your function will use that
group. If no log group exists with the name that you specify, then Lambda will create a new
log group for your function with that name.

aws lambda update-function-configuration \
--function-name myFunction --log-group myLogGroup

To specify a custom log group when you create a function (Amazon CLI)

• To specify a custom log group when you create a new Lambda function using the Amazon
CLI, use the --log-group option. If you specify the name of an existing log group, then
your function will use that group. If no log group exists with the name that you specify, then
Lambda will create a new log group for your function with that name.

The following example command creates a Node.js Lambda function that sends logs to a log
group named myLogGroup.

aws lambda create-function --function-name myFunction --runtime nodejs18.x \
--handler index.handler --zip-file fileb://function.zip \
--role arn:aws:iam::123456789012:role/LambdaRole --log-group myLogGroup

Execution role permissions

For your function to send logs to CloudWatch Logs, it must have the logs:PutLogEvents
permission. When you configure your function's log group using the Lambda console, if your
function doesn't have this permission, Lambda adds it to the function's execution role by
default. When Lambda adds this permission, it gives the function permission to send logs to any
CloudWatch Logs log group.

To prevent Lambda from automatically updating the function's execution role and edit it manually
instead, expand Permissions and uncheck Add required permissions.

When you configure your function's log group using the Amazon CLI, Lambda won't automatically
add the logs:PutLogEvents permission. Add the permission to your function's execution role

Configuring advanced logging controls for your Lambda function 1598

https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_PutLogEvents.html

Amazon Lambda Developer Guide

if it doesn't already have it. This permission is included in the AWSLambdaBasicExecutionRole
managed policy.

Accessing logs with the Lambda console

To view logs using the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Monitor.

4. Choose View logs in CloudWatch.

Accessing logs with the Amazon CLI

The Amazon CLI is an open-source tool that enables you to interact with Amazon services using
commands in your command line shell. To complete the steps in this section, you must have the
following:

• Amazon Command Line Interface (Amazon CLI) version 2

• Amazon CLI – Quick configuration with aws configure

You can use the Amazon CLI to retrieve logs for an invocation using the --log-type command
option. The response contains a LogResult field that contains up to 4 KB of base64-encoded logs
from the invocation.

Example retrieve a log ID

The following example shows how to retrieve a log ID from the LogResult field for a function
named my-function.

aws lambda invoke --function-name my-function out --log-type Tail

You should see the following output:

{
 "StatusCode": 200,
 "LogResult":
 "U1RBUlQgUmVxdWVzdElkOiA4N2QwNDRiOC1mMTU0LTExZTgtOGNkYS0yOTc0YzVlNGZiMjEgVmVyc2lvb...",

Using the Lambda console 1599

https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole$jsonEditor
https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html

Amazon Lambda Developer Guide

 "ExecutedVersion": "$LATEST"
}

Example decode the logs

In the same command prompt, use the base64 utility to decode the logs. The following example
shows how to retrieve base64-encoded logs for my-function.

aws lambda invoke --function-name my-function out --log-type Tail \
--query 'LogResult' --output text --cli-binary-format raw-in-base64-out | base64 --
decode

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

You should see the following output:

START RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Version: $LATEST
"AWS_SESSION_TOKEN": "AgoJb3JpZ2luX2VjELj...", "_X_AMZN_TRACE_ID": "Root=1-5d02e5ca-
f5792818b6fe8368e5b51d50;Parent=191db58857df8395;Sampled=0"",ask/lib:/opt/lib",
END RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8
REPORT RequestId: 57f231fb-1730-4395-85cb-4f71bd2b87b8 Duration: 79.67 ms Billed
 Duration: 80 ms Memory Size: 128 MB Max Memory Used: 73 MB

The base64 utility is available on Linux, macOS, and Ubuntu on Windows. macOS users may need
to use base64 -D.

Example get-logs.sh script

In the same command prompt, use the following script to download the last five log events. The
script uses sed to remove quotes from the output file, and sleeps for 15 seconds to allow time for
the logs to become available. The output includes the response from Lambda and the output from
the get-log-events command.

Copy the contents of the following code sample and save in your Lambda project directory as get-
logs.sh.

Using the Amazon CLI 1600

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Lambda Developer Guide

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

#!/bin/bash
aws lambda invoke --function-name my-function --cli-binary-format raw-in-base64-out --
payload '{"key": "value"}' out
sed -i'' -e 's/"//g' out
sleep 15
aws logs get-log-events --log-group-name /aws/lambda/my-function --log-stream-
name stream1 --limit 5

Example macOS and Linux (only)

In the same command prompt, macOS and Linux users may need to run the following command to
ensure the script is executable.

chmod -R 755 get-logs.sh

Example retrieve the last five log events

In the same command prompt, run the following script to get the last five log events.

./get-logs.sh

You should see the following output:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
{
 "events": [
 {
 "timestamp": 1559763003171,
 "message": "START RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf Version:
 $LATEST\n",
 "ingestionTime": 1559763003309
 },
 {

Using the Amazon CLI 1601

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tENVIRONMENT VARIABLES\r{\r \"AWS_LAMBDA_FUNCTION_VERSION\": \"$LATEST\",
\r ...",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003173,
 "message": "2019-06-05T19:30:03.173Z\t4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tINFO\tEVENT\r{\r \"key\": \"value\"\r}\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "END RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf\n",
 "ingestionTime": 1559763018353
 },
 {
 "timestamp": 1559763003218,
 "message": "REPORT RequestId: 4ce9340a-b765-490f-ad8a-02ab3415e2bf
\tDuration: 26.73 ms\tBilled Duration: 27 ms \tMemory Size: 128 MB\tMax Memory Used: 75
 MB\t\n",
 "ingestionTime": 1559763018353
 }
],
 "nextForwardToken": "f/34783877304859518393868359594929986069206639495374241795",
 "nextBackwardToken": "b/34783877303811383369537420289090800615709599058929582080"
}

Runtime function logging

To debug and validate that your code is working as expected, you can output logs with the
standard logging functionality for your programming language. The Lambda runtime uploads your
function's log output to CloudWatch Logs. For language-specific instructions, see the following
topics:

• Amazon Lambda function logging in Node.js

• Amazon Lambda function logging in Python

• Amazon Lambda function logging in Ruby

• Amazon Lambda function logging in Java

• Amazon Lambda function logging in Go

Runtime function logging 1602

Amazon Lambda Developer Guide

• Lambda function logging in C#

• Amazon Lambda function logging in PowerShell

What's next?

• Learn more about log groups and accessing them through the CloudWatch console in Monitoring
system, application, and custom log files in the Amazon CloudWatch User Guide.

What's next? 1603

https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

Amazon Lambda Developer Guide

Using Amazon Lambda with Amazon X-Ray

You can use Amazon X-Ray to visualize the components of your application, identify performance
bottlenecks, and troubleshoot requests that resulted in an error. Your Lambda functions send
trace data to X-Ray, and X-Ray processes the data to generate a service map and searchable trace
summaries.

If you've enabled X-Ray tracing in a service that invokes your function, Lambda sends traces to X-
Ray automatically. The upstream service, such as Amazon API Gateway, or an application hosted
on Amazon EC2 that is instrumented with the X-Ray SDK, samples incoming requests and adds a
tracing header that tells Lambda to send traces or not. Traces from upstream message producers,
such as Amazon SQS, are automatically linked to traces from downstream Lambda functions,
creating an end-to-end view of the entire application. For more information, see Tracing event-
driven applications in the Amazon X-Ray Developer Guide.

Note

X-Ray tracing is currently not supported for Lambda functions with Amazon Managed
Streaming for Apache Kafka (Amazon MSK), self-managed Apache Kafka, Amazon MQ with
ActiveMQ and RabbitMQ, or Amazon DocumentDB event source mappings.

To toggle active tracing on your Lambda function with the console, follow these steps:

To turn on active tracing

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose Configuration and then choose Monitoring and operations tools.

4. Choose Edit.

5. Under X-Ray, toggle on Active tracing.

6. Choose Save.

Amazon X-Ray 1604

https://docs.amazonaws.cn/xray/latest/devguide/xray-tracelinking.html
https://docs.amazonaws.cn/xray/latest/devguide/xray-tracelinking.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Pricing

You can use X-Ray tracing for free each month up to a certain limit as part of the Amazon
Free Tier. Beyond that threshold, X-Ray charges for trace storage and retrieval. For more
information, see Amazon X-Ray pricing.

Your function needs permission to upload trace data to X-Ray. When you activate tracing in
the Lambda console, Lambda adds the required permissions to your function's execution role.
Otherwise, add the AWSXRayDaemonWriteAccess policy to the execution role.

X-Ray doesn't trace all requests to your application. X-Ray applies a sampling algorithm to ensure
that tracing is efficient, while still providing a representative sample of all requests. The sampling
rate is 1 request per second and 5 percent of additional requests.

Note

You cannot configure the X-Ray sampling rate for your functions.

In X-Ray, a trace records information about a request that is processed by one or more services.
Services record segments that contain layers of subsegments. Lambda records a segment for
the Lambda service that handles the invocation request, and one for the work done by the
function. The function segment comes with subsegments for Initialization, Invocation,
Restore (Lambda SnapStart only), and Overhead. For more information, see Lambda execution
environment lifecycle.

Note

X-Ray treats unhandled exceptions in your Lambda function as Error statuses. X-Ray
records Fault statuses only when Lambda experiences internal server errors. For more
information, see Errors, faults, and exceptions in the X-Ray Developer Guide.

The Initialization subsegment represents the init phase of the Lambda execution
environment lifecycle. During this phase, Lambda creates or unfreezes an execution environment
with the resources you have configured, downloads the function code and all layers, initializes
extensions, initializes the runtime, and runs the function's initialization code.

Amazon X-Ray 1605

https://www.amazonaws.cn/xray/pricing/
https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.amazonaws.cn/xray/latest/devguide/xray-concepts.html#xray-concepts-errors

Amazon Lambda Developer Guide

The Invocation subsegment represents the invoke phase where Lambda invokes the function
handler. This begins with runtime and extension registration and it ends when the runtime is ready
to send the response.

(Lambda SnapStart only) The Restore subsegment shows the time it takes for Lambda to restore
a snapshot, load the runtime (JVM), and run any afterRestore runtime hooks. The process of
restoring snapshots can include time spent on activities outside the MicroVM. This time is reported
in the Restore subsegment. You aren't charged for the time spent outside the microVM to restore
a snapshot.

The Overhead subsegment represents the phase that occurs between the time when the runtime
sends the response and the signal for the next invoke. During this time, the runtime finishes all
tasks related to an invoke and prepares to freeze the sandbox.

Note

Occasionally, you may notice a large gap between the function initialization and invocation
phases in your X-Ray traces. For functions using provisioned concurrency, this is because
Lambda initializes your function instances well in advance of invocation. For functions
using unreserved (on-demand) concurrency, Lambda may proactively initialize a function
instance, even if there's no invocation. Visually, both of these cases show up as a time gap
between the initialization and invocation phases.

Important

In Lambda, you can use the X-Ray SDK to extend the Invocation subsegment with
additional subsegments for downstream calls, annotations, and metadata. You can't access
the function segment directly or record work done outside of the handler invocation scope.

See the following topics for a language-specific introduction to tracing in Lambda:

• Instrumenting Node.js code in Amazon Lambda

• Instrumenting Python code in Amazon Lambda

• Instrumenting Ruby code in Amazon Lambda

• Instrumenting Java code in Amazon Lambda

• Instrumenting Go code in Amazon Lambda

Amazon X-Ray 1606

Amazon Lambda Developer Guide

• Instrumenting C# code in Amazon Lambda

For a full list of services that support active instrumentation, see Supported Amazon services in the
Amazon X-Ray Developer Guide.

Sections

• Execution role permissions

• The Amazon X-Ray daemon

• Enabling active tracing with the Lambda API

• Enabling active tracing with Amazon CloudFormation

Execution role permissions

Lambda needs the following permissions to send trace data to X-Ray. Add them to your function's
execution role.

• xray:PutTraceSegments

• xray:PutTelemetryRecords

These permissions are included in the AWSXRayDaemonWriteAccess managed policy.

The Amazon X-Ray daemon

Instead of sending trace data directly to the X-Ray API, the X-Ray SDK uses a daemon process. The
Amazon X-Ray daemon is an application that runs in the Lambda environment and listens for UDP
traffic that contains segments and subsegments. It buffers incoming data and writes it to X-Ray in
batches, reducing the processing and memory overhead required to trace invocations.

The Lambda runtime allows the daemon to up to 3 percent of your function's configured memory
or 16 MB, whichever is greater. If your function runs out of memory during invocation, the runtime
terminates the daemon process first to free up memory.

The daemon process is fully managed by Lambda and cannot be configured by the user. All
segments generated by function invocations are recorded in the same account as the Lambda
function. The daemon cannot be configured to redirect them to any other account.

For more information, see The X-Ray daemon in the X-Ray Developer Guide.

Execution role permissions 1607

https://docs.amazonaws.cn/xray/latest/devguide/xray-usage.html#xray-usage-codechanges
https://docs.amazonaws.cn/xray/latest/api/API_PutTraceSegments.html
https://docs.amazonaws.cn/xray/latest/api/API_PutTelemetryRecords.html
https://console.amazonaws.cn/iam/home?#/policies/arn:aws-cn:iam::aws:policy/AWSXRayDaemonWriteAccess
https://docs.amazonaws.cn/xray/latest/devguide/xray-daemon.html

Amazon Lambda Developer Guide

Enabling active tracing with the Lambda API

To manage tracing configuration with the Amazon CLI or Amazon SDK, use the following API
operations:

• UpdateFunctionConfiguration

• GetFunctionConfiguration

• CreateFunction

The following example Amazon CLI command enables active tracing on a function named my-
function.

aws lambda update-function-configuration --function-name my-function \
--tracing-config Mode=Active

Tracing mode is part of the version-specific configuration when you publish a version of your
function. You can't change the tracing mode on a published version.

Enabling active tracing with Amazon CloudFormation

To activate tracing on an AWS::Lambda::Function resource in an Amazon CloudFormation
template, use the TracingConfig property.

Example function-inline.yml – Tracing configuration

Resources:
 function:
 Type: AWS::Lambda::Function
 Properties:
 TracingConfig:
 Mode: Active
 ...

For an Amazon Serverless Application Model (Amazon SAM) AWS::Serverless::Function
resource, use the Tracing property.

Example template.yml – Tracing configuration

Resources:

Enabling active tracing with the Lambda API 1608

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_CreateFunction.html
https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/templates/function-inline.yml
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml

Amazon Lambda Developer Guide

 function:
 Type: AWS::Serverless::Function
 Properties:
 Tracing: Active
 ...

Enabling active tracing with Amazon CloudFormation 1609

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

Using Lambda Insights in Amazon CloudWatch

Amazon CloudWatch Lambda Insights collects and aggregates Lambda function runtime
performance metrics and logs for your serverless applications. This page describes how to enable
and use Lambda Insights to diagnose issues with your Lambda functions.

Sections

• How Lambda Insights monitors serverless applications

• Pricing

• Supported runtimes

• Enabling Lambda Insights in the Lambda console

• Enabling Lambda Insights programmatically

• Using the Lambda Insights dashboard

• Example workflow to detect function anomalies

• Example workflow using queries to troubleshoot a function

• What's next?

How Lambda Insights monitors serverless applications

CloudWatch Lambda Insights is a monitoring and troubleshooting solution for serverless
applications running on Amazon Lambda. The solution collects, aggregates, and summarizes
system-level metrics including CPU time, memory, disk and network usage. It also collects,
aggregates, and summarizes diagnostic information such as cold starts and Lambda worker
shutdowns to help you isolate issues with your Lambda functions and resolve them quickly.

Lambda Insights uses a new CloudWatch Lambda Insights extension, which is provided as a
Lambda layer. When you enable this extension on a Lambda function for a supported runtime, it
collects system-level metrics and emits a single performance log event for every invocation of that
Lambda function. CloudWatch uses embedded metric formatting to extract metrics from the log
events. For more information, see Using Amazon Lambda extensions.

The Lambda Insights layer extends the CreateLogStream and PutLogEvents for the /aws/
lambda-insights/ log group.

Function insights 1610

https://docs.amazonaws.cn/lambda/latest/dg/lambda-extensions.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-extensions.html

Amazon Lambda Developer Guide

Pricing

When you enable Lambda Insights for your Lambda function, Lambda Insights reports 8 metrics
per function and every function invocation sends about 1KB of log data to CloudWatch. You only
pay for the metrics and logs reported for your function by Lambda Insights. There are no minimum
fees or mandatory service usage policies. You do not pay for Lambda Insights if the function is not
invoked. For a pricing example, see Amazon CloudWatch pricing.

Supported runtimes

You can use Lambda Insights with any of the runtimes that support Lambda extensions.

Enabling Lambda Insights in the Lambda console

You can enable Lambda Insights enhanced monitoring on new and existing Lambda functions.
When you enable Lambda Insights on a function in the Lambda console for a supported runtime,
Lambda adds the Lambda Insights extension as a layer to your function, and verifies or attempts
to attach the CloudWatchLambdaInsightsExecutionRolePolicy policy to your function’s
execution role.

To enable Lambda Insights in the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose your function.

3. Choose the Configuration tab.

4. On the left menu, choose Monitoring and operations tools.

5. On the Additional monitoring tools pane, choose Edit.

6. Under CloudWatch Lambda Insights, turn on Enhanced monitoring.

7. Choose Save.

Enabling Lambda Insights programmatically

You can also enable Lambda Insights using the Amazon Command Line Interface (Amazon
CLI), Amazon Serverless Application Model (SAM) CLI, Amazon CloudFormation, or the
Amazon Cloud Development Kit (Amazon CDK). When you enable Lambda Insights
programmatically on a function for a supported runtime, CloudWatch attaches the
CloudWatchLambdaInsightsExecutionRolePolicy policy to your function’s execution role.

Pricing 1611

https://www.amazonaws.cn/cloudwatch/pricing/
https://docs.amazonaws.cn/lambda/latest/dg/lambda-extensions.html
https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/CloudWatchLambdaInsightsExecutionRolePolicy$jsonEditor
https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html
https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/CloudWatchLambdaInsightsExecutionRolePolicy$jsonEditor
https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html

Amazon Lambda Developer Guide

For more information, see Getting started with Lambda Insights in the Amazon CloudWatch User
Guide.

Using the Lambda Insights dashboard

The Lambda Insights dashboard has two views in the CloudWatch console: the multi-function
overview and the single-function view. The multi-function overview aggregates the runtime
metrics for the Lambda functions in the current Amazon account and Region. The single-function
view shows the available runtime metrics for a single Lambda function.

You can use the Lambda Insights dashboard multi-function overview in the CloudWatch console to
identify over- and under-utilized Lambda functions. You can use the Lambda Insights dashboard
single-function view in the CloudWatch console to troubleshoot individual requests.

To view the runtime metrics for all functions

1. Open the Multi-function page in the CloudWatch console.

2. Choose from the predefined time ranges, or choose a custom time range.

3. (Optional) Choose Add to dashboard to add the widgets to your CloudWatch dashboard.

Using the Lambda Insights dashboard 1612

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/Lambda-Insights-Getting-Started.html
https://console.amazonaws.cn/cloudwatch/home#lambda-insights:performance

Amazon Lambda Developer Guide

To view the runtime metrics of a single function

1. Open the Single-function page in the CloudWatch console.

2. Choose from the predefined time ranges, or choose a custom time range.

3. (Optional) Choose Add to dashboard to add the widgets to your CloudWatch dashboard.

For more information, see Creating and working with widgets on CloudWatch dashboards.

Example workflow to detect function anomalies

You can use the multi-function overview on the Lambda Insights dashboard to identify and detect
compute memory anomalies with your function. For example, if the multi-function overview
indicates that a function is using a large amount of memory, you can view detailed memory
utilization metrics in the Memory Usage pane. You can then go to the Metrics dashboard to enable
anomaly detection or create an alarm.

To enable anomaly detection for a function

1. Open the Multi-function page in the CloudWatch console.

2. Under Function summary, choose your function's name.

Detecting function anomalies 1613

https://console.amazonaws.cn/cloudwatch/home#lambda-insights:functions
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/create-and-work-with-widgets.html
https://console.amazonaws.cn/cloudwatch/home#lambda-insights:performance

Amazon Lambda Developer Guide

The single-function view opens with the function runtime metrics.

3. On the Memory Usage pane, choose the three vertical dots, and then choose View in metrics
to open the Metrics dashboard.

4. On the Graphed metrics tab, in the Actions column, choose the first icon to enable anomaly
detection for the function.

Detecting function anomalies 1614

Amazon Lambda Developer Guide

For more information, see Using CloudWatch Anomaly Detection.

Example workflow using queries to troubleshoot a function

You can use the single-function view on the Lambda Insights dashboard to identify the root
cause of a spike in function duration. For example, if the multi-function overview indicates a large
increase in function duration, you can pause on or choose each function in the Duration pane to
determine which function is causing the increase. You can then go to the single-function view and
review the Application logs to determine the root cause.

To run queries on a function

1. Open the Multi-function page in the CloudWatch console.

2. In the Duration pane, choose your function to filter the duration metrics.

3. Open the Single-function page.

4. Choose the Filter metrics by function name dropdown list, and then choose your function.

5. To view the Most recent 1000 application logs, choose the Application logs tab.

Troubleshooting a function 1615

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://console.amazonaws.cn/cloudwatch/home#lambda-insights:performance
https://console.amazonaws.cn/cloudwatch/home#lambda-insights:functions

Amazon Lambda Developer Guide

6. Review the Timestamp and Message to identify the invocation request that you want to
troubleshoot.

7. To show the Most recent 1000 invocations, choose the Invocations tab.

8. Select the Timestamp or Message for the invocation request that you want to troubleshoot.

9. Choose the View logs dropdown list, and then choose View performance logs.

An autogenerated query for your function opens in the Logs Insights dashboard.

10. Choose Run query to generate a Logs message for the invocation request.

Troubleshooting a function 1616

Amazon Lambda Developer Guide

What's next?

• Learn how to create a CloudWatch Logs dashboard in Create a Dashboard in the Amazon
CloudWatch User Guide.

• Learn how to add queries to a CloudWatch Logs dashboard in Add Query to Dashboard or Export
Query Results in the Amazon CloudWatch User Guide.

What's next? 1617

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/create_dashboard.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/CWL_ExportQueryResults.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/CWL_ExportQueryResults.html

Amazon Lambda Developer Guide

Using CodeGuru Profiler with your Lambda function

You can use Amazon CodeGuru Profiler to gain insights into runtime performance of your Lambda
functions. This page describes how to activate CodeGuru Profiler from the Lambda console.

Sections

• Supported runtimes

• Activating CodeGuru Profiler from the Lambda console

• What happens when you activate CodeGuru Profiler from the Lambda console?

• What's next?

Supported runtimes

You can activate CodeGuru Profiler from the Lambda console if your function's runtime is
Python3.8, Python3.9, Java 8 with Amazon Linux 2, Java 11, or Java 17. For additional runtime
versions, you can activate CodeGuru Profiler manually.

• For Java runtimes, see Profiling your Java applications that run on Amazon Lambda.

• For Python runtimes, see Profiling your Python applications that run on Amazon Lambda.

Note

CodeGuru Profiler currently only supports functions that use x86_64 architecture.

Activating CodeGuru Profiler from the Lambda console

This section describes how to activate CodeGuru Profiler from the Lambda console.

To activate CodeGuru Profiler from the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose your function.

3. Choose the Configuration tab.

4. On the Monitoring and operations tools pane, choose Edit.

5. Under Amazon CodeGuru Profiler, turn on Code profiling.

Code profiler 1618

https://docs.amazonaws.cn/codeguru/latest/profiler-ug/setting-up-lambda.html
https://docs.amazonaws.cn/codeguru/latest/profiler-ug/python-lambda.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

6. Choose Save.

After activation, CodeGuru automatically creates a profiler group with the name aws-lambda-
<your-function-name>. You can change the name from the CodeGuru console.

What happens when you activate CodeGuru Profiler from the Lambda
console?

When you activate CodeGuru Profiler from the console, Lambda automatically does the following
on your behalf:

• Lambda adds a CodeGuru Profiler layer to your function. For more details, see Use Amazon
Lambda layers in the Amazon CodeGuru Profiler User Guide.

• Lambda also adds environment variables to your function. The exact value varies based on the
runtime.

Environment variables

Runtimes Key Value

java8.al2, java11 JAVA_TOOL_OPTIONS -javaagent:/opt/co
deguru-profiler-ja
va-agent-standalon
e.jar

python3.8, python3.9 AWS_LAMBDA_EXEC_WR
APPER

/opt/codeguru_prof
iler_lambda_exec

• Lambda adds the AmazonCodeGuruProfilerAgentAccess policy to your function's execution
role.

Note

When you deactivate CodeGuru Profiler from the console, Lambda automatically removes
the CodeGuru Profiler layer from your function. However, Lambda does not remove the
environment variables or the AmazonCodeGuruProfilerAgentAccess policy from your
execution role.

What happens when you activate CodeGuru Profiler from the Lambda console? 1619

https://docs.amazonaws.cn/codeguru/latest/profiler-ug/python-lambda-layers.html
https://docs.amazonaws.cn/codeguru/latest/profiler-ug/python-lambda-layers.html

Amazon Lambda Developer Guide

What's next?

• Learn more about the data collected by your profiler group in Working with visualizations in the
Amazon CodeGuru Profiler User Guide.

What's next? 1620

https://docs.amazonaws.cn/codeguru/latest/profiler-ug/working-with-visualizations.html

Amazon Lambda Developer Guide

Example workflows using other Amazon services

Amazon Lambda integrates with other Amazon services to help you monitor, trace, debug, and
troubleshoot your Lambda functions. This page shows workflows you can use with Amazon X-Ray
and Amazon Trusted Advisor to trace and troubleshoot your Lambda functions.

Sections

• Prerequisites

• Pricing

• Example Amazon X-Ray workflow to view a trace map

• Example Amazon X-Ray workflow to view trace details

• Example Amazon Trusted Advisor workflow to view recommendations

• What's next?

Prerequisites

The following section describes the steps to using Amazon X-Ray and Trusted Advisor to
troubleshoot your Lambda functions.

Using Amazon X-Ray

Amazon X-Ray needs to be enabled on the Lambda console to complete the Amazon X-Ray
workflows on this page. If your execution role does not have the required permissions, the Lambda
console will attempt to add them to your execution role.

To enable Amazon X-Ray on the Lambda console

1. Open the Functions page of the Lambda console.

2. Choose your function.

3. Choose the Configuration tab.

4. On the Monitoring tools pane, choose Edit.

5. Under Amazon X-Ray, turn on Active tracing.

6. Choose Save.

Example workflows 1621

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Using Amazon Trusted Advisor

Amazon Trusted Advisor inspects your Amazon environment and makes recommendations on
ways you can save money, improve system availability and performance, and help close security
gaps. You can use Trusted Advisor checks to evaluate the Lambda functions and applications in
your Amazon account. The checks provide recommended steps to take and resources for more
information.

• For more information on Amazon support plans for Trusted Advisor checks, see Support plans.

• For more information about the checks for Lambda, see Amazon Trusted Advisor best practice
checklist.

• For more information on how to use the Trusted Advisor console, see Get started with Amazon
Trusted Advisor.

• For instructions on how to allow and deny console access to Trusted Advisor, see IAM policy
examples.

Pricing

• With Amazon X-Ray you pay only for what you use, based on the number of traces recorded,
retrieved, and scanned. For more information, see Amazon X-Ray Pricing.

• Trusted Advisor cost optimization checks are included with Amazon Business and Enterprise
support subscriptions. For more information, see Amazon Trusted Advisor Pricing.

Example Amazon X-Ray workflow to view a trace map

If you've enabled Amazon X-Ray, you can view a trace map on the CloudWatch console. A trace
map displays your service endpoints and resources as nodes and highlights the traffic, latency, and
errors for each node and its connections.

You can choose a node to see detailed insights about the correlated metrics, logs, and traces
associated with that part of the service. This enables you to investigate problems and their effect
on an application.

To view trace map and traces using the CloudWatch console

1. Open the Functions page of the Lambda console.

2. Choose a function.

Pricing 1622

https://console.amazonaws.cn/support/plans/home?#/
https://www.amazonaws.cn/premiumsupport/technology/trusted-advisor/best-practice-checklist/
https://www.amazonaws.cn/premiumsupport/technology/trusted-advisor/best-practice-checklist/
https://docs.amazonaws.cn/awssupport/latest/user/get-started-with-aws-trusted-advisor.html
https://docs.amazonaws.cn/awssupport/latest/user/get-started-with-aws-trusted-advisor.html
https://docs.amazonaws.cn/awssupport/latest/user/security-trusted-advisor.html#iam-policy-examples-trusted-advisor
https://docs.amazonaws.cn/awssupport/latest/user/security-trusted-advisor.html#iam-policy-examples-trusted-advisor
https://www.amazonaws.cn/xray/pricing/
https://www.amazonaws.cn/premiumsupport/pricing/
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

3. Choose Monitoring.

4. Choose View X-Ray traces.

5. Choose Trace Map under X-Ray traces from the left navigation pane.

6. Choose from the predefined time ranges, or choose a custom time range.

7. To troubleshoot requests, choose a filter.

Example Amazon X-Ray workflow to view trace details

If you've enabled Amazon X-Ray, you can use the single-function view on the CloudWatch Lambda
Insights dashboard to show the distributed trace data of a function invocation error. For example,
if the application logs message shows an error, you can open the trace map to see the distributed
trace data and the other services handling the transaction.

To view trace details of a function

1. Open the single-function view in the CloudWatch console.

2. Choose the Application logs tab.

3. Use the Timestamp or Message to identify the invocation request that you want to
troubleshoot.

4. To show the Most recent 1000 invocations, choose the Invocations tab.

5. Choose the Request ID column to sort entries in ascending alphabetical order.

6. In the Trace column, choose View.

The Trace details page opens in the trace map view.

Viewing trace details 1623

https://console.amazonaws.cn/cloudwatch/home#lambda-insights:functions

Amazon Lambda Developer Guide

Example Amazon Trusted Advisor workflow to view recommendations

Trusted Advisor checks Lambda functions in all Amazon Regions to identify functions with the
highest potential cost savings, and deliver actionable recommendations for optimization. It
analyzes your Lambda usage data such as function execution time, billed duration, memory used,
memory configured, timeout configuration and errors.

For example, the Lambda Functions with High Error Rate check recommends that you use Amazon
X-Ray or CloudWatch to detect errors with your Lambda functions.

To check for functions with high error rates

1. Open the Trusted Advisor console.

2. Choose the Cost Optimization category.

3. Scroll down to Amazon Lambda Functions with High Error Rates. Expand the section to see
the results and the recommended actions.

What's next?

• Learn more about how to integrate traces, metrics, logs, and alarms in Using the X-Ray trace
map.

• Learn more about how to get a list of Trusted Advisor checks in Using Trusted Advisor as a web
service.

Using Trusted Advisor to view recommendations 1624

https://console.amazonaws.cn/trustedadvisor
https://docs.amazonaws.cn/xray/latest/devguide/xray-console-servicemap.html
https://docs.amazonaws.cn/xray/latest/devguide/xray-console-servicemap.html
https://docs.amazonaws.cn/awssupport/latest/user/trustedadvisor.html
https://docs.amazonaws.cn/awssupport/latest/user/trustedadvisor.html

Amazon Lambda Developer Guide

Working with Lambda layers

A Lambda layer is a .zip file archive that contains supplementary code or data. Layers usually
contain library dependencies, a custom runtime, or configuration files.

There are multiple reasons why you might consider using layers:

• To reduce the size of your deployment packages. Instead of including all of your function
dependencies along with your function code in your deployment package, put them in a layer.
This keeps deployment packages small and organized.

• To separate core function logic from dependencies. With layers, you can update your function
dependencies independent of your function code, and vice versa. This promotes separation of
concerns and helps you focus on your function logic.

• To share dependencies across multiple functions. After you create a layer, you can apply
it to any number of functions in your account. Without layers, you need to include the same
dependencies in each individual deployment package.

• To use the Lambda console code editor. The code editor is a useful tool for testing minor
function code updates quickly. However, you can’t use the editor if your deployment package size
is too large. Using layers reduces your package size and can unlock usage of the code editor.

The following diagram illustrates the high-level architectural differences between two functions
that share dependencies. One uses Lambda layers, and the other does not.

1625

Amazon Lambda Developer Guide

When you add a layer to a function, Lambda extracts the layer contents into the /opt directory in
your function’s execution environment. All natively supported Lambda runtimes include paths to
specific directories within the /opt directory. This gives your function access to your layer content.
For more information about these specific paths and how to properly package your layers, see the
section called “Packaging layers”.

You can include up to five layers per function. Also, you can use layers only with Lambda functions
deployed as a .zip file archive. For functions defined as a container image, package your preferred
runtime and all code dependencies when you create the container image. For more information,

1626

Amazon Lambda Developer Guide

see Working with Lambda layers and extensions in container images on the Amazon Compute
Blog.

Topics

• How to use layers

• Layers and layer versions

• Packaging your layer content

• Creating and deleting layers in Lambda

• Adding layers to functions

• Using Amazon CloudFormation with layers

• Using Amazon SAM with layers

How to use layers

To create a layer, package your dependencies into a .zip file, similar to how you create a normal
deployment package. More specifically, the general process of creating and using layers involves
these three steps:

• First, package your layer content. This means creating a .zip file archive. For more information,
see the section called “Packaging layers”.

• Next, create the layer in Lambda. For more information, see the section called “Creating and
deleting layers”.

• Add the layer to your function(s). For more information, see the section called “Adding layers”.

Layers and layer versions

A layer version is an immutable snapshot of a specific version of a layer. When you create a new
layer, Lambda creates a new layer version with a version number of 1. Each time you publish an
update to the layer, Lambda increments the version number and creates a new layer version.

Every layer version is identified by a unique Amazon Resource Name (ARN). When adding a layer to
the function, you must specify the exact layer version you want to use.

How to use layers 1627

http://aws.amazon.com/blogs/compute/working-with-lambda-layers-and-extensions-in-container-images/

Amazon Lambda Developer Guide

Packaging your layer content

A Lambda layer is a .zip file archive that contains supplementary code or data. Layers usually
contain library dependencies, a custom runtime, or configuration files.

This section explains how to properly package your layer content. For more conceptual information
about layers and why you might consider using them, see Lambda layers.

The first step to creating a layer is to bundle all of your layer content into a .zip file archive.
Because Lambda functions run on Amazon Linux, your layer content must be able to compile and
build in a Linux environment.

To ensure that your layer content works properly in a Linux environment, we recommend creating
your layer content using a tool like Docker or Amazon Cloud9. Amazon Cloud9 is a cloud-based
integrated development environment (IDE) that provides built-in access to a Linux server for
running and testing code. For more information, see Using Lambda layers to simplify your
development process on the Amazon Compute Blog.

Topics

• Layer paths for each Lambda runtime

Layer paths for each Lambda runtime

When you add a layer to a function, Lambda loads the layer content into the /opt directory of
that execution environment. For each Lambda runtime, the PATH variable already includes specific
folder paths within the /opt directory. To ensure that the PATH variable picks up your layer
content, your layer .zip file should have its dependencies in the following folder paths:

Layer paths for each Lambda runtime

Runtime Path

nodejs/node_modules

nodejs/node14/node_modules (NODE_PATH)

nodejs/node16/node_modules (NODE_PATH)

Node.js

nodejs/node18/node_modules (NODE_PATH)

Packaging layers 1628

https://docs.amazonaws.cn/linux/al2023/ug/what-is-amazon-linux.html
https://docs.docker.com/get-docker
https://aws.amazon.com/cloud9/
https://aws.amazon.com/blogs/compute/using-lambda-layers-to-simplify-your-development-process/
https://aws.amazon.com/blogs/compute/using-lambda-layers-to-simplify-your-development-process/

Amazon Lambda Developer Guide

Runtime Path

pythonPython

python/lib/ python3.x /site-packages
(site directories)

Java java/lib (CLASSPATH)

ruby/gems/3.2.0 (GEM_PATH)Ruby

ruby/lib (RUBYLIB)

bin (PATH)All runtimes

lib (LD_LIBRARY_PATH)

The following examples show how you can structure the folders in your layer .zip archive.

Node.js

Example file structure for the Amazon X-Ray SDK for Node.js

xray-sdk.zip
nodejs/node_modules/aws-xray-sdk

Python

Example file structure for the Requests library

layer_content.zip
python
 # lib
 # python3.11
 # site-packages
 # requests
 # <other_dependencies> (i.e. dependencies of the requests package)
 # ...)

Layer paths for each Lambda runtime 1629

Amazon Lambda Developer Guide

Ruby

Example file structure for the JSON gem

json.zip
ruby/gems/2.7.0/
 | build_info
 | cache
 | doc
 | extensions
 | gems
 | # json-2.1.0
 # specifications
 # json-2.1.0.gemspec

Java

Example file structure for the Jackson JAR file

jackson.zip
java/lib/jackson-core-2.2.3.jar

All

Example file structure for the jq library

jq.zip
bin/jq

For language-specific instructions on packaging, creating, and adding a layer, refer to the following
pages:

• Python – the section called “Layers”

Layer paths for each Lambda runtime 1630

Amazon Lambda Developer Guide

Creating and deleting layers in Lambda

A Lambda layer is a .zip file archive that contains supplementary code or data. Layers usually
contain library dependencies, a custom runtime, or configuration files.

This section explains how to create and delete layers in Lambda. For more conceptual information
about layers and why you might consider using them, see Lambda layers.

After you’ve packaged your layer content, the next step is to create the layer in Lambda. This
section demonstrates how to create and delete layers using the Lambda console or the Lambda API
only. To create a layer using Amazon CloudFormation, see the section called “Layers with Amazon
CloudFormation”. To create a layer using the Amazon Serverless Application Model (Amazon SAM),
see the section called “Layers with Amazon SAM”.

Topics

• Creating a layer

• Deleting a layer version

Creating a layer

To create a layer, you can either upload the .zip file archive from your local machine or from
Amazon Simple Storage Service (Amazon S3). Lambda extracts the layer contents into the /opt
directory when setting up the execution environment for the function.

Layers can have one or more layer versions. When you create a layer, Lambda sets the layer version
to version 1. You can change the permissions on an existing layer version at any time. However, to
update the code or make other configuration changes, you must create a new version of the layer.

To create a layer (console)

1. Open the Layers page of the Lambda console.

2. Choose Create layer.

3. Under Layer configuration, for Name, enter a name for your layer.

4. (Optional) For Description, enter a description for your layer.

5. To upload your layer code, do one of the following:

• To upload a .zip file from your computer, choose Upload a .zip file. Then, choose Upload
to select your local .zip file.

Creating and deleting layers 1631

https://console.amazonaws.cn/lambda/home#/layers

Amazon Lambda Developer Guide

• To upload a file from Amazon S3, choose Upload a file from Amazon S3. Then, for
Amazon S3 link URL, enter a link to the file.

6. (Optional) For Compatible architectures, choose one value or both values. For more
information, see the section called “Instruction sets (ARM/x86)”.

7. (Optional) For Compatible runtimes, choose the runtimes that your layer is compatible with.

8. (Optional) For License, enter any necessary license information.

9. Choose Create.

Alternatively, you can also use the PublishLayerVersion API to create a layer. For example, you can
use the publish-layer-version Amazon Command Line Interface (CLI) command with a name,
description, and .zip file archive specified. The license info, compatible runtimes, and compatible
architecture parameters are optional.

aws lambda publish-layer-version --layer-name my-layer \
 --description "My layer" \
 --license-info "MIT" \
 --zip-file fileb://layer.zip \
 --compatible-runtimes python3.10 python3.11 \
 --compatible-architectures "arm64" "x86_64"

You should see output similar to the following:

{
 "Content": {
 "Location": "https://awslambda-us-east-2-layers.s3.us-east-2.amazonaws.com/
snapshots/123456789012/my-layer-4aaa2fbb-ff77-4b0a-ad92-5b78a716a96a?
versionId=27iWyA73cCAYqyH...",
 "CodeSha256": "tv9jJO+rPbXUUXuRKi7CwHzKtLDkDRJLB3cC3Z/ouXo=",
 "CodeSize": 169
 },
 "LayerArn": "arn:aws-cn:lambda:us-west-2:123456789012:layer:my-layer",
 "LayerVersionArn": "arn:aws-cn:lambda:us-west-2:123456789012:layer:my-layer:1",
 "Description": "My layer",
 "CreatedDate": "2023-11-14T23:03:52.894+0000",
 "Version": 1,
 "CompatibleArchitectures": [
 "arm64",
 "x86_64"
],

Creating a layer 1632

https://docs.amazonaws.cn/lambda/latest/api/API_PublishLayerVersion.html

Amazon Lambda Developer Guide

 "LicenseInfo": "MIT",
 "CompatibleRuntimes": [
 "python3.10",
 "python3.11"
]
}

Each time you call publish-layer-version, you create a new version of the layer.

Deleting a layer version

To delete a layer version, use the DeleteLayerVersion API. For example, you can use the delete-
layer-version CLI command with the layer name and layer version specified.

aws lambda delete-layer-version --layer-name my-layer --version-number 1

When you delete a layer version, you can no longer configure a Lambda function to use it. However,
any function that already uses the version continues to have access to it. Also, Lambda never reuses
version numbers for a layer name.

Deleting a layer version 1633

https://docs.amazonaws.cn/lambda/latest/api/API_DeleteLayerVersion.html

Amazon Lambda Developer Guide

Adding layers to functions

A Lambda layer is a .zip file archive that contains supplementary code or data. Layers usually
contain library dependencies, a custom runtime, or configuration files.

This section explains how to add a layer to a Lambda function. For more conceptual information
about layers and why you might consider using them, see Lambda layers.

Before you can configure a Lambda function to use a layer, you must:

• Package your layer content

• Create a layer in Lambda

• Make sure that you have permission to call the GetLayerVersion API on the layer version. For
functions in your Amazon Web Services account, you must have this permission in your user
policy. To use a layer in another account, the owner of that account must grant your account
permission in a resource-based policy. For examples, see the section called “Granting layer access
to other accounts”.

You can add up to five layers to a Lambda function. The total unzipped size of the function and
all layers cannot exceed the unzipped deployment package size quota of 250 MB. For more
information, see Lambda quotas.

Your functions can continue to use any layer version that you’ve already added, even after that
layer version has been deleted, or after your permission to access the layer is revoked. However,
you cannot create a new function that uses a deleted layer version.

Note

Make sure that the layers you add to a function are compatible with the runtime and
instruction set architecture of the function.

To add a layer to a function (console)

1. Open the Functions page of the Lambda console.

2. Choose the function to configure.

3. Under Layers, choose Add a layer

4. Under Choose a layer, choose a layer source:

Adding layers 1634

https://docs.amazonaws.cn/lambda/latest/api/API_GetLayerVersion.html
https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

a. For the Amazon layers or Custom layers layer sources, choose a layer from the pull-down
menu. Under Version, choose a layer version from the pull-down menu.

b. For the Specify an ARN layer source, enter an ARN in the text box and choose Verify.
Then, choose Add.

The order in which you add the layers is the order in which Lambda merges the layer content into
the execution environment. You can change the layer merge order using the console.

To update layer merge order for your function (console)

1. Open the Functions page of the Lambda console.

2. Choose the function to configure.

3. Under Layers, choose Edit

4. Choose one of the layers.

5. Choose Merge earlier or Merge later to adjust the order of the layers.

6. Choose Save.

Layers are versioned. The content of each layer version is immutable. The owner of a layer can
release new layer versions to provide updated content. You can use the console to update the layer
version attached to your functions.

To update layer versions for your function (console)

1. Open the Layers page of the Lambda console.

2. Choose the layer you want to update the version for.

3. Choose the Functions using this version tab.

4. Choose the functions you want to modify, then choose Edit.

5. For Layer version, choose the layer version to change to.

6. Choose Update functions.

You cannot update function layer versions across Amazon accounts.

Topics

• Accessing layer content from your function

Adding layers 1635

https://console.amazonaws.cn/lambda/home#/functions
https://console.amazonaws.cn/lambda/home#/layers

Amazon Lambda Developer Guide

• Finding layer information

Accessing layer content from your function

If your Lambda function includes layers, Lambda extracts the layer contents into the /opt
directory in the function execution environment. Lambda extracts the layers in the order (low to
high) listed by the function. Lambda merges folders with the same name. If the same file appears
in multiple layers, the function uses the version in the last extracted layer.

Each Lambda runtime adds specific /opt directory folders to the PATH variable. Your function
code can access the layer content without having to specify the path. For more information about
path settings in the Lambda execution environment, see the section called “Defined runtime
environment variables”.

Refer to the section called “Layer paths for each Lambda runtime” to learn where to include your
libraries when creating a layer.

If you’re using a Node.js or Python runtime, you can use the built-in code editor in the Lambda
console. You should be able to import any library that you’ve added as a layer to the current
function.

Finding layer information

To find layers in your account that are compatible with your function’s runtime, use the ListLayers
API. For example, you can use the following list-layers Amazon Command Line Interface (CLI)
command:

aws lambda list-layers --compatible-runtime python3.9

You should see output similar to the following:

{
 "Layers": [
 {
 "LayerName": "my-layer",
 "LayerArn": "arn:aws-cn:lambda:us-west-2:123456789012:layer:my-layer",
 "LatestMatchingVersion": {
 "LayerVersionArn": "arn:aws-cn:lambda:us-west-2:123456789012:layer:my-
layer:2",

Accessing layer content from your function 1636

https://docs.amazonaws.cn/lambda/latest/api/API_ListLayers.html

Amazon Lambda Developer Guide

 "Version": 2,
 "Description": "My layer",
 "CreatedDate": "2023-11-15T00:37:46.592+0000",
 "CompatibleRuntimes": [
 "python3.9",
 "python3.10",
 "python3.11",
]
 }
 }
]
}

To list all layers in your account, omit the --compatible-runtime option. The response details
show the latest version of each layer.

You can also get the latest version of a layer using the ListLayerVersions API. For example, you can
use the following list-layer-versions CLI command:

aws lambda list-layer-versions --layer-name my-layer

You should see output similar to the following:

{
 "LayerVersions": [
 {
 "LayerVersionArn": "arn:aws-cn:lambda:us-west-2:123456789012:layer:my-
layer:2",
 "Version": 2,
 "Description": "My layer",
 "CreatedDate": "2023-11-15T00:37:46.592+0000",
 "CompatibleRuntimes": [
 "java11"
]
 },
 {
 "LayerVersionArn": "arn:aws-cn:lambda:us-west-2:123456789012:layer:my-
layer:1",
 "Version": 1,
 "Description": "My layer",
 "CreatedDate": "2023-11-15T00:27:46.592+0000",
 "CompatibleRuntimes": [

Finding layer information 1637

https://docs.amazonaws.cn/lambda/latest/api/API_ListLayerVersions.html

Amazon Lambda Developer Guide

 "java11"
]
 }
]
}

Finding layer information 1638

Amazon Lambda Developer Guide

Using Amazon CloudFormation with layers

You can use Amazon CloudFormation to create a layer and associate the layer with your Lambda
function. The following example template creates a layer named my-lambda-layer and attaches
the layer to the Lambda function using the Layers property.

Description: CloudFormation Template for Lambda Function with Lambda Layer
Resources:
 MyLambdaLayer:
 Type: AWS::Lambda::LayerVersion
 Properties:
 LayerName: my-lambda-layer
 Description: My Lambda Layer
 Content:
 S3Bucket: my-bucket
 S3Key: my-layer.zip
 CompatibleRuntimes:
 - python3.9
 - python3.10
 - python3.11

 MyLambdaFunction:
 Type: AWS::Lambda::Function
 Properties:
 FunctionName: my-lambda-function
 Runtime: python3.9
 Handler: index.handler
 Timeout: 10
 Policies:
 - AWSLambdaBasicExecutionRole
 - AWSLambda_ReadOnlyAccess
 - AWSXrayWriteOnlyAccess
 Layers:
 - !Ref MyLambdaLayer

Layers with Amazon CloudFormation 1639

Amazon Lambda Developer Guide

Using Amazon SAM with layers

You can use the Amazon Serverless Application Model (Amazon SAM) to automate the creation of
layers in your application. The AWS::Serverless::LayerVersion resource type creates a layer
version that you can reference from your Lambda function configuration.

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Description: AWS SAM Template for Lambda Function with Lambda Layer

Resources:
 MyLambdaLayer:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: my-lambda-layer
 Description: My Lambda Layer
 ContentUri: s3://my-bucket/my-layer.zip
 CompatibleRuntimes:
 - python3.9
 - python3.10
 - python3.11

 MyLambdaFunction:
 Type: AWS::Serverless::Function
 Properties:
 FunctionName: MyLambdaFunction
 Runtime: python3.9
 Handler: app.handler
 CodeUri: s3://my-bucket/my-function
 Layers:
 - !Ref MyLambdaLayer

Layers with Amazon SAM 1640

Amazon Lambda Developer Guide

Lambda extensions

You can use Lambda extensions to augment your Lambda functions. For example, use Lambda
extensions to integrate functions with your preferred monitoring, observability, security, and
governance tools. You can choose from a broad set of tools that Amazon Lambda Partners
provides, or you can create your own Lambda extensions.

Lambda supports external and internal extensions. An external extension runs as an independent
process in the execution environment and continues to run after the function invocation is fully
processed. Because extensions run as separate processes, you can write them in a different
language than the function. All Lambda runtimes support extensions.

An internal extension runs as part of the runtime process. Your function accesses internal
extensions by using wrapper scripts or in-process mechanisms such as JAVA_TOOL_OPTIONS. For
more information, see Modifying the runtime environment.

You can add extensions to a function using the Lambda console, the Amazon Command Line
Interface (Amazon CLI), or infrastructure as code (IaC) services and tools such as Amazon
CloudFormation, Amazon Serverless Application Model (Amazon SAM), and Terraform.

You are charged for the execution time that the extension consumes (in 1 ms increments). There
is no cost to install your own extensions. For more pricing information for extensions, see Amazon
Lambda Pricing. For pricing information for partner extensions, see those partners' websites. See
the section called “Extensions partners” for a list of official partner extensions.

For a tutorial on extensions and how to use them with your Lambda functions, see the Amazon
Lambda Extensions Workshop.

Topics

• Execution environment

• Impact on performance and resources

• Permissions

• Configuring Lambda extensions

• Amazon Lambda extensions partners

• Lambda Extensions API

• Lambda Telemetry API

1641

https://www.amazonaws.cn/lambda/partners/
https://www.amazonaws.cn/lambda/pricing/
https://www.amazonaws.cn/lambda/pricing/
https://catalog.workshops.aws/lambdaextensions/en-US
https://catalog.workshops.aws/lambdaextensions/en-US

Amazon Lambda Developer Guide

Execution environment

Lambda invokes your function in an execution environment, which provides a secure and isolated
runtime environment. The execution environment manages the resources required to run your
function and provides lifecycle support for the function's runtime and extensions.

The lifecycle of the execution environment includes the following phases:

• Init: In this phase, Lambda creates or unfreezes an execution environment with the configured
resources, downloads the code for the function and all layers, initializes any extensions, initializes
the runtime, and then runs the function’s initialization code (the code outside the main handler).
The Init phase happens either during the first invocation, or in advance of function invocations
if you have enabled provisioned concurrency.

The Init phase is split into three sub-phases: Extension init, Runtime init, and
Function init. These sub-phases ensure that all extensions and the runtime complete their
setup tasks before the function code runs.

When Lambda SnapStart is activated, the Init phase happens when you publish a function
version. Lambda saves a snapshot of the memory and disk state of the initialized execution
environment, persists the encrypted snapshot, and caches it for low-latency access. If you have a
beforeCheckpoint runtime hook, then the code runs at the end of Init phase.

• Restore (SnapStart only): When you first invoke a SnapStart function and as the function
scales up, Lambda resumes new execution environments from the persisted snapshot
instead of initializing the function from scratch. If you have an afterRestore() runtime
hook, the code runs at the end of the Restore phase. You are charged for the duration of
afterRestore() runtime hooks. The runtime (JVM) must load and afterRestore()
runtime hooks must complete within the timeout limit (10 seconds). Otherwise, you'll get a
SnapStartTimeoutException. When the Restore phase completes, Lambda invokes the function
handler (the Invoke phase).

• Invoke: In this phase, Lambda invokes the function handler. After the function runs to
completion, Lambda prepares to handle another function invocation.

• Shutdown: This phase is triggered if the Lambda function does not receive any invocations for a
period of time. In the Shutdown phase, Lambda shuts down the runtime, alerts the extensions to
let them stop cleanly, and then removes the environment. Lambda sends a Shutdown event to
each extension, which tells the extension that the environment is about to be shut down.

Execution environment 1642

Amazon Lambda Developer Guide

During the Init phase, Lambda extracts layers containing extensions into the /opt directory in
the execution environment. Lambda looks for extensions in the /opt/extensions/ directory,
interprets each file as an executable bootstrap for launching the extension, and starts all
extensions in parallel.

Impact on performance and resources

The size of your function's extensions counts towards the deployment package size limit. For a .zip
file archive, the total unzipped size of the function and all extensions cannot exceed the unzipped
deployment package size limit of 250 MB.

Extensions can impact the performance of your function because they share function resources
such as CPU, memory, and storage. For example, if an extension performs compute-intensive
operations, you may see your function's execution duration increase.

Each extension must complete its initialization before Lambda invokes the function. Therefore,
an extension that consumes significant initialization time can increase the latency of the function
invocation.

To measure the extra time that the extension takes after the function execution, you can use the
PostRuntimeExtensionsDuration function metric. To measure the increase in memory used,
you can use the MaxMemoryUsed metric. To understand the impact of a specific extension, you can
run different versions of your functions side by side.

Permissions

Extensions have access to the same resources as functions. Because extensions are executed within
the same environment as the function, permissions are shared between the function and the
extension.

For a .zip file archive, you can create an Amazon CloudFormation template to simplify the task of
attaching the same extension configuration—including Amazon Identity and Access Management
(IAM) permissions—to multiple functions.

Impact on performance and resources 1643

Amazon Lambda Developer Guide

Configuring Lambda extensions

Configuring extensions (.zip file archive)

You can add an extension to your function as a Lambda layer. Using layers enables you to share
extensions across your organization or to the entire community of Lambda developers. You can add
one or more extensions to a layer. You can register up to 10 extensions for a function.

You add the extension to your function using the same method as you would for any layer. For
more information, see Lambda layers.

Add an extension to your function (console)

1. Open the Functions page of the Lambda console.

2. Choose a function.

3. Choose the Code tab if it is not already selected.

4. Under Layers, choose Edit.

5. For Choose a layer, choose Specify an ARN.

6. For Specify an ARN, enter the Amazon Resource Name (ARN) of an extension layer.

7. Choose Add.

Using extensions in container images

You can add extensions to your container image. The ENTRYPOINT container image setting
specifies the main process for the function. Configure the ENTRYPOINT setting in the Dockerfile, or
as an override in the function configuration.

You can run multiple processes within a container. Lambda manages the lifecycle of the main
process and any additional processes. Lambda uses the Extensions API to manage the extension
lifecycle.

Example: Adding an external extension

An external extension runs in a separate process from the Lambda function. Lambda starts a
process for each extension in the /opt/extensions/ directory. Lambda uses the Extensions
API to manage the extension lifecycle. After the function has run to completion, Lambda sends a
Shutdown event to each external extension.

Configuring extensions 1644

https://console.amazonaws.cn/lambda/home#/functions

Amazon Lambda Developer Guide

Example of adding an external extension to a Python base image

FROM public.ecr.aws/lambda/python:3.11

Copy and install the app
COPY /app /app
WORKDIR /app
RUN pip install -r requirements.txt

Add an extension from the local directory into /opt
ADD my-extension.zip /opt
CMD python ./my-function.py

Next steps

To learn more about extensions, we recommend the following resources:

• For a basic working example, see Building Extensions for Amazon Lambda on the Amazon
Compute Blog.

• For information about extensions that Amazon Lambda Partners provides, see Introducing
Amazon Lambda Extensions on the Amazon Compute Blog.

• To view available example extensions and wrapper scripts, see Amazon Lambda Extensions on
the Amazon Samples GitHub repository.

Next steps 1645

https://amazonaws-china.com/blogs/compute/building-extensions-for-aws-lambda-in-preview/
https://amazonaws-china.com/blogs/compute/introducing-aws-lambda-extensions-in-preview/
https://amazonaws-china.com/blogs/compute/introducing-aws-lambda-extensions-in-preview/
https://github.com/aws-samples/aws-lambda-extensions

Amazon Lambda Developer Guide

Amazon Lambda extensions partners

Amazon Lambda has partnered with several third party entities to provide extensions to integrate
with your Lambda functions. The following list details third party extensions that are ready for you
to use at any time.

• AppDynamics – Provides automatic instrumentation of Node.js or Python Lambda functions,
providing visibility and alerting on function performance.

• Check Point CloudGuard – An extension-based runtime solution that offers full lifecycle security
for serverless applications.

• Datadog – Provides comprehensive, real-time visibility to your serverless applications through
the use of metrics, traces, and logs.

• Dynatrace – Provides visibility into traces and metrics, and leverages AI for automated error
detection and root cause analysis across the entire application stack.

• Elastic – Provides Application Performance Monitoring (APM) to identify and resolve root cause
issues using correlated traces, metrics, and logs.

• Epsagon – Listens to invocation events, stores traces, and sends them in parallel to Lambda
function executions.

• Fastly– Protects your Lambda functions from suspicious activity, such as injection-style attacks,
account takeover via credential stuffing, malicious bots, and API abuse.

• HashiCorp Vault – Manages secrets and makes them available for developers to use within
function code, without making functions Vault aware.

• Honeycomb – Observability tool for debugging your app stack.

• Lumigo – Profiles Lambda function invocations and collects metrics for troubleshooting issues in
serverless and microservice environments.

• New Relic – Runs alongside Lambda functions, automatically collecting, enhancing, and
transporting telemetry to New Relic's unified observability platform.

• Sedai – An autonomous cloud management platform, powered by AI/ML, that delivers
continuous optimization for cloud operations teams to maximize cloud cost savings,
performance, and availability at scale.

• Sentry – Diagnose, fix, and optimize performance of Lambda functions.

• Site24x7 – Achieve real-time observability into your Lambda environments

• Splunk – Collects high-resolution, low-latency metrics for efficient and effective monitoring of
Lambda functions.

Extensions partners 1646

https://docs.appdynamics.com/display/PRO20X/Use+the+AppDynamics+AWS+Lambda+Extension+to+Instrument+Serverless+APM+at+Runtime
https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk172491&partition=Advanced&product=CloudGuard
https://docs.datadoghq.com/serverless/datadog_lambda_library/extension/
https://www.dynatrace.com/support/help/technology-support/cloud-platforms/amazon-web-services/integrations/deploy-oneagent-as-lambda-extension/
https://www.elastic.co/guide/en/apm/agent/nodejs/current/lambda.html
https://docs.epsagon.com/docs/environment-monitoring/lambda/intro
https://docs.fastly.com/signalsciences/install-guides/paas/aws-lambda/
https://learn.hashicorp.com/tutorials/vault/aws-lambda
https://docs.honeycomb.io/getting-data-in/integrations/aws/aws-lambda/
https://docs.lumigo.io/docs/lambda-extensions
https://docs.newrelic.com/docs/serverless-function-monitoring/aws-lambda-monitoring/get-started/monitoring-aws-lambda-serverless-monitoring
https://docs.sedai.io/get-started/platform/optimization/aws-lambda/av-lambda-extension
https://docs.sentry.io/product/integrations/aws-lambda/
https://www.site24x7.com/help/aws/lambda-execution-logs.html
https://github.com/signalfx/lambda-layer-versions/tree/master/lambda-extension

Amazon Lambda Developer Guide

• Sumo Logic – Provides visibility into the health and performance of serverless applications.

• Thundra – Provides asynchronous telemetry reporting, such as traces, metrics, and logs.

• Salt Security – Simplifies API posture governance and API security for Lambda functions through
automated setup and support for diverse runtimes.

Amazon managed extensions

Amazon provides its own managed extensions, including:

• Amazon AppConfig – Use feature flags and dynamic data to update your Lambda functions. You
can also use this extension to update other dynamic configuration, such as ops throttling and
tuning.

• Amazon CodeGuru Profiler – Improves application performance and reduces cost by pinpointing
an application's most expensive line of code and providing recommendations for improving code.

• CloudWatch Lambda Insights – Monitor, troubleshoot, and optimize the performance of your
Lambda functions through automated dashboards.

• Amazon Distro for OpenTelemetry (ADOT) – Enables functions to send trace data to Amazon
monitoring services such as Amazon X-Ray, and to destinations that support OpenTelemetry
such as Honeycomb and Lightstep.

• Amazon Parameters and Secrets – Enables customers to securely retrieve parameters from
Amazon Systems Manager Parameter Store and secrets from Amazon Secrets Manager.

For additional extensions samples and demo projects, see Amazon Lambda Extensions.

Amazon managed extensions 1647

https://help.sumologic.com/03Send-Data/Collect-from-Other-Data-Sources/Collect_AWS_Lambda_Logs_using_an_Extension
https://thundra.io
https://salt.security/press-releases/salt-security-becomes-the-first-and-only-api-security-vendor-to-join-aws-lambda-ready-program?
https://docs.amazonaws.cn/appconfig/latest/userguide/appconfig-integration-lambda-extensions.html#appconfig-integration-lambda-extensions-enabling
https://docs.amazonaws.cn/codeguru/latest/profiler-ug/python-lambda-layers.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/Lambda-Insights.html
https://www.amazonaws.cn/otel
https://docs.amazonaws.cn/systems-manager/latest/userguide/ps-integration-lambda-extensions.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/retrieving-secrets_lambda.html
https://github.com/aws-samples/aws-lambda-extensions

Amazon Lambda Developer Guide

Lambda Extensions API

Lambda function authors use extensions to integrate Lambda with their preferred tools for
monitoring, observability, security, and governance. Function authors can use extensions from
Amazon, Amazon Partners, and open-source projects. For more information on using extensions,
see Introducing Amazon Lambda Extensions on the Amazon Compute Blog. This section describes
how to use the Lambda Extensions API, the Lambda execution environment lifecycle, and the
Lambda Extensions API reference.

As an extension author, you can use the Lambda Extensions API to integrate deeply into
the Lambda execution environment. Your extension can register for function and execution
environment lifecycle events. In response to these events, you can start new processes, run logic,
and control and participate in all phases of the Lambda lifecycle: initialization, invocation, and
shutdown. In addition, you can use the Runtime Logs API to receive a stream of logs.

An extension runs as an independent process in the execution environment and can continue to run
after the function invocation is fully processed. Because extensions run as processes, you can write
them in a different language than the function. We recommend that you implement extensions
using a compiled language. In this case, the extension is a self-contained binary that is compatible
with supported runtimes. All Lambda runtimes support extensions. If you use a non-compiled
language, ensure that you include a compatible runtime in the extension.

Lambda also supports internal extensions. An internal extension runs as a separate thread in
the runtime process. The runtime starts and stops the internal extension. An alternative way to
integrate with the Lambda environment is to use language-specific environment variables and
wrapper scripts. You can use these to configure the runtime environment and modify the startup
behavior of the runtime process.

Extensions API 1648

https://amazonaws-china.com/blogs/aws/getting-started-with-using-your-favorite-operational-tools-on-aws-lambda-extensions-are-now-generally-available/

Amazon Lambda Developer Guide

You can add extensions to a function in two ways. For a function deployed as a .zip file archive,
you deploy your extension as a layer. For a function defined as a container image, you add the
extensions to your container image.

Note

For example extensions and wrapper scripts, see Amazon Lambda Extensions on the
Amazon Samples GitHub repository.

Topics

• Lambda execution environment lifecycle

• Extensions API reference

Lambda execution environment lifecycle

The lifecycle of the execution environment includes the following phases:

• Init: In this phase, Lambda creates or unfreezes an execution environment with the configured
resources, downloads the code for the function and all layers, initializes any extensions, initializes
the runtime, and then runs the function’s initialization code (the code outside the main handler).
The Init phase happens either during the first invocation, or in advance of function invocations
if you have enabled provisioned concurrency.

The Init phase is split into three sub-phases: Extension init, Runtime init, and
Function init. These sub-phases ensure that all extensions and the runtime complete their
setup tasks before the function code runs.

• Invoke: In this phase, Lambda invokes the function handler. After the function runs to
completion, Lambda prepares to handle another function invocation.

• Shutdown: This phase is triggered if the Lambda function does not receive any invocations for a
period of time. In the Shutdown phase, Lambda shuts down the runtime, alerts the extensions to
let them stop cleanly, and then removes the environment. Lambda sends a Shutdown event to
each extension, which tells the extension that the environment is about to be shut down.

Lambda execution environment lifecycle 1649

https://github.com/aws-samples/aws-lambda-extensions

Amazon Lambda Developer Guide

Each phase starts with an event from Lambda to the runtime and to all registered extensions. The
runtime and each extension signal completion by sending a Next API request. Lambda freezes the
execution environment when each process has completed and there are no pending events.

Topics

• Init phase

• Invoke phase

• Shutdown phase

• Permissions and configuration

• Failure handling

• Troubleshooting extensions

Lambda execution environment lifecycle 1650

Amazon Lambda Developer Guide

Init phase

During the Extension init phase, each extension needs to register with Lambda to receive
events. Lambda uses the full file name of the extension to validate that the extension has
completed the bootstrap sequence. Therefore, each Register API call must include the Lambda-
Extension-Name header with the full file name of the extension.

You can register up to 10 extensions for a function. This limit is enforced through the Register
API call.

After each extension registers, Lambda starts the Runtime init phase. The runtime process calls
functionInit to start the Function init phase.

The Init phase completes after the runtime and each registered extension indicate completion by
sending a Next API request.

Note

Extensions can complete their initialization at any point in the Init phase.

Lambda execution environment lifecycle 1651

Amazon Lambda Developer Guide

Invoke phase

When a Lambda function is invoked in response to a Next API request, Lambda sends an Invoke
event to the runtime and to each extension that is registered for the Invoke event.

During the invocation, external extensions run in parallel with the function. They also continue
running after the function has completed. This enables you to capture diagnostic information or to
send logs, metrics, and traces to a location of your choice.

After receiving the function response from the runtime, Lambda returns the response to the client,
even if extensions are still running.

The Invoke phase ends after the runtime and all extensions signal that they are done by sending a
Next API request.

Lambda execution environment lifecycle 1652

Amazon Lambda Developer Guide

Event payload: The event sent to the runtime (and the Lambda function) carries the entire request,
headers (such as RequestId), and payload. The event sent to each extension contains metadata
that describes the event content. This lifecycle event includes the type of the event, the time that
the function times out (deadlineMs), the requestId, the invoked function's Amazon Resource
Name (ARN), and tracing headers.

Extensions that want to access the function event body can use an in-runtime SDK that
communicates with the extension. Function developers use the in-runtime SDK to send the payload
to the extension when the function is invoked.

Here is an example payload:

{
 "eventType": "INVOKE",
 "deadlineMs": 676051,
 "requestId": "3da1f2dc-3222-475e-9205-e2e6c6318895",
 "invokedFunctionArn": "arn:aws-cn:lambda:us-
east-1:123456789012:function:ExtensionTest",
 "tracing": {
 "type": "X-Amzn-Trace-Id",
 "value":
 "Root=1-5f35ae12-0c0fec141ab77a00bc047aa2;Parent=2be948a625588e32;Sampled=1"
 }
 }

Lambda execution environment lifecycle 1653

Amazon Lambda Developer Guide

Duration limit: The function's timeout setting limits the duration of the entire Invoke phase. For
example, if you set the function timeout as 360 seconds, the function and all extensions need to
complete within 360 seconds. Note that there is no independent post-invoke phase. The duration
is the sum of all invocation time (runtime + extensions) and is not calculated until the function and
all extensions have finished running.

Performance impact and extension overhead: Extensions can impact function performance. As an
extension author, you have control over the performance impact of your extension. For example, if
your extension performs compute-intensive operations, the function's duration increases because
the extension and the function code share the same CPU resources. In addition, if your extension
performs extensive operations after the function invocation completes, the function duration
increases because the Invoke phase continues until all extensions signal that they are completed.

Note

Lambda allocates CPU power in proportion to the function's memory setting. You might
see increased execution and initialization duration at lower memory settings because the
function and extension processes are competing for the same CPU resources. To reduce the
execution and initialization duration, try increasing the memory setting.

To help identify the performance impact introduced by extensions on the Invoke phase, Lambda
outputs the PostRuntimeExtensionsDuration metric. This metric measures the cumulative
time spent between the runtime Next API request and the last extension Next API request. To
measure the increase in memory used, use the MaxMemoryUsed metric. For more information
about function metrics, see Working with Lambda function metrics.

Function developers can run different versions of their functions side by side to understand the
impact of a specific extension. We recommend that extension authors publish expected resource
consumption to make it easier for function developers to choose a suitable extension.

Shutdown phase

When Lambda is about to shut down the runtime, it sends a Shutdown to each registered external
extension. Extensions can use this time for final cleanup tasks. The Shutdown event is sent in
response to a Next API request.

Duration limit: The maximum duration of the Shutdown phase depends on the configuration of
registered extensions:

Lambda execution environment lifecycle 1654

Amazon Lambda Developer Guide

• 0 ms – A function with no registered extensions

• 500 ms – A function with a registered internal extension

• 2,000 ms – A function with one or more registered external extensions

For a function with external extensions, Lambda reserves up to 300 ms (500 ms for a runtime with
an internal extension) for the runtime process to perform a graceful shutdown. Lambda allocates
the remainder of the 2,000 ms limit for external extensions to shut down.

If the runtime or an extension does not respond to the Shutdown event within the limit, Lambda
ends the process using a SIGKILL signal.

Event payload: The Shutdown event contains the reason for the shutdown and the time remaining
in milliseconds.

The shutdownReason includes the following values:

• SPINDOWN – Normal shutdown

Lambda execution environment lifecycle 1655

Amazon Lambda Developer Guide

• TIMEOUT – Duration limit timed out

• FAILURE – Error condition, such as an out-of-memory event

{
 "eventType": "SHUTDOWN",
 "shutdownReason": "reason for shutdown",
 "deadlineMs": "the time and date that the function times out in Unix time
 milliseconds"
}

Permissions and configuration

Extensions run in the same execution environment as the Lambda function. Extensions also share
resources with the function, such as CPU, memory, and /tmp disk storage. In addition, extensions
use the same Amazon Identity and Access Management (IAM) role and security context as the
function.

File system and network access permissions: Extensions run in the same file system and network
name namespace as the function runtime. This means that extensions need to be compatible with
the associated operating system. If an extension requires any additional outbound network traffic
rules, you must apply these rules to the function configuration.

Note

Because the function code directory is read-only, extensions cannot modify the function
code.

Environment variables: Extensions can access the function's environment variables, except for the
following variables that are specific to the runtime process:

• AWS_EXECUTION_ENV

• AWS_LAMBDA_LOG_GROUP_NAME

• AWS_LAMBDA_LOG_STREAM_NAME

• AWS_XRAY_CONTEXT_MISSING

• AWS_XRAY_DAEMON_ADDRESS

Lambda execution environment lifecycle 1656

Amazon Lambda Developer Guide

• LAMBDA_RUNTIME_DIR

• LAMBDA_TASK_ROOT

• _AWS_XRAY_DAEMON_ADDRESS

• _AWS_XRAY_DAEMON_PORT

• _HANDLER

Failure handling

Initialization failures: If an extension fails, Lambda restarts the execution environment to enforce
consistent behavior and to encourage fail fast for extensions. Also, for some customers, the
extensions must meet mission-critical needs such as logging, security, governance, and telemetry
collection.

Invoke failures (such as out of memory, function timeout): Because extensions share resources
with the runtime, memory exhaustion affects them. When the runtime fails, all extensions and
the runtime itself participate in the Shutdown phase. In addition, the runtime is restarted—either
automatically as part of the current invocation, or via a deferred re-initialization mechanism.

If there is a failure (such as a function timeout or runtime error) during Invoke, the Lambda
service performs a reset. The reset behaves like a Shutdown event. First, Lambda shuts down the
runtime, then it sends a Shutdown event to each registered external extension. The event includes
the reason for the shutdown. If this environment is used for a new invocation, the extension and
runtime are re-initialized as part of the next invocation.

For a more detailed explanation of the previous diagram, see Failures during the invoke phase.

Extension logs: Lambda sends the log output of extensions to CloudWatch Logs. Lambda also
generates an additional log event for each extension during Init. The log event records the name
and registration preference (event, config) on success, or the failure reason on failure.

Troubleshooting extensions

• If a Register request fails, make sure that the Lambda-Extension-Name header in the
Register API call contains the full file name of the extension.

Lambda execution environment lifecycle 1657

Amazon Lambda Developer Guide

• If the Register request fails for an internal extension, make sure that the request does not
register for the Shutdown event.

Extensions API reference

The OpenAPI specification for the extensions API version 2020-01-01 is available here: extensions-
api.zip

You can retrieve the value of the API endpoint from the AWS_LAMBDA_RUNTIME_API environment
variable. To send a Register request, use the prefix 2020-01-01/ before each API path. For
example:

http://${AWS_LAMBDA_RUNTIME_API}/2020-01-01/extension/register

API methods

• Register

• Next

• Init error

• Exit error

Register

During Extension init, all extensions need to register with Lambda to receive events. Lambda
uses the full file name of the extension to validate that the extension has completed the bootstrap
sequence. Therefore, each Register API call must include the Lambda-Extension-Name header
with the full file name of the extension.

Internal extensions are started and stopped by the runtime process, so they are not permitted to
register for the Shutdown event.

Path – /extension/register

Method – POST

Request headers

• Lambda-Extension-Name – The full file name of the extension. Required: yes. Type: string.

Extensions API reference 1658

samples/extensions-api.zip
samples/extensions-api.zip

Amazon Lambda Developer Guide

• Lambda-Extension-Accept-Feature – Use this to specify optional Extensions features
during registration. Required: no. Type: comma separated string. Features available to specify
using this setting:

• accountId – If specified, the Extension registration response will contain the account ID
associated with the Lambda function that you're registering the Extension for.

Request body parameters

• events – Array of the events to register for. Required: no. Type: array of strings. Valid strings:
INVOKE, SHUTDOWN.

Response headers

• Lambda-Extension-Identifier – Generated unique agent identifier (UUID string) that is
required for all subsequent requests.

Response codes

• 200 – Response body contains the function name, function version, and handler name.

• 400 – Bad Request

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Extension should exit promptly.

Example Example request body

{
 'events': ['INVOKE', 'SHUTDOWN']
}

Example Example response body

{
 "functionName": "helloWorld",
 "functionVersion": "$LATEST",
 "handler": "lambda_function.lambda_handler"
}

Extensions API reference 1659

Amazon Lambda Developer Guide

Example Example response body with optional accountId feature

{
 "functionName": "helloWorld",
 "functionVersion": "$LATEST",
 "handler": "lambda_function.lambda_handler",
 "accountId": "123456789012"
}

Next

Extensions send a Next API request to receive the next event, which can be an Invoke event
or a Shutdown event. The response body contains the payload, which is a JSON document that
contains event data.

The extension sends a Next API request to signal that it is ready to receive new events. This is a
blocking call.

Do not set a timeout on the GET call, as the extension can be suspended for a period of time until
there is an event to return.

Path – /extension/event/next

Method – GET

Request headers

• Lambda-Extension-Identifier – Unique identifier for extension (UUID string). Required: yes.
Type: UUID string.

Response headers

• Lambda-Extension-Event-Identifier – Unique identifier for the event (UUID string).

Response codes

• 200 – Response contains information about the next event (EventInvoke or EventShutdown).

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Extension should exit promptly.

Extensions API reference 1660

Amazon Lambda Developer Guide

Init error

The extension uses this method to report an initialization error to Lambda. Call it when the
extension fails to initialize after it has registered. After Lambda receives the error, no further API
calls succeed. The extension should exit after it receives the response from Lambda.

Path – /extension/init/error

Method – POST

Request headers

• Lambda-Extension-Identifier – Unique identifier for extension. Required: yes. Type: UUID
string.

• Lambda-Extension-Function-Error-Type – Error type that the extension encountered.
Required: yes. This header consists of a string value. Lambda accepts any string, but we
recommend a format of <category.reason>. For example:

• Extension.NoSuchHandler

• Extension.APIKeyNotFound

• Extension.ConfigInvalid

• Extension.UnknownReason

Request body parameters

• ErrorRequest – Information about the error. Required: no.

This field is a JSON object with the following structure:

{
 errorMessage: string (text description of the error),
 errorType: string,
 stackTrace: array of strings
}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Extensions API reference 1661

Amazon Lambda Developer Guide

Example Function error

{
 "errorMessage" : "Error parsing event data.",
 "errorType" : "InvalidEventDataException",
 "stackTrace": []
}

Response codes

• 202 – Accepted

• 400 – Bad Request

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Extension should exit promptly.

Exit error

The extension uses this method to report an error to Lambda before exiting. Call it when you
encounter an unexpected failure. After Lambda receives the error, no further API calls succeed. The
extension should exit after it receives the response from Lambda.

Path – /extension/exit/error

Method – POST

Request headers

• Lambda-Extension-Identifier – Unique identifier for extension. Required: yes. Type: UUID
string.

• Lambda-Extension-Function-Error-Type – Error type that the extension encountered.
Required: yes. This header consists of a string value. Lambda accepts any string, but we
recommend a format of <category.reason>. For example:

• Extension.NoSuchHandler

• Extension.APIKeyNotFound

• Extension.ConfigInvalid

• Extension.UnknownReason

Extensions API reference 1662

Amazon Lambda Developer Guide

Request body parameters

• ErrorRequest – Information about the error. Required: no.

This field is a JSON object with the following structure:

{
 errorMessage: string (text description of the error),
 errorType: string,
 stackTrace: array of strings
}

Note that Lambda accepts any value for errorType.

The following example shows a Lambda function error message in which the function could not
parse the event data provided in the invocation.

Example Function error

{
 "errorMessage" : "Error parsing event data.",
 "errorType" : "InvalidEventDataException",
 "stackTrace": []
}

Response codes

• 202 – Accepted

• 400 – Bad Request

• 403 – Forbidden

• 500 – Container error. Non-recoverable state. Extension should exit promptly.

Extensions API reference 1663

Amazon Lambda Developer Guide

Lambda Telemetry API

The Telemetry API enables your extensions to receive telemetry data directly from Lambda.
During function initialization and invocation, Lambda automatically captures telemetry, including
logs, platform metrics, and platform traces. The Telemetry API enables extensions to access this
telemetry data directly from Lambda in near real time.

Within the Lambda execution environment, you can subscribe your Lambda extensions to
telemetry streams. After subscribing, Lambda automatically sends all telemetry data to your
extensions. You then have the flexibility to process, filter, and dispatch the data to your preferred
destination, such as an Amazon Simple Storage Service (Amazon S3) bucket or a third-part
observability tools provider.

The following diagram shows how the Extensions API and Telemetry API link extensions to Lambda
from within the execution environment. Additionally, the Runtime API connects your runtime and
function to Lambda.

Important

The Lambda Telemetry API supersedes the Lambda Logs API. While the Logs API remains
fully functional, we recommend using only the Telemetry API going forward. You can
subscribe your extension to a telemetry stream using either the Telemetry API or the Logs
API. After subscribing using one of these APIs, any attempt to subscribe using the other API
returns an error.

Extensions can use the Telemetry API to subscribe to three different telemetry streams:

Telemetry API 1664

Amazon Lambda Developer Guide

• Platform telemetry – Logs, metrics, and traces, which describe events and errors related to the
execution environment runtime lifecycle, extension lifecycle, and function invocations.

• Function logs – Custom logs that the Lambda function code generates.

• Extension logs – Custom logs that the Lambda extension code generates.

Note

Lambda sends logs and metrics to CloudWatch, and traces to X-Ray (if you've activated
tracing), even if an extension subscribes to telemetry streams.

Sections

• Creating extensions using the Telemetry API

• Registering your extension

• Creating a telemetry listener

• Specifying a destination protocol

• Configuring memory usage and buffering

• Sending a subscription request to the Telemetry API

• Inbound Telemetry API messages

• Lambda Telemetry API reference

• Lambda Telemetry API Event schema reference

• Converting Lambda Telemetry API Event objects to OpenTelemetry Spans

• Lambda Logs API

Creating extensions using the Telemetry API

Lambda extensions run as independent processes in the execution environment. Extensions can
continue to run after function invocation completes. Because extensions are separate processes,
you can write them in a language different from the function code. We recommend writing
extensions using a compiled language such as Golang or Rust. This way, the extension is a self-
contained binary that can be compatible with any supported runtime.

The following diagram illustrates a four-step process to create an extension that receives and
processes telemetry data using the Telemetry API.

Creating extensions using the Telemetry API 1665

Amazon Lambda Developer Guide

Here is each step in more detail:

1. Register your extension using the the section called “Extensions API”. This provides you with
a Lambda-Extension-Identifier, which you'll need in the following steps. For more
information about how to register your extension, see the section called “Registering your
extension”.

2. Create a telemetry listener. This can be a basic HTTP or TCP server. Lambda uses the URI of
the telemetry listener to send telemetry data to your extension. For more information, see the
section called “Creating a telemetry listener”.

3. Using the Subscribe API in the Telemetry API, subscribe your extension to the desired telemetry
streams. You'll need the URI of your telemetry listener for this step. For more information, see
the section called “Sending a subscription request to the Telemetry API”.

4. Get telemetry data from Lambda via the telemetry listener. You can do any custom processing
of this data, such as dispatching the data to Amazon S3 or to an external observability service.

Creating extensions using the Telemetry API 1666

Amazon Lambda Developer Guide

Note

A Lambda function's execution environment can start and stop multiple times as part of its
lifecycle. In general, your extension code runs during function invocations, and also up to 2
seconds during the shutdown phase. We recommend batching the telemetry as it arrives to
your listener. Then, use the Invoke and Shutdown lifecycle events to send each batch to
their desired destinations.

Registering your extension

Before you can subscribe to telemetry data, you must register your Lambda extension. Registration
occurs during the extension initialization phase. The following example shows an HTTP request to
register an extension.

POST http://${AWS_LAMBDA_RUNTIME_API}/2020-01-01/extension/register
 Lambda-Extension-Name: lambda_extension_name
{
 'events': ['INVOKE', 'SHUTDOWN']
}

If the request succeeds, the subscriber receives an HTTP 200 success response. The response header
contains the Lambda-Extension-Identifier. The response body contains other properties of
the function.

HTTP/1.1 200 OK
Lambda-Extension-Identifier: a1b2c3d4-5678-90ab-cdef-EXAMPLE11111
{
 "functionName": "lambda_function",
 "functionVersion": "$LATEST",
 "handler": "lambda_handler",
 "accountId": "123456789012"
}

For more information, see the the section called “Extensions API reference”.

Creating a telemetry listener

Your Lambda extension must have a listener that handles incoming requests from the Telemetry
API. The following code shows an example telemetry listener implementation in Golang:

Registering your extension 1667

Amazon Lambda Developer Guide

// Starts the server in a goroutine where the log events will be sent
func (s *TelemetryApiListener) Start() (string, error) {
 address := listenOnAddress()
 l.Info("[listener:Start] Starting on address", address)
 s.httpServer = &http.Server{Addr: address}
 http.HandleFunc("/", s.http_handler)
 go func() {
 err := s.httpServer.ListenAndServe()
 if err != http.ErrServerClosed {
 l.Error("[listener:goroutine] Unexpected stop on Http Server:", err)
 s.Shutdown()
 } else {
 l.Info("[listener:goroutine] Http Server closed:", err)
 }
 }()
 return fmt.Sprintf("http://%s/", address), nil
}

// http_handler handles the requests coming from the Telemetry API.
// Everytime Telemetry API sends log events, this function will read them from the
 response body
// and put into a synchronous queue to be dispatched later.
// Logging or printing besides the error cases below is not recommended if you have
 subscribed to
// receive extension logs. Otherwise, logging here will cause Telemetry API to send new
 logs for
// the printed lines which may create an infinite loop.
func (s *TelemetryApiListener) http_handler(w http.ResponseWriter, r *http.Request) {
 body, err := ioutil.ReadAll(r.Body)
 if err != nil {
 l.Error("[listener:http_handler] Error reading body:", err)
 return
 }

 // Parse and put the log messages into the queue
 var slice []interface{}
 _ = json.Unmarshal(body, &slice)

 for _, el := range slice {
 s.LogEventsQueue.Put(el)
 }

Creating a telemetry listener 1668

Amazon Lambda Developer Guide

 l.Info("[listener:http_handler] logEvents received:", len(slice), " LogEventsQueue
 length:", s.LogEventsQueue.Len())
 slice = nil
}

Specifying a destination protocol

When you subscribe to receive telemetry using the Telemetry API, you can specify a destination
protocol in addition to the destination URI:

{
 "destination": {
 "protocol": "HTTP",
 "URI": "http://sandbox.localdomain:8080"
 }
}

Lambda accepts two protocols for receiving telemetry:

• HTTP (recommended) – Lambda delivers telemetry to a local HTTP endpoint (http://
sandbox.localdomain:${PORT}/${PATH}) as an array of records in JSON format. The $PATH
parameter is optional. Lambda supports only HTTP, not HTTPS. Lambda delivers telemetry
through POST requests.

• TCP – Lambda delivers telemetry to a TCP port in Newline delimited JSON (NDJSON) format.

Note

We strongly recommend using HTTP rather than TCP. With TCP, the Lambda platform
cannot acknowledge when it delivers telemetry to the application layer. Therefore, if your
extension crashes, you might lose telemetry. HTTP does not have this limitation.

Before subscribing to receive telemetry, establish the local HTTP listener or TCP port. During setup,
note the following:

• Lambda sends telemetry only to destinations that are inside the execution environment.

Specifying a destination protocol 1669

https://github.com/ndjson/ndjson-spec

Amazon Lambda Developer Guide

• Lambda retries to send telemetry (with backoff) in the absence of a listener, or if the POST
request encounters an error. If the telemetry listener crashes, it resumes receiving telemetry
after Lambda restarts the execution environment.

• Lambda reserves port 9001. There are no other port number restrictions or recommendations.

Configuring memory usage and buffering

Memory usage in an execution environment grows linearly with the number of subscribers.
Subscriptions consume memory resources because each one opens a new memory buffer to store
telemetry data. Buffer memory usage contributes to the overall memory consumption in the
execution environment.

When subscribing to receive telemetry through the Telemetry API, you have the option to buffer
telemetry data and deliver it to subscribers in batches. To optimize memory usage, you can specify
a buffering configuration:

{
 "buffering": {
 "maxBytes": 256*1024,
 "maxItems": 1000,
 "timeoutMs": 100
 }
}

Buffering configuration settings

Parameter Description Defaults and limits

maxBytes The maximum volume of
telemetry (in bytes) to buffer
in memory.

Default: 262,144

Minimum: 262,144

Maximum: 1,048,576

maxItems The maximum number of
events to buffer in memory.

Default: 10,000

Minimum: 1,000

Maximum: 10,000

Configuring memory usage and buffering 1670

Amazon Lambda Developer Guide

Parameter Description Defaults and limits

timeoutMs The maximum time (in
milliseconds) to buffer a
batch.

Default: 1,000

Minimum: 25

Maximum: 30,000

When setting up buffering, keep these points in mind:

• If any of the input streams are closed, Lambda flushes the logs. For example, this can occur if the
runtime crashes.

• Each subscriber can customize their buffering configuration in their subscription request.

• When determining the buffer size for reading the data, anticipate receiving payloads as large as
2 * maxBytes + metadataBytes, where maxBytes is a component of your buffering setup.
To gauge the amount of metadataBytes to consider, review the following metadata. Lambda
appends metadata similar to this to each record:

{
 "time": "2022-08-20T12:31:32.123Z",
 "type": "function",
 "record": "Hello World"
}

• If the subscriber cannot process incoming telemetry fast enough, or if your function code
generates very high log volume, Lambda might drop records to keep memory utilization
bounded. When this occurs, Lambda sends a platform.logsDropped event.

Sending a subscription request to the Telemetry API

Lambda extensions can subscribe to receive telemetry data by sending a subscription request
to the Telemetry API. The subscription request should contain information about the types of
events that you want the extension to subscribe to. In addition, the request can contain delivery
destination information and a buffering configuration.

Before sending a subscription request, you must have an extension ID (Lambda-Extension-
Identifier). When you register your extension with the Extensions API, you obtain an extension
ID from the API response.

Sending a subscription request to the Telemetry API 1671

Amazon Lambda Developer Guide

Subscription occurs during the extension initialization phase. The following example shows an
HTTP request to subscribe to all three telemetry streams: platform telemetry, function logs, and
extension logs.

PUT http://${AWS_LAMBDA_RUNTIME_API}/2022-07-01/telemetry HTTP/1.1
{
 "schemaVersion": "2022-12-13",
 "types": [
 "platform",
 "function",
 "extension"
],
 "buffering": {
 "maxItems": 1000,
 "maxBytes": 256*1024,
 "timeoutMs": 100
 },
 "destination": {
 "protocol": "HTTP",
 "URI": "http://sandbox.localdomain:8080"
 }
}

If the request succeeds, then the subscriber receives an HTTP 200 success response.

HTTP/1.1 200 OK
"OK"

Inbound Telemetry API messages

After subscribing using the Telemetry API, an extension automatically starts to receive telemetry
from Lambda via POST requests. Each POST request body contains an array of Event objects. Each
Event has the following schema:

{
 time: String,
 type: String,
 record: Object
}

Inbound Telemetry API messages 1672

Amazon Lambda Developer Guide

• The time property defines when the Lambda platform generated the event. This is different
from when the event actually occurred. The string value of time is a timestamp in ISO 8601
format.

• The type property defines the event type. The following table describes all possible values.

• The record property defines a JSON object that contains the telemetry data. The schema of this
JSON object depends on the type.

The following table summarizes all types of Event objects, and links to the Telemetry API Event
schema reference for each event type.

Telemetry API message types

Category Event type Description Event record schema

Platform event platform.
initStart

Function initialization
started.

the section called
“platform.
initStart ”
schema

Platform event platform.
initRunti
meDone

Function initialization
completed.

the section called
“platform.
initRunti
meDone ” schema

Platform event platform.
initReport

A report of function
initialization.

the section called
“platform.
initReport ”
schema

Platform event platform.start Function invocation
started.

the section called
“platform.start ”
schema

Platform event platform.
runtimeDone

The runtime finished
processing an event
with either success or
failure.

the section called
“platform.
runtimeDone ”
schema

Inbound Telemetry API messages 1673

Amazon Lambda Developer Guide

Category Event type Description Event record schema

Platform event platform.report A report of function
invocation.

the section called
“platform.
report ” schema

Platform event platform.
restoreStart

Runtime restore
started.

the section called
“platform.
restoreStart ”
schema

Platform event platform.
restoreRu
ntimeDone

Runtime restore
completed.

the section called
“platform.
restoreRu
ntimeDone ”
schema

Platform event platform.
restoreReport

Report of runtime
restore.

the section called
“platform.
restoreReport ”
schema

Platform event platform.
telemetry
Subscription

The extension
subscribed to the
Telemetry API.

the section called
“platform.
telemetry
Subscription ”
schema

Platform event platform.
logsDropped

Lambda dropped log
entries.

the section called
“platform.
logsDropped ”
schema

Function logs function A log line from
function code.

the section called
“function” schema

Inbound Telemetry API messages 1674

Amazon Lambda Developer Guide

Category Event type Description Event record schema

Extension logs extension A log line from
extension code.

the section called
“extension ”
schema

Inbound Telemetry API messages 1675

Amazon Lambda Developer Guide

Lambda Telemetry API reference

Use the Lambda Telemetry API endpoint to subscribe extensions to telemetry streams. You can
retrieve the Telemetry API endpoint from the AWS_LAMBDA_RUNTIME_API environment variable.
To send an API request, append the API version (2022-07-01/) and telemetry/. For example:

http://${AWS_LAMBDA_RUNTIME_API}/2022-07-01/telemetry/

For the OpenAPI Specification (OAS) definition of the subscription responses version 2022-12-13,
see the following:

• HTTP – telemetry-api-http-schema.zip

• TCP – telemetry-api-tcp-schema.zip

API operations

• Subscribe

Subscribe

To subscribe to a telemetry stream, a Lambda extension can send a Subscribe API request.

• Path – /telemetry

• Method – PUT

• Headers

• Content-Type: application/json

• Request body parameters

• schemaVersion

• Required: Yes

• Type: String

• Valid values: "2022-12-13" or "2022-07-01"

• destination – The configuration settings that define the telemetry event destination and the
protocol for event delivery.

• Required: Yes

• Type: Object

API reference 1676

samples/events_http_schema_v2022_12_13.zip
samples/events_tcp_schema_v2022_12_13.zip

Amazon Lambda Developer Guide

{
 "protocol": "HTTP",
 "URI": "http://sandbox.localdomain:8080"
}

• protocol – The protocol that Lambda uses to send telemetry data.

• Required: Yes

• Type: String

• Valid values: "HTTP"|"TCP"

• URI – The URI to send telemetry data to.

• Required: Yes

• Type: String

• For more information, see the section called “Specifying a destination protocol”.

• types – The types of telemetry that you want the extension to subscribe to.

• Required: Yes

• Type: Array of strings

• Valid values: "platform"|"function"|"extension"

• buffering – The configuration settings for event buffering.

• Required: No

• Type: Object

{
 "buffering": {
 "maxItems": 1000,
 "maxBytes": 256*1024,
 "timeoutMs": 100
 }
}

• maxItems – The maximum number of events to buffer in memory.

• Required: No

• Type: Integer

• Default: 1,000

• Minimum: 1,000
API reference 1677

Amazon Lambda Developer Guide

• Maximum: 10,000

• maxBytes – The maximum volume of telemetry (in bytes) to buffer in memory.

• Required: No

• Type: Integer

• Default: 262,144

• Minimum: 262,144

• Maximum: 1,048,576

• timeoutMs – The maximum time (in milliseconds) to buffer a batch.

• Required: No

• Type: Integer

• Default: 1,000

• Minimum: 25

• Maximum: 30,000

• For more information, see the section called “Configuring memory usage and buffering”.

Example Subscribe API request

PUT http://${AWS_LAMBDA_RUNTIME_API}/2022-07-01/telemetry HTTP/1.1
{
 "schemaVersion": "2022-12-13",
 "types": [
 "platform",
 "function",
 "extension"
],
 "buffering": {
 "maxItems": 1000,
 "maxBytes": 256*1024,
 "timeoutMs": 100
 },
 "destination": {
 "protocol": "HTTP",
 "URI": "http://sandbox.localdomain:8080"
 }
}

API reference 1678

Amazon Lambda Developer Guide

If the Subscribe request succeeds, the extension receives an HTTP 200 success response:

HTTP/1.1 200 OK
"OK"

If the Subscribe request fails, the extension receives an error response. For example:

HTTP/1.1 400 OK
{
 "errorType": "ValidationError",
 "errorMessage": "URI port is not provided; types should not be empty"
}

Here are some additional response codes that the extension can receive:

• 200 – Request completed successfully

• 202 – Request accepted. Subscription request response in local testing environment

• 400 – Bad request

• 500 – Service error

API reference 1679

Amazon Lambda Developer Guide

Lambda Telemetry API Event schema reference

Use the Lambda Telemetry API endpoint to subscribe extensions to telemetry streams. You can
retrieve the Telemetry API endpoint from the AWS_LAMBDA_RUNTIME_API environment variable.
To send an API request, append the API version (2022-07-01/) and telemetry/. For example:

http://${AWS_LAMBDA_RUNTIME_API}/2022-07-01/telemetry/

For the OpenAPI Specification (OAS) definition of the subscription responses version 2022-12-13,
see the following:

• HTTP – telemetry-api-http-schema.zip

• TCP – telemetry-api-tcp-schema.zip

The following table is a summary of all the types of Event objects that the Telemetry API
supports.

Telemetry API message types

Category Event type Description Event record schema

Platform event platform.
initStart

Function initialization
started.

the section called
“platform.
initStart ”
schema

Platform event platform.
initRunti
meDone

Function initialization
completed.

the section called
“platform.
initRunti
meDone ” schema

Platform event platform.
initReport

A report of function
initialization.

the section called
“platform.
initReport ”
schema

Event schema reference 1680

samples/events_http_schema_v2022_12_13.zip
samples/events_tcp_schema_v2022_12_13.zip

Amazon Lambda Developer Guide

Category Event type Description Event record schema

Platform event platform.start Function invocation
started.

the section called
“platform.start ”
schema

Platform event platform.
runtimeDone

The runtime finished
processing an event
with either success or
failure.

the section called
“platform.
runtimeDone ”
schema

Platform event platform.report A report of function
invocation.

the section called
“platform.
report ” schema

Platform event platform.
restoreStart

Runtime restore
started.

the section called
“platform.
restoreStart ”
schema

Platform event platform.
restoreRu
ntimeDone

Runtime restore
completed.

the section called
“platform.
restoreRu
ntimeDone ”
schema

Platform event platform.
restoreReport

Report of runtime
restore.

the section called
“platform.
restoreReport ”
schema

Platform event platform.
telemetry
Subscription

The extension
subscribed to the
Telemetry API.

the section called
“platform.
telemetry
Subscription ”
schema

Event schema reference 1681

Amazon Lambda Developer Guide

Category Event type Description Event record schema

Platform event platform.
logsDropped

Lambda dropped log
entries.

the section called
“platform.
logsDropped ”
schema

Function logs function A log line from
function code.

the section called
“function” schema

Extension logs extension A log line from
extension code.

the section called
“extension ”
schema

Contents

• Telemetry API Event object types

• platform.initStart

• platform.initRuntimeDone

• platform.initReport

• platform.start

• platform.runtimeDone

• platform.report

• platform.restoreStart

• platform.restoreRuntimeDone

• platform.restoreReport

• platform.extension

• platform.telemetrySubscription

• platform.logsDropped

• function

• extension

• Shared object types

• InitPhase

• InitReportMetricsEvent schema reference 1682

Amazon Lambda Developer Guide

• InitType

• ReportMetrics

• RestoreReportMetrics

• RuntimeDoneMetrics

• Span

• Status

• TraceContext

• TracingType

Telemetry API Event object types

This section details the types of Event objects that the Lambda Telemetry API supports. In the
event descriptions, a question mark (?) indicates that the attribute may not be present in the
object.

platform.initStart

A platform.initStart event indicates that the function initialization phase has started. A
platform.initStart Event object has the following shape:

Event: Object
- time: String
- type: String = platform.initStart
- record: PlatformInitStart

The PlatformInitStart object has the following attributes:

• functionName – String

• functionVersion – String

• initializationType – the section called “InitType” object

• instanceId? – String

• instanceMaxMemory? – Integer

• phase – the section called “InitPhase” object

• runtimeVersion? – String

• runtimeVersionArn? – String

Event schema reference 1683

Amazon Lambda Developer Guide

The following is an example Event of type platform.initStart:

{
 "time": "2022-10-12T00:00:15.064Z",
 "type": "platform.initStart",
 "record": {
 "initializationType": "on-demand",
 "phase": "init",
 "runtimeVersion": "nodejs-14.v3",
 "runtimeVersionArn": "arn",
 "functionName": "myFunction",
 "functionVersion": "$LATEST",
 "instanceId": "82561ce0-53dd-47d1-90e0-c8f5e063e62e",
 "instanceMaxMemory": 256
 }
}

platform.initRuntimeDone

A platform.initRuntimeDone event indicates that the function initialization phase has
completed. A platform.initRuntimeDone Event object has the following shape:

Event: Object
- time: String
- type: String = platform.initRuntimeDone
- record: PlatformInitRuntimeDone

The PlatformInitRuntimeDone object has the following attributes:

• initializationType – the section called “InitType” object

• phase – the section called “InitPhase” object

• status – the section called “Status” object

• spans? – List of the section called “Span” objects

The following is an example Event of type platform.initRuntimeDone:

{
 "time": "2022-10-12T00:01:15.000Z",
 "type": "platform.initRuntimeDone",
 "record": {

Event schema reference 1684

Amazon Lambda Developer Guide

 "initializationType": "on-demand"
 "status": "success",
 "spans": [
 {
 "name": "someTimeSpan",
 "start": "2022-06-02T12:02:33.913Z",
 "durationMs": 70.5
 }
]
 }
}

platform.initReport

A platform.initReport event contains an overall report of the function initialization phase. A
platform.initReport Event object has the following shape:

Event: Object
- time: String
- type: String = platform.initReport
- record: PlatformInitReport

The PlatformInitReport object has the following attributes:

• errorType? – string

• initializationType – the section called “InitType” object

• phase – the section called “InitPhase” object

• metrics – the section called “InitReportMetrics” object

• spans? – List of the section called “Span” objects

• status – the section called “Status” object

The following is an example Event of type platform.initReport:

{
 "time": "2022-10-12T00:01:15.000Z",
 "type": "platform.initReport",
 "record": {
 "initializationType": "on-demand",
 "status": "success",

Event schema reference 1685

Amazon Lambda Developer Guide

 "phase": "init",
 "metrics": {
 "durationMs": 125.33
 },
 "spans": [
 {
 "name": "someTimeSpan",
 "start": "2022-06-02T12:02:33.913Z",
 "durationMs": 90.1
 }
]
 }
}

platform.start

A platform.start event indicates that the function invocation phase has started. A
platform.start Event object has the following shape:

Event: Object
- time: String
- type: String = platform.start
- record: PlatformStart

The PlatformStart object has the following attributes:

• requestId – String

• version? – String

• tracing? – the section called “TraceContext”

The following is an example Event of type platform.start:

{
 "time": "2022-10-12T00:00:15.064Z",
 "type": "platform.start",
 "record": {
 "requestId": "6d68ca91-49c9-448d-89b8-7ca3e6dc66aa",
 "version": "$LATEST",
 "tracing": {
 "spanId": "54565fb41ac79632",
 "type": "X-Amzn-Trace-Id",

Event schema reference 1686

Amazon Lambda Developer Guide

 "value":
 "Root=1-62e900b2-710d76f009d6e7785905449a;Parent=0efbd19962d95b05;Sampled=1"
 }
 }
}

platform.runtimeDone

A platform.runtimeDone event indicates that the function invocation phase has completed. A
platform.runtimeDone Event object has the following shape:

Event: Object
- time: String
- type: String = platform.runtimeDone
- record: PlatformRuntimeDone

The PlatformRuntimeDone object has the following attributes:

• errorType? – String

• metrics? – the section called “RuntimeDoneMetrics” object

• requestId – String

• status – the section called “Status” object

• spans? – List of the section called “Span” objects

• tracing? – the section called “TraceContext” object

The following is an example Event of type platform.runtimeDone:

{
 "time": "2022-10-12T00:01:15.000Z",
 "type": "platform.runtimeDone",
 "record": {
 "requestId": "6d68ca91-49c9-448d-89b8-7ca3e6dc66aa",
 "status": "success",
 "tracing": {
 "spanId": "54565fb41ac79632",
 "type": "X-Amzn-Trace-Id",
 "value":
 "Root=1-62e900b2-710d76f009d6e7785905449a;Parent=0efbd19962d95b05;Sampled=1"
 },

Event schema reference 1687

Amazon Lambda Developer Guide

 "spans": [
 {
 "name": "someTimeSpan",
 "start": "2022-08-02T12:01:23:521Z",
 "durationMs": 80.0
 }
],
 "metrics": {
 "durationMs": 140.0,
 "producedBytes": 16
 }
 }
}

platform.report

A platform.report event contains an overall report of the function initialization phase. A
platform.report Event object has the following shape:

Event: Object
- time: String
- type: String = platform.report
- record: PlatformReport

The PlatformReport object has the following attributes:

• metrics – the section called “ReportMetrics” object

• requestId – String

• spans? – List of the section called “Span” objects

• status – the section called “Status” object

• tracing? – the section called “TraceContext” object

The following is an example Event of type platform.report:

{
 "time": "2022-10-12T00:01:15.000Z",
 "type": "platform.report",
 "record": {
 "metrics": {

Event schema reference 1688

Amazon Lambda Developer Guide

 "billedDurationMs": 694,
 "durationMs": 693.92,
 "initDurationMs": 397.68,
 "maxMemoryUsedMB": 84,
 "memorySizeMB": 128
 },
 "requestId": "6d68ca91-49c9-448d-89b8-7ca3e6dc66aa",
 }
}

platform.restoreStart

A platform.restoreStart event indicates that a function environment restoration event
started. In an environment restoration event, Lambda creates the environment from a cached
snapshot rather than initializing it from scratch. For more information, see Lambda SnapStart. A
platform.restoreStart Event object has the following shape:

Event: Object
- time: String
- type: String = platform.restoreStart
- record: PlatformRestoreStart

The PlatformRestoreStart object has the following attributes:

• functionName – String

• functionVersion – String

• instanceId? – String

• instanceMaxMemory? – String

• runtimeVersion? – String

• runtimeVersionArn? – String

The following is an example Event of type platform.restoreStart:

{
 "time": "2022-10-12T00:00:15.064Z",
 "type": "platform.restoreStart",
 "record": {
 "runtimeVersion": "nodejs-14.v3",

Event schema reference 1689

Amazon Lambda Developer Guide

 "runtimeVersionArn": "arn",
 "functionName": "myFunction",
 "functionVersion": "$LATEST",
 "instanceId": "82561ce0-53dd-47d1-90e0-c8f5e063e62e",
 "instanceMaxMemory": 256
 }
}

platform.restoreRuntimeDone

A platform.restoreRuntimeDone event indicates that a function environment restoration
event completed. In an environment restoration event, Lambda creates the environment from
a cached snapshot rather than initializing it from scratch. For more information, see Lambda
SnapStart. A platform.restoreRuntimeDone Event object has the following shape:

Event: Object
- time: String
- type: String = platform.restoreRuntimeDone
- record: PlatformRestoreRuntimeDone

The PlatformRestoreRuntimeDone object has the following attributes:

• errorType? – String

• spans? – List of the section called “Span” objects

• status – the section called “Status” object

The following is an example Event of type platform.restoreRuntimeDone:

{
 "time": "2022-10-12T00:00:15.064Z",
 "type": "platform.restoreRuntimeDone",
 "record": {
 "status": "success",
 "spans": [
 {
 "name": "someTimeSpan",
 "start": "2022-08-02T12:01:23:521Z",
 "durationMs": 80.0
 }
]

Event schema reference 1690

Amazon Lambda Developer Guide

 }
}

platform.restoreReport

A platform.restoreReport event contains an overall report of a function restoration event. A
platform.restoreReport Event object has the following shape:

Event: Object
- time: String
- type: String = platform.restoreReport
- record: PlatformRestoreReport

The PlatformRestoreReport object has the following attributes:

• errorType? – string

• metrics? – the section called “RestoreReportMetrics” object

• spans? – List of the section called “Span” objects

• status – the section called “Status” object

The following is an example Event of type platform.restoreReport:

{
 "time": "2022-10-12T00:00:15.064Z",
 "type": "platform.restoreReport",
 "record": {
 "status": "success",
 "metrics": {
 "durationMs": 15.19
 },
 "spans": [
 {
 "name": "someTimeSpan",
 "start": "2022-08-02T12:01:23:521Z",
 "durationMs": 30.0
 }
]
 }
}

Event schema reference 1691

Amazon Lambda Developer Guide

platform.extension

An extension event contains logs from the extension code. An extension Event object has the
following shape:

Event: Object
- time: String
- type: String = extension
- record: {}

The PlatformExtension object has the following attributes:

• events – List of String

• name – String

• state – String

The following is an example Event of type platform.extension:

{
 "time": "2022-10-12T00:02:15.000Z",
 "type": "platform.extension",
 "record": {
 "events": ["INVOKE", "SHUTDOWN"],
 "name": "my-telemetry-extension",
 "state": "Ready"
 }
}

platform.telemetrySubscription

A platform.telemetrySubscription event contains information about an extension
subscription. A platform.telemetrySubscription Event object has the following shape:

Event: Object
- time: String
- type: String = platform.telemetrySubscription
- record: PlatformTelemetrySubscription

The PlatformTelemetrySubscription object has the following attributes:

Event schema reference 1692

Amazon Lambda Developer Guide

• name – String

• state – String

• types – List of String

The following is an example Event of type platform.telemetrySubscription:

{
 "time": "2022-10-12T00:02:35.000Z",
 "type": "platform.telemetrySubscription",
 "record": {
 "name": "my-telemetry-extension",
 "state": "Subscribed",
 "types": ["platform", "function"]
 }
}

platform.logsDropped

A platform.logsDropped event contains information about dropped events. Lambda emits
the platform.logsDropped event when an extension can't process one or more events. A
platform.logsDropped Event object has the following shape:

Event: Object
- time: String
- type: String = platform.logsDropped
- record: PlatformLogsDropped

The PlatformLogsDropped object has the following attributes:

• droppedBytes – Integer

• droppedRecords – Integer

• reason – String

The following is an example Event of type platform.logsDropped:

{
 "time": "2022-10-12T00:02:35.000Z",
 "type": "platform.logsDropped",
 "record": {

Event schema reference 1693

Amazon Lambda Developer Guide

 "droppedBytes": 12345,
 "droppedRecords": 123,
 "reason": "Consumer seems to have fallen behind as it has not acknowledged
 receipt of logs."
 }
}

function

A function event contains logs from the function code. A function Event object has the
following shape:

Event: Object
- time: String
- type: String = function
- record: {}

The format of the record field depends on whether your function's logs are formatted in plain
text or JSON format. to learn more about log format configuration options, see the section called
“Configuring JSON and plain text log formats”

The following is an example Event of type function where the log format is plain text:

{
 "time": "2022-10-12T00:03:50.000Z",
 "type": "function",
 "record": "[INFO] Hello world, I am a function!"
}

The following is an example Event of type function where the log format is JSON:

{
 "time": "2022-10-12T00:03:50.000Z",
 "type": "function",
 "record": {
 "timestamp": "2022-10-12T00:03:50.000Z",
 "level": "INFO",
 "requestId": "79b4f56e-95b1-4643-9700-2807f4e68189",
 "message": "Hello world, I am a function!"
 }
}

Event schema reference 1694

Amazon Lambda Developer Guide

Note

If the schema version you're using is older than the 2022-12-13 version, then the
"record" is always rendered as a string even when your function's logging format is
configured as JSON.

extension

A extension event contains logs from the extension code. A extension Event object has the
following shape:

Event: Object
- time: String
- type: String = extension
- record: {}

The format of the record field depends on whether your function's logs are formatted in plain
text or JSON format. to learn more about log format configuration options, see the section called
“Configuring JSON and plain text log formats”

The following is an example Event of type extension where the log format is plain text:

{
 "time": "2022-10-12T00:03:50.000Z",
 "type": "extension",
 "record": "[INFO] Hello world, I am an extension!"
}

The following is an example Event of type extension where the log format is JSON:

{
 "time": "2022-10-12T00:03:50.000Z",
 "type": "extension",
 "record": {
 "timestamp": "2022-10-12T00:03:50.000Z",
 "level": "INFO",
 "requestId": "79b4f56e-95b1-4643-9700-2807f4e68189",
 "message": "Hello world, I am an extension!"
 }

Event schema reference 1695

Amazon Lambda Developer Guide

}

Note

If the schema version you're using is older than the 2022-12-13 version, then the
"record" is always rendered as a string even when your function's logging format is
configured as JSON.

Shared object types

This section details the types of shared objects that the Lambda Telemetry API supports.

InitPhase

A string enum that describes the phase when the initialization step occurs. In most cases, Lambda
runs the function initialization code during the init phase. However, in some error cases, Lambda
may re-run the function initialization code during the invoke phase. (This is called a suppressed
init.)

• Type – String

• Valid values – init|invoke|snap-start

InitReportMetrics

An object that contains metrics about an initialization phase.

• Type – Object

An InitReportMetrics object has the following shape:

InitReportMetrics: Object
- durationMs: Double

The following is an example InitReportMetrics object:

{
 "durationMs": 247.88

Event schema reference 1696

Amazon Lambda Developer Guide

}

InitType

A string enum that describes how Lambda initialized the environment.

• Type – String

• Valid values – on-demand|provisioned-concurrency

ReportMetrics

An object that contains metrics about a completed phase.

• Type – Object

A ReportMetrics object has the following shape:

ReportMetrics: Object
- billedDurationMs: Integer
- durationMs: Double
- initDurationMs?: Double
- maxMemoryUsedMB: Integer
- memorySizeMB: Integer
- restoreDurationMs?: Double

The following is an example ReportMetrics object:

{
 "billedDurationMs": 694,
 "durationMs": 693.92,
 "initDurationMs": 397.68,
 "maxMemoryUsedMB": 84,
 "memorySizeMB": 128
}

RestoreReportMetrics

An object that contains metrics about a completed restoration phase.

• Type – Object

Event schema reference 1697

Amazon Lambda Developer Guide

A RestoreReportMetrics object has the following shape:

RestoreReportMetrics: Object
- durationMs: Double

The following is an example RestoreReportMetrics object:

{
 "durationMs": 15.19
}

RuntimeDoneMetrics

An object that contains metrics about an invocation phase.

• Type – Object

A RuntimeDoneMetrics object has the following shape:

RuntimeDoneMetrics: Object
- durationMs: Double
- producedBytes?: Integer

The following is an example RuntimeDoneMetrics object:

{
 "durationMs": 200.0,
 "producedBytes": 15
}

Span

An object that contains details about a span. A span represents a unit of work or operation in a
trace. For more information about spans, see Span on the Tracing API page of the OpenTelemetry
Docs website.

Lambda supports the following spans for the platform.RuntimeDone event:

• The responseLatency span describes how long it took your Lambda function to start sending
the response.

Event schema reference 1698

https://opentelemetry.io/docs/reference/specification/trace/api/#span

Amazon Lambda Developer Guide

• The responseDuration span describes how long it took your Lambda function to finish
sending the entire response.

• The runtimeOverhead span describes how long it took the Lambda runtime to signal that it
is ready to process the next function invoke. This is how long the runtime took to call the next
invocation API to get the next event after returning your function response.

The following is an example responseLatency span object:

{
 "name": "responseLatency",
 "start": "2022-08-02T12:01:23.521Z",
 "durationMs": 23.02
 }

Status

An object that describes the status of an initialization or invocation phase. If the status is either
failure or error, then the Status object also contains an errorType field describing the error.

• Type – Object

• Valid status values – success|failure|error|timeout

TraceContext

An object that describes the properties of a trace.

• Type – Object

A TraceContext object has the following shape:

TraceContext: Object
- spanId?: String
- type: TracingType enum
- value: String

The following is an example TraceContext object:

{

Event schema reference 1699

Amazon Lambda Developer Guide

 "spanId": "073a49012f3c312e",
 "type": "X-Amzn-Trace-Id",
 "value":
 "Root=1-62e900b2-710d76f009d6e7785905449a;Parent=0efbd19962d95b05;Sampled=1"
}

TracingType

A string enum that describes the type of tracing in a the section called “TraceContext”
object.

• Type – String

• Valid values – X-Amzn-Trace-Id

Event schema reference 1700

Amazon Lambda Developer Guide

Converting Lambda Telemetry API Event objects to OpenTelemetry
Spans

The Amazon Lambda Telemetry API schema is semantically compatible with OpenTelemetry
(OTel). This means that you can convert your Amazon Lambda Telemetry API Event objects to
OpenTelemetry (OTel) Spans. When converting, you shouldn't map a single Event object to a
single OTel Span. Instead, you should present all three events related to a lifecycle phase in a single
OTel Span. For example, the start, runtimeDone, and runtimeReport events represent a single
function invocation. Present all three of these events as a single OTel Span.

You can convert your events using Span Events or Child (nested) Spans. The tables on this page
describe the mappings between Telemetry API schema properties and OTel Span properties for
both approaches. For more information about OTel Spans, see Span on the Tracing API page of the
OpenTelemetry Docs website.

Sections

• Map to OTel Spans with Span Events

• Map to OTel Spans with Child Spans

Map to OTel Spans with Span Events

In the following tables, e represents the event coming from the telemetry source.

Mapping the *Start events

OpenTelemetry Lambda Telemetry API schema

Span.Name Your extension generates this value based on
the type field.

Span.StartTime Use e.time.

Span.EndTime N/A, because the event hasn't completed yet.

Span.Kind Set to Server.

Span.Status Set to Unset.

Converting events to OTel Spans 1701

https://opentelemetry.io/docs/reference/specification/trace/api/#span

Amazon Lambda Developer Guide

OpenTelemetry Lambda Telemetry API schema

Span.TraceId Parse the Amazon X-Ray header found in
e.tracing.value , then use the TraceId
value.

Span.ParentId Parse the X-Ray header found in e.tracing
.value , then use the Parent value.

Span.SpanId Use e.tracing.spanId if available.
Otherwise, generate a new SpanId.

Span.SpanContext.TraceState N/A for an X-Ray trace context.

Span.SpanContext.TraceFlags Parse the X-Ray header found in e.tracing
.value , then use the Sampled value.

Span.Attributes Your extension can add any custom values
here.

Mapping the *RuntimeDone events

OpenTelemetry Lambda Telemetry API schema

Span.Name Your extension generates the value based on
the type field.

Span.StartTime Use e.time from the matching *Start event.

Alternatively, use e.time - e.metrics
.durationMs .

Span.EndTime N/A, because the event hasn't completed yet.

Span.Kind Set to Server.

Span.Status If e.status doesn't equal success, then set
to Error.

Converting events to OTel Spans 1702

Amazon Lambda Developer Guide

OpenTelemetry Lambda Telemetry API schema

Otherwise, set to Ok.

Span.Events[] Use e.spans[] .

Span.Events[i].Name Use e.spans[i].name .

Span.Events[i].Time Use e.spans[i].start .

Span.TraceId Parse the Amazon X-Ray header found in
e.tracing.value , then use the TraceId
value.

Span.ParentId Parse the X-Ray header found in e.tracing
.value , then use the Parent value.

Span.SpanId Use the same SpanId from the *Start event.
If unavailable, then use e.tracing.spanId ,
or generate a new SpanId.

Span.SpanContext.TraceState N/A for an X-Ray trace context.

Span.SpanContext.TraceFlags Parse the X-Ray header found in e.tracing
.value , then use the Sampled value.

Span.Attributes Your extension can add any custom values
here.

Mapping the *Report events

OpenTelemetry Lambda Telemetry API schema

Span.Name Your extension generates the value based on
the type field.

Span.StartTime Use e.time from the matching *Start event.

Alternatively, use e.time - e.metrics
.durationMs .

Converting events to OTel Spans 1703

Amazon Lambda Developer Guide

OpenTelemetry Lambda Telemetry API schema

Span.EndTime Use e.time.

Span.Kind Set to Server.

Span.Status Use the same value as the *RuntimeDone
event.

Span.TraceId Parse the Amazon X-Ray header found in
e.tracing.value , then use the TraceId
value.

Span.ParentId Parse the X-Ray header found in e.tracing
.value , then use the Parent value.

Span.SpanId Use the same SpanId from the *Start event.
If unavailable, then use e.tracing.spanId ,
or generate a new SpanId.

Span.SpanContext.TraceState N/A for an X-Ray trace context.

Span.SpanContext.TraceFlags Parse the X-Ray header found in e.tracing
.value , then use the Sampled value.

Span.Attributes Your extension can add any custom values
here.

Map to OTel Spans with Child Spans

The following table describes how to convert Lambda Telemetry API events into OTel Spans with
Child (nested) Spans for *RuntimeDone Spans. For *Start and *Report mappings, refer to the
tables in the section called “Map to OTel Spans with Span Events”, as they're the same for Child
Spans. In this table, e represents the event coming from the telemetry source.

Converting events to OTel Spans 1704

Amazon Lambda Developer Guide

Mapping the *RuntimeDone events

OpenTelemetry Lambda Telemetry API schema

Span.Name Your extension generates the value based on
the type field.

Span.StartTime Use e.time from the matching *Start event.

Alternatively, use e.time - e.metrics
.durationMs .

Span.EndTime N/A, because the event hasn't completed yet.

Span.Kind Set to Server.

Span.Status If e.status doesn't equal success, then set
to Error.

Otherwise, set to Ok.

Span.TraceId Parse the Amazon X-Ray header found in
e.tracing.value , then use the TraceId
value.

Span.ParentId Parse the X-Ray header found in e.tracing
.value , then use the Parent value.

Span.SpanId Use the same SpanId from the *Start event.
If unavailable, then use e.tracing.spanId ,
or generate a new SpanId.

Span.SpanContext.TraceState N/A for an X-Ray trace context.

Span.SpanContext.TraceFlags Parse the X-Ray header found in e.tracing
.value , then use the Sampled value.

Span.Attributes Your extension can add any custom values
here.

ChildSpan[i].Name Use e.spans[i].name .

Converting events to OTel Spans 1705

Amazon Lambda Developer Guide

OpenTelemetry Lambda Telemetry API schema

ChildSpan[i].StartTime Use e.spans[i].start .

ChildSpan[i].EndTime Use e.spans[i].start + e.spans[i
].durations .

ChildSpan[i].Kind Same as parent Span.Kind .

ChildSpan[i].Status Same as parent Span.Status .

ChildSpan[i].TraceId Same as parent Span.TraceId .

ChildSpan[i].ParentId Use parent Span.SpanId .

ChildSpan[i].SpanId Generate a new SpanId.

ChildSpan[i].SpanContext.Tr
aceState

N/A for an X-Ray trace context.

ChildSpan[i].SpanContext.Tr
aceFlags

Same as parent Span.SpanContext.T
raceFlags .

Converting events to OTel Spans 1706

Amazon Lambda Developer Guide

Lambda Logs API

Important

The Lambda Telemetry API supersedes the Lambda Logs API. While the Logs API remains
fully functional, we recommend using only the Telemetry API going forward. You can
subscribe your extension to a telemetry stream using either the Telemetry API or the Logs
API. After subscribing using one of these APIs, any attempt to subscribe using the other API
returns an error.

Lambda automatically captures runtime logs and streams them to Amazon CloudWatch. This log
stream contains the logs that your function code and extensions generate, and also the logs that
Lambda generates as part of the function invocation.

Lambda extensions can use the Lambda Runtime Logs API to subscribe to log streams directly from
within the Lambda execution environment. Lambda streams the logs to the extension, and the
extension can then process, filter, and send the logs to any preferred destination.

The Logs API allows extensions to subscribe to three different logs streams:

• Function logs that the Lambda function generates and writes to stdout or stderr.

• Extension logs that extension code generates.

• Lambda platform logs, which record events and errors related to invocations and extensions.

Logs API 1707

Amazon Lambda Developer Guide

Note

Lambda sends all logs to CloudWatch, even when an extension subscribes to one or more
of the log streams.

Topics

• Subscribing to receive logs

• Memory usage

• Destination protocols

• Buffering configuration

• Example subscription

• Sample code for Logs API

• Logs API reference

• Log messages

Subscribing to receive logs

A Lambda extension can subscribe to receive logs by sending a subscription request to the Logs
API.

To subscribe to receive logs, you need the extension identifier (Lambda-Extension-
Identifier). First register the extension to receive the extension identifier. Then subscribe to the
Logs API during initialization. After the initialization phase completes, Lambda does not process
subscription requests.

Note

Logs API subscription is idempotent. Duplicate subscribe requests do not result in duplicate
subscriptions.

Memory usage

Memory usage increases linearly as the number of subscribers increases. Subscriptions consume
memory resources because each subscription opens a new memory buffer to store the logs. To help

Logs API 1708

Amazon Lambda Developer Guide

optimize memory usage, you can adjust the buffering configuration. Buffer memory usage counts
towards overall memory consumption in the execution environment.

Destination protocols

You can choose one of the following protocols to receive the logs:

1. HTTP (recommended) – Lambda delivers logs to a local HTTP endpoint (http://
sandbox.localdomain:${PORT}/${PATH}) as an array of records in JSON format. The
$PATH parameter is optional. Note that only HTTP is supported, not HTTPS. You can choose to
receive logs through PUT or POST.

2. TCP – Lambda delivers logs to a TCP port in Newline delimited JSON (NDJSON) format.

We recommend using HTTP rather than TCP. With TCP, the Lambda platform cannot acknowledge
when it delivers logs to the application layer. Therefore, you might lose logs if your extension
crashes. HTTP does not share this limitation.

We also recommend setting up the local HTTP listener or the TCP port before subscribing to
receive logs. During setup, note the following:

• Lambda sends logs only to destinations that are inside the execution environment.

• Lambda retries the attempt to send the logs (with backoff) if there is no listener, or if the POST
or PUT request results in an error. If the log subscriber crashes, it continues to receive logs after
Lambda restarts the execution environment.

• Lambda reserves port 9001. There are no other port number restrictions or recommendations.

Buffering configuration

Lambda can buffer logs and deliver them to the subscriber. You can configure this behavior in the
subscription request by specifying the following optional fields. Note that Lambda uses the default
value for any field that you do not specify.

• timeoutMs – The maximum time (in milliseconds) to buffer a batch. Default: 1,000. Minimum: 25.
Maximum: 30,000.

• maxBytes – The maximum size (in bytes) of the logs to buffer in memory. Default: 262,144.
Minimum: 262,144. Maximum: 1,048,576.

Logs API 1709

https://github.com/ndjson/ndjson-spec

Amazon Lambda Developer Guide

• maxItems – The maximum number of events to buffer in memory. Default: 10,000. Minimum:
1,000. Maximum: 10,000.

During buffering configuration, note the following points:

• Lambda flushes the logs if any of the input streams are closed, for example, if the runtime
crashes.

• Each subscriber can specify a different buffering configuration in their subscription request.

• Consider the buffer size that you need for reading the data. Expect to receive payloads as
large as 2*maxBytes+metadata, where maxBytes is configured in the subscribe request. For
example, Lambda adds the following metadata bytes to each record:

{
"time": "2020-08-20T12:31:32.123Z",
"type": "function",
"record": "Hello World"
}

• If the subscriber cannot process incoming logs quickly enough, Lambda might drop logs to
keep memory utilization bounded. To indicate the number of dropped records, Lambda sends a
platform.logsDropped log.

Example subscription

The following example shows a request to subscribe to the platform and function logs.

PUT http://${AWS_LAMBDA_RUNTIME_API}/2020-08-15/logs HTTP/1.1
{ "schemaVersion": "2020-08-15",
 "types": [
 "platform",
 "function"
],
 "buffering": {
 "maxItems": 1000,
 "maxBytes": 262144,
 "timeoutMs": 100
 },
 "destination": {
 "protocol": "HTTP",
 "URI": "http://sandbox.localdomain:8080/lambda_logs"

Logs API 1710

Amazon Lambda Developer Guide

 }
}

If the request succeeds, the subscriber receives an HTTP 200 success response.

HTTP/1.1 200 OK
"OK"

Sample code for Logs API

For sample code showing how to send logs to a custom destination, see Using Amazon Lambda
extensions to send logs to custom destinations on the Amazon Compute Blog.

For Python and Go code examples showing how to develop a basic Lambda extension and
subscribe to the Logs API, see Amazon Lambda Extensions on the Amazon Samples GitHub
repository. For more information about building a Lambda extension, see the section called
“Extensions API”.

Logs API reference

You can retrieve the Logs API endpoint from the AWS_LAMBDA_RUNTIME_API environment
variable. To send an API request, use the prefix 2020-08-15/ before the API path. For example:

http://${AWS_LAMBDA_RUNTIME_API}/2020-08-15/logs

The OpenAPI specification for the Logs API version 2020-08-15 is available here: logs-api-
request.zip

Subscribe

To subscribe to one or more of the log streams available in the Lambda execution environment,
extensions send a Subscribe API request.

Path – /logs

Method – PUT

Body parameters

destination – See the section called “Destination protocols”. Required: yes. Type: strings.

Logs API 1711

https://amazonaws-china.com/blogs/compute/using-aws-lambda-extensions-to-send-logs-to-custom-destinations/
https://amazonaws-china.com/blogs/compute/using-aws-lambda-extensions-to-send-logs-to-custom-destinations/
https://github.com/aws-samples/aws-lambda-extensions
samples/logs-api-request.zip
samples/logs-api-request.zip

Amazon Lambda Developer Guide

buffering – See the section called “Buffering configuration”. Required: no. Type: strings.

types – An array of the types of logs to receive. Required: yes. Type: array of strings. Valid values:
"platform", "function", "extension".

schemaVersion – Required: no. Default value: "2020-08-15". Set to "2021-03-18" for the
extension to receive platform.runtimeDone messages.

Response parameters

The OpenAPI specifications for the subscription responses version 2020-08-15 are available for the
HTTP and TCP protocols:

• HTTP: logs-api-http-response.zip

• TCP: logs-api-tcp-response.zip

Response codes

• 200 – Request completed successfully

• 202 – Request accepted. Response to a subscription request during local testing.

• 4XX – Bad Request

• 500 – Service error

If the request succeeds, the subscriber receives an HTTP 200 success response.

HTTP/1.1 200 OK
"OK"

If the request fails, the subscriber receives an error response. For example:

HTTP/1.1 400 OK
{
 "errorType": "Logs.ValidationError",
 "errorMessage": URI port is not provided; types should not be empty"
}

Log messages

The Logs API allows extensions to subscribe to three different logs streams:

Logs API 1712

samples/logs-api-http-response.zip
samples/logs-api-tcp-response.zip

Amazon Lambda Developer Guide

• Function – Logs that the Lambda function generates and writes to stdout or stderr.

• Extension – Logs that extension code generates.

• Platform – Logs that the runtime platform generates, which record events and errors related to
invocations and extensions.

Topics

• Function logs

• Extension logs

• Platform logs

Function logs

The Lambda function and internal extensions generate function logs and write them to stdout or
stderr.

The following example shows the format of a function log message. { "time":
"2020-08-20T12:31:32.123Z", "type": "function", "record": "ERROR encountered. Stack trace:\n\my-
function (line 10)\n" }

Extension logs

Extensions can generate extension logs. The log format is the same as for a function log.

Platform logs

Lambda generates log messages for platform events such as platform.start, platform.end,
and platform.fault.

Optionally, you can subscribe to the 2021-03-18 version of the Logs API schema, which includes
the platform.runtimeDone log message.

Example platform log messages

The following example shows the platform start and platform end logs. These logs indicate the
invocation start time and invocation end time for the invocation that the requestId specifies.

{

Logs API 1713

Amazon Lambda Developer Guide

 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.start",
 "record": {"requestId": "6f7f0961f83442118a7af6fe80b88d56"}
}
{
 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.end",
 "record": {"requestId": "6f7f0961f83442118a7af6fe80b88d56"}
}

The platform.initRuntimeDone log message shows the status of the Runtime init sub-phase,
which is part of the Init lifecyle phase. When Runtime init is successful, the runtime sends a /
next runtime API request (for the on-demand and provisioned-concurrency initialization
types) or restore/next (for the snap-start initialization type). The following example shows a
successful platform.initRuntimeDone log message for the snap-start initialization type.

{
 "time":"2022-07-17T18:41:57.083Z",
 "type":"platform.initRuntimeDone",
 "record":{
 "initializationType":"snap-start",
 "status":"success"
 }
}

The platform.initReport log message shows how long the Init phase lasted and how many
milliseconds you were billed for during this phase. When the initialization type is provisioned-
concurrency, Lambda sends this message during invocation. When the initialization type is
snap-start, Lambda sends this message after restoring the snapshot. The following example
shows a platform.initReport log message for the snap-start initialization type.

{
 "time":"2022-07-17T18:41:57.083Z",
 "type":"platform.initReport",
 "record":{
 "initializationType":"snap-start",
 "metrics":{
 "durationMs":731.79,
 "billedDurationMs":732
 }
 }

Logs API 1714

Amazon Lambda Developer Guide

}

The platform report log includes metrics about the invocation that the requestId specifies. The
initDurationMs field is included in the log only if the invocation included a cold start. If Amazon
X-Ray tracing is active, the log includes X-Ray metadata. The following example shows a platform
report log for an invocation that included a cold start.

{
 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.report",
 "record": {"requestId": "6f7f0961f83442118a7af6fe80b88d56",
 "metrics": {"durationMs": 101.51,
 "billedDurationMs": 300,
 "memorySizeMB": 512,
 "maxMemoryUsedMB": 33,
 "initDurationMs": 116.67
 }
 }
}

The platform fault log captures runtime or execution environment errors. The following example
shows a platform fault log message.

{
 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.fault",
 "record": "RequestId: d783b35e-a91d-4251-af17-035953428a2c Process exited before
 completing request"
}

Lambda generates a platform extension log when an extension registers with the extensions API.
The following example shows a platform extension message.

{
 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.extension",
 "record": {"name": "Foo.bar",
 "state": "Ready",
 "events": ["INVOKE", "SHUTDOWN"]
 }
}

Logs API 1715

Amazon Lambda Developer Guide

Lambda generates a platform logs subscription log when an extension subscribes to the logs API.
The following example shows a logs subscription message.

{
 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.logsSubscription",
 "record": {"name": "Foo.bar",
 "state": "Subscribed",
 "types": ["function", "platform"],
 }
}

Lambda generates a platform logs dropped log when an extension is not able to process the
number of logs that it is receiving. The following example shows a platform.logsDropped log
message.

{
 "time": "2020-08-20T12:31:32.123Z",
 "type": "platform.logsDropped",
 "record": {"reason": "Consumer seems to have fallen behind as it has not
 acknowledged receipt of logs.",
 "droppedRecords": 123,
 "droppedBytes" 12345
 }
}

The platform.restoreStart log message shows the time that the Restore phase started (snap-
start initialization type only). Example:

{
 "time":"2022-07-17T18:43:44.782Z",
 "type":"platform.restoreStart",
 "record":{}
}

The platform.restoreReport log message shows how long the Restore phase lasted and how
many milliseconds you were billed for during this phase (snap-start initialization type only).
Example:

{

Logs API 1716

Amazon Lambda Developer Guide

 "time":"2022-07-17T18:43:45.936Z",
 "type":"platform.restoreReport",
 "record":{
 "metrics":{
 "durationMs":70.87,
 "billedDurationMs":13
 }
 }
}

Platform runtimeDone messages

If you set the schema version to "2021-03-18" in the subscribe request, Lambda sends a
platform.runtimeDone message after the function invocation completes either successfully
or with an error. The extension can use this message to stop all the telemetry collection for this
function invocation.

The OpenAPI specification for the Log event type in schema version 2021-03-18 is available here:
schema-2021-03-18.zip

Lambda generates the platform.runtimeDone log message when the runtime sends a Next or
Error runtime API request. The platform.runtimeDone log informs consumers of the Logs API
that the function invocation completes. Extensions can use this information to decide when to send
all the telemetry collected during that invocation.

Examples

Lambda sends the platform.runtimeDone message after the runtime sends the NEXT request
when the function invocation completes. The following examples show messages for each of the
status values: success, failure, and timeout.

Example Example success message

{
 "time": "2021-02-04T20:00:05.123Z",
 "type": "platform.runtimeDone",
 "record": {
 "requestId":"6f7f0961f83442118a7af6fe80b88",
 "status": "success"
 }
}

Logs API 1717

samples/schema-2021-03-18.zip

Amazon Lambda Developer Guide

Example Example failure message

{
 "time": "2021-02-04T20:00:05.123Z",
 "type": "platform.runtimeDone",
 "record": {
 "requestId":"6f7f0961f83442118a7af6fe80b88",
 "status": "failure"
 }
}

Example Example timeout message

{
 "time": "2021-02-04T20:00:05.123Z",
 "type": "platform.runtimeDone",
 "record": {
 "requestId":"6f7f0961f83442118a7af6fe80b88",
 "status": "timeout"
 }
}

Example Example platform.restoreRuntimeDone message (snap-start initialization type
only)

The platform.restoreRuntimeDone log message shows whether or not the Restore phase was
successful. Lambda sends this message when the runtime sends a restore/next runtime API
request. There are three possible statuses: success, failure, and timeout. The following example
shows a successful platform.restoreRuntimeDone log message.

{
 "time":"2022-07-17T18:43:45.936Z",
 "type":"platform.restoreRuntimeDone",
 "record":{
 "status":"success"
 }
}

Logs API 1718

Amazon Lambda Developer Guide

Troubleshooting issues in Lambda

The following topics provide troubleshooting advice for errors and issues that you might encounter
when using the Lambda API, console, or tools. If you find an issue that is not listed here, you can
use the Feedback button on this page to report it.

For more troubleshooting advice and answers to common support questions, visit the Amazon
Knowledge Center.

For more information about debugging and troubleshooting Lambda applications, see Debugging
in Serverless Land.

Topics

• Troubleshoot deployment issues in Lambda

• Troubleshoot invocation issues in Lambda

• Troubleshoot execution issues in Lambda

• Troubleshoot networking issues in Lambda

• Troubleshoot container image issues in Lambda

Troubleshoot deployment issues in Lambda

When you update your function, Lambda deploys the change by launching new instances of the
function with the updated code or settings. Deployment errors prevent the new version from being
used and can arise from issues with your deployment package, code, permissions, or tools.

When you deploy updates to your function directly with the Lambda API or with a client such as
the Amazon CLI, you can see errors from Lambda directly in the output. If you use services like
Amazon CloudFormation, Amazon CodeDeploy, or Amazon CodePipeline, look for the response
from Lambda in the logs or event stream for that service.

The following topics provide troubleshooting advice for errors and issues that you might encounter
when using the Lambda API, console, or tools. If you find an issue that is not listed here, you can
use the Feedback button on this page to report it.

For more troubleshooting advice and answers to common support questions, visit the Amazon
Knowledge Center.

Deployment 1719

http://www.amazonaws.cn/premiumsupport/knowledge-center/#AWS_Lambda
http://www.amazonaws.cn/premiumsupport/knowledge-center/#AWS_Lambda
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/debugging-ops
http://www.amazonaws.cn/premiumsupport/knowledge-center/#AWS_Lambda
http://www.amazonaws.cn/premiumsupport/knowledge-center/#AWS_Lambda

Amazon Lambda Developer Guide

For more information about debugging and troubleshooting Lambda applications, see Debugging
in Serverless Land.

Topics

• General: Permission is denied / Cannot load such file

• General: Error occurs when calling the UpdateFunctionCode

• Amazon S3: Error Code PermanentRedirect.

• General: Cannot find, cannot load, unable to import, class not found, no such file or directory

• General: Undefined method handler

• Lambda: Layer conversion failed

• Lambda: InvalidParameterValueException or RequestEntityTooLargeException

• Lambda: InvalidParameterValueException

• Lambda: Concurrency and memory quotas

General: Permission is denied / Cannot load such file

Error: EACCES: permission denied, open '/var/task/index.js'

Error: cannot load such file -- function

Error: [Errno 13] Permission denied: '/var/task/function.py'

The Lambda runtime needs permission to read the files in your deployment package. In Linux
permissions octal notation, Lambda needs 644 permissions for non-executable files (rw-r--r--) and
755 permissions (rwxr-xr-x) for directories and executable files.

In Linux and MacOS, use the chmod command to change file permissions on files and directories in
your deployment package. For example, to give an executable file the correct permissions, run the
following command.

chmod 755 <filepath>

To change file permissions in Windows, see Set, View, Change, or Remove Permissions on an Object
in the Microsoft Windows documentation.

General: Permission is denied / Cannot load such file 1720

https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/debugging-ops
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc731667(v=ws.10)

Amazon Lambda Developer Guide

General: Error occurs when calling the UpdateFunctionCode

Error: An error occurred (RequestEntityTooLargeException) when calling the UpdateFunctionCode
operation

When you upload a deployment package or layer archive directly to Lambda, the size of the ZIP file
is limited to 50 MB. To upload a larger file, store it in Amazon S3 and use the S3Bucket and S3Key
parameters.

Note

When you upload a file directly with the Amazon CLI, Amazon SDK, or otherwise, the binary
ZIP file is converted to base64, which increases its size by about 30%. To allow for this,
and the size of other parameters in the request, the actual request size limit that Lambda
applies is larger. Due to this, the 50 MB limit is approximate.

Amazon S3: Error Code PermanentRedirect.

Error: Error occurred while GetObject. S3 Error Code: PermanentRedirect. S3 Error Message: The
bucket is in this region: us-east-2. Please use this region to retry the request

When you upload a function's deployment package from an Amazon S3 bucket, the bucket must
be in the same Region as the function. This issue can occur when you specify an Amazon S3 object
in a call to UpdateFunctionCode, or use the package and deploy commands in the Amazon CLI
or Amazon SAM CLI. Create a deployment artifact bucket for each Region where you develop
applications.

General: Cannot find, cannot load, unable to import, class not found,
no such file or directory

Error: Cannot find module 'function'

Error: cannot load such file -- function

Error: Unable to import module 'function'

Error: Class not found: function.Handler

General: Error occurs when calling the UpdateFunctionCode 1721

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html

Amazon Lambda Developer Guide

Error: fork/exec /var/task/function: no such file or directory

Error: Unable to load type 'Function.Handler' from assembly 'Function'.

The name of the file or class in your function's handler configuration doesn't match your code. See
the following section for more information.

General: Undefined method handler

Error: index.handler is undefined or not exported

Error: Handler 'handler' missing on module 'function'

Error: undefined method `handler' for #<LambdaHandler:0x000055b76ccebf98>

Error: No public method named handleRequest with appropriate method signature found on class
function.Handler

Error: Unable to find method 'handleRequest' in type 'Function.Handler' from assembly 'Function'

The name of the handler method in your function's handler configuration doesn't match your code.
Each runtime defines a naming convention for handlers, such as filename.methodname. The
handler is the method in your function's code that the runtime runs when your function is invoked.

For some languages, Lambda provides a library with an interface that expects a handler method to
have a specific name. For details about handler naming for each language, see the following topics.

• Building Lambda functions with Node.js

• Building Lambda functions with Python

• Building Lambda functions with Ruby

• Building Lambda functions with Java

• Building Lambda functions with Go

• Building Lambda functions with C#

• Building Lambda functions with PowerShell

Lambda: Layer conversion failed

Error: Lambda layer conversion failed. For advice on resolving this issue, see the Troubleshoot
deployment issues in Lambda page in the Lambda User Guide.

General: Undefined method handler 1722

Amazon Lambda Developer Guide

When you configure a Lambda function with a layer, Lambda merges the layer with your function
code. If this process fails to complete, Lambda returns this error. If you encounter this error, take
the following steps:

• Delete any unused files from your layer

• Delete any symbolic links in your layer

• Rename any files that have the same name as a directory in any of your function's layers

Lambda: InvalidParameterValueException or
RequestEntityTooLargeException

Error: InvalidParameterValueException: Lambda was unable to configure your environment variables
because the environment variables you have provided exceeded the 4KB limit. String measured:
{"A1":"uSFeY5cyPiPn7AtnX5BsM...

Error: RequestEntityTooLargeException: Request must be smaller than 5120 bytes for the
UpdateFunctionConfiguration operation

The maximum size of the variables object that is stored in the function's configuration must not
exceed 4096 bytes. This includes key names, values, quotes, commas, and brackets. The total size
of the HTTP request body is also limited.

{
 "FunctionName": "my-function",
 "FunctionArn": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function",
 "Runtime": "nodejs20.x",
 "Role": "arn:aws-cn:iam::123456789012:role/lambda-role",
 "Environment": {
 "Variables": {
 "BUCKET": "my-bucket",
 "KEY": "file.txt"
 }
 },
 ...
}

In this example, the object is 39 characters and takes up 39 bytes when it's stored (without white
space) as the string {"BUCKET":"my-bucket","KEY":"file.txt"}. Standard ASCII characters

Lambda: InvalidParameterValueException or RequestEntityTooLargeException 1723

Amazon Lambda Developer Guide

in environment variable values use one byte each. Extended ASCII and Unicode characters can use
between 2 bytes and 4 bytes per character.

Lambda: InvalidParameterValueException

Error: InvalidParameterValueException: Lambda was unable to configure your environment variables
because the environment variables you have provided contains reserved keys that are currently not
supported for modification.

Lambda reserves some environment variable keys for internal use. For example, AWS_REGION is
used by the runtime to determine the current Region and cannot be overridden. Other variables,
like PATH, are used by the runtime but can be extended in your function configuration. For a full
list, see Defined runtime environment variables.

Lambda: Concurrency and memory quotas

Error: Specified ConcurrentExecutions for function decreases account's
UnreservedConcurrentExecution below its minimum value

Error: 'MemorySize' value failed to satisfy constraint: Member must have value less than or equal to
3008

These errors occur when you exceed the concurrency or memory quotas for your account. New
Amazon accounts have reduced concurrency and memory quotas. To resolve errors related to
concurrency, you can request a quota increase. You cannot request memory quota increases.

• Concurrency: You might get an error if you try to create a function using reserved or provisioned
concurrency, or if your per-function concurrency request (PutFunctionConcurrency) exceeds your
account's concurrency quota.

• Memory: Errors occur if the amount of memory allocated to the function exceeds your account's
memory quota.

Troubleshoot invocation issues in Lambda

When you invoke a Lambda function, Lambda validates the request and checks for scaling capacity
before sending the event to your function or, for asynchronous invocation, to the event queue.
Invocation errors can be caused by issues with request parameters, event structure, function
settings, user permissions, resource permissions, or limits.

Lambda: InvalidParameterValueException 1724

https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html
https://docs.amazonaws.cn/lambda/latest/api/API_PutFunctionConcurrency.html

Amazon Lambda Developer Guide

If you invoke your function directly, you see any invocation errors in the response from Lambda. If
you invoke your function asynchronously with an event source mapping or through another service,
you might find errors in logs, a dead-letter queue, or a failed-event destination. Error handling
options and retry behavior vary depending on how you invoke your function and on the type of
error.

For a list of error types that the Invoke operation can return, see Invoke.

IAM: lambda:InvokeFunction not authorized

Error: User: arn:aws-cn:iam::123456789012:user/developer is not authorized to perform:
lambda:InvokeFunction on resource: my-function

Your user, or the role that you assume, must have permission to invoke a function. This
requirement also applies to Lambda functions and other compute resources that invoke functions.
Add the Amazon managed policy AWSLambdaRole to your user, or add a custom policy that allows
the lambda:InvokeFunction action on the target function.

Note

The name of the IAM action (lambda:InvokeFunction) refers to the Invoke Lambda API
operation.

For more information, see Lambda resource access permissions .

Lambda: Couldn't find valid bootstrap (Runtime.InvalidEntrypoint)

Error: Couldn't find valid bootstrap(s): [/var/task/bootstrap /opt/bootstrap]

This error typically occurs when the root of your deployment package doesn't contain an
executable file named bootstrap. For example, if you're deploying a provided.al2023 function
with a .zip file, the bootstrap file must be at the root of the .zip file, not in a directory.

Lambda: Operation cannot be performed ResourceConflictException

Error: ResourceConflictException: The operation cannot be performed at this time. The function is
currently in the following state: Pending

When you connect a function to a virtual private cloud (VPC) at the time of creation, the function
enters a Pending state while Lambda creates elastic network interfaces. During this time, you

IAM: lambda:InvokeFunction not authorized 1725

https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html

Amazon Lambda Developer Guide

can't invoke or modify your function. If you connect your function to a VPC after creation, you can
invoke it while the update is pending, but you can't modify its code or configuration.

For more information, see Lambda function states .

Lambda: Function is stuck in Pending

Error: A function is stuck in the Pending state for several minutes.

If a function is stuck in the Pending state for more than six minutes, call one of the following API
operations to unblock it:

• UpdateFunctionCode

• UpdateFunctionConfiguration

• PublishVersion

Lambda cancels the pending operation and puts the function into the Failed state. You can then
attempt another update.

Lambda: One function is using all concurrency

Issue: One function is using all of the available concurrency, causing other functions to be throttled.

To divide your Amazon account's available concurrency in an Amazon Region into pools, use
reserved concurrency. Reserved concurrency ensures that a function can always scale to its
assigned concurrency, and that it doesn't scale beyond its assigned concurrency.

General: Cannot invoke function with other accounts or services

Issue: You can invoke your function directly, but it doesn't run when another service or account
invokes it.

You grant other services and accounts permission to invoke a function in the function's resource-
based policy. If the invoker is in another account, that user must also have permission to invoke
functions.

General: Function invocation is looping

Issue: Function is invoked continuously in a loop.

Lambda: Function is stuck in Pending 1726

https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionCode.html
https://docs.amazonaws.cn/lambda/latest/api/API_UpdateFunctionConfiguration.html
https://docs.amazonaws.cn/lambda/latest/api/API_PublishVersion.html

Amazon Lambda Developer Guide

This typically occurs when your function manages resources in the same Amazon service that
triggers it. For example, it's possible to create a function that stores an object in an Amazon Simple
Storage Service (Amazon S3) bucket that's configured with a notification that invokes the function
again. To stop the function from running, reduce the available concurrency to zero, which throttles
all future invocations. Then, identify the code path or configuration error that caused the recursive
invocation. Lambda automatically detects and stops recursive loops for some Amazon services and
SDKs. For more information, see the section called “Recursive loop detection”.

Lambda: Alias routing with provisioned concurrency

Issue: Provisioned concurrency spillover invocations during alias routing.

Lambda uses a simple probabilistic model to distribute the traffic between the two function
versions. At low traffic levels, you might see a high variance between the configured and actual
percentage of traffic on each version. If your function uses provisioned concurrency, you can avoid
spillover invocations by configuring a higher number of provisioned concurrency instances during
the time that alias routing is active.

Lambda: Cold starts with provisioned concurrency

Issue: You see cold starts after enabling provisioned concurrency.

When the number of concurrent executions on a function is less than or equal to the configured
level of provisioned concurrency, there shouldn't be any cold starts. To help you confirm if
provisioned concurrency is operating normally, do the following:

• Check that provisioned concurrency is enabled on the function version or alias.

Note

Provisioned concurrency is not configurable on the unpublished version of the function
($LATEST).

• Ensure that your triggers invoke the correct function version or alias. For example, if you're
using Amazon API Gateway, check that API Gateway invokes the function version or alias with
provisioned concurrency, not $LATEST. To confirm that provisioned concurrency is being used,
you can check the ProvisionedConcurrencyInvocations Amazon CloudWatch metric. A non-zero
value indicates that the function is processing invocations on initialized execution environments.

Lambda: Alias routing with provisioned concurrency 1727

Amazon Lambda Developer Guide

• Determine whether your function concurrency exceeds the configured level of provisioned
concurrency by checking the ProvisionedConcurrencySpilloverInvocations CloudWatch metric. A
non-zero value indicates that all provisioned concurrency is in use and some invocation occurred
with a cold start.

• Check your invocation frequency (requests per second). Functions with provisioned concurrency
have a maximum rate of 10 requests per second per provisioned concurrency. For example, a
function configured with 100 provisioned concurrency can handle 1,000 requests per second. If
the invocation rate exceeds 1,000 requests per second, some cold starts can occur.

Lambda: Cold starts with new versions

Issue: You see cold starts while deploying new versions of your function.

When you update a function alias, Lambda automatically shifts provisioned concurrency to the new
version based on the weights configured on the alias.

Error: KMSDisabledException: Lambda was unable to decrypt the environment variables because the
KMS key used is disabled. Please check the function's KMS key settings.

This error can occur if your Amazon Key Management Service (Amazon KMS) key is disabled, or
if the grant that allows Lambda to use the key is revoked. If the grant is missing, configure the
function to use a different key. Then, reassign the custom key to recreate the grant.

EFS: Function could not mount the EFS file system

Error: EFSMountFailureException: The function could not mount the EFS file system with access point
arn:aws-cn:elasticfilesystem:us-east-2:123456789012:access-point/fsap-015cxmplb72b405fd.

The mount request to the function's file system was rejected. Check the function's permissions, and
confirm that its file system and access point exist and are ready for use.

EFS: Function could not connect to the EFS file system

Error: EFSMountConnectivityException: The function couldn't connect to the Amazon EFS file
system with access point arn:aws-cn:elasticfilesystem:us-east-2:123456789012:access-point/
fsap-015cxmplb72b405fd. Check your network configuration and try again.

The function couldn't establish a connection to the function's file system with the NFS protocol
(TCP port 2049). Check the security group and routing configuration for the VPC's subnets.

Lambda: Cold starts with new versions 1728

https://docs.amazonaws.cn/efs/latest/ug/network-access.html

Amazon Lambda Developer Guide

If you get these errors after updating your function's VPC configuration settings, try unmounting
and remounting the file system.

EFS: Function could not mount the EFS file system due to timeout

Error: EFSMountTimeoutException: The function could not mount the EFS file system
with access point {arn:aws-cn:elasticfilesystem:us-east-2:123456789012:access-point/
fsap-015cxmplb72b405fd} due to mount time out.

The function could connect to the function's file system, but the mount operation timed out. Try
again after a short time and consider limiting the function's concurrency to reduce load on the file
system.

Lambda: Lambda detected an IO process that was taking too long

EFSIOException: This function instance was stopped because Lambda detected an IO process that was
taking too long.

A previous invocation timed out and Lambda couldn't terminate the function handler. This issue
can occur when an attached file system runs out of burst credits and the baseline throughput is
insufficient. To increase throughput, you can increase the size of the file system or use provisioned
throughput. For more information, see Throughput .

Troubleshoot execution issues in Lambda

When the Lambda runtime runs your function code, the event might be processed on an instance
of the function that's been processing events for some time, or it might require a new instance to
be initialized. Errors can occur during function initialization, when your handler code processes the
event, or when your function returns (or fails to return) a response.

Function execution errors can be caused by issues with your code, function configuration,
downstream resources, or permissions. If you invoke your function directly, you see function errors
in the response from Lambda. If you invoke your function asynchronously, with an event source
mapping, or through another service, you might find errors in logs, a dead-letter queue, or an on-
failure destination. Error handling options and retry behavior vary depending on how you invoke
your function and on the type of error.

When your function code or the Lambda runtime return an error, the status code in the response
from Lambda is 200 OK. The presence of an error in the response is indicated by a header named
X-Amz-Function-Error. 400 and 500-series status codes are reserved for invocation errors.

EFS: Function could not mount the EFS file system due to timeout 1729

Amazon Lambda Developer Guide

Lambda: Execution takes too long

Issue: Function execution takes too long.

If your code takes much longer to run in Lambda than on your local machine, it may be constrained
by the memory or processing power available to the function. Configure the function with
additional memory to increase both memory and CPU.

Lambda: Logs or traces don't appear

Issue: Logs don't appear in CloudWatch Logs.

Issue: Traces don't appear in Amazon X-Ray.

Your function needs permission to call CloudWatch Logs and X-Ray. Update its execution role to
grant it permission. Add the following managed policies to enable logs and tracing.

• AWSLambdaBasicExecutionRole

• AWSXRayDaemonWriteAccess

When you add permissions to your function, update its code or configuration as well. This forces
running instances of your function, which have outdated credentials, to stop and be replaced.

Note

It may take 5 to 10 minutes for logs to show up after a function invocation.

Lambda: Not all of my function's logs appear

Issue: Function logs are missing in CloudWatch Logs, even though my permissions are correct

If your Amazon Web Services account reaches its CloudWatch Logs quota limits, CloudWatch
throttles function logging. When this happens, some of the logs output by your functions may not
appear in CloudWatch Logs.

If your function outputs logs at too high a rate for Lambda to process them, this can also cause
log outputs not to appear in CloudWatch Logs. When Lambda can't send logs to CloudWatch at

Lambda: Execution takes too long 1730

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html

Amazon Lambda Developer Guide

the rate your function produces them, it drops logs to prevent the execution of your function from
slowing down.

To check if your Amazon Web Services account has reached its CloudWatch Logs quota limits, do
the following:

1. Open the Service Quotas console.

2. In the navigation pane, choose Amazon services.

3. From the Amazon services list, search for Amazon CloudWatch Logs.

4. In the Service quotas list, choose the CreateLogGroup throttle limit in
transactions per second, CreateLogStream throttle limit in transactions
per second and PutLogEvents throttle limit in transactions per second
quotas to view your utilization.

You can also set CloudWatch alarms to alert you when your account utilization exceeds a limit you
specify for these quotas. See Create a CloudWatch alarm based on a static threshold to learn more.

If the default quota limits for CloudWatch Logs aren't enough for your use case, you can request a
quota increase.

Lambda: The function returns before execution finishes

Issue: (Node.js) Function returns before code finishes executing

Many libraries, including the Amazon SDK, operate asynchronously. When you make a network call
or perform another operation that requires waiting for a response, libraries return an object called
a promise that tracks the progress of the operation in the background.

To wait for the promise to resolve into a response, use the await keyword. This blocks your
handler code from executing until the promise is resolved into an object that contains the
response. If you don't need to use the data from the response in your code, you can return the
promise directly to the runtime.

Some libraries don't return promises but can be wrapped in code that does. For more information,
see Amazon Lambda function handler in Node.js.

Amazon SDK: Versions and updates

Issue: The Amazon SDK included on the runtime is not the latest version

Lambda: The function returns before execution finishes 1731

https://console.amazonaws.cn/servicequotas
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html

Amazon Lambda Developer Guide

Issue: The Amazon SDK included on the runtime updates automatically

Runtimes for scripting languages include the Amazon SDK and are periodically updated to the
latest version. The current version for each runtime is listed on runtimes page. To use a newer
version of the Amazon SDK, or to lock your functions to a specific version, you can bundle the
library with your function code, or create a Lambda layer. For details on creating a deployment
package with dependencies, see the following topics:

Node.js

Deploy Node.js Lambda functions with .zip file archives

Python

Working with .zip file archives for Python Lambda functions

Ruby

Working with .zip file archives for Ruby Lambda functions

Java

Deploy Java Lambda functions with .zip or JAR file archives

Go

Deploy Go Lambda functions with .zip file archives

C#

Build and deploy C# Lambda functions with .zip file archives

PowerShell

Deploy PowerShell Lambda functions with .zip file archives

Python: Libraries load incorrectly

Issue: (Python) Some libraries don't load correctly from the deployment package

Libraries with extension modules written in C or C++ must be compiled in an environment with
the same processor architecture as Lambda (Amazon Linux). For more information, see Working
with .zip file archives for Python Lambda functions.

Python: Libraries load incorrectly 1732

Amazon Lambda Developer Guide

Troubleshoot networking issues in Lambda

By default, Lambda runs your functions in an internal virtual private cloud (VPC) with connectivity
to Amazon services and the internet. To access local network resources, you can configure
your function to connect to a VPC in your account. When you use this feature, you manage the
function's internet access and network connectivity with Amazon Virtual Private Cloud (Amazon
VPC) resources.

Network connectivity errors can result from issues with your VPC's routing configuration, security
group rules, Amazon Identity and Access Management (IAM) role permissions, or network address
translation (NAT), or from the availability of resources such as IP addresses or network interfaces.
Depending on the issue, you might see a specific error or timeout if a request can't reach its
destination.

VPC: Function loses internet access or times out

Issue: Your Lambda function loses internet access after connecting to a VPC.

Error: Error: connect ETIMEDOUT 176.32.98.189:443

Error: Error: Task timed out after 10.00 seconds

Error: ReadTimeoutError: Read timed out. (read timeout=15)

When you connect a function to a VPC, all outbound requests go through the VPC. To connect
to the internet, configure your VPC to send outbound traffic from the function's subnet to a NAT
gateway in a public subnet. For more information and sample VPC configurations, see Internet and
service access for VPC-connected functions.

If some of your TCP connections are timing out, this may be due to packet fragmentation. Lambda
functions cannot handle incoming fragmented TCP requests, since Lambda does not support IP
fragmentation for TCP or ICMP.

VPC: Function needs access to Amazon services without using the
internet

Issue: Your Lambda function needs access to Amazon services without using the internet.

To connect a function to Amazon services from a private subnet with no internet access, use
VPC endpoints. For a sample Amazon CloudFormation template with VPC endpoints for Amazon

Networking 1733

Amazon Lambda Developer Guide

Simple Storage Service (Amazon S3) and Amazon DynamoDB (DynamoDB), see Sample VPC
configurations.

VPC: Elastic network interface limit reached

Error: ENILimitReachedException: The elastic network interface limit was reached for the function's
VPC.

When you connect a Lambda function to a VPC, Lambda creates an elastic network interface for
each combination of subnet and security group attached to the function. The default service quota
is 250 network interfaces per VPC. To request a quota increase, use the Service Quotas console.

EC2: Elastic network interface with type of "lambda"

Error Code: Client.OperationNotPermitted

Error message: The security group can not be modified for this type of interface

You will receive this error if you attempt to modify an elastic network interface (ENI) that is
managed by Lambda. The ModifyNetworkInterfaceAttribute is not included in the Lambda
API for update operations on elastic network interfaces created by Lambda.

Troubleshoot container image issues in Lambda

Container: CodeArtifactUserException errors related to the code
artifact.

Issue: CodeArtifactUserPendingException error message

The CodeArtifact is pending optimization. The function transitions to active state when Lambda
completes the optimization. HTTP response code 409.

Issue: CodeArtifactUserDeletedException error message

The CodeArtifact is scheduled to be deleted. HTTP response code 409.

Issue: CodeArtifactUserFailedException error message

Lambda failed to optimize the code. You need to correct the code and upload it again. HTTP
response code 409.

VPC: Elastic network interface limit reached 1734

https://console.amazonaws.cn/servicequotas/home/services/lambda/quotas/L-9FEE3D26

Amazon Lambda Developer Guide

Container: ManifestKeyCustomerException errors related to the code
manifest key.

Issue: KMSAccessDeniedException error message

You do not have permissions to access the key to decrypt the manifest. HTTP response code 502.

Issue: TooManyRequestsException error message

The client is being throttled. The current request rate exceeds the KMS subscription rate. HTTP
response code 429.

Issue: KMSNotFoundException error message

Lambda cannot find the key to decrypt the manifest. HTTP response code 502.

Issue: KMSDisabledException error message

The key to decrypt the manifest is disabled. HTTP response code 502.

Issue: KMSInvalidStateException error message

The key is in a state (such as pending deletion or unavailable) such that Lambda cannot use the key
to decrypt the manifest. HTTP response code 502.

Container: Error occurs on runtime InvalidEntrypoint

Issue: You receive a Runtime.ExitError error message, or an error message with "errorType":
"Runtime.InvalidEntrypoint".

Verify that the ENTRYPOINT to your container image includes the absolute path as the location.
Also verify that the image does not contain a symlink as the ENTRYPOINT.

Lambda: System provisioning additional capacity

Error: “Error: We currently do not have sufficient capacity in the region you requested. Our system will
be working on provisioning additional capacity.

Retry the function invocation. If the retry fails, validate that the files required to run the
function code can be read by any user. Lambda defines a default Linux user with least-privileged

Container: ManifestKeyCustomerException errors related to the code manifest key. 1735

Amazon Lambda Developer Guide

permissions. You need to verify that your application code does not rely on files that are restricted
by other Linux users for execution.

CloudFormation: ENTRYPOINT is being overridden with a null or empty
value

Error: You are using an Amazon CloudFormation template, and your container ENTRYPOINT is being
overridden with a null or empty value.

Review the ImageConfig resource in the Amazon CloudFormation template. If you declare an
ImageConfig resource in your template, you must provide non-empty values for all three of the
properties.

CloudFormation: ENTRYPOINT is being overridden with a null or empty value 1736

Amazon Lambda Developer Guide

Amazon Lambda applications

An Amazon Lambda application is a combination of Lambda functions, event sources, and other
resources that work together to perform tasks. You can use Amazon CloudFormation and other
tools to collect your application's components into a single package that can be deployed and
managed as one resource. Applications make your Lambda projects portable and enable you to
integrate with additional developer tools, such as Amazon CodePipeline, Amazon CodeBuild, and
the Amazon Serverless Application Model command line interface (Amazon SAM CLI).

The Amazon Serverless Application Repository provides a collection of Lambda applications
that you can deploy in your account with a few clicks. The repository includes both ready-to-use
applications and samples that you can use as a starting point for your own projects. You can also
submit your own projects for inclusion.

Amazon CloudFormation enables you to create a template that defines your application's resources
and lets you manage the application as a stack. You can more safely add or modify resources
in your application stack. If any part of an update fails, Amazon CloudFormation automatically
rolls back to the previous configuration. With Amazon CloudFormation parameters, you can
create multiple environments for your application from the same template. Amazon SAM extends
Amazon CloudFormation with a simplified syntax focused on Lambda application development.

The Amazon CLI and Amazon SAM CLI are command line tools for managing Lambda application
stacks. In addition to commands for managing application stacks with the Amazon CloudFormation
API, the Amazon CLI supports higher-level commands that simplify tasks such as uploading
deployment packages and updating templates. The Amazon SAM CLI provides additional
functionality, including validating templates, testing locally, and integrating with CI/CD systems.

When creating an application, you can create its Git repository using either CodeCommit or an AWS
CodeStar connection to GitHub. CodeCommit enables you to use the IAM console to manage SSH
keys and HTTP credentials for your users. CodeConnections enables you to connect to your GitHub
account. For more information about connections, see What are connections? in the Developer
Tools console User Guide.

For more information about designing Lambda applications, see Application design in Serverless
Land.

Topics

• Managing applications in the Amazon Lambda console

1737

https://docs.amazonaws.cn/serverlessrepo/latest/devguide/
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-getting-started.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/connect/latest/userguide/welcome-connections.html
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/application-design

Amazon Lambda Developer Guide

• Creating an application with continuous delivery in the Lambda console

• Rolling deployments for Lambda functions

• Invoking Lambda functions with the Amazon Mobile SDK for Android

1738

Amazon Lambda Developer Guide

Managing applications in the Amazon Lambda console

The Amazon Lambda console helps you monitor and manage your Lambda applications. The
Applications menu lists Amazon CloudFormation stacks with Lambda functions. The menu
includes stacks that you launch in Amazon CloudFormation by using the Amazon CloudFormation
console, the Amazon Serverless Application Repository, the Amazon CLI, or the Amazon SAM CLI.

To view a Lambda application

1. Open the Lambda console Applications page.

2. Choose an application.

The overview shows the following information about your application.

• Amazon CloudFormation template or SAM template – The template that defines your
application.

• Resources – The Amazon resources that are defined in your application's template. To manage
your application's Lambda functions, choose a function name from the list.

Monitoring applications

The Monitoring tab shows an Amazon CloudWatch dashboard with aggregate metrics for the
resources in your application.

To monitor a Lambda application

1. Open the Lambda console Applications page.

2. Choose Monitoring.

Manage applications 1739

https://console.amazonaws.cn/lambda/home#/applications
https://console.amazonaws.cn/lambda/home#/applications

Amazon Lambda Developer Guide

By default, the Lambda console shows a basic dashboard. You can customize this page by defining
custom dashboards in your application template. When your template includes one or more
dashboards, the page shows your dashboards instead of the default dashboard. You can switch
between dashboards with the drop-down menu on the top right of the page.

Custom monitoring dashboards

Customize your application monitoring page by adding one or more Amazon CloudWatch
dashboards to your application template with the AWS::CloudWatch::Dashboard resource type. The
following example creates a dashboard with a single widget that graphs the number of invocations
of a function named my-function.

Example function dashboard template

Resources:
 MyDashboard:
 Type: AWS::CloudWatch::Dashboard
 Properties:
 DashboardName: my-dashboard
 DashboardBody: |
 {
 "widgets": [
 {
 "type": "metric",
 "width": 12,
 "height": 6,
 "properties": {
 "metrics": [
 [
 "AWS/Lambda",
 "Invocations",
 "FunctionName",
 "my-function",
 {
 "stat": "Sum",
 "label": "MyFunction"
 }
],
 [
 {
 "expression": "SUM(METRICS())",
 "label": "Total Invocations"

Custom monitoring dashboards 1740

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-cw-dashboard.html

Amazon Lambda Developer Guide

 }
]
],
 "region": "us-east-1",
 "title": "Invocations",
 "view": "timeSeries",
 "stacked": false
 }
 }
]
 }

You can get the definition for any of the widgets in the default monitoring dashboard from the
CloudWatch console.

To view a widget definition

1. Open the Lambda console Applications page.

2. Choose an application that has the standard dashboard.

3. Choose Monitoring.

4. On any widget, choose View in metrics from the drop-down menu.

5. Choose Source.

For more information about authoring CloudWatch dashboards and widgets, see Dashboard body
structure and syntax in the Amazon CloudWatch API Reference.

Custom monitoring dashboards 1741

https://console.amazonaws.cn/lambda/home#/applications
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/CloudWatch-Dashboard-Body-Structure.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/CloudWatch-Dashboard-Body-Structure.html

Amazon Lambda Developer Guide

Creating an application with continuous delivery in the Lambda
console

You can use the Lambda console to create an application with an integrated continuous delivery
pipeline. With continuous delivery, every change that you push to your source control repository
triggers a pipeline that builds and deploys your application automatically. The Lambda console
provides starter projects for common application types with Node.js sample code and templates
that create supporting resources.

In this tutorial, you create the following resources.

• Application – A Node.js Lambda function, build specification, and Amazon Serverless Application
Model (Amazon SAM) template.

• Pipeline – An Amazon CodePipeline pipeline that connects the other resources to enable
continuous delivery.

• Repository – A Git repository in Amazon CodeCommit. When you push a change, the pipeline
copies the source code into an Amazon S3 bucket and passes it to the build project.

• Trigger – An Amazon EventBridge (CloudWatch Events) rule that watches the main branch of the
repository and triggers the pipeline.

• Build project – An Amazon CodeBuild build that gets the source code from the pipeline and
packages the application. The source includes a build specification with commands that install
dependencies and prepare the application template for deployment.

• Deployment configuration – The pipeline's deployment stage defines a set of actions that take
the processed Amazon SAM template from the build output, and deploy the new version with
Amazon CloudFormation.

• Bucket – An Amazon Simple Storage Service (Amazon S3) bucket for deployment artifact
storage.

• Roles – The pipeline's source, build, and deploy stages have IAM roles that allow them to manage
Amazon resources. The application's function has an execution role that allows it to upload logs
and can be extended to access other services.

Your application and pipeline resources are defined in Amazon CloudFormation templates that you
can customize and extend. Your application repository includes a template that you can modify to
add Amazon DynamoDB tables, an Amazon API Gateway API, and other application resources. The

Tutorial – Create an application 1742

Amazon Lambda Developer Guide

continuous delivery pipeline is defined in a separate template outside of source control and has its
own stack.

The pipeline maps a single branch in a repository to a single application stack. You can create
additional pipelines to add environments for other branches in the same repository. You can also
add stages to your pipeline for testing, staging, and manual approvals. For more information about
Amazon CodePipeline, see What is Amazon CodePipeline.

Sections

• Prerequisites

• Create an application

• Invoke the function

• Add an Amazon resource

• Update the permissions boundary

• Update the function code

• Next steps

• Troubleshooting

• Clean up

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

To complete the following steps, you need the Amazon Command Line Interface (Amazon CLI)
version 2. Commands and the expected output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

Prerequisites 1743

https://docs.amazonaws.cn/codepipeline/latest/userguide/welcome.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html

Amazon Lambda Developer Guide

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

This tutorial uses CodeCommit for source control. To set up your local machine to access and
update application code, see Setting up in the Amazon CodeCommit User Guide.

Create an application

Create an application in the Lambda console. In Lambda, an application is an Amazon
CloudFormation stack with a Lambda function and any number of supporting resources. In this
tutorial, you create an application that has a function and its execution role.

To create an application

1. Open the Lambda console Applications page.

2. Choose Create application.

3. Choose Author from scratch.

4. Configure application settings.

• Name – my-app.

• Runtime – Node.js 18.x.

• Template format – Amazon SAM (YAML).

• Source control service – CodeCommit.

• Repository name – my-app-repo.

• Permissions – Create roles and permissions boundary.

5. Choose Create.

Lambda creates the pipeline and related resources and commits the sample application code to the
Git repository. As resources are created, they appear on the overview page.

Create an application 1744

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.amazonaws.cn/codecommit/latest/userguide/setting-up.html
https://console.amazonaws.cn/lambda/home#/applications

Amazon Lambda Developer Guide

The Infrastructure stack contains the repository, build project, and other resources that combine
to form a continuous delivery pipeline. When this stack finishes deploying, it in turn deploys the
application stack that contains the function and execution role. These are the application resources
that appear under Resources.

Invoke the function

When the deployment process completes, invoke the function from the Lambda console.

To invoke the application's function

1. Open the Lambda console Applications page.

2. Choose my-app.

3. Under Resources, choose helloFromLambdaFunction.

4. Choose Test.

5. Configure a test event.

• Event name – event

• Body – {}

Invoke the function 1745

https://console.amazonaws.cn/lambda/home#/applications

Amazon Lambda Developer Guide

6. Choose Create.

7. Choose Test.

The Lambda console runs your function and displays the result. Expand the Details section under
the result to see the output and execution details.

Add an Amazon resource

In the previous step, Lambda console created a Git repository that contains function code, a
template, and a build specification. You can add resources to your application by modifying the
template and pushing changes to the repository. To get a copy of the application on your local
machine, clone the repository.

To clone the project repository

1. Open the Lambda console Applications page.

2. Choose my-app.

3. Choose Code.

4. Under Repository details, copy the HTTP or SSH repository URI, depending on the
authentication mode that you configured during setup.

5. To clone the repository, use the git clone command.

git clone ssh://git-codecommit.us-east-2.amazonaws.com/v1/repos/my-app-repo

Add an Amazon resource 1746

https://console.amazonaws.cn/lambda/home#/applications

Amazon Lambda Developer Guide

To add a DynamoDB table to the application, define an AWS::Serverless::SimpleTable
resource in the template.

To add a DynamoDB table

1. Open template.yml in a text editor.

2. Add a table resource, an environment variable that passes the table name to the function, and
a permissions policy that allows the function to manage it.

Example template.yml - resources

...
Resources:
 ddbTable:
 Type: AWS::Serverless::SimpleTable
 Properties:
 PrimaryKey:
 Name: id
 Type: String
 ProvisionedThroughput:
 ReadCapacityUnits: 1
 WriteCapacityUnits: 1
 helloFromLambdaFunction:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: ./
 Handler: src/handlers/hello-from-lambda.helloFromLambdaHandler
 Runtime: nodejs18.x
 MemorySize: 128
 Timeout: 60
 Description: A Lambda function that returns a static string.
 Environment:
 Variables:
 DDB_TABLE: !Ref ddbTable
 Policies:
 - DynamoDBCrudPolicy:
 TableName: !Ref ddbTable
 - AWSLambdaBasicExecutionRole

3. Commit and push the change.

git commit -am "Add DynamoDB table"

Add an Amazon resource 1747

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

git push

When you push a change, it triggers the application's pipeline. Use the Deployments tab of the
application screen to track the change as it flows through the pipeline. When the deployment is
complete, proceed to the next step.

Update the permissions boundary

The sample application applies a permissions boundary to its function's execution role. The
permissions boundary limits the permissions that you can add to the function's role. Without the
boundary, users with write access to the project repository could modify the project template to
give the function permission to access resources and services outside of the scope of the sample
application.

In order for the function to use the DynamoDB permission that you added to its execution role in
the previous step, you must extend the permissions boundary to allow the additional permissions.
The Lambda console detects resources that aren't in the permissions boundary and provides an
updated policy that you can use to update it.

Update the permissions boundary 1748

Amazon Lambda Developer Guide

To update the application's permissions boundary

1. Open the Lambda console Applications page.

2. Choose your application.

3. Under Resources, choose Edit permissions boundary.

4. Follow the instructions shown to update the boundary to allow access to the new table.

For more information about permissions boundaries, see Using permissions boundaries for Amazon
Lambda applications.

Update the function code

Next, update the function code to use the table. The following code uses the DynamoDB table to
track the number of invocations processed by each instance of the function. It uses the log stream
ID as a unique identifier for the function instance.

To update the function code

1. Add a new handler named index.js to the src/handlers folder with the following content.

Example src/handlers/index.js

const dynamodb = require('aws-sdk/clients/dynamodb');
const docClient = new dynamodb.DocumentClient();

exports.handler = async (event, context) => {
 const message = 'Hello from Lambda!';
 const tableName = process.env.DDB_TABLE;
 const logStreamName = context.logStreamName;
 var params = {
 TableName : tableName,
 Key: { id : logStreamName },
 UpdateExpression: 'set invocations = if_not_exists(invocations, :start)
 + :inc',
 ExpressionAttributeValues: {
 ':start': 0,
 ':inc': 1
 },
 ReturnValues: 'ALL_NEW'
 };
 await docClient.update(params).promise();

Update the function code 1749

https://console.amazonaws.cn/lambda/home#/applications

Amazon Lambda Developer Guide

 const response = {
 body: JSON.stringify(message)
 };
 console.log(`body: ${response.body}`);
 return response;
}

2. Open the application template and change the handler value to src/handlers/
index.handler.

Example template.yml

...
 helloFromLambdaFunction:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: ./
 Handler: src/handlers/index.handler
 Runtime: nodejs8.x

3. Commit and push the change.

git add . && git commit -m "Use DynamoDB table"
git push

After the code change is deployed, invoke the function a few times to update the DynamoDB table.

To view the DynamoDB table

1. Open the Tables page of the DynamoDB console.

2. Choose the table that starts with my-app.

3. Choose Items.

4. Choose Start search.

Update the function code 1750

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://console.amazonaws.cn/dynamodb/home#tables:

Amazon Lambda Developer Guide

Lambda creates additional instances of your function to handle multiple concurrent invocations.
Each log stream in the CloudWatch Logs log group corresponds to a function instance. A new
function instance is also created when you change your function's code or configuration. For more
information on scaling, see Lambda function scaling.

Next steps

The Amazon CloudFormation template that defines your application resources uses the Amazon
Serverless Application Model transform to simplify the syntax for resource definitions, and
automate uploading the deployment package and other artifacts. Amazon SAM also provides a
command line interface (the Amazon SAM CLI), which has the same packaging and deployment
functionality as the Amazon CLI, with additional features specific to Lambda applications. Use the
Amazon SAM CLI to test your application locally in a Docker container that emulates the Lambda
execution environment.

• Installing the Amazon SAM CLI

• Testing and debugging serverless applications with Amazon SAM

• Deploying serverless applications using CI/CD systems with Amazon SAM

Amazon Cloud9 provides an online development environment that includes Node.js, the Amazon
SAM CLI, and Docker. With Amazon Cloud9, you can start developing quickly and access your
development environment from any computer. For instructions, see Getting started in the Amazon
Cloud9 User Guide.

For local development, Amazon toolkits for integrated development environments (IDEs) let you
test and debug functions before pushing them to your repository.

Next steps 1751

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-deploying.html
https://docs.amazonaws.cn/cloud9/latest/user-guide/get-started.html

Amazon Lambda Developer Guide

• Amazon Toolkit for JetBrains – Plugin for PyCharm (Python) and IntelliJ (Java) IDEs.

• Amazon Toolkit for Eclipse – Plugin for Eclipse IDE (multiple languages).

• Amazon Toolkit for Visual Studio Code – Plugin for Visual Studio Code IDE (multiple languages).

• Amazon Toolkit for Visual Studio – Plugin for Visual Studio IDE (multiple languages).

Troubleshooting

As you develop your application, you will likely encounter the following types of errors.

• Build errors – Issues that occur during the build phase, including compilation, test, and
packaging errors.

• Deployment errors – Issues that occur when Amazon CloudFormation isn't able to update the
application stack. These include permissions errors, account quotas, service issues, or template
errors.

• Invocation errors – Errors that are returned by a function's code or runtime.

For build and deployment errors, you can identify the cause of an error in the Lambda console.

To troubleshoot application errors

1. Open the Lambda console Applications page.

2. Choose an application.

3. Choose Deployments.

4. To view the application's pipeline, choose Deployment pipeline.

5. Identify the action that encountered an error.

6. To view the error in context, choose Details.

For deployment errors that occur during the ExecuteChangeSet action, the pipeline links to a
list of stack events in the Amazon CloudFormation console. Search for an event with the status
UPDATE_FAILED. Because Amazon CloudFormation rolls back after an error, the relevant event is
under several other events in the list. If Amazon CloudFormation could not create a change set, the
error appears under Change sets instead of under Events.

A common cause of deployment and invocation errors is a lack of permissions in one or more
roles. The pipeline has a role for deployments (CloudFormationRole) that's equivalent to the

Troubleshooting 1752

https://docs.amazonaws.cn/toolkit-for-jetbrains/latest/userguide/
https://docs.amazonaws.cn/AWSToolkitEclipse/latest/GettingStartedGuide/
https://docs.amazonaws.cn/toolkit-for-vscode/latest/userguide/
https://docs.amazonaws.cn/AWSToolkitVS/latest/UserGuide/
https://console.amazonaws.cn/lambda/home#/applications

Amazon Lambda Developer Guide

user permissions that you would use to update an Amazon CloudFormation stack directly. If you
add resources to your application or enable Lambda features that require user permissions, the
deployment role is used. You can find a link to the deployment role under Infrastructure in the
application overview.

If your function accesses other Amazon services or resources, or if you enable features that require
the function to have additional permissions, the function's execution role is used. All execution
roles that are created in your application template are also subject to the application's permissions
boundary. This boundary requires you to explicitly grant access to additional services and resources
in IAM after adding permissions to the execution role in the template.

For example, to connect a function to a virtual private cloud (VPC), you need user permissions to
describe VPC resources. The execution role needs permission to manage network interfaces. This
requires the following steps.

1. Add the required user permissions to the deployment role in IAM.

2. Add the execution role permissions to the permissions boundary in IAM.

3. Add the execution role permissions to the execution role in the application template.

4. Commit and push to deploy the updated execution role.

After you address permissions errors, choose Release change in the pipeline overview to rerun the
build and deployment.

Clean up

You can continue to modify and use the sample to develop your own application. If you are done
using the sample, delete the application to avoid paying for the pipeline, repository, and storage.

To delete the application

1. Open the Amazon CloudFormation console.

2. Delete the application stack – my-app.

3. Open the Amazon S3 console.

4. Delete the artifact bucket – us-east-2-123456789012-my-app-pipe.

5. Return to the Amazon CloudFormation console and delete the infrastructure stack –
serverlessrepo-my-app-toolchain.

Clean up 1753

https://console.amazonaws.cn/cloudformation
https://console.amazonaws.cn/s3

Amazon Lambda Developer Guide

Function logs are not associated with the application or infrastructure stack in Amazon
CloudFormation. Delete the log group separately in the CloudWatch Logs console.

To delete the log group

1. Open the Log groups page of the Amazon CloudWatch console.

2. Choose the function's log group (/aws/lambda/my-app-
helloFromLambdaFunction-YV1VXMPLK7QK).

3. Choose Actions, and then choose Delete log group.

4. Choose Yes, Delete.

Clean up 1754

https://console.amazonaws.cn/cloudwatch/home#logs:

Amazon Lambda Developer Guide

Rolling deployments for Lambda functions

Use rolling deployments to control the risks associated with introducing new versions of your
Lambda function. In a rolling deployment, the system automatically deploys the new version of the
function and gradually sends an increasing amount of traffic to the new version. The amount of
traffic and rate of increase are parameters that you can configure.

You configure a rolling deployment by using Amazon CodeDeploy and Amazon SAM. CodeDeploy
is a service that automates application deployments to Amazon computing platforms such as
Amazon EC2 and Amazon Lambda. For more information, see What is CodeDeploy?. By using
CodeDeploy to deploy your Lambda function, you can easily monitor the status of the deployment
and initiate a rollback if you detect any issues.

Amazon SAM is an open-source framework for building serverless applications. You create
an Amazon SAM template (in YAML format) to specify the configuration of the components
required for the rolling deployment. Amazon SAM uses the template to create and configure the
components. For more information, see What is the Amazon SAM?.

In a rolling deployment, Amazon SAM performs these tasks:

• It configures your Lambda function and creates an alias.

The alias routing configuration is the underlying capability that implements the rolling
deployment.

• It creates a CodeDeploy application and deployment group.

The deployment group manages the rolling deployment and the rollback (if needed).

• It detects when you create a new version of your Lambda function.

• It triggers CodeDeploy to start the deployment of the new version.

Example Amazon SAM Lambda template

The following example shows an Amazon SAM template for a simple rolling deployment.

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: A sample SAM template for deploying Lambda functions.

Rolling deployments 1755

https://docs.amazonaws.cn/codedeploy/latest/userguide/welcome.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/what-is-sam.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-sam-template-basics.html

Amazon Lambda Developer Guide

Resources:
Details about the myDateTimeFunction Lambda function
 myDateTimeFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: myDateTimeFunction.handler
 Runtime: nodejs18.x
Creates an alias named "live" for the function, and automatically publishes when you
 update the function.
 AutoPublishAlias: live
 DeploymentPreference:
Specifies the deployment configuration
 Type: Linear10PercentEvery2Minutes

This template defines a Lambda function named myDateTimeFunction with the following
properties.

AutoPublishAlias

The AutoPublishAlias property creates an alias named live. In addition, the Amazon SAM
framework automatically detects when you save new code for the function. The framework
then publishes a new function version and updates the live alias to point to the new version.

DeploymentPreference

The DeploymentPreference property determines the rate at which the CodeDeploy
application shifts traffic from the original version of the Lambda function to the new version.
The value Linear10PercentEvery2Minutes shifts an additional ten percent of the traffic to
the new version every two minutes.

For a list of the predefined deployment configurations, see Deployment configurations.

For a detailed tutorial on how to use CodeDeploy with Lambda functions, see Deploy an updated
Lambda function with CodeDeploy.

Example Amazon SAM Lambda template 1756

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/codedeploy/latest/userguide/deployment-configurations.html
https://docs.amazonaws.cn/codedeploy/latest/userguide/tutorial-lambda-sam.html
https://docs.amazonaws.cn/codedeploy/latest/userguide/tutorial-lambda-sam.html

Amazon Lambda Developer Guide

Invoking Lambda functions with the Amazon Mobile SDK for
Android

You can call a Lambda function from a mobile application. Put business logic in functions to
separate its development lifecycle from that of front-end clients, making mobile applications less
complex to develop and maintain. With the Mobile SDK for Android, you use Amazon Cognito to
authenticate users and authorize requests.

When you invoke a function from a mobile application, you choose the event structure, invocation
type, and permission model. You can use aliases to enable seamless updates to your function code,
but otherwise the function and application are tightly coupled. As you add more functions, you
can create an API layer to decouple your function code from your front-end clients and improve
performance.

To create a fully-featured web API for your mobile and web applications, use Amazon API Gateway.
With API Gateway, you can add custom authorizers, throttle requests, and cache results for all of
your functions. For more information, see Using Amazon Lambda with Amazon API Gateway.

Topics

• Tutorial: Using Amazon Lambda with the Mobile SDK for Android

• Sample function code

Tutorial: Using Amazon Lambda with the Mobile SDK for Android

In this tutorial, you create a simple Android mobile application that uses Amazon Cognito to get
credentials and invokes a Lambda function.

The mobile application retrieves Amazon credentials from an Amazon Cognito identity pool and
uses them to invoke a Lambda function with an event that contains request data. The function
processes the request and returns a response to the front-end.

Prerequisites

This tutorial assumes that you have some knowledge of basic Lambda operations and the Lambda
console. If you haven't already, follow the instructions in Create a Lambda function with the
console to create your first Lambda function.

Mobile SDK for Android 1757

Amazon Lambda Developer Guide

To complete the following steps, you need the Amazon Command Line Interface (Amazon CLI)
version 2. Commands and the expected output are listed in separate blocks:

aws --version

You should see the following output:

aws-cli/2.13.27 Python/3.11.6 Linux/4.14.328-248.540.amzn2.x86_64 exe/x86_64.amzn.2

For long commands, an escape character (\) is used to split a command over multiple lines.

On Linux and macOS, use your preferred shell and package manager.

Note

In Windows, some Bash CLI commands that you commonly use with Lambda (such as
zip) are not supported by the operating system's built-in terminals. To get a Windows-
integrated version of Ubuntu and Bash, install the Windows Subsystem for Linux. Example
CLI commands in this guide use Linux formatting. Commands which include inline JSON
documents must be reformatted if you are using the Windows CLI.

Create the execution role

Create the execution role that gives your function permission to access Amazon resources.

To create an execution role

1. Open the roles page in the IAM console.

2. Choose Create role.

3. Create a role with the following properties.

• Trusted entity – Amazon Lambda.

• Permissions – AWSLambdaBasicExecutionRole.

• Role name – lambda-android-role.

The AWSLambdaBasicExecutionRole policy has the permissions that the function needs to write
logs to CloudWatch Logs.

Tutorial 1758

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.amazonaws.cn/iam/home#/roles

Amazon Lambda Developer Guide

Create the function

The following example uses data to generate a string response.

Note

For sample code in other languages, see Sample function code.

Example index.js

exports.handler = function(event, context, callback) {
 console.log("Received event: ", event);
 var data = {
 "greetings": "Hello, " + event.firstName + " " + event.lastName + "."
 };
 callback(null, data);
}

To create the function

1. Copy the sample code into a file named index.js.

2. Create a deployment package.

zip function.zip index.js

3. Create a Lambda function with the create-function command.

aws lambda create-function --function-name AndroidBackendLambdaFunction \
--zip-file fileb://function.zip --handler index.handler --runtime nodejs16.x \
--role arn:aws-cn:iam::111122223333:role/lambda-android-role

Test the Lambda function

Invoke the function manually using the sample event data.

To test the Lambda function (Amazon CLI)

1. Save the following sample event JSON in a file, input.txt.

Tutorial 1759

Amazon Lambda Developer Guide

{ "firstName": "first-name", "lastName": "last-name" }

2. Run the following invoke command:

aws lambda invoke --function-name AndroidBackendLambdaFunction \
--payload file://file-path/input.txt outputfile.txt

The cli-binary-format option is required if you're using Amazon CLI version 2. To make this
the default setting, run aws configure set cli-binary-format raw-in-base64-out.
For more information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide for Version 2.

Create an Amazon Cognito identity pool

In this section, you create an Amazon Cognito identity pool. The identity pool has two IAM
roles. You update the IAM role for unauthenticated users and grant permissions to run the
AndroidBackendLambdaFunction Lambda function.

For more information about IAM roles, see IAM roles in the IAM User Guide. For more information
about Amazon Cognito services, see the Amazon Cognito product detail page.

To create an identity pool

1. Open the Amazon Cognito console.

2. Create a new identity pool called JavaFunctionAndroidEventHandlerPool. Before you
follow the procedure to create an identity pool, note the following:

• The identity pool you are creating must allow access to unauthenticated identities because
our example mobile application does not require a user log in. Therefore, make sure to select
the Enable access to unauthenticated identities option.

• Add the following statement to the permission policy associated with the unauthenticated
identities.

{
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],

Tutorial 1760

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
http://www.amazonaws.cn/cognito/
https://console.amazonaws.cn/cognito

Amazon Lambda Developer Guide

 "Resource": [
 "arn:aws-cn:lambda:us-
east-1:111122223333:function:AndroidBackendLambdaFunction"
]
}

The resulting policy will be as follows:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "mobileanalytics:PutEvents",
 "cognito-sync:*"
],
 "Resource":[
 "*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "lambda:invokefunction"
],
 "Resource":[
 "arn:aws-cn:lambda:us-east-1:account-
id:function:AndroidBackendLambdaFunction"
]
 }
]
}

For instructions about how to create an identity pool, log in to the Amazon Cognito console
and follow the New Identity Pool wizard.

3. Note the identity pool ID. You specify this ID in your mobile application you create in the
next section. The app uses this ID when it sends request to Amazon Cognito to request for
temporary security credentials.

Tutorial 1761

https://console.amazonaws.cn/cognito/home

Amazon Lambda Developer Guide

Create an Android application

Create a simple Android mobile application that generates events and invokes Lambda functions
by passing the event data as parameters.

The following instructions have been verified using Android studio.

1. Create a new Android project called AndroidEventGenerator using the following
configuration:

• Select the Phone and Tablet platform.

• Choose Blank Activity.

2. In the build.gradle (Module:app) file, add the following in the dependencies section:

compile 'com.amazonaws:aws-android-sdk-core:2.2.+'
compile 'com.amazonaws:aws-android-sdk-lambda:2.2.+'

3. Build the project so that the required dependencies are downloaded, as needed.

4. In the Android application manifest (AndroidManifest.xml), add the following permissions
so that your application can connect to the Internet. You can add them just before the </
manifest> end tag.

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

5. In MainActivity, add the following imports:

import com.amazonaws.mobileconnectors.lambdainvoker.*;
import com.amazonaws.auth.CognitoCachingCredentialsProvider;
import com.amazonaws.regions.Regions;

6. In the package section, add the following two classes (RequestClass and ResponseClass).
Note that the POJO is same as the POJO you created in your Lambda function in the preceding
section.

• RequestClass. The instances of this class act as the POJO (Plain Old Java Object) for event
data which consists of first and last name. If you are using Java example for your Lambda
function you created in the preceding section, this POJO is same as the POJO you created in
your Lambda function code.

Tutorial 1762

Amazon Lambda Developer Guide

package com.example....lambdaeventgenerator;
public class RequestClass {
 String firstName;
 String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public RequestClass(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public RequestClass() {
 }
}

• ResponseClass

package com.example....lambdaeventgenerator;
public class ResponseClass {
 String greetings;

 public String getGreetings() {
 return greetings;
 }

 public void setGreetings(String greetings) {
 this.greetings = greetings;

Tutorial 1763

Amazon Lambda Developer Guide

 }

 public ResponseClass(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass() {
 }
}

7. In the same package, create interface called MyInterface for invoking the
AndroidBackendLambdaFunction Lambda function.

package com.example.....lambdaeventgenerator;
import com.amazonaws.mobileconnectors.lambdainvoker.LambdaFunction;
public interface MyInterface {

 /**
 * Invoke the Lambda function "AndroidBackendLambdaFunction".
 * The function name is the method name.
 */
 @LambdaFunction
 ResponseClass AndroidBackendLambdaFunction(RequestClass request);

}

The @LambdaFunction annotation in the code maps the specific client method to the same-
name Lambda function.

8. To keep the application simple, we are going to add code to invoke the Lambda function in the
onCreate() event handler. In MainActivity, add the following code toward the end of the
onCreate() code.

// Create an instance of CognitoCachingCredentialsProvider
CognitoCachingCredentialsProvider cognitoProvider = new
 CognitoCachingCredentialsProvider(
 this.getApplicationContext(), "identity-pool-id", Regions.US_WEST_2);

// Create LambdaInvokerFactory, to be used to instantiate the Lambda proxy.
LambdaInvokerFactory factory = new
 LambdaInvokerFactory(this.getApplicationContext(),
 Regions.US_WEST_2, cognitoProvider);

Tutorial 1764

Amazon Lambda Developer Guide

// Create the Lambda proxy object with a default Json data binder.
// You can provide your own data binder by implementing
// LambdaDataBinder.
final MyInterface myInterface = factory.build(MyInterface.class);

RequestClass request = new RequestClass("John", "Doe");
// The Lambda function invocation results in a network call.
// Make sure it is not called from the main thread.
new AsyncTask<RequestClass, Void, ResponseClass>() {
 @Override
 protected ResponseClass doInBackground(RequestClass... params) {
 // invoke "echo" method. In case it fails, it will throw a
 // LambdaFunctionException.
 try {
 return myInterface.AndroidBackendLambdaFunction(params[0]);
 } catch (LambdaFunctionException lfe) {
 Log.e("Tag", "Failed to invoke echo", lfe);
 return null;
 }
 }

 @Override
 protected void onPostExecute(ResponseClass result) {
 if (result == null) {
 return;
 }

 // Do a toast
 Toast.makeText(MainActivity.this, result.getGreetings(),
 Toast.LENGTH_LONG).show();
 }
}.execute(request);

9. Run the code and verify it as follows:

• The Toast.makeText() displays the response returned.

• Verify that CloudWatch Logs shows the log created by the Lambda function. It should show
the event data (first name and last name). You can also verify this in the Amazon Lambda
console.

Tutorial 1765

Amazon Lambda Developer Guide

Sample function code

Sample code is available for the following languages.

Topics

• Node.js

• Java

Node.js

The following example uses data to generate a string response.

Example index.js

exports.handler = function(event, context, callback) {
 console.log("Received event: ", event);
 var data = {
 "greetings": "Hello, " + event.firstName + " " + event.lastName + "."
 };
 callback(null, data);
}

Zip up the sample code to create a deployment package. For instructions, see Deploy Node.js
Lambda functions with .zip file archives.

Java

The following example uses data to generate a string response.

In the code, the handler (myHandler) uses the RequestClass and ResponseClass types for
the input and output. The code provides implementation for these types.

Example HelloPojo.java

package example;

import com.amazonaws.services.lambda.runtime.Context;

public class HelloPojo {

 // Define two classes/POJOs for use with Lambda function.

Sample code 1766

Amazon Lambda Developer Guide

 public static class RequestClass {
 String firstName;
 String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public RequestClass(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public RequestClass() {
 }
 }

 public static class ResponseClass {
 String greetings;

 public String getGreetings() {
 return greetings;
 }

 public void setGreetings(String greetings) {
 this.greetings = greetings;
 }

 public ResponseClass(String greetings) {
 this.greetings = greetings;
 }

Sample code 1767

Amazon Lambda Developer Guide

 public ResponseClass() {
 }

 }

 public static ResponseClass myHandler(RequestClass request, Context context){
 String greetingString = String.format("Hello %s, %s.", request.firstName,
 request.lastName);
 context.getLogger().log(greetingString);
 return new ResponseClass(greetingString);
 }
}

Dependencies

• aws-lambda-java-core

Build the code with the Lambda library dependencies to create a deployment package. For
instructions, see Deploy Java Lambda functions with .zip or JAR file archives.

Sample code 1768

Amazon Lambda Developer Guide

Orchestrating functions with Step Functions

Amazon Step Functions is an orchestration service that lets you connect Lambda functions
together into serverless workflows, called state machines. Use Step Functions to orchestrate
serverless applications workflows (for example, a store checkout process), build long-running
workflows for IT automation and human-approval use cases, or create high-volume short-duration
workflows for streaming data processing and ingestion.

Topics

• State machine application patterns

• Managing state machines in the Lambda console

• Orchestration examples with Step Functions

State machine application patterns

In Step Functions, you orchestrate your resources using state machines, which are defined using a
JSON-based, structured language called Amazon States Language.

Sections

• State machine components

• State machine application patterns

• Applying patterns to state machines

• Example branching application pattern

State machine components

State machines contain elements called states that make up your workflow. The logic of each state
determines which state comes next, what data to pass along, and when to terminate the workflow.
A state is referred to by its name, which can be any string, but which must be unique within the
scope of the entire state machine.

To create a state machine that uses Lambda, you need the following components:

1. An Amazon Identity and Access Management (IAM) role for Lambda with one or more
permissions policies (such as AWSLambdaRole service permissions).

Application patterns 1769

https://docs.amazonaws.cn/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.amazonaws.cn/step-functions/latest/dg/concepts-states.html
https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/service-role/AWSLambdaRole

Amazon Lambda Developer Guide

2. One or more Lambda functions (with the IAM role attached) for your specific runtime.

3. A state machine authored in Amazon States Language.

State machine application patterns

You can create complex orchestrations for state machines using application patterns such as:

• Catch and retry – Handle errors using sophisticated catch-and-retry functionality.

• Branching – Design your workflow to choose different branches based on Lambda function
output.

• Chaining – Connect functions into a series of steps, with the output of one step providing the
input to the next step.

• Parallelism – Run functions in parallel, or use dynamic parallelism to invoke a function for every
member of any array.

Applying patterns to state machines

The following shows how you can apply these application patterns to a state machine within an
Amazon States Language definition.

Catch and Retry

A Catch field and a Retry field add catch-and-retry logic to a state machine. Catch ("Type":
"Catch") is an array of objects that define a fallback state. Retry ("Type": "Retry") is an
array of objects that define a retry policy if the state encounters runtime errors.

Branching

A Choice state adds branching logic to a state machine. Choice ("Type": "Choice") is an
array of rules that determine which state the state machine transitions to next.

Chaining

A "Chaining" pattern describes multiple Lambda functions connected together in a state
machine. You can use chaining to create reusable workflow invocations from a Task ("Type":
"Task") state of a state machine.

State machine application patterns 1770

https://docs.amazonaws.cn/step-functions/latest/dg/concepts-error-handling.html#error-handling-fallback-states
https://docs.amazonaws.cn/step-functions/latest/dg/concepts-error-handling.html#error-handling-retrying-after-an-error
https://docs.amazonaws.cn/step-functions/latest/dg/amazon-states-language-choice-state.html
https://docs.amazonaws.cn/step-functions/latest/dg/concepts-nested-workflows.html

Amazon Lambda Developer Guide

Parallelism

A Parallel state adds parallelism logic to a state machine. You can use a Parallel state
("Type": "Parallel") to create parallel branches of invocation in your state machine.

Dynamic parallelism

A Map state adds dynamic "for-each" loop logic to a state machine. You can use a Map state
("Type": "Map") to run a set of steps for each element of an input array in a state machine.
While the Parallel state invokes multiple branches of steps using the same input, a Map state
invokes the same steps for multiple entries of the array.

In addition to application patterns, Step Functions supports various service integration patterns,
including the ability to pause a workflow for human approval, or to call a legacy system or other
third party.

Example branching application pattern

In the following example, the WhichCoat state machine defined in the Amazon States Language
(ASL) definition shows a branching application pattern with a Choice state ("Type": "Choice").
If the condition of one of the three Choice states is met, the Lambda function is invoked as a Task:

1. The WearHeavyCoat state invokes the wear_heavy_coat Lambda function and returns a
message.

2. The WearLightJacket state invokes the wear_light_jacket Lambda function and returns a
message.

3. The None state invokes the no_jacket Lambda function and returns a message.

The WhichCoat state machine has the following structure:

Example branching application pattern 1771

https://docs.amazonaws.cn/step-functions/latest/dg/amazon-states-language-parallel-state.html
https://docs.amazonaws.cn/step-functions/latest/dg/amazon-states-language-map-state.html
https://docs.amazonaws.cn/step-functions/latest/dg/connect-to-resource.html
https://docs.amazonaws.cn/step-functions/latest/dg/amazon-states-language-choice-state.html
https://docs.amazonaws.cn/step-functions/latest/dg/amazon-states-language-task-state.html

Amazon Lambda Developer Guide

Example Example Amazon States Language definition

The following Amazon States Language definition of the WhichCoat state machine uses a
Variable context object called Weather. If one of the three conditions in StringEquals is met,
the Lambda function defined in the Resource field's Amazon Resource Name (ARN) is invoked.

{
 "Comment":"Coat Indicator State Machine",
 "StartAt":"WhichCoat",
 "States":{
 "WhichCoat":{
 "Type":"Choice",
 "Choices":[
 {
 "Variable":"$.Weather",
 "StringEquals":"FREEZING",
 "Next":"WearHeavyCoat"
 },
 {
 "Variable":"$.Weather",
 "StringEquals":"COOL",
 "Next":"WearLightJacket"
 },
 {
 "Variable":"$.Weather",

Example branching application pattern 1772

https://docs.amazonaws.cn/step-functions/latest/dg/input-output-contextobject.html
https://docs.amazonaws.cn/step-functions/latest/dg/amazon-states-language-task-state.html#amazon-states-language-task-state-specifying-resource-arns

Amazon Lambda Developer Guide

 "StringEquals":"WARM",
 "Next":"None"
 }
]
 },
 "WearHeavyCoat":{
 "Type":"Task",
 "Resource":"arn:aws-cn:lambda:us-
west-2:01234567890:function:wear_heavy_coat",
 "End":true
 },
 "WearLightJacket":{
 "Type":"Task",
 "Resource":"arn:aws-cn:lambda:us-
west-2:01234567890:function:wear_light_jacket",
 "End":true
 },
 "None":{
 "Type":"Task",
 "Resource":"arn:aws-cn:lambda:us-west-2:01234567890:function:no_coat",

 "End":true
 }
 }
 }

Example Example Python function

The following Lambda function in Python (wear_heavy_coat) can be invoked for the state
machine defined in the previous example. If the WhichCoat state machine equals a string value
of FREEZING, the wear_heavy_coat function is invoked from Lambda, and the user receives the
message that corresponds with the function: "You should wear a heavy coat today."

from __future__ import print_function

import datetime

def wear_heavy_coat(message, context):
 print(message)

 response = {}

Example branching application pattern 1773

Amazon Lambda Developer Guide

 response['Weather'] = message['Weather']
 response['Timestamp'] = datetime.datetime.now().strftime("%Y-%m-%d %H-%M-%S")
 response['Message'] = 'You should wear a heavy coat today.'

 return response

Example Example invocation data

The following input data runs the WearHeavyCoat state that invokes the wear_heavy_coat
Lambda function, when the Weather variable is equal to a string value of FREEZING.

{
 "Weather":"FREEZING"
}

For more information, see Creating a Step Functions State Machine That Uses Lambda in the
Amazon Step Functions Developer Guide.

Managing state machines in the Lambda console

You can use the Lambda console to edit and view details about your Step Functions state machines
and the Lambda functions that they use.

Sections

• Viewing state machine details

• Editing a state machine

• Running a state machine

Viewing state machine details

The Lambda console displays a list of your state machines in the current Amazon Region that
contain at least one workflow step that invokes a Lambda function.

Choose a state machine to view a graphical representation of the workflow. Steps highlighted in
blue represent Lambda functions. Use the graph controls to zoom in, zoom out, and center the
graph.

Manage state machines 1774

https://docs.amazonaws.cn/step-functions/latest/dg/tutorial-creating-lambda-state-machine.html

Amazon Lambda Developer Guide

Note

When a Lambda function is dynamically referenced with JsonPath in the state machine
definition, the function details cannot be shown in the Lambda console. Instead, the
function name is listed as a Dynamic reference, and the corresponding steps in the graph
are grayed out.

To view state machine details

1. Open the Lambda console Step Functions state machines page.

2. Choose a state machine.
<result>

The Lambda console opens the Details page.
</result>

For more information, see Step Functions in the Amazon Step Functions Developer Guide.

Editing a state machine

When you want to edit a state machine, Lambda opens the Edit definition page of the Step
Functions console.

To edit a state machine

1. Open the Lambda console Step Functions state machine page.

2. Choose a state machine.

3. Choose Edit.

The Step Functions console opens the Edit definition page.

4. Edit the state machine and choose Save.

For more information about editing state machines, see Step Functions state machine language in
the Amazon Step Functions Developer Guide.

Editing a state machine 1775

https://docs.amazonaws.cn/step-functions/latest/dg/amazon-states-language-paths.html
https://console.amazonaws.cn/lambda/home#/stepfunctions
https://docs.amazonaws.cn/step-functions/latest/dg/welcome.html
https://console.amazonaws.cn/lambda/home#/functions
https://docs.amazonaws.cn/step-functions/latest/dg/concepts-amazon-states-language.html

Amazon Lambda Developer Guide

Running a state machine

When you want to run a state machine, Lambda opens the New execution page of the Step
Functions console.

To run a state machine

1. Open the Lambda console Step Functions state machines page.

2. Choose a state machine.

3. Choose Execute.

The Step Functions console opens the New execution page.

4. (Optional) Edit the state machine and choose Start execution.

For more information about running state machines, see Step Functions state machine execution
concepts in the Amazon Step Functions Developer Guide.

Orchestration examples with Step Functions

All work in your Step Functions state machine is done by Tasks. A Task performs work by using
an activity, a Lambda function, or by passing parameters to the API actions of other Supported
Amazon Service Integrations for Step Functions.

Sections

• Configuring a Lambda function as a task

• Configuring a state machine as an event source

• Handling function and service errors

• Amazon CloudFormation and Amazon SAM

Configuring a Lambda function as a task

Step Functions can invoke Lambda functions directly from a Task state in an Amazon States
Language definition.

...
 "MyStateName":{
 "Type":"Task",

Running a state machine 1776

https://console.amazonaws.cn/lambda/home#/stepfunctions
https://docs.amazonaws.cn/step-functions/latest/dg/concepts-state-machine-executions.html
https://docs.amazonaws.cn/step-functions/latest/dg/concepts-state-machine-executions.html
https://docs.amazonaws.cn/step-functions/latest/dg/amazon-states-language-task-state.html
https://docs.amazonaws.cn/step-functions/latest/dg/connect-supported-services.html
https://docs.amazonaws.cn/step-functions/latest/dg/connect-supported-services.html
https://docs.amazonaws.cn/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.amazonaws.cn/step-functions/latest/dg/concepts-amazon-states-language.html

Amazon Lambda Developer Guide

 "Resource":"arn:aws-cn:lambda:us-
west-2:01234567890:function:my_lambda_function",
 "End":true
 ...

You can create a Task state that invokes your Lambda function with the input to the state machine
or any JSON document.

Example event.json – Input to random-error function

{
 "max-depth": 10,
 "current-depth": 0,
 "error-rate": 0.05
}

Configuring a state machine as an event source

You can create a Step Functions state machine that invokes a Lambda function. The following
example shows a Task state that invokes version 1 of a function named my-function with an
event payload that has three keys. When the function returns a successful response, the state
machine continues to the next task.

Example Example state machine

...
"Invoke": {
 "Type": "Task",
 "Resource": "arn:aws-cn:states:::lambda:invoke",
 "Parameters": {
 "FunctionName": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-function:1",
 "Payload": {
 "max-depth": 10,
 "current-depth": 0,
 "error-rate": 0.05
 }
 },
 "Next": "NEXT_STATE",
 "TimeoutSeconds": 25
}

Configuring a state machine as an event source 1777

https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/sample-apps/error-processor/event.json

Amazon Lambda Developer Guide

Permissions

Your state machine needs permission to call the Lambda API to invoke a function. To grant
it permission, add the Amazon managed policy AWSLambdaRole or a function-scoped
inline policy to its role. For more information, see How Amazon Step Functions Works with
IAM in the Amazon Step Functions Developer Guide.

The FunctionName and Payload parameters map to parameters in the Invoke API operation. In
addition to these, you can also specify the InvocationType and ClientContext parameters.
For example, to invoke the function asynchronously and continue to the next state without waiting
for a result, you can set InvocationType to Event:

"InvocationType": "Event"

Instead of hard-coding the event payload in the state machine definition, you can use the input
from the state machine execution. The following example uses the input specified when you run
the state machine as the event payload:

"Payload.$": "$"

You can also invoke a function asynchronously and wait for it to make a
callback with the Amazon SDK. To do this, set the state's resource to arn:aws-
cn:states:::lambda:invoke.waitForTaskToken.

For more information, see Invoke Lambda with Step Functions in the Amazon Step Functions
Developer Guide.

Handling function and service errors

When your function or the Lambda service returns an error, you can retry the invocation or
continue to a different state based on the error type.

The following example shows an invoke task that retries on 5XX series Lambda API
exceptions (ServiceException), throttles (TooManyRequestsException), runtime errors
(Lambda.Unknown), and a function-defined error named function.MaxDepthError. It also
catches an error named function.DoublesRolledError and continues to a state named
CaughtException when it occurs.

Handling function and service errors 1778

https://console.amazonaws.cn/iam/home#/policies/arn:aws-cn:iam::aws:policy/service-role/AWSLambdaRole
https://docs.amazonaws.cn/step-functions/latest/dg/procedure-create-iam-role.html
https://docs.amazonaws.cn/step-functions/latest/dg/procedure-create-iam-role.html
https://docs.amazonaws.cn/lambda/latest/api/API_Invoke.html
https://docs.amazonaws.cn/step-functions/latest/dg/connect-lambda.html

Amazon Lambda Developer Guide

Example Example catch and retry pattern

...
"Invoke": {
 "Type": "Task",
 "Resource": "arn:aws-cn:states:::lambda:invoke",
 "Retry": [
 {
 "ErrorEquals": [
 "function.MaxDepthError",
 "Lambda.TooManyRequestsException",
 "Lambda.ServiceException",
 "Lambda.Unknown"
],
 "MaxAttempts": 5
 }
],
 "Catch": [
 {
 "ErrorEquals": ["function.DoublesRolledError"],
 "Next": "CaughtException"
 }
],
 "Parameters": {
 "FunctionName": "arn:aws-cn:lambda:us-east-2:123456789012:function:my-
function:1",
 ...

To catch or retry function errors, create a custom error type. The name of the error type must
match the errorType in the formatted error response that Lambda returns when you throw an
error.

For more information on error handling in Step Functions, see Handling Error Conditions Using a
Step Functions State Machine in the Amazon Step Functions Developer Guide.

Amazon CloudFormation and Amazon SAM

You can define state machines using a Amazon CloudFormation template with Amazon Serverless
Application Model (Amazon SAM). Using Amazon SAM, you can define the state machine inline
in the template or in a separate file. The following example shows a state machine that invokes a
Lambda function that handles errors. It refers to a function resource defined in the same template
(not shown).

Amazon CloudFormation and Amazon SAM 1779

https://docs.amazonaws.cn/step-functions/latest/dg/tutorial-handling-error-conditions.html
https://docs.amazonaws.cn/step-functions/latest/dg/tutorial-handling-error-conditions.html

Amazon Lambda Developer Guide

Example Example branching pattern in template.yml

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Description: An Amazon Lambda application that uses AWS Step Functions.
Resources:
 statemachine:
 Type: AWS::Serverless::StateMachine
 Properties:
 DefinitionSubstitutions:
 FunctionArn: !GetAtt function.Arn
 Payload: |
 {
 "max-depth": 5,
 "current-depth": 0,
 "error-rate": 0.2
 }
 Definition:
 StartAt: Invoke
 States:
 Invoke:
 Type: Task
 Resource: arn:aws-cn:states:::lambda:invoke
 Parameters:
 FunctionName: "${FunctionArn}"
 Payload: "${Payload}"
 InvocationType: Event
 Retry:
 - ErrorEquals:
 - function.MaxDepthError
 - function.MaxDepthError
 - Lambda.TooManyRequestsException
 - Lambda.ServiceException
 - Lambda.Unknown
 IntervalSeconds: 1
 MaxAttempts: 5
 Catch:
 - ErrorEquals:
 - function.DoublesRolledError
 Next: CaughtException
 - ErrorEquals:
 - States.ALL
 Next: UncaughtException
 Next: Success

Amazon CloudFormation and Amazon SAM 1780

Amazon Lambda Developer Guide

 CaughtException:
 Type: Pass
 Result: The function returned an error.
 End: true
 UncaughtException:
 Type: Pass
 Result: Invocation failed.
 End: true
 Success:
 Type: Pass
 Result: Invocation succeeded!
 End: true
 Events:
 scheduled:
 Type: Schedule
 Properties:
 Description: Run every minute
 Schedule: rate(1 minute)
 Type: STANDARD
 Policies:
 - AWSLambdaRole
 ...

This creates a state machine with the following structure:

For more information, see AWS::Serverless::StateMachine in the Amazon Serverless Application
Model Developer Guide.

Amazon CloudFormation and Amazon SAM 1781

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-statemachine.html

Amazon Lambda Developer Guide

Lambda sample applications

The GitHub repository for this guide includes sample applications that demonstrate the use
of various languages and Amazon services. Each sample application includes scripts for easy
deployment and cleanup, an Amazon SAM template, and supporting resources.

Node.js

Sample Lambda applications in Node.js

• blank-nodejs – A Node.js function that shows the use of logging, environment variables,
Amazon X-Ray tracing, layers, unit tests and the Amazon SDK.

• nodejs-apig – A function with a public API endpoint that processes an event from API
Gateway and returns an HTTP response.

• rds-mysql – A function that relays queries to a MySQL for RDS Database. This sample includes
a private VPC and database instance configured with a password in Amazon Secrets Manager.

• efs-nodejs – A function that uses an Amazon EFS file system in a Amazon VPC. This sample
includes a VPC, file system, mount targets, and access point configured for use with Lambda.

• list-manager – A function processes events from an Amazon Kinesis data stream and update
aggregate lists in Amazon DynamoDB. The function stores a record of each event in a MySQL
for RDS Database in a private VPC. This sample includes a private VPC with a VPC endpoint
for DynamoDB and a database instance.

• error-processor – A Node.js function generates errors for a specified percentage of requests.
A CloudWatch Logs subscription invokes a second function when an error is recorded. The
processor function uses the Amazon SDK to gather details about the request and stores them
in an Amazon S3 bucket.

Python

Sample Lambda applications in Python

• blank-python – A Python function that shows the use of logging, environment variables,
Amazon X-Ray tracing, layers, unit tests and the Amazon SDK.

1782

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/nodejs-apig
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/rds-mysql
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/efs-nodejs
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/list-manager
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/error-processor
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python

Amazon Lambda Developer Guide

Ruby

Sample Lambda applications in Ruby

• blank-ruby – A Ruby function that shows the use of logging, environment variables, Amazon
X-Ray tracing, layers, unit tests and the Amazon SDK.

• Ruby Code Samples for Amazon Lambda – Code samples written in Ruby that demonstrate
how to interact with Amazon Lambda.

Java

Sample Lambda applications in Java

• java17-examples – A Java function that demonstrates how to use a Java record to represent
an input event data object.

• java-basic – A collection of minimal Java functions with unit tests and variable logging
configuration.

• java-events – A collection of Java functions that contain skeleton code for how to handle
events from various services such as Amazon API Gateway, Amazon SQS, and Amazon Kinesis.
These functions use the latest version of the aws-lambda-java-events library (3.0.0 and
newer). These examples do not require the Amazon SDK as a dependency.

• s3-java – A Java function that processes notification events from Amazon S3 and uses the
Java Class Library (JCL) to create thumbnails from uploaded image files.

• Use API Gateway to invoke a Lambda function – A Java function that scans a Amazon
DynamoDB table that contains employee information. It then uses Amazon Simple
Notification Service to send a text message to employees celebrating their work
anniversaries. This example uses API Gateway to invoke the function.

Running popular Java frameworks on Lambda

• spring-cloud-function-samples – An example from Spring that shows how to use the Spring
Cloud Function framework to create Amazon Lambda functions.

• Serverless Spring Boot Application Demo – An example that shows how to set up a typical
Spring Boot application in a managed Java runtime with and without SnapStart, or as a
GraalVM native image with a custom runtime.

1783

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby
https://docs.amazonaws.cn/code-samples/latest/catalog/code-catalog-ruby-example_code-lambda.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java17-examples
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-basic
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/java-events
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/s3-java
https://docs.amazonaws.cn/lambda/latest/dg/example_cross_LambdaAPIGateway_section.html
https://github.com/spring-cloud/spring-cloud-function/tree/3.2.x/spring-cloud-function-samples/function-sample-aws
https://spring.io/projects/spring-cloud-function
https://spring.io/projects/spring-cloud-function
https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/springboot

Amazon Lambda Developer Guide

• Serverless Micronaut Application Demo – An example that shows how to use Micronaut in
a managed Java runtime with and without SnapStart, or as a GraalVM native image with a
custom runtime. Learn more in the Micronaut/Lambda guides.

• Serverless Quarkus Application Demo – An example that shows how to use Quarkus in a
managed Java runtime with and without SnapStart, or as a GraalVM native image with a
custom runtime. Learn more in the Quarkus/Lambda guide and Quarkus/SnapStart guide.

Go

Lambda provides the following sample applications for the Go runtime:

Sample Lambda applications in Go

• go-al2 – A hello world function that returns the public IP address. This app uses the
provided.al2 custom runtime.

• blank-go – A Go function that shows the use of Lambda's Go libraries, logging, environment
variables, and the Amazon SDK. This app uses the go1.x runtime.

C#

Sample Lambda applications in C#

• blank-csharp – A C# function that shows the use of Lambda's .NET libraries, logging,
environment variables, Amazon X-Ray tracing, unit tests, and the Amazon SDK.

• blank-csharp-with-layer – A C# function that uses the .NET CLI to create a layer that packages
the function's dependencies.

• ec2-spot – A function that manages spot instance requests in Amazon EC2.

PowerShell

Lambda provides the following sample applications for PowerShell:

• blank-powershell – A PowerShell function that shows the use of logging, environment
variables, and the Amazon SDK.

To deploy a sample application, follow the instructions in its README file. To learn more about the
architecture and use cases of an application, read the topics in this chapter.

1784

https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/micronaut
https://guides.micronaut.io/latest/tag-lambda.html
https://github.com/aws-samples/serverless-java-frameworks-samples/tree/main/quarkus
https://quarkus.io/guides/aws-lambda
https://quarkus.io/guides/aws-lambda-snapstart
https://github.com/aws-samples/sessions-with-aws-sam/tree/master/go-al2
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-go
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-csharp
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-csharp-with-layer
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/ec2-spot
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-powershell

Amazon Lambda Developer Guide

Topics

• Blank function sample application for Amazon Lambda

• Error processor sample application for Amazon Lambda

• List manager sample application for Amazon Lambda

1785

Amazon Lambda Developer Guide

Blank function sample application for Amazon Lambda

The blank function sample application is a starter application that demonstrates common
operations in Lambda with a function that calls the Lambda API. It shows the use of logging,
environment variables, Amazon X-Ray tracing, layers, unit tests and the Amazon SDK. Explore this
application to learn about building Lambda functions in your programming language, or use it as a
starting point for your own projects.

Variants of this sample application are available for the following languages:

Variants

• Node.js – blank-nodejs.

• Python – blank-python.

• Ruby – blank-ruby.

• Java – blank-java.

• Go – blank-go.

• C# – blank-csharp.

• PowerShell – blank-powershell.

The examples in this topic highlight code from the Node.js version, but the details are generally
applicable to all variants.

You can deploy the sample in a few minutes with the Amazon CLI and Amazon CloudFormation.
Follow the instructions in the README to download, configure, and deploy it in your account.

Sections

• Architecture and handler code

• Deployment automation with Amazon CloudFormation and the Amazon CLI

• Instrumentation with the Amazon X-Ray

• Dependency management with layers

Architecture and handler code

The sample application consists of function code, an Amazon CloudFormation template, and
supporting resources. When you deploy the sample, you use the following Amazon services:

Blank function 1786

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-python
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-ruby
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-java
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-go
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-csharp
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-powershell
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs

Amazon Lambda Developer Guide

• Amazon Lambda – Runs function code, sends logs to CloudWatch Logs, and sends trace data
to X-Ray. The function also calls the Lambda API to get details about the account's quotas and
usage in the current Region.

• Amazon X-Ray – Collects trace data, indexes traces for search, and generates a service map.

• Amazon CloudWatch – Stores logs and metrics.

• Amazon Identity and Access Management (IAM) – Grants permission.

• Amazon Simple Storage Service (Amazon S3) – Stores the function's deployment package during
deployment.

• Amazon CloudFormation – Creates application resources and deploys function code.

Standard charges apply for each service. For more information, see Amazon Pricing.

The function code shows a basic workflow for processing an event. The handler takes an Amazon
Simple Queue Service (Amazon SQS) event as input and iterates through the records that it
contains, logging the contents of each message. It logs the contents of the event, the context
object, and environment variables. Then it makes a call with the Amazon SDK and passes the
response back to the Lambda runtime.

Example blank-nodejs/function/index.js – Handler code

// Handler
exports.handler = async function(event, context) {
 event.Records.forEach(record => {
 console.log(record.body)
 })
 console.log('## ENVIRONMENT VARIABLES: ' + serialize(process.env))
 console.log('## CONTEXT: ' + serialize(context))
 console.log('## EVENT: ' + serialize(event))

 return getAccountSettings()
}

// Use SDK client
var getAccountSettings = function(){
 return lambda.getAccountSettings().promise()
}

var serialize = function(object) {
 return JSON.stringify(object, null, 2)

Architecture and handler code 1787

http://www.amazonaws.cn/xray
http://www.amazonaws.cn/cloudwatch
http://www.amazonaws.cn/iam
http://www.amazonaws.cn/s3
http://www.amazonaws.cn/cloudformation
http://www.amazonaws.cn/pricing
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/function/index.js

Amazon Lambda Developer Guide

}

The input/output types for the handler and support for asynchronous programming vary per
runtime. In this example, the handler method is async, so in Node.js this means that it must return
a promise back to the runtime. The Lambda runtime waits for the promise to be resolved and
returns the response to the invoker. If the function code or Amazon SDK client return an error, the
runtime formats the error into a JSON document and returns that.

The sample application doesn't include an Amazon SQS queue to send events, but uses an event
from Amazon SQS (event.json) to illustrate how events are processed. To add an Amazon SQS
queue to your application, see Using Lambda with Amazon SQS.

Deployment automation with Amazon CloudFormation and the
Amazon CLI

The sample application's resources are defined in an Amazon CloudFormation template and
deployed with the Amazon CLI. The project includes simple shell scripts that automate the process
of setting up, deploying, invoking, and tearing down the application.

The application template uses an Amazon Serverless Application Model (Amazon SAM) resource
type to define the model. Amazon SAM simplifies template authoring for serverless applications by
automating the definition of execution roles, APIs, and other resources.

The template defines the resources in the application stack. This includes the function, its
execution role, and a Lambda layer that provides the function's library dependencies. The stack
does not include the bucket that the Amazon CLI uses during deployment or the CloudWatch Logs
log group.

Example blank-nodejs/template.yml – Serverless resources

AWSTemplateFormatVersion: '2010-09-09'
Transform: 'AWS::Serverless-2016-10-31'
Description: An Amazon Lambda application that calls the Lambda API.
Resources:
 function:
 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs16.x
 CodeUri: function/.

Deployment automation with Amazon CloudFormation and the Amazon CLI 1788

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/event.json
https://github.com/awsdocs/aws-lambda-developer-guide/blob/master/sample-apps/blank-nodejs/template.yml
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html

Amazon Lambda Developer Guide

 Description: Call the Amazon Lambda API
 Timeout: 10
 # Function's execution role
 Policies:
 - AWSLambdaBasicExecutionRole
 - AWSLambda_ReadOnlyAccess
 - AWSXrayWriteOnlyAccess
 Tracing: Active
 Layers:
 - !Ref libs
 libs:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: blank-nodejs-lib
 Description: Dependencies for the blank sample app.
 ContentUri: lib/.
 CompatibleRuntimes:
 - nodejs16.x

When you deploy the application, Amazon CloudFormation applies the Amazon SAM transform
to the template to generate an Amazon CloudFormation template with standard types such as
AWS::Lambda::Function and AWS::IAM::Role.

Example processed template

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "An Amazon Lambda application that calls the Lambda API.",
 "Resources": {
 "function": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Layers": [
 {
 "Ref": "libs32xmpl61b2"
 }
],
 "TracingConfig": {
 "Mode": "Active"
 },
 "Code": {
 "S3Bucket": "lambda-artifacts-6b000xmpl1e9bf2a",
 "S3Key": "3d3axmpl473d249d039d2d7a37512db3"

Deployment automation with Amazon CloudFormation and the Amazon CLI 1789

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-layerversion.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html

Amazon Lambda Developer Guide

 },
 "Description": "Call the Amazon Lambda API",
 "Tags": [
 {
 "Value": "SAM",
 "Key": "lambda:createdBy"
 }
],

In this example, the Code property specifies an object in an Amazon S3 bucket. This corresponds to
the local path in the CodeUri property in the project template:

 CodeUri: function/.

To upload the project files to Amazon S3, the deployment script uses commands in the Amazon
CLI. The cloudformation package command preprocesses the template, uploads artifacts, and
replaces local paths with Amazon S3 object locations. The cloudformation deploy command
deploys the processed template with a Amazon CloudFormation change set.

Example blank-nodejs/3-deploy.sh – Package and deploy

#!/bin/bash
set -eo pipefail
ARTIFACT_BUCKET=$(cat bucket-name.txt)
aws cloudformation package --template-file template.yml --s3-bucket $ARTIFACT_BUCKET --
output-template-file out.yml
aws cloudformation deploy --template-file out.yml --stack-name blank-nodejs --
capabilities CAPABILITY_NAMED_IAM

The first time you run this script, it creates a Amazon CloudFormation stack named blank-
nodejs. If you make changes to the function code or template, you can run it again to update the
stack.

The cleanup script (blank-nodejs/5-cleanup.sh) deletes the stack and optionally deletes the
deployment bucket and function logs.

Instrumentation with the Amazon X-Ray

The sample function is configured for tracing with Amazon X-Ray. With the tracing mode set to
active, Lambda records timing information for a subset of invocations and sends it to X-Ray. X-Ray
processes the data to generate a service map that shows a client node and two service nodes.

Instrumentation with the Amazon X-Ray 1790

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/3-deploy.sh
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/5-cleanup.sh
https://console.amazonaws.cn/xray/home

Amazon Lambda Developer Guide

The first service node (AWS::Lambda) represents the Lambda service, which validates the
invocation request and sends it to the function. The second node, AWS::Lambda::Function,
represents the function itself.

To record additional detail, the sample function uses the X-Ray SDK. With minimal changes to the
function code, the X-Ray SDK records details about calls made with the Amazon SDK to Amazon
services.

Example blank-nodejs/function/index.js – Instrumentation

const AWSXRay = require('aws-xray-sdk-core')
const AWS = AWSXRay.captureAWS(require('aws-sdk'))

// Create client outside of handler to reuse
const lambda = new AWS.Lambda()

Instrumenting the Amazon SDK client adds an additional node to the service map and more detail
in traces. In this example, the service map shows the sample function calling the Lambda API to get
details about storage and concurrency usage in the current Region.

The trace shows timing details for the invocation, with subsegments for function initialization,
invocation, and overhead. The invocation subsegment has a subsegment for the Amazon SDK call
to the GetAccountSettings API operation.

You can include the X-Ray SDK and other libraries in your function's deployment package, or
deploy them separately in a Lambda layer. For Node.js, Ruby, and Python, the Lambda runtime
includes the Amazon SDK in the execution environment.

Dependency management with layers

You can install libraries locally and include them in the deployment package that you upload
to Lambda, but this has its drawbacks. Larger file sizes cause increased deployment times and
can prevent you from testing changes to your function code in the Lambda console. To keep the
deployment package small and avoid uploading dependencies that haven't changed, the sample
app creates a Lambda layer and associates it with the function.

Example blank-nodejs/template.yml – Dependency layer

Resources:
 function:

Dependency management with layers 1791

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/function/index.js
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/template.yml

Amazon Lambda Developer Guide

 Type: AWS::Serverless::Function
 Properties:
 Handler: index.handler
 Runtime: nodejs16.x
 CodeUri: function/.
 Description: Call the Amazon Lambda API
 Timeout: 10
 # Function's execution role
 Policies:
 - AWSLambdaBasicExecutionRole
 - AWSLambda_ReadOnlyAccess
 - AWSXrayWriteOnlyAccess
 Tracing: Active
 Layers:
 - !Ref libs
 libs:
 Type: AWS::Serverless::LayerVersion
 Properties:
 LayerName: blank-nodejs-lib
 Description: Dependencies for the blank sample app.
 ContentUri: lib/.
 CompatibleRuntimes:
 - nodejs16.x

The 2-build-layer.sh script installs the function's dependencies with npm and places them in a
folder with the structure required by the Lambda runtime.

Example 2-build-layer.sh – Preparing the layer

#!/bin/bash
set -eo pipefail
mkdir -p lib/nodejs
rm -rf node_modules lib/nodejs/node_modules
npm install --production
mv node_modules lib/nodejs/

The first time that you deploy the sample application, the Amazon CLI packages the layer
separately from the function code and deploys both. For subsequent deployments, the layer
archive is only uploaded if the contents of the lib folder have changed.

Dependency management with layers 1792

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/sam-resource-layerversion.html
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/blank-nodejs/2-build-layer.sh

Amazon Lambda Developer Guide

Error processor sample application for Amazon Lambda

The Error Processor sample application demonstrates the use of Amazon Lambda to handle events
from an Amazon CloudWatch Logs subscription. CloudWatch Logs lets you invoke a Lambda
function when a log entry matches a pattern. The subscription in this application monitors the
log group of a function for entries that contain the word ERROR. It invokes a processor Lambda
function in response. The processor function retrieves the full log stream and trace data for the
request that caused the error, and stores them for later use.

Function code is available in the following files:

• Random error – random-error/index.js

• Processor – processor/index.js

You can deploy the sample in a few minutes with the Amazon CLI and Amazon CloudFormation. To
download, configure, and deploy it in your account, follow the instructions in the README.

Sections

• Architecture and event structure

• Instrumentation with Amazon X-Ray

• Amazon CloudFormation template and additional resources

Architecture and event structure

The sample application uses the following Amazon services.

• Amazon Lambda – Runs function code, sends logs to CloudWatch Logs, and sends trace data to
X-Ray.

• Amazon CloudWatch Logs – Collects logs, and invokes a function when a log entry matches a
filter pattern.

• Amazon X-Ray – Collects trace data, indexes traces for search, and generates a service map.

• Amazon Simple Storage Service (Amazon S3) – Stores deployment artifacts and application
output.

Standard charges apply for each service.

Error processor 1793

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/error-processor/random-error/index.js
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/error-processor/processor/index.js
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/error-processor

Amazon Lambda Developer Guide

A Lambda function in the application generates errors randomly. When CloudWatch Logs detects
the word ERROR in the function's logs, it sends an event to the processor function for processing.

Example CloudWatch Logs message event

{
 "awslogs": {
 "data": "H4sIAAAAAAAAAHWQT0/DMAzFv0vEkbLYcdJkt4qVXmCDteIAm1DbZKjS
+kdpB0Jo350MhsQFyVLsZ+unl/fJWjeO5asrPgbH5..."
 }
}

When it's decoded, the data contains details about the log event. The function uses these details
to identify the log stream, and parses the log message to get the ID of the request that caused the
error.

Example decoded CloudWatch Logs event data

{
 "messageType": "DATA_MESSAGE",
 "owner": "123456789012",
 "logGroup": "/aws/lambda/lambda-error-processor-randomerror-1GD4SSDNACNP4",
 "logStream": "2019/04/04/[$LATEST]63311769a9d742f19cedf8d2e38995b9",
 "subscriptionFilters": [
 "lambda-error-processor-subscription-15OPDVQ59CG07"
],
 "logEvents": [
 {
 "id": "34664632210239891980253245280462376874059932423703429141",
 "timestamp": 1554415868243,
 "message": "2019-04-04T22:11:08.243Z\t1d2c1444-efd1-43ec-
b16e-8fb2d37508b8\tERROR\n"
 }
]
}

The processor function uses information from the CloudWatch Logs event to download the full log
stream and X-Ray trace for a request that caused an error. It stores both in an Amazon S3 bucket.
To allow the log stream and trace time to finalize, the function waits for a short period of time
before accessing the data.

Architecture and event structure 1794

Amazon Lambda Developer Guide

Instrumentation with Amazon X-Ray

The application uses Amazon X-Ray to trace function invocations and the calls that functions make
to Amazon services. X-Ray uses the trace data that it receives from functions to create a service
map that helps you identify errors.

The two Node.js functions are configured for active tracing in the template, and are instrumented
with the Amazon X-Ray SDK for Node.js in code. With active tracing, Lambda tags adds a tracing
header to incoming requests and sends a trace with timing details to X-Ray. Additionally, the
random error function uses the X-Ray SDK to record the request ID and user information in
annotations. The annotations are attached to the trace, and you can use them to locate the trace
for a specific request.

The processor function gets the request ID from the CloudWatch Logs event, and uses the
Amazon SDK for JavaScript to search X-Ray for that request. It uses Amazon SDK clients, which are
instrumented with the X-Ray SDK, to download the trace and log stream. Then it stores them in the
output bucket. The X-Ray SDK records these calls, and they appear as subsegments in the trace.

Amazon CloudFormation template and additional resources

The application is implemented in two Node.js modules and deployed with an Amazon
CloudFormation template and shell scripts. The template creates the processor function, the
random error function, and the following supporting resources.

• Execution role – An IAM role that grants the functions permission to access other Amazon
services.

• Primer function – An additional function that invokes the random error function to create a log
group.

• Custom resource – An Amazon CloudFormation custom resource that invokes the primer function
during deployment to ensure that the log group exists.

• CloudWatch Logs subscription – A subscription for the log stream that triggers the processor
function when the word ERROR is logged.

• Resource-based policy – A permission statement on the processor function that allows
CloudWatch Logs to invoke it.

• Amazon S3 bucket – A storage location for output from the processor function.

View the application template on GitHub.

Instrumentation with Amazon X-Ray 1795

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/error-processor/template.yml

Amazon Lambda Developer Guide

To work around a limitation of Lambda's integration with Amazon CloudFormation, the template
creates an additional function that runs during deployments. All Lambda functions come with a
CloudWatch Logs log group that stores output from function executions. However, the log group
isn't created until the function is invoked for the first time.

To create the subscription, which depends on the existence of the log group, the application uses a
third Lambda function to invoke the random error function. The template includes the code for the
primer function inline. An Amazon CloudFormation custom resource invokes it during deployment.
DependsOn properties ensure that the log stream and resource-based policy are created prior to
the subscription.

Amazon CloudFormation template and additional resources 1796

Amazon Lambda Developer Guide

List manager sample application for Amazon Lambda

The list manager sample application demonstrates the use of Amazon Lambda to process records
in an Amazon Kinesis data stream. A Lambda event source mapping reads records from the stream
in batches and invokes a Lambda function. The function uses information from the records to
update documents in Amazon DynamoDB and stores the records it processes in Amazon Relational
Database Service (Amazon RDS).

Clients send records to a Kinesis stream, which stores them and makes them available for
processing. The Kinesis stream is used like a queue to buffer records until they can be processed.
Unlike an Amazon SQS queue, records in a Kinesis stream are not deleted after they are processed,
so multiple consumers can process the same data. Records in Kinesis are also processed in order,
where queue items can be delivered out of order. Records are deleted from the stream after 7 days.

In addition to the function that processes events, the application includes a second function for
performing administrative tasks on the database. Function code is available in the following files:

• Processor – processor/index.js

• Database admin – dbadmin/index.js

You can deploy the sample in a few minutes with the Amazon CLI and Amazon CloudFormation. To
download, configure, and deploy it in your account, follow the instructions in the README.

Sections

• Architecture and event structure

• Instrumentation with Amazon X-Ray

• Amazon CloudFormation templates and additional resources

Architecture and event structure

The sample application uses the following Amazon services:

• Kinesis – Receives events from clients and stores them temporarily for processing.

• Amazon Lambda – Reads from the Kinesis stream and sends events to the function's handler
code.

• DynamoDB – Stores lists generated by the application.

List manager 1797

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/list-manager/processor/index.js
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/list-manager/dbadmin/index.js
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/list-manager

Amazon Lambda Developer Guide

• Amazon RDS – Stores a copy of processed records in a relational database.

• Amazon Secrets Manager – Stores the database password.

• Amazon VPC – Provides a private local network for communication between the function and
database.

Pricing

Standard charges apply for each service.

The application processes JSON documents from clients that contain information necessary to
update a list. It supports two types of list: tally and ranking. A tally contains values that are added
to the current value for key if it exists. Each entry processed for a user increases the value of a key
in the specified table.

The following example shows a document that increases the xp (experience points) value for a
user's stats list.

Example record – Tally type

{
 "title": "stats",
 "user": "bill",
 "type": "tally",
 "entries": {
 "xp": 83
 }
}

A ranking contains a list of entries where the value is the order in which they are ranked. A ranking
can be updated with different values that overwrite the current value, instead of incrementing it.
The following example shows a ranking of favorite movies:

Example record – Ranking type

{
 "title": "favorite movies",
 "user": "mike",

Architecture and event structure 1798

Amazon Lambda Developer Guide

 "type": "rank",
 "entries": {
 "blade runner": 1,
 "the empire strikes back": 2,
 "alien": 3
 }
}

A Lambda event source mapping read records from the stream in batches and invokes the
processor function. The event that the function handler received contains an array of objects that
each contain details about a record, such as when it was received, details about the stream, and an
encoded representation of the original record document.

Example events/kinesis.json – Record

{
 "Records": [
 {
 "kinesis": {
 "kinesisSchemaVersion": "1.0",
 "partitionKey": "0",
 "sequenceNumber": "49598630142999655949899443842509554952738656579378741250",
 "data":
 "eyJ0aXRsZSI6ICJmYXZvcml0ZSBtb3ZpZXMiLCAidXNlciI6ICJyZGx5c2N0IiwgInR5cGUiOiAicmFuayIsICJlbnRyaWVzIjogeyJibGFkZSBydW5uZXIiOiAyLCAidGhlIGVtcGlyZSBzdHJpa2VzIGJhY2siOiAzLCAiYWxpZW4iOiAxfX0=",
 "approximateArrivalTimestamp": 1570667770.615
 },
 "eventSource": "aws:kinesis",
 "eventVersion": "1.0",
 "eventID":
 "shardId-000000000000:49598630142999655949899443842509554952738656579378741250",
 "eventName": "aws:kinesis:record",
 "invokeIdentityArn": "arn:aws-cn:iam::123456789012:role/list-manager-
processorRole-7FYXMPLH7IUS",
 "awsRegion": "us-east-2",
 "eventSourceARN": "arn:aws-cn:kinesis:us-east-2:123456789012:stream/list-manager-
stream-87B3XMPLF1AZ"
 },
 ...

When it's decoded, the data contains a record. The function uses the record to update the user's list
and an aggregate list that stores accumulated values across all users. It also stores a copy of the
event in the application's database.

Architecture and event structure 1799

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/list-manager/events/kinesis.json

Amazon Lambda Developer Guide

Instrumentation with Amazon X-Ray

The application uses Amazon X-Ray to trace function invocations and the calls that functions make
to Amazon services. X-Ray uses the trace data that it receives from functions to create a service
map that helps you identify errors.

The Node.js function is configured for active tracing in the template, and is instrumented with the
Amazon X-Ray SDK for Node.js in code. The X-Ray SDK records a subsegment for each call made
with an Amazon SDK or MySQL client.

The function uses the Amazon SDK for JavaScript in Node.js to read and write to two tables for
each record. The primary table stores the current state of each combination of list name and user.
The aggregate table stores lists that combine data from multiple users.

Amazon CloudFormation templates and additional resources

The application is implemented in Node.js modules and deployed with an Amazon CloudFormation
template and shell scripts. The application template creates two functions, a Kinesis stream,
DynamoDB tables and the following supporting resources.

Application resources

• Execution role – An IAM role that grants the functions permission to access other Amazon
services.

• Lambda event source mapping – Reads records from the data stream and invokes the function.

View the application template on GitHub.

A second template, template-vpcrds.yml, creates the Amazon VPC and database resources. While it
is possible to create all of the resources in one template, separating them makes it easier to clean
up the application and allows the database to be reused with multiple applications.

Infrastructure resources

• VPC – A virtual private cloud network with private subnets, a route table, and a VPC endpoint
that allows the function to communicate with DynamoDB without an internet connection.

• Database – An Amazon RDS database instance and a subnet group that connects it to the VPC.

Instrumentation with Amazon X-Ray 1800

https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/list-manager/template.yml
https://github.com/awsdocs/aws-lambda-developer-guide/tree/main/sample-apps/list-manager/template.yml

Amazon Lambda Developer Guide

Using Lambda with an Amazon SDK

Amazon software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation

Amazon SDK for Java

Amazon SDK for JavaScript

Amazon SDK for .NET

Amazon SDK for PHP

Amazon SDK for Python (Boto3)

Amazon SDK for Ruby

Amazon SDK for SAP ABAP

For examples specific to Lambda, see Code examples for Lambda using Amazon SDKs.

1801

https://docs.amazonaws.cn/sdk-for-java
https://docs.amazonaws.cn/sdk-for-javascript
https://docs.amazonaws.cn/sdk-for-net
https://docs.amazonaws.cn/sdk-for-php
https://docs.amazonaws.cn/pythonsdk
https://docs.amazonaws.cn/sdk-for-ruby
https://docs.amazonaws.cn/sdk-for-sapabap

Amazon Lambda Developer Guide

Code examples for Lambda using Amazon SDKs

The following code examples show how to use Lambda with an Amazon software development kit
(SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios and
cross-service examples.

Scenarios are code examples that show you how to accomplish a specific task by calling multiple
functions within the same service.

Cross-service examples are sample applications that work across multiple Amazon Web Services.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started

Hello Lambda

The following code examples show how to get started using Lambda.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

namespace LambdaActions;

using Amazon.Lambda;

public class HelloLambda
{

1802

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

Amazon Lambda Developer Guide

 static async Task Main(string[] args)
 {
 var lambdaClient = new AmazonLambdaClient();

 Console.WriteLine("Hello AWS Lambda");
 Console.WriteLine("Let's get started with AWS Lambda by listing your
 existing Lambda functions:");

 var response = await lambdaClient.ListFunctionsAsync();
 response.Functions.ForEach(function =>
 {

 Console.WriteLine($"{function.FunctionName}\t{function.Description}");
 });
 }
}

• For API details, see ListFunctions in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS lambda)

Set this project's name.
project("hello_lambda")

1803

https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda/hello_lambda#code-examples

Amazon Lambda Developer Guide

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # if you are building from the command line you
 may need to uncomment this
 # and set the proper subdirectory to the
 executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_lambda.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_lambda.cpp source file.

#include <aws/core/Aws.h>
#include <aws/lambda/LambdaClient.h>
#include <aws/lambda/model/ListFunctionsRequest.h>
#include <iostream>

1804

Amazon Lambda Developer Guide

/*
 * A "Hello Lambda" starter application which initializes an AWS Lambda (Lambda)
 client and lists the Lambda functions.
 *
 * main function
 *
 * Usage: 'hello_lambda'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 int result = 0;
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient lambdaClient(clientConfig);
 std::vector<Aws::String> functions;
 Aws::String marker; // Used for pagination.

 do {
 Aws::Lambda::Model::ListFunctionsRequest request;
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::Lambda::Model::ListFunctionsOutcome outcome =
 lambdaClient.ListFunctions(
 request);

 if (outcome.IsSuccess()) {
 const Aws::Lambda::Model::ListFunctionsResult
 &listFunctionsResult = outcome.GetResult();
 std::cout << listFunctionsResult.GetFunctions().size()
 << " lambda functions were retrieved." << std::endl;

 for (const Aws::Lambda::Model::FunctionConfiguration
 &functionConfiguration: listFunctionsResult.GetFunctions()) {

1805

Amazon Lambda Developer Guide

 functions.push_back(functionConfiguration.GetFunctionName());
 std::cout << functions.size() << " "
 << functionConfiguration.GetDescription() <<
 std::endl;
 std::cout << " "
 <<
 Aws::Lambda::Model::RuntimeMapper::GetNameForRuntime(
 functionConfiguration.GetRuntime()) << ": "
 << functionConfiguration.GetHandler()
 << std::endl;
 }
 marker = listFunctionsResult.GetNextMarker();
 } else {
 std::cerr << "Error with Lambda::ListFunctions. "
 << outcome.GetError().GetMessage()
 << std::endl;
 result = 1;
 break;
 }
 } while (!marker.empty());
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return result;
}

• For API details, see ListFunctions in Amazon SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

package main

1806

https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

Amazon Lambda Developer Guide

import (
 "context"
 "fmt"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/lambda"
)

// main uses the AWS SDK for Go (v2) to create an AWS Lambda client and list up
 to 10
// functions in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 sdkConfig, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 lambdaClient := lambda.NewFromConfig(sdkConfig)

 maxItems := 10
 fmt.Printf("Let's list up to %v functions for your account.\n", maxItems)
 result, err := lambdaClient.ListFunctions(context.TODO(),
 &lambda.ListFunctionsInput{
 MaxItems: aws.Int32(int32(maxItems)),
 })
 if err != nil {
 fmt.Printf("Couldn't list functions for your account. Here's why: %v\n", err)
 return
 }
 if len(result.Functions) == 0 {
 fmt.Println("You don't have any functions!")
 } else {
 for _, function := range result.Functions {
 fmt.Printf("\t%v\n", *function.FunctionName)
 }
 }
}

1807

Amazon Lambda Developer Guide

• For API details, see ListFunctions in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

package com.example.lambda;

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.lambda.LambdaClient;
import software.amazon.awssdk.services.lambda.model.LambdaException;
import software.amazon.awssdk.services.lambda.model.ListFunctionsResponse;
import software.amazon.awssdk.services.lambda.model.FunctionConfiguration;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListLambdaFunctions {
 public static void main(String[] args) {
 Region region = Region.US_WEST_2;
 LambdaClient awsLambda = LambdaClient.builder()
 .region(region)
 .build();

 listFunctions(awsLambda);
 awsLambda.close();
 }

1808

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#readme

Amazon Lambda Developer Guide

 public static void listFunctions(LambdaClient awsLambda) {
 try {
 ListFunctionsResponse functionResult = awsLambda.listFunctions();
 List<FunctionConfiguration> list = functionResult.functions();
 for (FunctionConfiguration config : list) {
 System.out.println("The function name is " +
 config.functionName());
 }

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListFunctions in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import { LambdaClient, paginateListFunctions } from "@aws-sdk/client-lambda";

const client = new LambdaClient({});

export const helloLambda = async () => {
 const paginator = paginateListFunctions({ client }, {});
 const functions = [];

 for await (const page of paginator) {
 const funcNames = page.Functions.map((f) => f.FunctionName);
 functions.push(...funcNames);
 }

1809

https://docs.amazonaws.cn/goto/SdkForJavaV2/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 console.log("Functions:");
 console.log(functions.join("\n"));
 return functions;
};

• For API details, see ListFunctions in Amazon SDK for JavaScript API Reference.

Code examples

• Actions for Lambda using Amazon SDKs

• Use CreateAlias with an Amazon SDK or command line tool

• Use CreateFunction with an Amazon SDK or command line tool

• Use DeleteAlias with an Amazon SDK or command line tool

• Use DeleteFunction with an Amazon SDK or command line tool

• Use DeleteFunctionConcurrency with an Amazon SDK or command line tool

• Use DeleteProvisionedConcurrencyConfig with an Amazon SDK or command line tool

• Use GetAccountSettings with an Amazon SDK or command line tool

• Use GetAlias with an Amazon SDK or command line tool

• Use GetFunction with an Amazon SDK or command line tool

• Use GetFunctionConcurrency with an Amazon SDK or command line tool

• Use GetFunctionConfiguration with an Amazon SDK or command line tool

• Use GetPolicy with an Amazon SDK or command line tool

• Use GetProvisionedConcurrencyConfig with an Amazon SDK or command line tool

• Use Invoke with an Amazon SDK or command line tool

• Use ListFunctions with an Amazon SDK or command line tool

• Use ListProvisionedConcurrencyConfigs with an Amazon SDK or command line tool

• Use ListTags with an Amazon SDK or command line tool

• Use ListVersionsByFunction with an Amazon SDK or command line tool

• Use PublishVersion with an Amazon SDK or command line tool

• Use PutFunctionConcurrency with an Amazon SDK or command line tool

• Use PutProvisionedConcurrencyConfig with an Amazon SDK or command line tool

• Use RemovePermission with an Amazon SDK or command line tool

1810

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/ListFunctionsCommand

Amazon Lambda Developer Guide

• Use TagResource with an Amazon SDK or command line tool

• Use UntagResource with an Amazon SDK or command line tool

• Use UpdateAlias with an Amazon SDK or command line tool

• Use UpdateFunctionCode with an Amazon SDK or command line tool

• Use UpdateFunctionConfiguration with an Amazon SDK or command line tool

• Scenarios for Lambda using Amazon SDKs

• Get started creating and invoking Lambda functions using an Amazon SDK

• Serverless examples for Lambda using Amazon SDKs

• Connecting to an Amazon RDS database in a Lambda function

• Invoke a Lambda function from a Kinesis trigger

• Invoke a Lambda function from a DynamoDB trigger

• Invoke a Lambda function from an Amazon S3 trigger

• Invoke a Lambda function from an Amazon SNS trigger

• Invoke a Lambda function from an Amazon SQS trigger

• Reporting batch item failures for Lambda functions with a Kinesis trigger

• Reporting batch item failures for Lambda functions with a DynamoDB trigger

• Reporting batch item failures for Lambda functions with an Amazon SQS trigger

• Cross-service examples for Lambda using Amazon SDKs

• Create an API Gateway REST API to track COVID-19 data

• Create a lending library REST API

• Create a messenger application with Step Functions

• Create a photo asset management application that lets users manage photos using labels

• Create a websocket chat application with API Gateway

• Create an application that analyzes customer feedback and synthesizes audio

• Invoke a Lambda function from a browser

• Transform data for your application with S3 Object Lambda

• Use API Gateway to invoke a Lambda function

• Use Step Functions to invoke Lambda functions

• Use scheduled events to invoke a Lambda function
1811

Amazon Lambda Developer Guide

Actions for Lambda using Amazon SDKs

The following code examples demonstrate how to perform individual Lambda actions with Amazon
SDKs. These excerpts call the Lambda API and are code excerpts from larger programs that must be
run in context. Each example includes a link to GitHub, where you can find instructions for setting
up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Lambda API Reference.

Examples

• Use CreateAlias with an Amazon SDK or command line tool

• Use CreateFunction with an Amazon SDK or command line tool

• Use DeleteAlias with an Amazon SDK or command line tool

• Use DeleteFunction with an Amazon SDK or command line tool

• Use DeleteFunctionConcurrency with an Amazon SDK or command line tool

• Use DeleteProvisionedConcurrencyConfig with an Amazon SDK or command line tool

• Use GetAccountSettings with an Amazon SDK or command line tool

• Use GetAlias with an Amazon SDK or command line tool

• Use GetFunction with an Amazon SDK or command line tool

• Use GetFunctionConcurrency with an Amazon SDK or command line tool

• Use GetFunctionConfiguration with an Amazon SDK or command line tool

• Use GetPolicy with an Amazon SDK or command line tool

• Use GetProvisionedConcurrencyConfig with an Amazon SDK or command line tool

• Use Invoke with an Amazon SDK or command line tool

• Use ListFunctions with an Amazon SDK or command line tool

• Use ListProvisionedConcurrencyConfigs with an Amazon SDK or command line tool

• Use ListTags with an Amazon SDK or command line tool

• Use ListVersionsByFunction with an Amazon SDK or command line tool

• Use PublishVersion with an Amazon SDK or command line tool

• Use PutFunctionConcurrency with an Amazon SDK or command line tool

• Use PutProvisionedConcurrencyConfig with an Amazon SDK or command line tool

• Use RemovePermission with an Amazon SDK or command line tool

Actions 1812

https://docs.amazonaws.cn/lambda/latest/dg/API_Reference.html

Amazon Lambda Developer Guide

• Use TagResource with an Amazon SDK or command line tool

• Use UntagResource with an Amazon SDK or command line tool

• Use UpdateAlias with an Amazon SDK or command line tool

• Use UpdateFunctionCode with an Amazon SDK or command line tool

• Use UpdateFunctionConfiguration with an Amazon SDK or command line tool

Use CreateAlias with an Amazon SDK or command line tool

The following code examples show how to use CreateAlias.

CLI

Amazon CLI

To create an alias for a Lambda function

The following create-alias example creates an alias named LIVE that points to version 1
of the my-function Lambda function.

aws lambda create-alias \
 --function-name my-function \
 --description "alias for live version of function" \
 --function-version 1 \
 --name LIVE

Output:

{
 "FunctionVersion": "1",
 "Name": "LIVE",
 "AliasArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:LIVE",
 "RevisionId": "873282ed-4cd3-4dc8-a069-d0c647e470c6",
 "Description": "alias for live version of function"
}

For more information, see Configuring Amazon Lambda Function Aliases in the Amazon
Lambda Developer Guide.

• For API details, see CreateAlias in Amazon CLI Command Reference.

CreateAlias 1813

https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-alias.html

Amazon Lambda Developer Guide

PowerShell

Tools for PowerShell

Example 1: This example creates a New Lambda Alias for specified version and routing
configuration to specify the percentage of invocation requests that it receives.

New-LMAlias -FunctionName "MylambdaFunction123" -
RoutingConfig_AdditionalVersionWeight @{Name="1";Value="0.6} -Description "Alias
 for version 4" -FunctionVersion 4 -Name "PowershellAlias"

• For API details, see CreateAlias in Amazon Tools for PowerShell Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateFunction with an Amazon SDK or command line tool

The following code examples show how to use CreateFunction.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with functions

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Creates a new Lambda function.
 /// </summary>

CreateFunction 1814

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

Amazon Lambda Developer Guide

 /// <param name="functionName">The name of the function.</param>
 /// <param name="s3Bucket">The Amazon Simple Storage Service (Amazon S3)
 /// bucket where the zip file containing the code is located.</param>
 /// <param name="s3Key">The Amazon S3 key of the zip file.</param>
 /// <param name="role">The Amazon Resource Name (ARN) of a role with the
 /// appropriate Lambda permissions.</param>
 /// <param name="handler">The name of the handler function.</param>
 /// <returns>The Amazon Resource Name (ARN) of the newly created
 /// Lambda function.</returns>
 public async Task<string> CreateLambdaFunctionAsync(
 string functionName,
 string s3Bucket,
 string s3Key,
 string role,
 string handler)
 {
 // Defines the location for the function code.
 // S3Bucket - The S3 bucket where the file containing
 // the source code is stored.
 // S3Key - The name of the file containing the code.
 var functionCode = new FunctionCode
 {
 S3Bucket = s3Bucket,
 S3Key = s3Key,
 };

 var createFunctionRequest = new CreateFunctionRequest
 {
 FunctionName = functionName,
 Description = "Created by the Lambda .NET API",
 Code = functionCode,
 Handler = handler,
 Runtime = Runtime.Dotnet6,
 Role = role,
 };

 var reponse = await
 _lambdaService.CreateFunctionAsync(createFunctionRequest);
 return reponse.FunctionArn;
 }

• For API details, see CreateFunction in Amazon SDK for .NET API Reference.

CreateFunction 1815

https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/CreateFunction

Amazon Lambda Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::CreateFunctionRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 request.SetDescription(LAMBDA_DESCRIPTION); // Optional.
#if USE_CPP_LAMBDA_FUNCTION
 request.SetRuntime(Aws::Lambda::Model::Runtime::provided_al2);
 request.SetTimeout(15);
 request.SetMemorySize(128);

 // Assume the AWS Lambda function was built in Docker with same
 architecture
 // as this code.
#if defined(__x86_64__)
 request.SetArchitectures({Aws::Lambda::Model::Architecture::x86_64});
#elif defined(__aarch64__)
 request.SetArchitectures({Aws::Lambda::Model::Architecture::arm64});
#else
#error "Unimplemented architecture"
#endif // defined(architecture)
#else
 request.SetRuntime(Aws::Lambda::Model::Runtime::python3_8);
#endif
 request.SetRole(roleArn);
 request.SetHandler(LAMBDA_HANDLER_NAME);
 request.SetPublish(true);
 Aws::Lambda::Model::FunctionCode code;

CreateFunction 1816

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 std::ifstream ifstream(INCREMENT_LAMBDA_CODE.c_str(),
 std::ios_base::in | std::ios_base::binary);
 if (!ifstream.is_open()) {
 std::cerr << "Error opening file " << INCREMENT_LAMBDA_CODE << "." <<
 std::endl;

#if USE_CPP_LAMBDA_FUNCTION
 std::cerr
 << "The cpp Lambda function must be built following the
 instructions in the cpp_lambda/README.md file. "
 << std::endl;
#endif
 deleteIamRole(clientConfig);
 return false;
 }

 Aws::StringStream buffer;
 buffer << ifstream.rdbuf();

 code.SetZipFile(Aws::Utils::ByteBuffer((unsigned char *)
 buffer.str().c_str(),
 buffer.str().length()));
 request.SetCode(code);

 Aws::Lambda::Model::CreateFunctionOutcome outcome =
 client.CreateFunction(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda function was successfully created. " <<
 seconds
 << " seconds elapsed." << std::endl;
 break;
 }

 else {
 std::cerr << "Error with CreateFunction. "
 << outcome.GetError().GetMessage()
 << std::endl;
 deleteIamRole(clientConfig);
 return false;
 }

CreateFunction 1817

Amazon Lambda Developer Guide

• For API details, see CreateFunction in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To create a Lambda function

The following create-function example creates a Lambda function named my-
function.

aws lambda create-function \
 --function-name my-function \
 --runtime nodejs18.x \
 --zip-file fileb://my-function.zip \
 --handler my-function.handler \
 --role arn:aws:iam::123456789012:role/service-role/MyTestFunction-role-
tges6bf4

Contents of my-function.zip:

This file is a deployment package that contains your function code and any
 dependencies.

Output:

{
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "CodeSha256": "PFn4S+er27qk+UuZSTKEQfNKG/XNn7QJs90mJgq6oH8=",
 "FunctionName": "my-function",
 "CodeSize": 308,
 "RevisionId": "873282ed-4cd3-4dc8-a069-d0c647e470c6",
 "MemorySize": 128,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "Version": "$LATEST",
 "Role": "arn:aws:iam::123456789012:role/service-role/MyTestFunction-role-
zgur6bf4",
 "Timeout": 3,
 "LastModified": "2023-10-14T22:26:11.234+0000",
 "Handler": "my-function.handler",

CreateFunction 1818

https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/CreateFunction

Amazon Lambda Developer Guide

 "Runtime": "nodejs18.x",
 "Description": ""
}

For more information, see Amazon Lambda Function Configuration in the Amazon Lambda
Developer Guide.

• For API details, see CreateFunction in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// CreateFunction creates a new Lambda function from code contained in the
 zipPackage
// buffer. The specified handlerName must match the name of the file and function
// contained in the uploaded code. The role specified by iamRoleArn is assumed by
// Lambda and grants specific permissions.
// When the function already exists, types.StateActive is returned.
// When the function is created, a lambda.FunctionActiveV2Waiter is used to wait
 until the
// function is active.
func (wrapper FunctionWrapper) CreateFunction(functionName string, handlerName
 string,
 iamRoleArn *string, zipPackage *bytes.Buffer) types.State {
 var state types.State

CreateFunction 1819

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/create-function.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

Amazon Lambda Developer Guide

 _, err := wrapper.LambdaClient.CreateFunction(context.TODO(),
 &lambda.CreateFunctionInput{
 Code: &types.FunctionCode{ZipFile: zipPackage.Bytes()},
 FunctionName: aws.String(functionName),
 Role: iamRoleArn,
 Handler: aws.String(handlerName),
 Publish: true,
 Runtime: types.RuntimePython38,
 })
 if err != nil {
 var resConflict *types.ResourceConflictException
 if errors.As(err, &resConflict) {
 log.Printf("Function %v already exists.\n", functionName)
 state = types.StateActive
 } else {
 log.Panicf("Couldn't create function %v. Here's why: %v\n", functionName, err)
 }
 } else {
 waiter := lambda.NewFunctionActiveV2Waiter(wrapper.LambdaClient)
 funcOutput, err := waiter.WaitForOutput(context.TODO(),
 &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName)}, 1*time.Minute)
 if err != nil {
 log.Panicf("Couldn't wait for function %v to be active. Here's why: %v\n",
 functionName, err)
 } else {
 state = funcOutput.Configuration.State
 }
 }
 return state
}

• For API details, see CreateFunction in Amazon SDK for Go API Reference.

CreateFunction 1820

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.CreateFunction

Amazon Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.core.waiters.WaiterResponse;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.lambda.LambdaClient;
import software.amazon.awssdk.services.lambda.model.CreateFunctionRequest;
import software.amazon.awssdk.services.lambda.model.FunctionCode;
import software.amazon.awssdk.services.lambda.model.CreateFunctionResponse;
import software.amazon.awssdk.services.lambda.model.GetFunctionRequest;
import software.amazon.awssdk.services.lambda.model.GetFunctionResponse;
import software.amazon.awssdk.services.lambda.model.LambdaException;
import software.amazon.awssdk.services.lambda.model.Runtime;
import software.amazon.awssdk.services.lambda.waiters.LambdaWaiter;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;

/**
 * This code example requires a ZIP or JAR that represents the code of the
 * Lambda function.
 * If you do not have a ZIP or JAR, please refer to the following document:
 *
 * https://github.com/aws-doc-sdk-examples/tree/master/javav2/usecases/
creating_workflows_stepfunctions
 *
 * Also, set up your development environment, including your credentials.
 *
 * For information, see this documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */

CreateFunction 1821

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#readme

Amazon Lambda Developer Guide

public class CreateFunction {
 public static void main(String[] args) {

 final String usage = """

 Usage:
 <functionName> <filePath> <role> <handler>\s

 Where:
 functionName - The name of the Lambda function.\s
 filePath - The path to the ZIP or JAR where the code is
 located.\s
 role - The role ARN that has Lambda permissions.\s
 handler - The fully qualified method name (for example,
 example.Handler::handleRequest). \s
 """;

 if (args.length != 4) {
 System.out.println(usage);
 System.exit(1);
 }

 String functionName = args[0];
 String filePath = args[1];
 String role = args[2];
 String handler = args[3];
 Region region = Region.US_WEST_2;
 LambdaClient awsLambda = LambdaClient.builder()
 .region(region)
 .build();

 createLambdaFunction(awsLambda, functionName, filePath, role, handler);
 awsLambda.close();
 }

 public static void createLambdaFunction(LambdaClient awsLambda,
 String functionName,
 String filePath,
 String role,
 String handler) {

 try {
 LambdaWaiter waiter = awsLambda.waiter();
 InputStream is = new FileInputStream(filePath);

CreateFunction 1822

Amazon Lambda Developer Guide

 SdkBytes fileToUpload = SdkBytes.fromInputStream(is);

 FunctionCode code = FunctionCode.builder()
 .zipFile(fileToUpload)
 .build();

 CreateFunctionRequest functionRequest =
 CreateFunctionRequest.builder()
 .functionName(functionName)
 .description("Created by the Lambda Java API")
 .code(code)
 .handler(handler)
 .runtime(Runtime.JAVA8)
 .role(role)
 .build();

 // Create a Lambda function using a waiter.
 CreateFunctionResponse functionResponse =
 awsLambda.createFunction(functionRequest);
 GetFunctionRequest getFunctionRequest = GetFunctionRequest.builder()
 .functionName(functionName)
 .build();
 WaiterResponse<GetFunctionResponse> waiterResponse =
 waiter.waitUntilFunctionExists(getFunctionRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 System.out.println("The function ARN is " +
 functionResponse.functionArn());

 } catch (LambdaException | FileNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see CreateFunction in Amazon SDK for Java 2.x API Reference.

CreateFunction 1823

https://docs.amazonaws.cn/goto/SdkForJavaV2/lambda-2015-03-31/CreateFunction

Amazon Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const createFunction = async (funcName, roleArn) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${funcName}.zip`);

 const command = new CreateFunctionCommand({
 Code: { ZipFile: code },
 FunctionName: funcName,
 Role: roleArn,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file
 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

• For API details, see CreateFunction in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

CreateFunction 1824

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/CreateFunctionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/lambda#code-examples

Amazon Lambda Developer Guide

suspend fun createNewFunction(
 myFunctionName: String,
 s3BucketName: String,
 myS3Key: String,
 myHandler: String,
 myRole: String
): String? {

 val functionCode = FunctionCode {
 s3Bucket = s3BucketName
 s3Key = myS3Key
 }

 val request = CreateFunctionRequest {
 functionName = myFunctionName
 code = functionCode
 description = "Created by the Lambda Kotlin API"
 handler = myHandler
 role = myRole
 runtime = Runtime.Java8
 }

 LambdaClient { region = "us-west-2" }.use { awsLambda ->
 val functionResponse = awsLambda.createFunction(request)
 awsLambda.waitUntilFunctionActive {
 functionName = myFunctionName
 }
 return functionResponse.functionArn
 }
}

• For API details, see CreateFunction in Amazon SDK for Kotlin API reference.

CreateFunction 1825

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Lambda Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function createFunction($functionName, $role, $bucketName, $handler)
 {
 //This assumes the Lambda function is in an S3 bucket.
 return $this->customWaiter(function () use ($functionName, $role,
 $bucketName, $handler) {
 return $this->lambdaClient->createFunction([
 'Code' => [
 'S3Bucket' => $bucketName,
 'S3Key' => $functionName,
],
 'FunctionName' => $functionName,
 'Role' => $role['Arn'],
 'Runtime' => 'python3.9',
 'Handler' => "$handler.lambda_handler",
]);
 });
 }

• For API details, see CreateFunction in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell

Example 1: This example creates a new C# (dotnetcore1.0 runtime) function named
MyFunction in Amazon Lambda, providing the compiled binaries for the function
from a zip file on the local file system (relative or absolute paths may be used).
C# Lambda functions specify the handler for the function using the designation
AssemblyName::Namespace.ClassName::MethodName. You should replace the assembly

CreateFunction 1826

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/CreateFunction

Amazon Lambda Developer Guide

name (without .dll suffix), namespace, class name and method name parts of the handler
spec appropriately. The new function will have environment variables 'envvar1' and
'envvar2' set up from the provided values.

Publish-LMFunction -Description "My C# Lambda Function" `
 -FunctionName MyFunction `
 -ZipFilename .\MyFunctionBinaries.zip `
 -Handler "AssemblyName::Namespace.ClassName::MethodName" `
 -Role "arn:aws:iam::123456789012:role/LambdaFullExecRole" `
 -Runtime dotnetcore1.0 `
 -Environment_Variable @{ "envvar1"="value";"envvar2"="value" }

Output:

CodeSha256 : /NgBMd...gq71I=
CodeSize : 214784
DeadLetterConfig :
Description : My C# Lambda Function
Environment : Amazon.Lambda.Model.EnvironmentResponse
FunctionArn : arn:aws:lambda:us-west-2:123456789012:function:ToUpper
FunctionName : MyFunction
Handler : AssemblyName::Namespace.ClassName::MethodName
KMSKeyArn :
LastModified : 2016-12-29T23:50:14.207+0000
MemorySize : 128
Role : arn:aws:iam::123456789012:role/LambdaFullExecRole
Runtime : dotnetcore1.0
Timeout : 3
Version : $LATEST
VpcConfig :

Example 2: This example is similar to the previous one except the function binaries
are first uploaded to an Amazon S3 bucket (which must be in the same region as the
intended Lambda function) and the resulting S3 object is then referenced when creating
the function.

Write-S3Object -BucketName mybucket -Key MyFunctionBinaries.zip -File .
\MyFunctionBinaries.zip
Publish-LMFunction -Description "My C# Lambda Function" `
 -FunctionName MyFunction `
 -BucketName mybucket `

CreateFunction 1827

Amazon Lambda Developer Guide

 -Key MyFunctionBinaries.zip `
 -Handler "AssemblyName::Namespace.ClassName::MethodName" `
 -Role "arn:aws:iam::123456789012:role/LambdaFullExecRole" `
 -Runtime dotnetcore1.0 `
 -Environment_Variable @{ "envvar1"="value";"envvar2"="value" }

• For API details, see CreateFunction in Amazon Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def create_function(
 self, function_name, handler_name, iam_role, deployment_package
):
 """
 Deploys a Lambda function.

 :param function_name: The name of the Lambda function.
 :param handler_name: The fully qualified name of the handler function.
 This
 must include the file name and the function name.
 :param iam_role: The IAM role to use for the function.
 :param deployment_package: The deployment package that contains the
 function
 code in .zip format.
 :return: The Amazon Resource Name (ARN) of the newly created function.
 """
 try:
 response = self.lambda_client.create_function(

CreateFunction 1828

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 FunctionName=function_name,
 Description="AWS Lambda doc example",
 Runtime="python3.8",
 Role=iam_role.arn,
 Handler=handler_name,
 Code={"ZipFile": deployment_package},
 Publish=True,
)
 function_arn = response["FunctionArn"]
 waiter = self.lambda_client.get_waiter("function_active_v2")
 waiter.wait(FunctionName=function_name)
 logger.info(
 "Created function '%s' with ARN: '%s'.",
 function_name,
 response["FunctionArn"],
)
 except ClientError:
 logger.error("Couldn't create function %s.", function_name)
 raise
 else:
 return function_arn

• For API details, see CreateFunction in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @logger = Logger.new($stdout)

CreateFunction 1829

https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/CreateFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 @logger.level = Logger::WARN
 end

 # Deploys a Lambda function.
 #
 # @param function_name: The name of the Lambda function.
 # @param handler_name: The fully qualified name of the handler function. This
 # must include the file name and the function name.
 # @param role_arn: The IAM role to use for the function.
 # @param deployment_package: The deployment package that contains the function
 # code in .zip format.
 # @return: The Amazon Resource Name (ARN) of the newly created function.
 def create_function(function_name, handler_name, role_arn, deployment_package)
 response = @lambda_client.create_function({
 role: role_arn.to_s,
 function_name: function_name,
 handler: handler_name,
 runtime: "ruby2.7",
 code: {
 zip_file: deployment_package
 },
 environment: {
 variables: {
 "LOG_LEVEL" => "info"
 }
 }
 })
 @lambda_client.wait_until(:function_active_v2, { function_name:
 function_name}) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 response
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error creating #{function_name}:\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n
 #{e.message}")
 end

• For API details, see CreateFunction in Amazon SDK for Ruby API Reference.

CreateFunction 1830

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/CreateFunction

Amazon Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Create a function, uploading from a zip file.
 */
 pub async fn create_function(&self, zip_file: PathBuf) -> Result<String,
 anyhow::Error> {
 let code = self.prepare_function(zip_file, None).await?;

 let key = code.s3_key().unwrap().to_string();

 self.create_role().await;

 let role = self
 .iam_client
 .create_role()
 .role_name(self.role_name.clone())
 .assume_role_policy_document(ROLE_POLICY_DOCUMENT)
 .send()
 .await?;

 info!("Created iam role, waiting 15s for it to become active");
 tokio::time::sleep(Duration::from_secs(15)).await;

 info!("Creating lambda function {}", self.lambda_name);
 let _ = self
 .lambda_client
 .create_function()
 .function_name(self.lambda_name.clone())
 .code(code)
 .role(role.role().map(|r| r.arn()).unwrap_or_default())
 .runtime(aws_sdk_lambda::types::Runtime::Providedal2)
 .handler("_unused")
 .send()

CreateFunction 1831

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

Amazon Lambda Developer Guide

 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 self.lambda_client
 .publish_version()
 .function_name(self.lambda_name.clone())
 .send()
 .await?;

 Ok(key)
 }

 /**
 * Upload function code from a path to a zip file.
 * The zip file must have an AL2 Linux-compatible binary called `bootstrap`.
 * The easiest way to create such a zip is to use `cargo lambda build --
output-format Zip`.
 */
 async fn prepare_function(
 &self,
 zip_file: PathBuf,
 key: Option<String>,
) -> Result<FunctionCode, anyhow::Error> {
 let body = ByteStream::from_path(zip_file).await?;

 let key = key.unwrap_or_else(|| format!("{}_code", self.lambda_name));

 info!("Uploading function code to s3://{}/{}", self.bucket, key);
 let _ = self
 .s3_client
 .put_object()
 .bucket(self.bucket.clone())
 .key(key.clone())
 .body(body)
 .send()
 .await?;

 Ok(FunctionCode::builder()
 .s3_bucket(self.bucket.clone())
 .s3_key(key)
 .build())
 }

CreateFunction 1832

Amazon Lambda Developer Guide

• For API details, see CreateFunction in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 lo_lmd->createfunction(
 iv_functionname = iv_function_name
 iv_runtime = `python3.9`
 iv_role = iv_role_arn
 iv_handler = iv_handler
 io_code = io_zip_file
 iv_description = 'AWS Lambda code example'
).
 MESSAGE 'Lambda function created.' TYPE 'I'.
 CATCH /aws1/cx_lmdcodesigningcfgno00.
 MESSAGE 'Code signing configuration does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdcodestorageexcdex.
 MESSAGE 'Maximum total code size per account exceeded.' TYPE 'E'.
 CATCH /aws1/cx_lmdcodeverification00.
 MESSAGE 'Code signature failed one or more validation checks for
 signature mismatch or expiration.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvalidcodesigex.
 MESSAGE 'Code signature failed the integrity check.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in progress.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.

CreateFunction 1833

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

Amazon Lambda Developer Guide

 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see CreateFunction in Amazon SDK for SAP ABAP API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteAlias with an Amazon SDK or command line tool

The following code examples show how to use DeleteAlias.

CLI

Amazon CLI

To delete an alias of a Lambda function

The following delete-alias example deletes the alias named LIVE from the my-
function Lambda function.

aws lambda delete-alias \
 --function-name my-function \
 --name LIVE

This command produces no output.

For more information, see Configuring Amazon Lambda Function Aliases in the Amazon
Lambda Developer Guide.

• For API details, see DeleteAlias in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example deletes the Lambda function Alias mentioned in the command.

DeleteAlias 1834

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-alias.html

Amazon Lambda Developer Guide

Remove-LMAlias -FunctionName "MylambdaFunction123" -Name "NewAlias"

• For API details, see DeleteAlias in Amazon Tools for PowerShell Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteFunction with an Amazon SDK or command line tool

The following code examples show how to use DeleteFunction.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with functions

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Delete an AWS Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to
 /// delete.</param>
 /// <returns>A Boolean value that indicates the success of the action.</
returns>
 public async Task<bool> DeleteFunctionAsync(string functionName)
 {
 var request = new DeleteFunctionRequest
 {
 FunctionName = functionName,

DeleteFunction 1835

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

Amazon Lambda Developer Guide

 };

 var response = await _lambdaService.DeleteFunctionAsync(request);

 // A return value of NoContent means that the request was processed.
 // In this case, the function was deleted, and the return value
 // is intentionally blank.
 return response.HttpStatusCode == System.Net.HttpStatusCode.NoContent;
 }

• For API details, see DeleteFunction in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::DeleteFunctionRequest request;
 request.SetFunctionName(LAMBDA_NAME);

 Aws::Lambda::Model::DeleteFunctionOutcome outcome = client.DeleteFunction(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda function was successfully deleted." <<
 std::endl;
 }
 else {

DeleteFunction 1836

https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/DeleteFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 std::cerr << "Error with Lambda::DeleteFunction. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see DeleteFunction in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To delete a Lambda function by function name

The following delete-function example deletes the Lambda function named my-
function by specifying the function's name.

aws lambda delete-function \
 --function-name my-function

This command produces no output.

Example 2: To delete a Lambda function by function ARN

The following delete-function example deletes the Lambda function named my-
function by specifying the function's ARN.

aws lambda delete-function \
 --function-name arn:aws:lambda:us-west-2:123456789012:function:my-function

This command produces no output.

Example 3: To delete a Lambda function by partial function ARN

The following delete-function example deletes the Lambda function named my-
function by specifying the function's partial ARN.

aws lambda delete-function \
 --function-name 123456789012:function:my-function

DeleteFunction 1837

https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/DeleteFunction

Amazon Lambda Developer Guide

This command produces no output.

For more information, see Amazon Lambda Function Configuration in the Amazon Lambda
Developer Guide.

• For API details, see DeleteFunction in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// DeleteFunction deletes the Lambda function specified by functionName.
func (wrapper FunctionWrapper) DeleteFunction(functionName string) {
 _, err := wrapper.LambdaClient.DeleteFunction(context.TODO(),
 &lambda.DeleteFunctionInput{
 FunctionName: aws.String(functionName),
 })
 if err != nil {
 log.Panicf("Couldn't delete function %v. Here's why: %v\n", functionName, err)
 }
}

• For API details, see DeleteFunction in Amazon SDK for Go API Reference.

DeleteFunction 1838

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-function.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.DeleteFunction

Amazon Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.services.lambda.LambdaClient;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.lambda.model.DeleteFunctionRequest;
import software.amazon.awssdk.services.lambda.model.LambdaException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteFunction {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <functionName>\s

 Where:
 functionName - The name of the Lambda function.\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String functionName = args[0];
 Region region = Region.US_EAST_1;

DeleteFunction 1839

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#readme

Amazon Lambda Developer Guide

 LambdaClient awsLambda = LambdaClient.builder()
 .region(region)
 .build();

 deleteLambdaFunction(awsLambda, functionName);
 awsLambda.close();
 }

 public static void deleteLambdaFunction(LambdaClient awsLambda, String
 functionName) {
 try {
 DeleteFunctionRequest request = DeleteFunctionRequest.builder()
 .functionName(functionName)
 .build();

 awsLambda.deleteFunction(request);
 System.out.println("The " + functionName + " function was deleted");

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see DeleteFunction in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

/**
 * @param {string} funcName
 */
const deleteFunction = (funcName) => {

DeleteFunction 1840

https://docs.amazonaws.cn/goto/SdkForJavaV2/lambda-2015-03-31/DeleteFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 const client = new LambdaClient({});
 const command = new DeleteFunctionCommand({ FunctionName: funcName });
 return client.send(command);
};

• For API details, see DeleteFunction in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun delLambdaFunction(myFunctionName: String) {

 val request = DeleteFunctionRequest {
 functionName = myFunctionName
 }

 LambdaClient { region = "us-west-2" }.use { awsLambda ->
 awsLambda.deleteFunction(request)
 println("$myFunctionName was deleted")
 }
}

• For API details, see DeleteFunction in Amazon SDK for Kotlin API reference.

DeleteFunction 1841

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/DeleteFunctionCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/lambda#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Lambda Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function deleteFunction($functionName)
 {
 return $this->lambdaClient->deleteFunction([
 'FunctionName' => $functionName,
]);
 }

• For API details, see DeleteFunction in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell

Example 1: This example deletes a specific version of a Lambda function

Remove-LMFunction -FunctionName "MylambdaFunction123" -Qualifier '3'

• For API details, see DeleteFunction in Amazon Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

DeleteFunction 1842

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/DeleteFunction
https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

Amazon Lambda Developer Guide

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def delete_function(self, function_name):
 """
 Deletes a Lambda function.

 :param function_name: The name of the function to delete.
 """
 try:
 self.lambda_client.delete_function(FunctionName=function_name)
 except ClientError:
 logger.exception("Couldn't delete function %s.", function_name)
 raise

• For API details, see DeleteFunction in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

DeleteFunction 1843

https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/DeleteFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 # Deletes a Lambda function.
 # @param function_name: The name of the function to delete.
 def delete_function(function_name)
 print "Deleting function: #{function_name}..."
 @lambda_client.delete_function(
 function_name: function_name
)
 print "Done!".green
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error deleting #{function_name}:\n #{e.message}")
 end

• For API details, see DeleteFunction in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /** Delete a function and its role, and if possible or necessary, its
 associated code object and bucket. */
 pub async fn delete_function(
 &self,
 location: Option<String>,
) -> (
 Result<DeleteFunctionOutput, anyhow::Error>,
 Result<DeleteRoleOutput, anyhow::Error>,
 Option<Result<DeleteObjectOutput, anyhow::Error>>,
) {
 info!("Deleting lambda function {}", self.lambda_name);
 let delete_function = self
 .lambda_client
 .delete_function()
 .function_name(self.lambda_name.clone())
 .send()
 .await

DeleteFunction 1844

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/DeleteFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

Amazon Lambda Developer Guide

 .map_err(anyhow::Error::from);

 info!("Deleting iam role {}", self.role_name);
 let delete_role = self
 .iam_client
 .delete_role()
 .role_name(self.role_name.clone())
 .send()
 .await
 .map_err(anyhow::Error::from);

 let delete_object: Option<Result<DeleteObjectOutput, anyhow::Error>> =
 if let Some(location) = location {
 info!("Deleting object {location}");
 Some(
 self.s3_client
 .delete_object()
 .bucket(self.bucket.clone())
 .key(location)
 .send()
 .await
 .map_err(anyhow::Error::from),
)
 } else {
 info!(?location, "Skipping delete object");
 None
 };

 (delete_function, delete_role, delete_object)
 }

• For API details, see DeleteFunction in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

DeleteFunction 1845

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

Amazon Lambda Developer Guide

 TRY.
 lo_lmd->deletefunction(iv_functionname = iv_function_name).
 MESSAGE 'Lambda function deleted.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in progress.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see DeleteFunction in Amazon SDK for SAP ABAP API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteFunctionConcurrency with an Amazon SDK or command
line tool

The following code examples show how to use DeleteFunctionConcurrency.

CLI

Amazon CLI

To remove the reserved concurrent execution limit from a function

The following delete-function-concurrency example deletes the reserved concurrent
execution limit from the my-function function.

aws lambda delete-function-concurrency \
 --function-name my-function

DeleteFunctionConcurrency 1846

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Lambda Developer Guide

This command produces no output.

For more information, see Reserving Concurrency for a Lambda Function in the Amazon
Lambda Developer Guide.

• For API details, see DeleteFunctionConcurrency in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This examples removes the Function Concurrency of the Lambda Function.

Remove-LMFunctionConcurrency -FunctionName "MylambdaFunction123"

• For API details, see DeleteFunctionConcurrency in Amazon Tools for PowerShell Cmdlet
Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteProvisionedConcurrencyConfig with an Amazon SDK or
command line tool

The following code examples show how to use DeleteProvisionedConcurrencyConfig.

CLI

Amazon CLI

To delete a provisioned concurrency configuration

The following delete-provisioned-concurrency-config example deletes the
provisioned concurrency configuration for the GREEN alias of the specified function.

aws lambda delete-provisioned-concurrency-config \
 --function-name my-function \
 --qualifier GREEN

DeleteProvisionedConcurrencyConfig 1847

https://docs.aws.amazon.com/lambda/latest/dg/per-function-concurrency.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-function-concurrency.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

• For API details, see DeleteProvisionedConcurrencyConfig in Amazon CLI Command
Reference.

PowerShell

Tools for PowerShell

Example 1: This example removes the Provisioned Concurrency Configuration for a
specific Alias.

Remove-LMProvisionedConcurrencyConfig -FunctionName "MylambdaFunction123" -
Qualifier "NewAlias1"

• For API details, see DeleteProvisionedConcurrencyConfig in Amazon Tools for PowerShell
Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetAccountSettings with an Amazon SDK or command line tool

The following code examples show how to use GetAccountSettings.

CLI

Amazon CLI

To retrieve details about your account in an Amazon Region

The following get-account-settings example displays the Lambda limits and usage
information for your account.

aws lambda get-account-settings

Output:

{
 "AccountLimit": {

GetAccountSettings 1848

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/delete-provisioned-concurrency-config.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

 "CodeSizeUnzipped": 262144000,
 "UnreservedConcurrentExecutions": 1000,
 "ConcurrentExecutions": 1000,
 "CodeSizeZipped": 52428800,
 "TotalCodeSize": 80530636800
 },
 "AccountUsage": {
 "FunctionCount": 4,
 "TotalCodeSize": 9426
 }
}

For more information, see Amazon Lambda Limits in the Amazon Lambda Developer Guide.

• For API details, see GetAccountSettings in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This sample displays to compare the Account Limit and Account Usage

Get-LMAccountSetting | Select-Object
 @{Name="TotalCodeSizeLimit";Expression={$_.AccountLimit.TotalCodeSize}},
 @{Name="TotalCodeSizeUsed";Expression={$_.AccountUsage.TotalCodeSize}}

Output:

TotalCodeSizeLimit TotalCodeSizeUsed
------------------ -----------------
 80530636800 15078795

• For API details, see GetAccountSettings in Amazon Tools for PowerShell Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetAlias with an Amazon SDK or command line tool

The following code examples show how to use GetAlias.

GetAlias 1849

https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-account-settings.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

CLI

Amazon CLI

To retrieve details about a function alias

The following get-alias example displays details for the alias named LIVE on the my-
function Lambda function.

aws lambda get-alias \
 --function-name my-function \
 --name LIVE

Output:

{
 "FunctionVersion": "3",
 "Name": "LIVE",
 "AliasArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:LIVE",
 "RevisionId": "594f41fb-b85f-4c20-95c7-6ca5f2a92c93",
 "Description": "alias for live version of function"
}

For more information, see Configuring Amazon Lambda Function Aliases in the Amazon
Lambda Developer Guide.

• For API details, see GetAlias in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example retrieves the Routing Config weights for a specific Lambda
Function Alias.

Get-LMAlias -FunctionName "MylambdaFunction123" -Name "newlabel1" -Select
 RoutingConfig

Output:

AdditionalVersionWeights

GetAlias 1850

https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-alias.html

Amazon Lambda Developer Guide

{[1, 0.6]}

• For API details, see GetAlias in Amazon Tools for PowerShell Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetFunction with an Amazon SDK or command line tool

The following code examples show how to use GetFunction.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with functions

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Gets information about a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function for
 /// which to retrieve information.</param>
 /// <returns>Async Task.</returns>
 public async Task<FunctionConfiguration> GetFunctionAsync(string
 functionName)
 {
 var functionRequest = new GetFunctionRequest
 {
 FunctionName = functionName,

GetFunction 1851

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

Amazon Lambda Developer Guide

 };

 var response = await _lambdaService.GetFunctionAsync(functionRequest);
 return response.Configuration;
 }

• For API details, see GetFunction in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::GetFunctionRequest request;
 request.SetFunctionName(functionName);

 Aws::Lambda::Model::GetFunctionOutcome outcome =
 client.GetFunction(request);

 if (outcome.IsSuccess()) {
 std::cout << "Function retrieve.\n" <<

 outcome.GetResult().GetConfiguration().Jsonize().View().WriteReadable()
 << std::endl;
 }
 else {
 std::cerr << "Error with Lambda::GetFunction. "
 << outcome.GetError().GetMessage()

GetFunction 1852

https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 << std::endl;
 }

• For API details, see GetFunction in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To retrieve information about a function

The following get-function example displays information about the my-function
function.

aws lambda get-function \
 --function-name my-function

Output:

{
 "Concurrency": {
 "ReservedConcurrentExecutions": 100
 },
 "Code": {
 "RepositoryType": "S3",
 "Location": "https://awslambda-us-west-2-tasks.s3.us-
west-2.amazonaws.com/snapshots/123456789012/my-function..."
 },
 "Configuration": {
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "$LATEST",
 "CodeSha256": "5tT2qgzYUHoqwR616pZ2dpkn/0J1FrzJmlKidWaaCgk=",
 "FunctionName": "my-function",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 128,

GetFunction 1853

https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/GetFunction

Amazon Lambda Developer Guide

 "RevisionId": "28f0fb31-5c5c-43d3-8955-03e76c5c1075",
 "CodeSize": 304,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function",
 "Handler": "index.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/helloWorldPython-
role-uy3l9qyq",
 "Timeout": 3,
 "LastModified": "2019-09-24T18:20:35.054+0000",
 "Runtime": "nodejs10.x",
 "Description": ""
 }
}

For more information, see Amazon Lambda Function Configuration in the Amazon Lambda
Developer Guide.

• For API details, see GetFunction in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// GetFunction gets data about the Lambda function specified by functionName.
func (wrapper FunctionWrapper) GetFunction(functionName string) types.State {
 var state types.State

GetFunction 1854

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

Amazon Lambda Developer Guide

 funcOutput, err := wrapper.LambdaClient.GetFunction(context.TODO(),
 &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName),
 })
 if err != nil {
 log.Panicf("Couldn't get function %v. Here's why: %v\n", functionName, err)
 } else {
 state = funcOutput.Configuration.State
 }
 return state
}

• For API details, see GetFunction in Amazon SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const getFunction = (funcName) => {
 const client = new LambdaClient({});
 const command = new GetFunctionCommand({ FunctionName: funcName });
 return client.send(command);
};

• For API details, see GetFunction in Amazon SDK for JavaScript API Reference.

GetFunction 1855

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/GetFunctionCommand

Amazon Lambda Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function getFunction($functionName)
 {
 return $this->lambdaClient->getFunction([
 'FunctionName' => $functionName,
]);
 }

• For API details, see GetFunction in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def get_function(self, function_name):
 """
 Gets data about a Lambda function.

GetFunction 1856

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 :param function_name: The name of the function.
 :return: The function data.
 """
 response = None
 try:
 response =
 self.lambda_client.get_function(FunctionName=function_name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.info("Function %s does not exist.", function_name)
 else:
 logger.error(
 "Couldn't get function %s. Here's why: %s: %s",
 function_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return response

• For API details, see GetFunction in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

GetFunction 1857

https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 # Gets data about a Lambda function.
 #
 # @param function_name: The name of the function.
 # @return response: The function data, or nil if no such function exists.
 def get_function(function_name)
 @lambda_client.get_function(
 {
 function_name: function_name
 }
)
 rescue Aws::Lambda::Errors::ResourceNotFoundException => e
 @logger.debug("Could not find function: #{function_name}:\n #{e.message}")
 nil
 end

• For API details, see GetFunction in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /** Get the Lambda function with this Manager's name. */
 pub async fn get_function(&self) -> Result<GetFunctionOutput, anyhow::Error>
 {
 info!("Getting lambda function");
 self.lambda_client
 .get_function()
 .function_name(self.lambda_name.clone())
 .send()
 .await
 .map_err(anyhow::Error::from)
 }

GetFunction 1858

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/GetFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

Amazon Lambda Developer Guide

• For API details, see GetFunction in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 oo_result = lo_lmd->getfunction(iv_functionname = iv_function_name).
 " oo_result is returned for testing purposes. "
 MESSAGE 'Lambda function information retrieved.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see GetFunction in Amazon SDK for SAP ABAP API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetFunctionConcurrency with an Amazon SDK or command line
tool

The following code examples show how to use GetFunctionConcurrency.

GetFunctionConcurrency 1859

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Lambda Developer Guide

CLI

Amazon CLI

To view the reserved concurrency setting for a function

The following get-function-concurrency example retrieves the reserved concurrency
setting for the specified function.

aws lambda get-function-concurrency \
 --function-name my-function

Output:

{
 "ReservedConcurrentExecutions": 250
}

• For API details, see GetFunctionConcurrency in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This examples gets the Reserved concurrency for the Lambda Function

Get-LMFunctionConcurrency -FunctionName "MylambdaFunction123" -Select *

Output:

ReservedConcurrentExecutions

100

• For API details, see GetFunctionConcurrency in Amazon Tools for PowerShell Cmdlet
Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

GetFunctionConcurrency 1860

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-concurrency.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

Use GetFunctionConfiguration with an Amazon SDK or command
line tool

The following code examples show how to use GetFunctionConfiguration.

CLI

Amazon CLI

To retrieve the version-specific settings of a Lambda function

The following get-function-configuration example displays the settings for version 2
of the my-function function.

aws lambda get-function-configuration \
 --function-name my-function:2

Output:

{
 "FunctionName": "my-function",
 "LastModified": "2019-09-26T20:28:40.438+0000",
 "RevisionId": "e52502d4-9320-4688-9cd6-152a6ab7490d",
 "MemorySize": 256,
 "Version": "2",
 "Role": "arn:aws:iam::123456789012:role/service-role/my-function-role-
uy3l9qyq",
 "Timeout": 3,
 "Runtime": "nodejs10.x",
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "CodeSha256": "5tT2qgzYUHaqwR716pZ2dpkn/0J1FrzJmlKidWoaCgk=",
 "Description": "",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "CodeSize": 304,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:2",

GetFunctionConfiguration 1861

Amazon Lambda Developer Guide

 "Handler": "index.handler"
}

For more information, see Amazon Lambda Function Configuration in the Amazon Lambda
Developer Guide.

• For API details, see GetFunctionConfiguration in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example returns the version specific configuration of a Lambda Function.

Get-LMFunctionConfiguration -FunctionName "MylambdaFunction123" -Qualifier
 "PowershellAlias"

Output:

CodeSha256 : uWOW0R7z+f0VyLuUg7+/D08hkMFsq0SF4seuyUZJ/R8=
CodeSize : 1426
DeadLetterConfig : Amazon.Lambda.Model.DeadLetterConfig
Description : Verson 3 to test Aliases
Environment : Amazon.Lambda.Model.EnvironmentResponse
FunctionArn : arn:aws:lambda:us-
east-1:123456789012:function:MylambdaFunction123
 :PowershellAlias
FunctionName : MylambdaFunction123
Handler : lambda_function.launch_instance
KMSKeyArn :
LastModified : 2019-12-25T09:52:59.872+0000
LastUpdateStatus : Successful
LastUpdateStatusReason :
LastUpdateStatusReasonCode :
Layers : {}
MasterArn :
MemorySize : 128
RevisionId : 5d7de38b-87f2-4260-8f8a-e87280e10c33
Role : arn:aws:iam::123456789012:role/service-role/lambda
Runtime : python3.8
State : Active
StateReason :

GetFunctionConfiguration 1862

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-function-configuration.html

Amazon Lambda Developer Guide

StateReasonCode :
Timeout : 600
TracingConfig : Amazon.Lambda.Model.TracingConfigResponse
Version : 4
VpcConfig : Amazon.Lambda.Model.VpcConfigDetail

• For API details, see GetFunctionConfiguration in Amazon Tools for PowerShell Cmdlet
Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetPolicy with an Amazon SDK or command line tool

The following code examples show how to use GetPolicy.

CLI

Amazon CLI

To retrieve the resource-based IAM policy for a function, version, or alias

The following get-policy example displays policy information about the my-function
Lambda function.

aws lambda get-policy \
 --function-name my-function

Output:

{
 "Policy": {
 "Version":"2012-10-17",
 "Id":"default",
 "Statement":
 [
 {
 "Sid":"iot-events",
 "Effect":"Allow",
 "Principal": {"Service":"iotevents.amazonaws.com"},

GetPolicy 1863

https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

 "Action":"lambda:InvokeFunction",
 "Resource":"arn:aws:lambda:us-west-2:123456789012:function:my-
function"
 }
]
 },
 "RevisionId": "93017fc9-59cb-41dc-901b-4845ce4bf668"
}

For more information, see Using Resource-based Policies for Amazon Lambda in the Amazon
Lambda Developer Guide.

• For API details, see GetPolicy in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This sample displays the Function policy of the Lambda function

Get-LMPolicy -FunctionName test -Select Policy

Output:

{"Version":"2012-10-17","Id":"default","Statement":
[{"Sid":"xxxx","Effect":"Allow","Principal":
{"Service":"sns.amazonaws.com"},"Action":"lambda:InvokeFunction","Resource":"arn:aws:lambda:us-
east-1:123456789102:function:test"}]}

• For API details, see GetPolicy in Amazon Tools for PowerShell Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetProvisionedConcurrencyConfig with an Amazon SDK or
command line tool

The following code examples show how to use GetProvisionedConcurrencyConfig.

GetProvisionedConcurrencyConfig 1864

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-policy.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

CLI

Amazon CLI

To view a provisioned concurrency configuration

The following get-provisioned-concurrency-config example displays details for the
provisioned concurrency configuration for the BLUE alias of the specified function.

aws lambda get-provisioned-concurrency-config \
 --function-name my-function \
 --qualifier BLUE

Output:

{
 "RequestedProvisionedConcurrentExecutions": 100,
 "AvailableProvisionedConcurrentExecutions": 100,
 "AllocatedProvisionedConcurrentExecutions": 100,
 "Status": "READY",
 "LastModified": "2019-12-31T20:28:49+0000"
}

• For API details, see GetProvisionedConcurrencyConfig in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example gets the provisioned Concurrency Configuration for the
specified Alias of the Lambda Function.

C:\>Get-LMProvisionedConcurrencyConfig -FunctionName "MylambdaFunction123" -
Qualifier "NewAlias1"

Output:

AllocatedProvisionedConcurrentExecutions : 0
AvailableProvisionedConcurrentExecutions : 0
LastModified : 2020-01-15T03:21:26+0000
RequestedProvisionedConcurrentExecutions : 70

GetProvisionedConcurrencyConfig 1865

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/get-provisioned-concurrency-config.html

Amazon Lambda Developer Guide

Status : IN_PROGRESS
StatusReason :

• For API details, see GetProvisionedConcurrencyConfig in Amazon Tools for PowerShell
Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use Invoke with an Amazon SDK or command line tool

The following code examples show how to use Invoke.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with functions

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Invoke a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to
 /// invoke.</param
 /// <param name="parameters">The parameter values that will be passed to the
 function.</param>
 /// <returns>A System Threading Task.</returns>
 public async Task<string> InvokeFunctionAsync(
 string functionName,
 string parameters)

Invoke 1866

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

Amazon Lambda Developer Guide

 {
 var payload = parameters;
 var request = new InvokeRequest
 {
 FunctionName = functionName,
 Payload = payload,
 };

 var response = await _lambdaService.InvokeAsync(request);
 MemoryStream stream = response.Payload;
 string returnValue =
 System.Text.Encoding.UTF8.GetString(stream.ToArray());
 return returnValue;
 }

• For API details, see Invoke in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::InvokeRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 request.SetLogType(logType);
 std::shared_ptr<Aws::IOStream> payload =
 Aws::MakeShared<Aws::StringStream>(
 "FunctionTest");

Invoke 1867

https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/Invoke
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 *payload << jsonPayload.View().WriteReadable();
 request.SetBody(payload);
 request.SetContentType("application/json");
 Aws::Lambda::Model::InvokeOutcome outcome = client.Invoke(request);

 if (outcome.IsSuccess()) {
 invokeResult = std::move(outcome.GetResult());
 result = true;
 break;
 }

 else {
 std::cerr << "Error with Lambda::InvokeRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 break;
 }

• For API details, see Invoke in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To invoke a Lambda function synchronously

The following invoke example invokes the my-function function synchronously. The
cli-binary-format option is required if you're using Amazon CLI version 2. For more
information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide.

aws lambda invoke \
 --function-name my-function \
 --cli-binary-format raw-in-base64-out \
 --payload '{ "name": "Bob" }' \
 response.json

Output:

{
 "ExecutedVersion": "$LATEST",

Invoke 1868

https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/Invoke
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list

Amazon Lambda Developer Guide

 "StatusCode": 200
}

For more information, see Synchronous Invocation in the Amazon Lambda Developer Guide.

Example 2: To invoke a Lambda function asynchronously

The following invoke example invokes the my-function function asynchronously. The
cli-binary-format option is required if you're using Amazon CLI version 2. For more
information, see Amazon CLI supported global command line options in the Amazon
Command Line Interface User Guide.

aws lambda invoke \
 --function-name my-function \
 --invocation-type Event \
 --cli-binary-format raw-in-base64-out \
 --payload '{ "name": "Bob" }' \
 response.json

Output:

{
 "StatusCode": 202
}

For more information, see Asynchronous Invocation in the Amazon Lambda Developer Guide.

• For API details, see Invoke in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Invoke 1869

https://docs.aws.amazon.com/lambda/latest/dg/invocation-sync.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-options.html#cli-configure-options-list
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/invoke.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

Amazon Lambda Developer Guide

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// Invoke invokes the Lambda function specified by functionName, passing the
 parameters
// as a JSON payload. When getLog is true, types.LogTypeTail is specified, which
 tells
// Lambda to include the last few log lines in the returned result.
func (wrapper FunctionWrapper) Invoke(functionName string, parameters any, getLog
 bool) *lambda.InvokeOutput {
 logType := types.LogTypeNone
 if getLog {
 logType = types.LogTypeTail
 }
 payload, err := json.Marshal(parameters)
 if err != nil {
 log.Panicf("Couldn't marshal parameters to JSON. Here's why %v\n", err)
 }
 invokeOutput, err := wrapper.LambdaClient.Invoke(context.TODO(),
 &lambda.InvokeInput{
 FunctionName: aws.String(functionName),
 LogType: logType,
 Payload: payload,
 })
 if err != nil {
 log.Panicf("Couldn't invoke function %v. Here's why: %v\n", functionName, err)
 }
 return invokeOutput
}

• For API details, see Invoke in Amazon SDK for Go API Reference.

Invoke 1870

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.Invoke

Amazon Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import org.json.JSONObject;
import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.services.lambda.LambdaClient;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.lambda.model.InvokeRequest;
import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.services.lambda.model.InvokeResponse;
import software.amazon.awssdk.services.lambda.model.LambdaException;

public class LambdaInvoke {

 /*
 * Function names appear as
 * arn:aws:lambda:us-west-2:335556666777:function:HelloFunction
 * you can retrieve the value by looking at the function in the AWS Console
 *
 * Also, set up your development environment, including your credentials.
 *
 * For information, see this documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.
 * html
 */

 public static void main(String[] args) {
 final String usage = """

 Usage:
 <functionName>\s

 Where:

Invoke 1871

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#readme

Amazon Lambda Developer Guide

 functionName - The name of the Lambda function\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String functionName = args[0];
 Region region = Region.US_WEST_2;
 LambdaClient awsLambda = LambdaClient.builder()
 .region(region)
 .build();

 invokeFunction(awsLambda, functionName);
 awsLambda.close();
 }

 public static void invokeFunction(LambdaClient awsLambda, String
 functionName) {

 InvokeResponse res = null;
 try {
 // Need a SdkBytes instance for the payload.
 JSONObject jsonObj = new JSONObject();
 jsonObj.put("inputValue", "2000");
 String json = jsonObj.toString();
 SdkBytes payload = SdkBytes.fromUtf8String(json);

 // Setup an InvokeRequest.
 InvokeRequest request = InvokeRequest.builder()
 .functionName(functionName)
 .payload(payload)
 .build();

 res = awsLambda.invoke(request);
 String value = res.payload().asUtf8String();
 System.out.println(value);

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

Invoke 1872

Amazon Lambda Developer Guide

}

• For API details, see Invoke in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const invoke = async (funcName, payload) => {
 const client = new LambdaClient({});
 const command = new InvokeCommand({
 FunctionName: funcName,
 Payload: JSON.stringify(payload),
 LogType: LogType.Tail,
 });

 const { Payload, LogResult } = await client.send(command);
 const result = Buffer.from(Payload).toString();
 const logs = Buffer.from(LogResult, "base64").toString();
 return { logs, result };
};

• For API details, see Invoke in Amazon SDK for JavaScript API Reference.

Invoke 1873

https://docs.amazonaws.cn/goto/SdkForJavaV2/lambda-2015-03-31/Invoke
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/InvokeCommand

Amazon Lambda Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun invokeFunction(functionNameVal: String) {

 val json = """{"inputValue":"1000"}"""
 val byteArray = json.trimIndent().encodeToByteArray()
 val request = InvokeRequest {
 functionName = functionNameVal
 logType = LogType.Tail
 payload = byteArray
 }

 LambdaClient { region = "us-west-2" }.use { awsLambda ->
 val res = awsLambda.invoke(request)
 println("${res.payload?.toString(Charsets.UTF_8)}")
 println("The log result is ${res.logResult}")
 }
}

• For API details, see Invoke in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Invoke 1874

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/lambda#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 public function invoke($functionName, $params, $logType = 'None')
 {
 return $this->lambdaClient->invoke([
 'FunctionName' => $functionName,
 'Payload' => json_encode($params),
 'LogType' => $logType,
]);
 }

• For API details, see Invoke in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def invoke_function(self, function_name, function_params, get_log=False):
 """
 Invokes a Lambda function.

 :param function_name: The name of the function to invoke.
 :param function_params: The parameters of the function as a dict. This
 dict
 is serialized to JSON before it is sent to
 Lambda.
 :param get_log: When true, the last 4 KB of the execution log are
 included in
 the response.
 :return: The response from the function invocation.

Invoke 1875

https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/Invoke
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 """
 try:
 response = self.lambda_client.invoke(
 FunctionName=function_name,
 Payload=json.dumps(function_params),
 LogType="Tail" if get_log else "None",
)
 logger.info("Invoked function %s.", function_name)
 except ClientError:
 logger.exception("Couldn't invoke function %s.", function_name)
 raise
 return response

• For API details, see Invoke in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Invokes a Lambda function.
 # @param function_name [String] The name of the function to invoke.
 # @param payload [nil] Payload containing runtime parameters.
 # @return [Object] The response from the function invocation.
 def invoke_function(function_name, payload = nil)
 params = { function_name: function_name}

Invoke 1876

https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/Invoke
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 params[:payload] = payload unless payload.nil?
 @lambda_client.invoke(params)
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error executing #{function_name}:\n
 #{e.message}")
 end

• For API details, see Invoke in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /** Invoke the lambda function using calculator InvokeArgs. */
 pub async fn invoke(&self, args: InvokeArgs) -> Result<InvokeOutput,
 anyhow::Error> {
 info!(?args, "Invoking {}", self.lambda_name);
 let payload = serde_json::to_string(&args)?;
 debug!(?payload, "Sending payload");
 self.lambda_client
 .invoke()
 .function_name(self.lambda_name.clone())
 .payload(Blob::new(payload))
 .send()
 .await
 .map_err(anyhow::Error::from)
 }

fn log_invoke_output(invoke: &InvokeOutput, message: &str) {
 if let Some(payload) = invoke.payload().cloned() {
 let payload = String::from_utf8(payload.into_inner());
 info!(?payload, message);
 } else {
 info!("Could not extract payload")
 }

Invoke 1877

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/Invoke
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

Amazon Lambda Developer Guide

 if let Some(logs) = invoke.log_result() {
 debug!(?logs, "Invoked function logs")
 } else {
 debug!("Invoked function had no logs")
 }
}

• For API details, see Invoke in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 DATA(lv_json) = /aws1/cl_rt_util=>string_to_xstring(
 `{` &&
 `"action": "increment",` &&
 `"number": 10` &&
 `}`
).
 oo_result = lo_lmd->invoke(" oo_result is returned for
 testing purposes. "
 iv_functionname = iv_function_name
 iv_payload = lv_json
).
 MESSAGE 'Lambda function invoked.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvrequestcontex.
 MESSAGE 'Unable to parse request body as JSON.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvalidzipfileex.
 MESSAGE 'The deployment package could not be unzipped.' TYPE 'E'.
 CATCH /aws1/cx_lmdrequesttoolargeex.
 MESSAGE 'Invoke request body JSON input limit was exceeded by the request
 payload.' TYPE 'E'.

Invoke 1878

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

Amazon Lambda Developer Guide

 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in progress.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 CATCH /aws1/cx_lmdunsuppedmediatyp00.
 MESSAGE 'Invoke request body does not have JSON as its content type.'
 TYPE 'E'.
 ENDTRY.

• For API details, see Invoke in Amazon SDK for SAP ABAP API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListFunctions with an Amazon SDK or command line tool

The following code examples show how to use ListFunctions.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with functions

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

ListFunctions 1879

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

Amazon Lambda Developer Guide

 /// <summary>
 /// Get a list of Lambda functions.
 /// </summary>
 /// <returns>A list of FunctionConfiguration objects.</returns>
 public async Task<List<FunctionConfiguration>> ListFunctionsAsync()
 {
 var functionList = new List<FunctionConfiguration>();

 var functionPaginator =
 _lambdaService.Paginators.ListFunctions(new ListFunctionsRequest());
 await foreach (var function in functionPaginator.Functions)
 {
 functionList.Add(function);
 }

 return functionList;
 }

• For API details, see ListFunctions in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 std::vector<Aws::String> functions;
 Aws::String marker;

ListFunctions 1880

https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 do {
 Aws::Lambda::Model::ListFunctionsRequest request;
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::Lambda::Model::ListFunctionsOutcome outcome = client.ListFunctions(
 request);

 if (outcome.IsSuccess()) {
 const Aws::Lambda::Model::ListFunctionsResult &result =
 outcome.GetResult();
 std::cout << result.GetFunctions().size()
 << " lambda functions were retrieved." << std::endl;

 for (const Aws::Lambda::Model::FunctionConfiguration
 &functionConfiguration: result.GetFunctions()) {
 functions.push_back(functionConfiguration.GetFunctionName());
 std::cout << functions.size() << " "
 << functionConfiguration.GetDescription() << std::endl;
 std::cout << " "
 <<
 Aws::Lambda::Model::RuntimeMapper::GetNameForRuntime(
 functionConfiguration.GetRuntime()) << ": "
 << functionConfiguration.GetHandler()
 << std::endl;
 }
 marker = result.GetNextMarker();
 }
 else {
 std::cerr << "Error with Lambda::ListFunctions. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 } while (!marker.empty());

• For API details, see ListFunctions in Amazon SDK for C++ API Reference.

ListFunctions 1881

https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/ListFunctions

Amazon Lambda Developer Guide

CLI

Amazon CLI

To retrieve a list of Lambda functions

The following list-functions example displays a list of all of the functions for the
current user.

aws lambda list-functions

Output:

{
 "Functions": [
 {
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "$LATEST",
 "CodeSha256": "dBG9m8SGdmlEjw/JYXlhhvCrAv5TxvXsbL/RMr0fT/I=",
 "FunctionName": "helloworld",
 "MemorySize": 128,
 "RevisionId": "1718e831-badf-4253-9518-d0644210af7b",
 "CodeSize": 294,
 "FunctionArn": "arn:aws:lambda:us-
west-2:123456789012:function:helloworld",
 "Handler": "helloworld.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/MyTestFunction-
role-zgur6bf4",
 "Timeout": 3,
 "LastModified": "2023-09-23T18:32:33.857+0000",
 "Runtime": "nodejs18.x",
 "Description": ""
 },
 {
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "$LATEST",
 "CodeSha256": "sU0cJ2/hOZevwV/lTxCuQqK3gDZP3i8gUoqUUVRmY6E=",
 "FunctionName": "my-function",
 "VpcConfig": {

ListFunctions 1882

Amazon Lambda Developer Guide

 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 256,
 "RevisionId": "93017fc9-59cb-41dc-901b-4845ce4bf668",
 "CodeSize": 266,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function",
 "Handler": "index.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/
helloWorldPython-role-uy3l9qyq",
 "Timeout": 3,
 "LastModified": "2023-10-01T16:47:28.490+0000",
 "Runtime": "nodejs18.x",
 "Description": ""
 },
 {
 "Layers": [
 {
 "CodeSize": 41784542,
 "Arn": "arn:aws:lambda:us-
west-2:420165488524:layer:AWSLambda-Python37-SciPy1x:2"
 },
 {
 "CodeSize": 4121,
 "Arn": "arn:aws:lambda:us-
west-2:123456789012:layer:pythonLayer:1"
 }
],
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "$LATEST",
 "CodeSha256": "ZQukCqxtkqFgyF2cU41Avj99TKQ/hNihPtDtRcc08mI=",
 "FunctionName": "my-python-function",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 128,
 "RevisionId": "80b4eabc-acf7-4ea8-919a-e874c213707d",
 "CodeSize": 299,

ListFunctions 1883

Amazon Lambda Developer Guide

 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
python-function",
 "Handler": "lambda_function.lambda_handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/my-python-
function-role-z5g7dr6n",
 "Timeout": 3,
 "LastModified": "2023-10-01T19:40:41.643+0000",
 "Runtime": "python3.11",
 "Description": ""
 }
]
}

For more information, see Amazon Lambda Function Configuration in the Amazon Lambda
Developer Guide.

• For API details, see ListFunctions in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// ListFunctions lists up to maxItems functions for the account. This function
 uses a
// lambda.ListFunctionsPaginator to paginate the results.
func (wrapper FunctionWrapper) ListFunctions(maxItems int)
 []types.FunctionConfiguration {

ListFunctions 1884

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-functions.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

Amazon Lambda Developer Guide

 var functions []types.FunctionConfiguration
 paginator := lambda.NewListFunctionsPaginator(wrapper.LambdaClient,
 &lambda.ListFunctionsInput{
 MaxItems: aws.Int32(int32(maxItems)),
 })
 for paginator.HasMorePages() && len(functions) < maxItems {
 pageOutput, err := paginator.NextPage(context.TODO())
 if err != nil {
 log.Panicf("Couldn't list functions for your account. Here's why: %v\n", err)
 }
 functions = append(functions, pageOutput.Functions...)
 }
 return functions
}

• For API details, see ListFunctions in Amazon SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const listFunctions = () => {
 const client = new LambdaClient({});
 const command = new ListFunctionsCommand({});

 return client.send(command);
};

• For API details, see ListFunctions in Amazon SDK for JavaScript API Reference.

ListFunctions 1885

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/ListFunctionsCommand

Amazon Lambda Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function listFunctions($maxItems = 50, $marker = null)
 {
 if (is_null($marker)) {
 return $this->lambdaClient->listFunctions([
 'MaxItems' => $maxItems,
]);
 }

 return $this->lambdaClient->listFunctions([
 'Marker' => $marker,
 'MaxItems' => $maxItems,
]);
 }

• For API details, see ListFunctions in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell

Example 1: This sample displays all the Lambda functions with sorted code size

Get-LMFunctionList | Sort-Object -Property CodeSize | Select-Object FunctionName,
 RunTime, Timeout, CodeSize

Output:

FunctionName Runtime Timeout
 CodeSize

ListFunctions 1886

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/ListFunctions

Amazon Lambda Developer Guide

------------ ------- -------

test python2.7 3
 243
MylambdaFunction123 python3.8 600
 659
myfuncpython1 python3.8 303
 675

• For API details, see ListFunctions in Amazon Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def list_functions(self):
 """
 Lists the Lambda functions for the current account.
 """
 try:
 func_paginator = self.lambda_client.get_paginator("list_functions")
 for func_page in func_paginator.paginate():
 for func in func_page["Functions"]:
 print(func["FunctionName"])
 desc = func.get("Description")
 if desc:
 print(f"\t{desc}")
 print(f"\t{func['Runtime']}: {func['Handler']}")
 except ClientError as err:
 logger.error(

ListFunctions 1887

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 "Couldn't list functions. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see ListFunctions in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Lists the Lambda functions for the current account.
 def list_functions
 functions = []
 @lambda_client.list_functions.each do |response|
 response["functions"].each do |function|
 functions.append(function["function_name"])
 end
 end
 functions
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error executing #{function_name}:\n
 #{e.message}")
 end

ListFunctions 1888

https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon Lambda Developer Guide

• For API details, see ListFunctions in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /** List all Lambda functions in the current Region. */
 pub async fn list_functions(&self) -> Result<ListFunctionsOutput,
 anyhow::Error> {
 info!("Listing lambda functions");
 self.lambda_client
 .list_functions()
 .send()
 .await
 .map_err(anyhow::Error::from)
 }

• For API details, see ListFunctions in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.

ListFunctions 1889

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/ListFunctions
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples
https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

Amazon Lambda Developer Guide

 oo_result = lo_lmd->listfunctions(). " oo_result is returned for
 testing purposes. "
 DATA(lt_functions) = oo_result->get_functions().
 MESSAGE 'Retrieved list of Lambda functions.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see ListFunctions in Amazon SDK for SAP ABAP API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListProvisionedConcurrencyConfigs with an Amazon SDK or
command line tool

The following code examples show how to use ListProvisionedConcurrencyConfigs.

CLI

Amazon CLI

To get a list of provisioned concurrency configurations

The following list-provisioned-concurrency-configs example lists the provisioned
concurrency configurations for the specified function.

aws lambda list-provisioned-concurrency-configs \
 --function-name my-function

Output:

{

ListProvisionedConcurrencyConfigs 1890

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Lambda Developer Guide

 "ProvisionedConcurrencyConfigs": [
 {
 "FunctionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-
function:GREEN",
 "RequestedProvisionedConcurrentExecutions": 100,
 "AvailableProvisionedConcurrentExecutions": 100,
 "AllocatedProvisionedConcurrentExecutions": 100,
 "Status": "READY",
 "LastModified": "2019-12-31T20:29:00+0000"
 },
 {
 "FunctionArn": "arn:aws:lambda:us-east-2:123456789012:function:my-
function:BLUE",
 "RequestedProvisionedConcurrentExecutions": 100,
 "AvailableProvisionedConcurrentExecutions": 100,
 "AllocatedProvisionedConcurrentExecutions": 100,
 "Status": "READY",
 "LastModified": "2019-12-31T20:28:49+0000"
 }
]
}

• For API details, see ListProvisionedConcurrencyConfigs in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example retrieves the list of provisioned concurrency configurations for
a Lambda function.

Get-LMProvisionedConcurrencyConfigList -FunctionName "MylambdaFunction123"

• For API details, see ListProvisionedConcurrencyConfigs in Amazon Tools for PowerShell
Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

ListProvisionedConcurrencyConfigs 1891

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-provisioned-concurrency-configs.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

Use ListTags with an Amazon SDK or command line tool

The following code examples show how to use ListTags.

CLI

Amazon CLI

To retrieve the list of tags for a Lambda function

The following list-tags example displays the tags attached to the my-function Lambda
function.

aws lambda list-tags \
 --resource arn:aws:lambda:us-west-2:123456789012:function:my-function

Output:

{
 "Tags": {
 "Category": "Web Tools",
 "Department": "Sales"
 }
}

For more information, see Tagging Lambda Functions in the Amazon Lambda Developer
Guide.

• For API details, see ListTags in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: Retrieves the tags and their values currently set on the specified function.

Get-LMResourceTag -Resource "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction"

Output:

Key Value

ListTags 1892

https://docs.aws.amazon.com/lambda/latest/dg/tagging.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-tags.html

Amazon Lambda Developer Guide

--- -----
California Sacramento
Oregon Salem
Washington Olympia

• For API details, see ListTags in Amazon Tools for PowerShell Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListVersionsByFunction with an Amazon SDK or command line
tool

The following code examples show how to use ListVersionsByFunction.

CLI

Amazon CLI

To retrieve a list of versions of a function

The following list-versions-by-function example displays the list of versions for the
my-function Lambda function.

aws lambda list-versions-by-function \
 --function-name my-function

Output:

{
 "Versions": [
 {
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "$LATEST",
 "CodeSha256": "sU0cJ2/hOZevwV/lTxCuQqK3gDZP3i8gUoqUUVRmY6E=",
 "FunctionName": "my-function",
 "VpcConfig": {
 "SubnetIds": [],

ListVersionsByFunction 1893

https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 256,
 "RevisionId": "93017fc9-59cb-41dc-901b-4845ce4bf668",
 "CodeSize": 266,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:$LATEST",
 "Handler": "index.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/
helloWorldPython-role-uy3l9qyq",
 "Timeout": 3,
 "LastModified": "2019-10-01T16:47:28.490+0000",
 "Runtime": "nodejs10.x",
 "Description": ""
 },
 {
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "Version": "1",
 "CodeSha256": "5tT2qgzYUHoqwR616pZ2dpkn/0J1FrzJmlKidWaaCgk=",
 "FunctionName": "my-function",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 256,
 "RevisionId": "949c8914-012e-4795-998c-e467121951b1",
 "CodeSize": 304,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:1",
 "Handler": "index.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/
helloWorldPython-role-uy3l9qyq",
 "Timeout": 3,
 "LastModified": "2019-09-26T20:28:40.438+0000",
 "Runtime": "nodejs10.x",
 "Description": "new version"
 },
 {
 "TracingConfig": {
 "Mode": "PassThrough"

ListVersionsByFunction 1894

Amazon Lambda Developer Guide

 },
 "Version": "2",
 "CodeSha256": "sU0cJ2/hOZevwV/lTxCuQqK3gDZP3i8gUoqUUVRmY6E=",
 "FunctionName": "my-function",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "MemorySize": 256,
 "RevisionId": "cd669f21-0f3d-4e1c-9566-948837f2e2ea",
 "CodeSize": 266,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:2",
 "Handler": "index.handler",
 "Role": "arn:aws:iam::123456789012:role/service-role/
helloWorldPython-role-uy3l9qyq",
 "Timeout": 3,
 "LastModified": "2019-10-01T16:47:28.490+0000",
 "Runtime": "nodejs10.x",
 "Description": "newer version"
 }
]
}

For more information, see Configuring Amazon Lambda Function Aliases in the Amazon
Lambda Developer Guide.

• For API details, see ListVersionsByFunction in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example returns the list of version specific configurations for each
version of the Lambda Function.

Get-LMVersionsByFunction -FunctionName "MylambdaFunction123"

Output:

ListVersionsByFunction 1895

https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/list-versions-by-function.html

Amazon Lambda Developer Guide

FunctionName Runtime MemorySize Timeout CodeSize LastModified
 RoleName
------------ ------- ---------- ------- -------- ------------

MylambdaFunction123 python3.8 128 600 659
 2020-01-10T03:20:56.390+0000 lambda
MylambdaFunction123 python3.8 128 5 1426
 2019-12-25T09:19:02.238+0000 lambda
MylambdaFunction123 python3.8 128 5 1426
 2019-12-25T09:39:36.779+0000 lambda
MylambdaFunction123 python3.8 128 600 1426
 2019-12-25T09:52:59.872+0000 lambda

• For API details, see ListVersionsByFunction in Amazon Tools for PowerShell Cmdlet
Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use PublishVersion with an Amazon SDK or command line tool

The following code examples show how to use PublishVersion.

CLI

Amazon CLI

To publish a new version of a function

The following publish-version example publishes a new version of the my-function
Lambda function.

aws lambda publish-version \
 --function-name my-function

Output:

{
 "TracingConfig": {

PublishVersion 1896

https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

 "Mode": "PassThrough"
 },
 "CodeSha256": "dBG9m8SGdmlEjw/JYXlhhvCrAv5TxvXsbL/RMr0fT/I=",
 "FunctionName": "my-function",
 "CodeSize": 294,
 "RevisionId": "f31d3d39-cc63-4520-97d4-43cd44c94c20",
 "MemorySize": 128,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:3",
 "Version": "2",
 "Role": "arn:aws:iam::123456789012:role/service-role/MyTestFunction-role-
zgur6bf4",
 "Timeout": 3,
 "LastModified": "2019-09-23T18:32:33.857+0000",
 "Handler": "my-function.handler",
 "Runtime": "nodejs10.x",
 "Description": ""
}

For more information, see Configuring Amazon Lambda Function Aliases in the Amazon
Lambda Developer Guide.

• For API details, see PublishVersion in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example creates a version for the existing snapshot of Lambda Function
Code

Publish-LMVersion -FunctionName "MylambdaFunction123" -Description "Publishing
 Existing Snapshot of function code as a new version through Powershell"

• For API details, see PublishVersion in Amazon Tools for PowerShell Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

PublishVersion 1897

https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/publish-version.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

Use PutFunctionConcurrency with an Amazon SDK or command line
tool

The following code examples show how to use PutFunctionConcurrency.

CLI

Amazon CLI

To configure a reserved concurrency limit for a function

The following put-function-concurrency example configures 100 reserved concurrent
executions for the my-function function.

aws lambda put-function-concurrency \
 --function-name my-function \
 --reserved-concurrent-executions 100

Output:

{
 "ReservedConcurrentExecutions": 100
}

For more information, see Reserving Concurrency for a Lambda Function in the Amazon
Lambda Developer Guide.

• For API details, see PutFunctionConcurrency in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example applies the concurrency settings for the Function as a whole.

Write-LMFunctionConcurrency -FunctionName "MylambdaFunction123" -
ReservedConcurrentExecution 100

• For API details, see PutFunctionConcurrency in Amazon Tools for PowerShell Cmdlet
Reference.

PutFunctionConcurrency 1898

https://docs.aws.amazon.com/lambda/latest/dg/per-function-concurrency.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-function-concurrency.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use PutProvisionedConcurrencyConfig with an Amazon SDK or
command line tool

The following code examples show how to use PutProvisionedConcurrencyConfig.

CLI

Amazon CLI

To allocate provisioned concurrency

The following put-provisioned-concurrency-config example allocates 100
provisioned concurrency for the BLUE alias of the specified function.

aws lambda put-provisioned-concurrency-config \
 --function-name my-function \
 --qualifier BLUE \
 --provisioned-concurrent-executions 100

Output:

{
 "Requested ProvisionedConcurrentExecutions": 100,
 "Allocated ProvisionedConcurrentExecutions": 0,
 "Status": "IN_PROGRESS",
 "LastModified": "2019-11-21T19:32:12+0000"
}

• For API details, see PutProvisionedConcurrencyConfig in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example adds a provisioned concurrency configuration to a Function's
Alias

PutProvisionedConcurrencyConfig 1899

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/put-provisioned-concurrency-config.html

Amazon Lambda Developer Guide

Write-LMProvisionedConcurrencyConfig -FunctionName "MylambdaFunction123" -
ProvisionedConcurrentExecution 20 -Qualifier "NewAlias1"

• For API details, see PutProvisionedConcurrencyConfig in Amazon Tools for PowerShell
Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use RemovePermission with an Amazon SDK or command line tool

The following code examples show how to use RemovePermission.

CLI

Amazon CLI

To remove permissions from an existing Lambda function

The following remove-permission example removes permission to invoke a function
named my-function.

aws lambda remove-permission \
 --function-name my-function \
 --statement-id sns

This command produces no output.

For more information, see Using Resource-based Policies for Amazon Lambda in the Amazon
Lambda Developer Guide.

• For API details, see RemovePermission in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example removes the function policy for the specified StatementId of a
Lambda Function.

RemovePermission 1900

https://docs.aws.amazon.com/powershell/latest/reference
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/remove-permission.html

Amazon Lambda Developer Guide

$policy = Get-LMPolicy -FunctionName "MylambdaFunction123" -Select Policy |
 ConvertFrom-Json| Select-Object -ExpandProperty Statement
Remove-LMPermission -FunctionName "MylambdaFunction123" -StatementId
 $policy[0].Sid

• For API details, see RemovePermission in Amazon Tools for PowerShell Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use TagResource with an Amazon SDK or command line tool

The following code examples show how to use TagResource.

CLI

Amazon CLI

To add tags to an existing Lambda function

The following tag-resource example adds a tag with the key name DEPARTMENT and a
value of Department A to the specified Lambda function.

aws lambda tag-resource \
 --resource arn:aws:lambda:us-west-2:123456789012:function:my-function \
 --tags "DEPARTMENT=Department A"

This command produces no output.

For more information, see Tagging Lambda Functions in the Amazon Lambda Developer
Guide.

• For API details, see TagResource in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: Adds the three tags (Washington, Oregon and California) and their associated
values to the specified function identified by its ARN.

TagResource 1901

https://docs.aws.amazon.com/powershell/latest/reference
https://docs.aws.amazon.com/lambda/latest/dg/tagging.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/tag-resource.html

Amazon Lambda Developer Guide

Add-LMResourceTag -Resource "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction" -Tag @{ "Washington" = "Olympia";
 "Oregon" = "Salem"; "California" = "Sacramento" }

• For API details, see TagResource in Amazon Tools for PowerShell Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UntagResource with an Amazon SDK or command line tool

The following code examples show how to use UntagResource.

CLI

Amazon CLI

To remove tags from an existing Lambda function

The following untag-resource example removes the tag with the key name DEPARTMENT
tag from the my-function Lambda function.

aws lambda untag-resource \
 --resource arn:aws:lambda:us-west-2:123456789012:function:my-function \
 --tag-keys DEPARTMENT

This command produces no output.

For more information, see Tagging Lambda Functions in the Amazon Lambda Developer
Guide.

• For API details, see UntagResource in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: Removes the supplied tags from a function. The cmdlet will prompt for
confirmation before proceeding unless the -Force switch is specified. A single call is made
to the service to remove the tags.

UntagResource 1902

https://docs.aws.amazon.com/powershell/latest/reference
https://docs.aws.amazon.com/lambda/latest/dg/tagging.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/untag-resource.html

Amazon Lambda Developer Guide

Remove-LMResourceTag -Resource "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction" -TagKey
 "Washington","Oregon","California"

Example 2: Removes the supplied tags from a function. The cmdlet will prompt for
confirmation before proceeding unless the -Force switch is specified. Once call to the
service is made per supplied tag.

"Washington","Oregon","California" | Remove-LMResourceTag -Resource
 "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"

• For API details, see UntagResource in Amazon Tools for PowerShell Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UpdateAlias with an Amazon SDK or command line tool

The following code examples show how to use UpdateAlias.

CLI

Amazon CLI

To update a function alias

The following update-alias example updates the alias named LIVE to point to version 3
of the my-function Lambda function.

aws lambda update-alias \
 --function-name my-function \
 --function-version 3 \
 --name LIVE

Output:

{

UpdateAlias 1903

https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

 "FunctionVersion": "3",
 "Name": "LIVE",
 "AliasArn": "arn:aws:lambda:us-west-2:123456789012:function:my-
function:LIVE",
 "RevisionId": "594f41fb-b85f-4c20-95c7-6ca5f2a92c93",
 "Description": "alias for live version of function"
}

For more information, see Configuring Amazon Lambda Function Aliases in the Amazon
Lambda Developer Guide.

• For API details, see UpdateAlias in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell

Example 1: This example updates the Configuration of an existing Lambda function Alias.
It updates the RoutingConfiguration value to shift 60% (0.6) of traffic to version 1

Update-LMAlias -FunctionName "MylambdaFunction123" -Description
 " Alias for version 2" -FunctionVersion 2 -Name "newlabel1" -
RoutingConfig_AdditionalVersionWeight @{Name="1";Value="0.6}

• For API details, see UpdateAlias in Amazon Tools for PowerShell Cmdlet Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UpdateFunctionCode with an Amazon SDK or command line tool

The following code examples show how to use UpdateFunctionCode.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with functions

UpdateFunctionCode 1904

https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-alias.html
https://docs.aws.amazon.com/powershell/latest/reference

Amazon Lambda Developer Guide

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Update an existing Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to update.</
param>
 /// <param name="bucketName">The bucket where the zip file containing
 /// the Lambda function code is stored.</param>
 /// <param name="key">The key name of the source code file.</param>
 /// <returns>Async Task.</returns>
 public async Task UpdateFunctionCodeAsync(
 string functionName,
 string bucketName,
 string key)
 {
 var functionCodeRequest = new UpdateFunctionCodeRequest
 {
 FunctionName = functionName,
 Publish = true,
 S3Bucket = bucketName,
 S3Key = key,
 };

 var response = await
 _lambdaService.UpdateFunctionCodeAsync(functionCodeRequest);
 Console.WriteLine($"The Function was last modified at
 {response.LastModified}.");
 }

• For API details, see UpdateFunctionCode in Amazon SDK for .NET API Reference.

UpdateFunctionCode 1905

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples
https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionCode

Amazon Lambda Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::UpdateFunctionCodeRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 std::ifstream ifstream(CALCULATOR_LAMBDA_CODE.c_str(),
 std::ios_base::in | std::ios_base::binary);
 if (!ifstream.is_open()) {
 std::cerr << "Error opening file " << INCREMENT_LAMBDA_CODE << "." <<
 std::endl;

#if USE_CPP_LAMBDA_FUNCTION
 std::cerr
 << "The cpp Lambda function must be built following the
 instructions in the cpp_lambda/README.md file. "
 << std::endl;
#endif
 deleteLambdaFunction(client);
 deleteIamRole(clientConfig);
 return false;
 }

 Aws::StringStream buffer;
 buffer << ifstream.rdbuf();
 request.SetZipFile(
 Aws::Utils::ByteBuffer((unsigned char *) buffer.str().c_str(),
 buffer.str().length()));
 request.SetPublish(true);

UpdateFunctionCode 1906

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 Aws::Lambda::Model::UpdateFunctionCodeOutcome outcome =
 client.UpdateFunctionCode(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda code was successfully updated." <<
 std::endl;
 }
 else {
 std::cerr << "Error with Lambda::UpdateFunctionCode. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see UpdateFunctionCode in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To update the code of a Lambda function

The following update-function-code example replaces the code of the unpublished
($LATEST) version of the my-function function with the contents of the specified zip file.

aws lambda update-function-code \
 --function-name my-function \
 --zip-file fileb://my-function.zip

Output:

{
 "FunctionName": "my-function",
 "LastModified": "2019-09-26T20:28:40.438+0000",
 "RevisionId": "e52502d4-9320-4688-9cd6-152a6ab7490d",
 "MemorySize": 256,
 "Version": "$LATEST",
 "Role": "arn:aws:iam::123456789012:role/service-role/my-function-role-
uy3l9qyq",
 "Timeout": 3,

UpdateFunctionCode 1907

https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/UpdateFunctionCode

Amazon Lambda Developer Guide

 "Runtime": "nodejs10.x",
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "CodeSha256": "5tT2qgzYUHaqwR716pZ2dpkn/0J1FrzJmlKidWoaCgk=",
 "Description": "",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "CodeSize": 304,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "Handler": "index.handler"
}

For more information, see Amazon Lambda Function Configuration in the Amazon Lambda
Developer Guide.

• For API details, see UpdateFunctionCode in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// UpdateFunctionCode updates the code for the Lambda function specified by
 functionName.

UpdateFunctionCode 1908

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-code.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

Amazon Lambda Developer Guide

// The existing code for the Lambda function is entirely replaced by the code in
 the
// zipPackage buffer. After the update action is called, a
 lambda.FunctionUpdatedV2Waiter
// is used to wait until the update is successful.
func (wrapper FunctionWrapper) UpdateFunctionCode(functionName string, zipPackage
 *bytes.Buffer) types.State {
 var state types.State
 _, err := wrapper.LambdaClient.UpdateFunctionCode(context.TODO(),
 &lambda.UpdateFunctionCodeInput{
 FunctionName: aws.String(functionName), ZipFile: zipPackage.Bytes(),
 })
 if err != nil {
 log.Panicf("Couldn't update code for function %v. Here's why: %v\n",
 functionName, err)
 } else {
 waiter := lambda.NewFunctionUpdatedV2Waiter(wrapper.LambdaClient)
 funcOutput, err := waiter.WaitForOutput(context.TODO(),
 &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName)}, 1*time.Minute)
 if err != nil {
 log.Panicf("Couldn't wait for function %v to be active. Here's why: %v\n",
 functionName, err)
 } else {
 state = funcOutput.Configuration.State
 }
 }
 return state
}

• For API details, see UpdateFunctionCode in Amazon SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

UpdateFunctionCode 1909

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.UpdateFunctionCode
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples

Amazon Lambda Developer Guide

const updateFunctionCode = async (funcName, newFunc) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${newFunc}.zip`);
 const command = new UpdateFunctionCodeCommand({
 ZipFile: code,
 FunctionName: funcName,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file
 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

• For API details, see UpdateFunctionCode in Amazon SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function updateFunctionCode($functionName, $s3Bucket, $s3Key)
 {
 return $this->lambdaClient->updateFunctionCode([
 'FunctionName' => $functionName,
 'S3Bucket' => $s3Bucket,
 'S3Key' => $s3Key,
]);
 }

• For API details, see UpdateFunctionCode in Amazon SDK for PHP API Reference.

UpdateFunctionCode 1910

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionCodeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/UpdateFunctionCode

Amazon Lambda Developer Guide

PowerShell

Tools for PowerShell

Example 1: Updates the function named 'MyFunction' with new content contained in
the specified zip file. For a C# .NET Core Lambda function the zip file should contain the
compiled assembly.

Update-LMFunctionCode -FunctionName MyFunction -ZipFilename .\UpdatedCode.zip

Example 2: This example is similar to the previous one but uses an Amazon S3 object
containing the updated code to update the function.

Update-LMFunctionCode -FunctionName MyFunction -BucketName mybucket -Key
 UpdatedCode.zip

• For API details, see UpdateFunctionCode in Amazon Tools for PowerShell Cmdlet Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def update_function_code(self, function_name, deployment_package):
 """
 Updates the code for a Lambda function by submitting a .zip archive that
 contains
 the code for the function.

UpdateFunctionCode 1911

https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 :param function_name: The name of the function to update.
 :param deployment_package: The function code to update, packaged as bytes
 in
 .zip format.
 :return: Data about the update, including the status.
 """
 try:
 response = self.lambda_client.update_function_code(
 FunctionName=function_name, ZipFile=deployment_package
)
 except ClientError as err:
 logger.error(
 "Couldn't update function %s. Here's why: %s: %s",
 function_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

• For API details, see UpdateFunctionCode in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client

 def initialize
 @lambda_client = Aws::Lambda::Client.new
 @logger = Logger.new($stdout)

UpdateFunctionCode 1912

https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/UpdateFunctionCode
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 @logger.level = Logger::WARN
 end

 # Updates the code for a Lambda function by submitting a .zip archive that
 contains
 # the code for the function.

 # @param function_name: The name of the function to update.
 # @param deployment_package: The function code to update, packaged as bytes in
 # .zip format.
 # @return: Data about the update, including the status.
 def update_function_code(function_name, deployment_package)
 @lambda_client.update_function_code(
 function_name: function_name,
 zip_file: deployment_package
)
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name}) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating function code for:
 #{function_name}:\n #{e.message}")
 nil
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to update:\n
 #{e.message}")
 end

• For API details, see UpdateFunctionCode in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

UpdateFunctionCode 1913

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionCode
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

Amazon Lambda Developer Guide

 /** Given a Path to a zip file, update the function's code and wait for the
 update to finish. */
 pub async fn update_function_code(
 &self,
 zip_file: PathBuf,
 key: String,
) -> Result<UpdateFunctionCodeOutput, anyhow::Error> {
 let function_code = self.prepare_function(zip_file, Some(key)).await?;

 info!("Updating code for {}", self.lambda_name);
 let update = self
 .lambda_client
 .update_function_code()
 .function_name(self.lambda_name.clone())
 .s3_bucket(self.bucket.clone())
 .s3_key(function_code.s3_key().unwrap().to_string())
 .send()
 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 Ok(update)
 }

 /**
 * Upload function code from a path to a zip file.
 * The zip file must have an AL2 Linux-compatible binary called `bootstrap`.
 * The easiest way to create such a zip is to use `cargo lambda build --
output-format Zip`.
 */
 async fn prepare_function(
 &self,
 zip_file: PathBuf,
 key: Option<String>,
) -> Result<FunctionCode, anyhow::Error> {
 let body = ByteStream::from_path(zip_file).await?;

 let key = key.unwrap_or_else(|| format!("{}_code", self.lambda_name));

 info!("Uploading function code to s3://{}/{}", self.bucket, key);
 let _ = self
 .s3_client

UpdateFunctionCode 1914

Amazon Lambda Developer Guide

 .put_object()
 .bucket(self.bucket.clone())
 .key(key.clone())
 .body(body)
 .send()
 .await?;

 Ok(FunctionCode::builder()
 .s3_bucket(self.bucket.clone())
 .s3_key(key)
 .build())
 }

• For API details, see UpdateFunctionCode in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 oo_result = lo_lmd->updatefunctioncode(" oo_result is returned for
 testing purposes. "
 iv_functionname = iv_function_name
 iv_zipfile = io_zip_file
).

 MESSAGE 'Lambda function code updated.' TYPE 'I'.
 CATCH /aws1/cx_lmdcodesigningcfgno00.
 MESSAGE 'Code signing configuration does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdcodestorageexcdex.
 MESSAGE 'Maximum total code size per account exceeded.' TYPE 'E'.
 CATCH /aws1/cx_lmdcodeverification00.
 MESSAGE 'Code signature failed one or more validation checks for
 signature mismatch or expiration.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvalidcodesigex.

UpdateFunctionCode 1915

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

Amazon Lambda Developer Guide

 MESSAGE 'Code signature failed the integrity check.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in progress.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see UpdateFunctionCode in Amazon SDK for SAP ABAP API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UpdateFunctionConfiguration with an Amazon SDK or
command line tool

The following code examples show how to use UpdateFunctionConfiguration.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Get started with functions

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

UpdateFunctionConfiguration 1916

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

Amazon Lambda Developer Guide

 /// <summary>
 /// Update the code of a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the function to update.</param>
 /// <param name="functionHandler">The code that performs the function's
 actions.</param>
 /// <param name="environmentVariables">A dictionary of environment
 variables.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> UpdateFunctionConfigurationAsync(
 string functionName,
 string functionHandler,
 Dictionary<string, string> environmentVariables)
 {
 var request = new UpdateFunctionConfigurationRequest
 {
 Handler = functionHandler,
 FunctionName = functionName,
 Environment = new Amazon.Lambda.Model.Environment { Variables =
 environmentVariables },
 };

 var response = await
 _lambdaService.UpdateFunctionConfigurationAsync(request);

 Console.WriteLine(response.LastModified);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see UpdateFunctionConfiguration in Amazon SDK for .NET API Reference.

UpdateFunctionConfiguration 1917

https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionConfiguration

Amazon Lambda Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region in which the bucket was created
 (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::Lambda::LambdaClient client(clientConfig);

 Aws::Lambda::Model::UpdateFunctionConfigurationRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 Aws::Lambda::Model::Environment environment;
 environment.AddVariables("LOG_LEVEL", "DEBUG");
 request.SetEnvironment(environment);

 Aws::Lambda::Model::UpdateFunctionConfigurationOutcome outcome =
 client.UpdateFunctionConfiguration(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda configuration was successfully updated."
 << std::endl;
 break;
 }

 else {
 std::cerr << "Error with Lambda::UpdateFunctionConfiguration. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see UpdateFunctionConfiguration in Amazon SDK for C++ API Reference.

UpdateFunctionConfiguration 1918

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples
https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/UpdateFunctionConfiguration

Amazon Lambda Developer Guide

CLI

Amazon CLI

To modify the configuration of a function

The following update-function-configuration example modifies the memory size to
be 256 MB for the unpublished ($LATEST) version of the my-function function.

aws lambda update-function-configuration \
 --function-name my-function \
 --memory-size 256

Output:

{
 "FunctionName": "my-function",
 "LastModified": "2019-09-26T20:28:40.438+0000",
 "RevisionId": "e52502d4-9320-4688-9cd6-152a6ab7490d",
 "MemorySize": 256,
 "Version": "$LATEST",
 "Role": "arn:aws:iam::123456789012:role/service-role/my-function-role-
uy3l9qyq",
 "Timeout": 3,
 "Runtime": "nodejs10.x",
 "TracingConfig": {
 "Mode": "PassThrough"
 },
 "CodeSha256": "5tT2qgzYUHaqwR716pZ2dpkn/0J1FrzJmlKidWoaCgk=",
 "Description": "",
 "VpcConfig": {
 "SubnetIds": [],
 "VpcId": "",
 "SecurityGroupIds": []
 },
 "CodeSize": 304,
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:my-function",
 "Handler": "index.handler"
}

For more information, see Amazon Lambda Function Configuration in the Amazon Lambda
Developer Guide.

UpdateFunctionConfiguration 1919

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html

Amazon Lambda Developer Guide

• For API details, see UpdateFunctionConfiguration in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// UpdateFunctionConfiguration updates a map of environment variables configured
 for
// the Lambda function specified by functionName.
func (wrapper FunctionWrapper) UpdateFunctionConfiguration(functionName string,
 envVars map[string]string) {
 _, err := wrapper.LambdaClient.UpdateFunctionConfiguration(context.TODO(),
 &lambda.UpdateFunctionConfigurationInput{
 FunctionName: aws.String(functionName),
 Environment: &types.Environment{Variables: envVars},
 })
 if err != nil {
 log.Panicf("Couldn't update configuration for %v. Here's why: %v",
 functionName, err)
 }
}

• For API details, see UpdateFunctionConfiguration in Amazon SDK for Go API Reference.

UpdateFunctionConfiguration 1920

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/update-function-configuration.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.UpdateFunctionConfiguration

Amazon Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const updateFunctionConfiguration = (funcName) => {
 const client = new LambdaClient({});
 const config = readFileSync(`${dirname}../functions/config.json`).toString();
 const command = new UpdateFunctionConfigurationCommand({
 ...JSON.parse(config),
 FunctionName: funcName,
 });
 return client.send(command);
};

• For API details, see UpdateFunctionConfiguration in Amazon SDK for JavaScript API
Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function updateFunctionConfiguration($functionName, $handler,
 $environment = '')
 {
 return $this->lambdaClient->updateFunctionConfiguration([
 'FunctionName' => $functionName,

UpdateFunctionConfiguration 1921

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionConfigurationCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 'Handler' => "$handler.lambda_handler",
 'Environment' => $environment,
]);
 }

• For API details, see UpdateFunctionConfiguration in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell

Example 1: This example updates the existing Lambda Function Configuration

Update-LMFunctionConfiguration -FunctionName "MylambdaFunction123" -Handler
 "lambda_function.launch_instance" -Timeout 600 -Environment_Variable
 @{ "envvar1"="value";"envvar2"="value" } -Role arn:aws:iam::123456789101:role/
service-role/lambda -DeadLetterConfig_TargetArn arn:aws:sns:us-east-1:
 123456789101:MyfirstTopic

• For API details, see UpdateFunctionConfiguration in Amazon Tools for PowerShell Cmdlet
Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

 def update_function_configuration(self, function_name, env_vars):

UpdateFunctionConfiguration 1922

https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/UpdateFunctionConfiguration
https://docs.aws.amazon.com/powershell/latest/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 """
 Updates the environment variables for a Lambda function.

 :param function_name: The name of the function to update.
 :param env_vars: A dict of environment variables to update.
 :return: Data about the update, including the status.
 """
 try:
 response = self.lambda_client.update_function_configuration(
 FunctionName=function_name, Environment={"Variables": env_vars}
)
 except ClientError as err:
 logger.error(
 "Couldn't update function configuration %s. Here's why: %s: %s",
 function_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

• For API details, see UpdateFunctionConfiguration in Amazon SDK for Python (Boto3) API
Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class LambdaWrapper
 attr_accessor :lambda_client

 def initialize

UpdateFunctionConfiguration 1923

https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 @lambda_client = Aws::Lambda::Client.new
 @logger = Logger.new($stdout)
 @logger.level = Logger::WARN
 end

 # Updates the environment variables for a Lambda function.
 # @param function_name: The name of the function to update.
 # @param log_level: The log level of the function.
 # @return: Data about the update, including the status.
 def update_function_configuration(function_name, log_level)
 @lambda_client.update_function_configuration({
 function_name: function_name,
 environment: {
 variables: {
 "LOG_LEVEL" => log_level
 }
 }
 })
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name}) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating configurations for
 #{function_name}:\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n
 #{e.message}")
 end

• For API details, see UpdateFunctionConfiguration in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

UpdateFunctionConfiguration 1924

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

Amazon Lambda Developer Guide

 /** Update the environment for a function. */
 pub async fn update_function_configuration(
 &self,
 environment: Environment,
) -> Result<UpdateFunctionConfigurationOutput, anyhow::Error> {
 info!(
 ?environment,
 "Updating environment for {}", self.lambda_name
);
 let updated = self
 .lambda_client
 .update_function_configuration()
 .function_name(self.lambda_name.clone())
 .environment(environment)
 .send()
 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 Ok(updated)
 }

• For API details, see UpdateFunctionConfiguration in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 oo_result = lo_lmd->updatefunctionconfiguration(" oo_result is
 returned for testing purposes. "
 iv_functionname = iv_function_name
 iv_runtime = iv_runtime

UpdateFunctionConfiguration 1925

https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

Amazon Lambda Developer Guide

 iv_description = 'Updated Lambda function'
 iv_memorysize = iv_memory_size
).

 MESSAGE 'Lambda function configuration/settings updated.' TYPE 'I'.
 CATCH /aws1/cx_lmdcodesigningcfgno00.
 MESSAGE 'Code signing configuration does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdcodeverification00.
 MESSAGE 'Code signature failed one or more validation checks for
 signature mismatch or expiration.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvalidcodesigex.
 MESSAGE 'Code signature failed the integrity check.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in progress.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdserviceexception.
 MESSAGE 'An internal problem was encountered by the AWS Lambda service.'
 TYPE 'E'.
 CATCH /aws1/cx_lmdtoomanyrequestsex.
 MESSAGE 'The maximum request throughput was reached.' TYPE 'E'.
 ENDTRY.

• For API details, see UpdateFunctionConfiguration in Amazon SDK for SAP ABAP API
reference.

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Scenarios for Lambda using Amazon SDKs

The following code examples show you how to implement common scenarios in Lambda with
Amazon SDKs. These scenarios show you how to accomplish specific tasks by calling multiple
functions within Lambda. Each scenario includes a link to GitHub, where you can find instructions
on how to set up and run the code.

Scenarios 1926

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Lambda Developer Guide

Examples

• Get started creating and invoking Lambda functions using an Amazon SDK

Get started creating and invoking Lambda functions using an Amazon
SDK

The following code examples show how to:

• Create an IAM role and Lambda function, then upload handler code.

• Invoke the function with a single parameter and get results.

• Update the function code and configure with an environment variable.

• Invoke the function with new parameters and get results. Display the returned execution log.

• List the functions for your account, then clean up resources.

For more information, see Create a Lambda function with the console.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create methods that perform Lambda actions.

namespace LambdaActions;

using Amazon.Lambda;
using Amazon.Lambda.Model;

/// <summary>
/// A class that implements AWS Lambda methods.
/// </summary>
public class LambdaWrapper
{

Get started with functions 1927

https://docs.amazonaws.cn/lambda/latest/dg/getting-started-create-function.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Lambda#code-examples

Amazon Lambda Developer Guide

 private readonly IAmazonLambda _lambdaService;

 /// <summary>
 /// Constructor for the LambdaWrapper class.
 /// </summary>
 /// <param name="lambdaService">An initialized Lambda service client.</param>
 public LambdaWrapper(IAmazonLambda lambdaService)
 {
 _lambdaService = lambdaService;
 }

 /// <summary>
 /// Creates a new Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the function.</param>
 /// <param name="s3Bucket">The Amazon Simple Storage Service (Amazon S3)
 /// bucket where the zip file containing the code is located.</param>
 /// <param name="s3Key">The Amazon S3 key of the zip file.</param>
 /// <param name="role">The Amazon Resource Name (ARN) of a role with the
 /// appropriate Lambda permissions.</param>
 /// <param name="handler">The name of the handler function.</param>
 /// <returns>The Amazon Resource Name (ARN) of the newly created
 /// Lambda function.</returns>
 public async Task<string> CreateLambdaFunctionAsync(
 string functionName,
 string s3Bucket,
 string s3Key,
 string role,
 string handler)
 {
 // Defines the location for the function code.
 // S3Bucket - The S3 bucket where the file containing
 // the source code is stored.
 // S3Key - The name of the file containing the code.
 var functionCode = new FunctionCode
 {
 S3Bucket = s3Bucket,
 S3Key = s3Key,
 };

 var createFunctionRequest = new CreateFunctionRequest
 {
 FunctionName = functionName,
 Description = "Created by the Lambda .NET API",

Get started with functions 1928

Amazon Lambda Developer Guide

 Code = functionCode,
 Handler = handler,
 Runtime = Runtime.Dotnet6,
 Role = role,
 };

 var reponse = await
 _lambdaService.CreateFunctionAsync(createFunctionRequest);
 return reponse.FunctionArn;
 }

 /// <summary>
 /// Delete an AWS Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to
 /// delete.</param>
 /// <returns>A Boolean value that indicates the success of the action.</
returns>
 public async Task<bool> DeleteFunctionAsync(string functionName)
 {
 var request = new DeleteFunctionRequest
 {
 FunctionName = functionName,
 };

 var response = await _lambdaService.DeleteFunctionAsync(request);

 // A return value of NoContent means that the request was processed.
 // In this case, the function was deleted, and the return value
 // is intentionally blank.
 return response.HttpStatusCode == System.Net.HttpStatusCode.NoContent;
 }

 /// <summary>
 /// Gets information about a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function for
 /// which to retrieve information.</param>
 /// <returns>Async Task.</returns>
 public async Task<FunctionConfiguration> GetFunctionAsync(string
 functionName)
 {

Get started with functions 1929

Amazon Lambda Developer Guide

 var functionRequest = new GetFunctionRequest
 {
 FunctionName = functionName,
 };

 var response = await _lambdaService.GetFunctionAsync(functionRequest);
 return response.Configuration;
 }

 /// <summary>
 /// Invoke a Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to
 /// invoke.</param
 /// <param name="parameters">The parameter values that will be passed to the
 function.</param>
 /// <returns>A System Threading Task.</returns>
 public async Task<string> InvokeFunctionAsync(
 string functionName,
 string parameters)
 {
 var payload = parameters;
 var request = new InvokeRequest
 {
 FunctionName = functionName,
 Payload = payload,
 };

 var response = await _lambdaService.InvokeAsync(request);
 MemoryStream stream = response.Payload;
 string returnValue =
 System.Text.Encoding.UTF8.GetString(stream.ToArray());
 return returnValue;
 }

 /// <summary>
 /// Get a list of Lambda functions.
 /// </summary>
 /// <returns>A list of FunctionConfiguration objects.</returns>
 public async Task<List<FunctionConfiguration>> ListFunctionsAsync()
 {
 var functionList = new List<FunctionConfiguration>();

Get started with functions 1930

Amazon Lambda Developer Guide

 var functionPaginator =
 _lambdaService.Paginators.ListFunctions(new ListFunctionsRequest());
 await foreach (var function in functionPaginator.Functions)
 {
 functionList.Add(function);
 }

 return functionList;
 }

 /// <summary>
 /// Update an existing Lambda function.
 /// </summary>
 /// <param name="functionName">The name of the Lambda function to update.</
param>
 /// <param name="bucketName">The bucket where the zip file containing
 /// the Lambda function code is stored.</param>
 /// <param name="key">The key name of the source code file.</param>
 /// <returns>Async Task.</returns>
 public async Task UpdateFunctionCodeAsync(
 string functionName,
 string bucketName,
 string key)
 {
 var functionCodeRequest = new UpdateFunctionCodeRequest
 {
 FunctionName = functionName,
 Publish = true,
 S3Bucket = bucketName,
 S3Key = key,
 };

 var response = await
 _lambdaService.UpdateFunctionCodeAsync(functionCodeRequest);
 Console.WriteLine($"The Function was last modified at
 {response.LastModified}.");
 }

 /// <summary>
 /// Update the code of a Lambda function.
 /// </summary>

Get started with functions 1931

Amazon Lambda Developer Guide

 /// <param name="functionName">The name of the function to update.</param>
 /// <param name="functionHandler">The code that performs the function's
 actions.</param>
 /// <param name="environmentVariables">A dictionary of environment
 variables.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> UpdateFunctionConfigurationAsync(
 string functionName,
 string functionHandler,
 Dictionary<string, string> environmentVariables)
 {
 var request = new UpdateFunctionConfigurationRequest
 {
 Handler = functionHandler,
 FunctionName = functionName,
 Environment = new Amazon.Lambda.Model.Environment { Variables =
 environmentVariables },
 };

 var response = await
 _lambdaService.UpdateFunctionConfigurationAsync(request);

 Console.WriteLine(response.LastModified);

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

}

Create a function that runs the scenario.

global using System.Threading.Tasks;
global using Amazon.IdentityManagement;
global using Amazon.Lambda;
global using LambdaActions;
global using LambdaScenarioCommon;
global using Microsoft.Extensions.DependencyInjection;
global using Microsoft.Extensions.Hosting;
global using Microsoft.Extensions.Logging;
global using Microsoft.Extensions.Logging.Console;

Get started with functions 1932

Amazon Lambda Developer Guide

global using Microsoft.Extensions.Logging.Debug;

using Amazon.Lambda.Model;
using Microsoft.Extensions.Configuration;

namespace LambdaBasics;

public class LambdaBasics
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for the Amazon service.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonLambda>()
 .AddAWSService<IAmazonIdentityManagementService>()
 .AddTransient<LambdaWrapper>()
 .AddTransient<LambdaRoleWrapper>()
 .AddTransient<UIWrapper>()
)
 .Build();

 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load test settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<LambdaBasics>();

 var lambdaWrapper = host.Services.GetRequiredService<LambdaWrapper>();

Get started with functions 1933

Amazon Lambda Developer Guide

 var lambdaRoleWrapper =
 host.Services.GetRequiredService<LambdaRoleWrapper>();
 var uiWrapper = host.Services.GetRequiredService<UIWrapper>();

 string functionName = configuration["FunctionName"]!;
 string roleName = configuration["RoleName"]!;
 string policyDocument = "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [" +
 " {" +
 " \"Effect\": \"Allow\"," +
 " \"Principal\": {" +
 " \"Service\": \"lambda.amazonaws.com\" " +
 " }," +
 " \"Action\": \"sts:AssumeRole\" " +
 " }" +
 "]" +
 "}";

 var incrementHandler = configuration["IncrementHandler"];
 var calculatorHandler = configuration["CalculatorHandler"];
 var bucketName = configuration["BucketName"];
 var incrementKey = configuration["IncrementKey"];
 var calculatorKey = configuration["CalculatorKey"];
 var policyArn = configuration["PolicyArn"];

 uiWrapper.DisplayLambdaBasicsOverview();

 // Create the policy to use with the AWS Lambda functions and then attach
 the
 // policy to a new role.
 var roleArn = await lambdaRoleWrapper.CreateLambdaRoleAsync(roleName,
 policyDocument);

 Console.WriteLine("Waiting for role to become active.");
 uiWrapper.WaitABit(15, "Wait until the role is active before trying to
 use it.");

 // Attach the appropriate AWS Identity and Access Management (IAM) role
 policy to the new role.
 var success = await
 lambdaRoleWrapper.AttachLambdaRolePolicyAsync(policyArn, roleName);
 uiWrapper.WaitABit(10, "Allow time for the IAM policy to be attached to
 the role.");

Get started with functions 1934

Amazon Lambda Developer Guide

 // Create the Lambda function using a zip file stored in an Amazon Simple
 Storage Service
 // (Amazon S3) bucket.
 uiWrapper.DisplayTitle("Create Lambda Function");
 Console.WriteLine($"Creating the AWS Lambda function: {functionName}.");
 var lambdaArn = await lambdaWrapper.CreateLambdaFunctionAsync(
 functionName,
 bucketName,
 incrementKey,
 roleArn,
 incrementHandler);

 Console.WriteLine("Waiting for the new function to be available.");
 Console.WriteLine($"The AWS Lambda ARN is {lambdaArn}");

 // Get the Lambda function.
 Console.WriteLine($"Getting the {functionName} AWS Lambda function.");
 FunctionConfiguration config;
 do
 {
 config = await lambdaWrapper.GetFunctionAsync(functionName);
 Console.Write(".");
 }
 while (config.State != State.Active);

 Console.WriteLine($"\nThe function, {functionName} has been created.");
 Console.WriteLine($"The runtime of this Lambda function is
 {config.Runtime}.");

 uiWrapper.PressEnter();

 // List the Lambda functions.
 uiWrapper.DisplayTitle("Listing all Lambda functions.");
 var functions = await lambdaWrapper.ListFunctionsAsync();
 DisplayFunctionList(functions);

 uiWrapper.DisplayTitle("Invoke increment function");
 Console.WriteLine("Now that it has been created, invoke the Lambda
 increment function.");
 string? value;
 do
 {
 Console.Write("Enter a value to increment: ");

Get started with functions 1935

Amazon Lambda Developer Guide

 value = Console.ReadLine();
 }
 while (string.IsNullOrEmpty(value));

 string functionParameters = "{" +
 "\"action\": \"increment\", " +
 "\"x\": \"" + value + "\"" +
 "}";
 var answer = await lambdaWrapper.InvokeFunctionAsync(functionName,
 functionParameters);
 Console.WriteLine($"{value} + 1 = {answer}.");

 uiWrapper.DisplayTitle("Update function");
 Console.WriteLine("Now update the Lambda function code.");
 await lambdaWrapper.UpdateFunctionCodeAsync(functionName, bucketName,
 calculatorKey);

 do
 {
 config = await lambdaWrapper.GetFunctionAsync(functionName);
 Console.Write(".");
 }
 while (config.LastUpdateStatus == LastUpdateStatus.InProgress);

 await lambdaWrapper.UpdateFunctionConfigurationAsync(
 functionName,
 calculatorHandler,
 new Dictionary<string, string> { { "LOG_LEVEL", "DEBUG" } });

 do
 {
 config = await lambdaWrapper.GetFunctionAsync(functionName);
 Console.Write(".");
 }
 while (config.LastUpdateStatus == LastUpdateStatus.InProgress);

 uiWrapper.DisplayTitle("Call updated function");
 Console.WriteLine("Now call the updated function...");

 bool done = false;

 do
 {
 string? opSelected;

Get started with functions 1936

Amazon Lambda Developer Guide

 Console.WriteLine("Select the operation to perform:");
 Console.WriteLine("\t1. add");
 Console.WriteLine("\t2. subtract");
 Console.WriteLine("\t3. multiply");
 Console.WriteLine("\t4. divide");
 Console.WriteLine("\tOr enter \"q\" to quit.");
 Console.WriteLine("Enter the number (1, 2, 3, 4, or q) of the
 operation you want to perform: ");
 do
 {
 Console.Write("Your choice? ");
 opSelected = Console.ReadLine();
 }
 while (opSelected == string.Empty);

 var operation = (opSelected) switch
 {
 "1" => "add",
 "2" => "subtract",
 "3" => "multiply",
 "4" => "divide",
 "q" => "quit",
 _ => "add",
 };

 if (operation == "quit")
 {
 done = true;
 }
 else
 {
 // Get two numbers and an action from the user.
 value = string.Empty;
 do
 {
 Console.Write("Enter the first value: ");
 value = Console.ReadLine();
 }
 while (value == string.Empty);

 string? value2;
 do
 {

Get started with functions 1937

Amazon Lambda Developer Guide

 Console.Write("Enter a second value: ");
 value2 = Console.ReadLine();
 }
 while (value2 == string.Empty);

 functionParameters = "{" +
 "\"action\": \"" + operation + "\", " +
 "\"x\": \"" + value + "\"," +
 "\"y\": \"" + value2 + "\"" +
 "}";

 answer = await lambdaWrapper.InvokeFunctionAsync(functionName,
 functionParameters);
 Console.WriteLine($"The answer when we {operation} the two
 numbers is: {answer}.");
 }

 uiWrapper.PressEnter();
 } while (!done);

 // Delete the function created earlier.

 uiWrapper.DisplayTitle("Clean up resources");
 // Detach the IAM policy from the IAM role.
 Console.WriteLine("First detach the IAM policy from the role.");
 success = await lambdaRoleWrapper.DetachLambdaRolePolicyAsync(policyArn,
 roleName);
 uiWrapper.WaitABit(15, "Let's wait for the policy to be fully detached
 from the role.");

 Console.WriteLine("Delete the AWS Lambda function.");
 success = await lambdaWrapper.DeleteFunctionAsync(functionName);
 if (success)
 {
 Console.WriteLine($"The {functionName} function was deleted.");
 }
 else
 {
 Console.WriteLine($"Could not remove the function {functionName}");
 }

 // Now delete the IAM role created for use with the functions
 // created by the application.
 Console.WriteLine("Now we can delete the role that we created.");

Get started with functions 1938

Amazon Lambda Developer Guide

 success = await lambdaRoleWrapper.DeleteLambdaRoleAsync(roleName);
 if (success)
 {
 Console.WriteLine("The role has been successfully removed.");
 }
 else
 {
 Console.WriteLine("Couldn't delete the role.");
 }

 Console.WriteLine("The Lambda Scenario is now complete.");
 uiWrapper.PressEnter();

 // Displays a formatted list of existing functions returned by the
 // LambdaMethods.ListFunctions.
 void DisplayFunctionList(List<FunctionConfiguration> functions)
 {
 functions.ForEach(functionConfig =>
 {

 Console.WriteLine($"{functionConfig.FunctionName}\t{functionConfig.Description}");
 });
 }
 }
}

namespace LambdaActions;

using Amazon.IdentityManagement;
using Amazon.IdentityManagement.Model;

public class LambdaRoleWrapper
{
 private readonly IAmazonIdentityManagementService _lambdaRoleService;

 public LambdaRoleWrapper(IAmazonIdentityManagementService lambdaRoleService)
 {
 _lambdaRoleService = lambdaRoleService;
 }

 /// <summary>
 /// Attach an AWS Identity and Access Management (IAM) role policy to the

Get started with functions 1939

Amazon Lambda Developer Guide

 /// IAM role to be assumed by the AWS Lambda functions created for the
 scenario.
 /// </summary>
 /// <param name="policyArn">The Amazon Resource Name (ARN) of the IAM
 policy.</param>
 /// <param name="roleName">The name of the IAM role to attach the IAM policy
 to.</param>
 /// <returns>A Boolean value indicating the success of the action.</returns>
 public async Task<bool> AttachLambdaRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _lambdaRoleService.AttachRolePolicyAsync(new
 AttachRolePolicyRequest { PolicyArn = policyArn, RoleName = roleName });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Create a new IAM role.
 /// </summary>
 /// <param name="roleName">The name of the IAM role to create.</param>
 /// <param name="policyDocument">The policy document for the new IAM role.</
param>
 /// <returns>A string representing the ARN for newly created role.</returns>
 public async Task<string> CreateLambdaRoleAsync(string roleName, string
 policyDocument)
 {
 var request = new CreateRoleRequest
 {
 AssumeRolePolicyDocument = policyDocument,
 RoleName = roleName,
 };

 var response = await _lambdaRoleService.CreateRoleAsync(request);
 return response.Role.Arn;
 }

 /// <summary>
 /// Deletes an IAM role.
 /// </summary>
 /// <param name="roleName">The name of the role to delete.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public async Task<bool> DeleteLambdaRoleAsync(string roleName)
 {

Get started with functions 1940

Amazon Lambda Developer Guide

 var request = new DeleteRoleRequest
 {
 RoleName = roleName,
 };

 var response = await _lambdaRoleService.DeleteRoleAsync(request);
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 public async Task<bool> DetachLambdaRolePolicyAsync(string policyArn, string
 roleName)
 {
 var response = await _lambdaRoleService.DetachRolePolicyAsync(new
 DetachRolePolicyRequest { PolicyArn = policyArn, RoleName = roleName });
 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }
}

namespace LambdaScenarioCommon;
public class UIWrapper
{
 public readonly string SepBar = new('-', Console.WindowWidth);

 /// <summary>
 /// Show information about the AWS Lambda Basics scenario.
 /// </summary>
 public void DisplayLambdaBasicsOverview()
 {
 Console.Clear();

 DisplayTitle("Welcome to AWS Lambda Basics");
 Console.WriteLine("This example application does the following:");
 Console.WriteLine("\t1. Creates an AWS Identity and Access Management
 (IAM) role that will be assumed by the functions we create.");
 Console.WriteLine("\t2. Attaches an IAM role policy that has Lambda
 permissions.");
 Console.WriteLine("\t3. Creates a Lambda function that increments the
 value passed to it.");
 Console.WriteLine("\t4. Calls the increment function and passes a
 value.");
 Console.WriteLine("\t5. Updates the code so that the function is a simple
 calculator.");

Get started with functions 1941

Amazon Lambda Developer Guide

 Console.WriteLine("\t6. Calls the calculator function with the values
 entered.");
 Console.WriteLine("\t7. Deletes the Lambda function.");
 Console.WriteLine("\t7. Detaches the IAM role policy.");
 Console.WriteLine("\t8. Deletes the IAM role.");
 PressEnter();
 }

 /// <summary>
 /// Display a message and wait until the user presses enter.
 /// </summary>
 public void PressEnter()
 {
 Console.Write("\nPress <Enter> to continue. ");
 _ = Console.ReadLine();
 Console.WriteLine();
 }

 /// <summary>
 /// Pad a string with spaces to center it on the console display.
 /// </summary>
 /// <param name="strToCenter">The string to be centered.</param>
 /// <returns>The padded string.</returns>
 public string CenterString(string strToCenter)
 {
 var padAmount = (Console.WindowWidth - strToCenter.Length) / 2;
 var leftPad = new string(' ', padAmount);
 return $"{leftPad}{strToCenter}";
 }

 /// <summary>
 /// Display a line of hyphens, the centered text of the title and another
 /// line of hyphens.
 /// </summary>
 /// <param name="strTitle">The string to be displayed.</param>
 public void DisplayTitle(string strTitle)
 {
 Console.WriteLine(SepBar);
 Console.WriteLine(CenterString(strTitle));
 Console.WriteLine(SepBar);
 }

 /// <summary>
 /// Display a countdown and wait for a number of seconds.

Get started with functions 1942

Amazon Lambda Developer Guide

 /// </summary>
 /// <param name="numSeconds">The number of seconds to wait.</param>
 public void WaitABit(int numSeconds, string msg)
 {
 Console.WriteLine(msg);

 // Wait for the requested number of seconds.
 for (int i = numSeconds; i > 0; i--)
 {
 System.Threading.Thread.Sleep(1000);
 Console.Write($"{i}...");
 }

 PressEnter();
 }
}

Define a Lambda handler that increments a number.

using Amazon.Lambda.Core;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace LambdaIncrement;

public class Function
{

 /// <summary>
 /// A simple function increments the integer parameter.
 /// </summary>
 /// <param name="input">A JSON string containing an action, which must be
 /// "increment" and a string representing the value to increment.</param>
 /// <param name="context">The context object passed by Lambda containing
 /// information about invocation, function, and execution environment.</
param>
 /// <returns>A string representing the incremented value of the parameter.</
returns>

Get started with functions 1943

Amazon Lambda Developer Guide

 public int FunctionHandler(Dictionary<string, string> input, ILambdaContext
 context)
 {
 if (input["action"] == "increment")
 {
 int inputValue = Convert.ToInt32(input["x"]);
 return inputValue + 1;
 }
 else
 {
 return 0;
 }
 }
}

Define a second Lambda handler that performs arithmetic operations.

using Amazon.Lambda.Core;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace LambdaCalculator;

public class Function
{

 /// <summary>
 /// A simple function that takes two number in string format and performs
 /// the requested arithmetic function.
 /// </summary>
 /// <param name="input">JSON data containing an action, and x and y values.
 /// Valid actions include: add, subtract, multiply, and divide.</param>
 /// <param name="context">The context object passed by Lambda containing
 /// information about invocation, function, and execution environment.</
param>
 /// <returns>A string representing the results of the calculation.</returns>
 public int FunctionHandler(Dictionary<string, string> input, ILambdaContext
 context)

Get started with functions 1944

Amazon Lambda Developer Guide

 {
 var action = input["action"];
 int x = Convert.ToInt32(input["x"]);
 int y = Convert.ToInt32(input["y"]);
 int result;
 switch (action)
 {
 case "add":
 result = x + y;
 break;
 case "subtract":
 result = x - y;
 break;
 case "multiply":
 result = x * y;
 break;
 case "divide":
 if (y == 0)
 {
 Console.Error.WriteLine("Divide by zero error.");
 result = 0;
 }
 else
 result = x / y;
 break;
 default:
 Console.Error.WriteLine($"{action} is not a valid operation.");
 result = 0;
 break;
 }
 return result;
 }
}

• For API details, see the following topics in Amazon SDK for .NET API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

Get started with functions 1945

https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/CreateFunction
https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/DeleteFunction
https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/GetFunction
https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/Invoke

Amazon Lambda Developer Guide

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Get started with functions scenario.
/*!
 \param clientConfig: AWS client configuration.
 \return bool: Successful completion.
 */
bool AwsDoc::Lambda::getStartedWithFunctionsScenario(
 const Aws::Client::ClientConfiguration &clientConfig) {

 Aws::Lambda::LambdaClient client(clientConfig);

 // 1. Create an AWS Identity and Access Management (IAM) role for Lambda
 function.
 Aws::String roleArn;
 if (!getIamRoleArn(roleArn, clientConfig)) {
 return false;
 }

 // 2. Create a Lambda function.
 int seconds = 0;
 do {
 Aws::Lambda::Model::CreateFunctionRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 request.SetDescription(LAMBDA_DESCRIPTION); // Optional.
#if USE_CPP_LAMBDA_FUNCTION
 request.SetRuntime(Aws::Lambda::Model::Runtime::provided_al2);
 request.SetTimeout(15);
 request.SetMemorySize(128);

Get started with functions 1946

https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/ListFunctions
https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionCode
https://docs.amazonaws.cn/goto/DotNetSDKV3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 // Assume the AWS Lambda function was built in Docker with same
 architecture
 // as this code.
#if defined(__x86_64__)
 request.SetArchitectures({Aws::Lambda::Model::Architecture::x86_64});
#elif defined(__aarch64__)
 request.SetArchitectures({Aws::Lambda::Model::Architecture::arm64});
#else
#error "Unimplemented architecture"
#endif // defined(architecture)
#else
 request.SetRuntime(Aws::Lambda::Model::Runtime::python3_8);
#endif
 request.SetRole(roleArn);
 request.SetHandler(LAMBDA_HANDLER_NAME);
 request.SetPublish(true);
 Aws::Lambda::Model::FunctionCode code;
 std::ifstream ifstream(INCREMENT_LAMBDA_CODE.c_str(),
 std::ios_base::in | std::ios_base::binary);
 if (!ifstream.is_open()) {
 std::cerr << "Error opening file " << INCREMENT_LAMBDA_CODE << "." <<
 std::endl;

#if USE_CPP_LAMBDA_FUNCTION
 std::cerr
 << "The cpp Lambda function must be built following the
 instructions in the cpp_lambda/README.md file. "
 << std::endl;
#endif
 deleteIamRole(clientConfig);
 return false;
 }

 Aws::StringStream buffer;
 buffer << ifstream.rdbuf();

 code.SetZipFile(Aws::Utils::ByteBuffer((unsigned char *)
 buffer.str().c_str(),
 buffer.str().length()));
 request.SetCode(code);

 Aws::Lambda::Model::CreateFunctionOutcome outcome =
 client.CreateFunction(

Get started with functions 1947

Amazon Lambda Developer Guide

 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda function was successfully created. " <<
 seconds
 << " seconds elapsed." << std::endl;
 break;
 }
 else if (outcome.GetError().GetErrorType() ==
 Aws::Lambda::LambdaErrors::INVALID_PARAMETER_VALUE &&
 outcome.GetError().GetMessage().find("role") >= 0) {
 if ((seconds % 5) == 0) { // Log status every 10 seconds.
 std::cout
 << "Waiting for the IAM role to become available as a
 CreateFunction parameter. "
 << seconds
 << " seconds elapsed." << std::endl;

 std::cout << outcome.GetError().GetMessage() << std::endl;
 }
 }
 else {
 std::cerr << "Error with CreateFunction. "
 << outcome.GetError().GetMessage()
 << std::endl;
 deleteIamRole(clientConfig);
 return false;
 }
 ++seconds;
 std::this_thread::sleep_for(std::chrono::seconds(1));
 } while (60 > seconds);

 std::cout << "The current Lambda function increments 1 by an input." <<
 std::endl;

 // 3. Invoke the Lambda function.
 {
 int increment = askQuestionForInt("Enter an increment integer: ");

 Aws::Lambda::Model::InvokeResult invokeResult;
 Aws::Utils::Json::JsonValue jsonPayload;
 jsonPayload.WithString("action", "increment");
 jsonPayload.WithInteger("number", increment);
 if (invokeLambdaFunction(jsonPayload, Aws::Lambda::Model::LogType::Tail,

Get started with functions 1948

Amazon Lambda Developer Guide

 invokeResult, client)) {
 Aws::Utils::Json::JsonValue jsonValue(invokeResult.GetPayload());
 Aws::Map<Aws::String, Aws::Utils::Json::JsonView> values =
 jsonValue.View().GetAllObjects();
 auto iter = values.find("result");
 if (iter != values.end() && iter->second.IsIntegerType()) {
 {
 std::cout << INCREMENT_RESUlT_PREFIX
 << iter->second.AsInteger() << std::endl;
 }
 }
 else {
 std::cout << "There was an error in execution. Here is the log."
 << std::endl;
 Aws::Utils::ByteBuffer buffer =
 Aws::Utils::HashingUtils::Base64Decode(
 invokeResult.GetLogResult());
 std::cout << "With log " << buffer.GetUnderlyingData() <<
 std::endl;
 }
 }
 }

 std::cout
 << "The Lambda function will now be updated with new code. Press
 return to continue, ";
 Aws::String answer;
 std::getline(std::cin, answer);

 // 4. Update the Lambda function code.
 {
 Aws::Lambda::Model::UpdateFunctionCodeRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 std::ifstream ifstream(CALCULATOR_LAMBDA_CODE.c_str(),
 std::ios_base::in | std::ios_base::binary);
 if (!ifstream.is_open()) {
 std::cerr << "Error opening file " << INCREMENT_LAMBDA_CODE << "." <<
 std::endl;

#if USE_CPP_LAMBDA_FUNCTION
 std::cerr
 << "The cpp Lambda function must be built following the
 instructions in the cpp_lambda/README.md file. "
 << std::endl;

Get started with functions 1949

Amazon Lambda Developer Guide

#endif
 deleteLambdaFunction(client);
 deleteIamRole(clientConfig);
 return false;
 }

 Aws::StringStream buffer;
 buffer << ifstream.rdbuf();
 request.SetZipFile(
 Aws::Utils::ByteBuffer((unsigned char *) buffer.str().c_str(),
 buffer.str().length()));
 request.SetPublish(true);

 Aws::Lambda::Model::UpdateFunctionCodeOutcome outcome =
 client.UpdateFunctionCode(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda code was successfully updated." <<
 std::endl;
 }
 else {
 std::cerr << "Error with Lambda::UpdateFunctionCode. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 }

 std::cout
 << "This function uses an environment variable to control the logging
 level."
 << std::endl;
 std::cout
 << "UpdateFunctionConfiguration will be used to set the LOG_LEVEL to
 DEBUG."
 << std::endl;
 seconds = 0;

 // 5. Update the Lambda function configuration.
 do {
 ++seconds;
 std::this_thread::sleep_for(std::chrono::seconds(1));
 Aws::Lambda::Model::UpdateFunctionConfigurationRequest request;
 request.SetFunctionName(LAMBDA_NAME);

Get started with functions 1950

Amazon Lambda Developer Guide

 Aws::Lambda::Model::Environment environment;
 environment.AddVariables("LOG_LEVEL", "DEBUG");
 request.SetEnvironment(environment);

 Aws::Lambda::Model::UpdateFunctionConfigurationOutcome outcome =
 client.UpdateFunctionConfiguration(
 request);

 if (outcome.IsSuccess()) {
 std::cout << "The lambda configuration was successfully updated."
 << std::endl;
 break;
 }

 // RESOURCE_IN_USE: function code update not completed.
 else if (outcome.GetError().GetErrorType() !=
 Aws::Lambda::LambdaErrors::RESOURCE_IN_USE) {
 if ((seconds % 10) == 0) { // Log status every 10 seconds.
 std::cout << "Lambda function update in progress . After " <<
 seconds
 << " seconds elapsed." << std::endl;
 }
 }
 else {
 std::cerr << "Error with Lambda::UpdateFunctionConfiguration. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 } while (0 < seconds);

 if (0 > seconds) {
 std::cerr << "Function failed to become active." << std::endl;
 }
 else {
 std::cout << "Updated function active after " << seconds << " seconds."
 << std::endl;
 }

 std::cout
 << "\nThe new code applies an arithmetic operator to two variables, x
 an y."
 << std::endl;

Get started with functions 1951

Amazon Lambda Developer Guide

 std::vector<Aws::String> operators = {"plus", "minus", "times", "divided-
by"};
 for (size_t i = 0; i < operators.size(); ++i) {
 std::cout << " " << i + 1 << " " << operators[i] << std::endl;
 }

 // 6. Invoke the updated Lambda function.
 do {
 int operatorIndex = askQuestionForIntRange("Select an operator index 1 -
 4 ", 1,
 4);
 int x = askQuestionForInt("Enter an integer for the x value ");
 int y = askQuestionForInt("Enter an integer for the y value ");

 Aws::Utils::Json::JsonValue calculateJsonPayload;
 calculateJsonPayload.WithString("action", operators[operatorIndex - 1]);
 calculateJsonPayload.WithInteger("x", x);
 calculateJsonPayload.WithInteger("y", y);
 Aws::Lambda::Model::InvokeResult calculatedResult;
 if (invokeLambdaFunction(calculateJsonPayload,
 Aws::Lambda::Model::LogType::Tail,
 calculatedResult, client)) {
 Aws::Utils::Json::JsonValue jsonValue(calculatedResult.GetPayload());
 Aws::Map<Aws::String, Aws::Utils::Json::JsonView> values =
 jsonValue.View().GetAllObjects();
 auto iter = values.find("result");
 if (iter != values.end() && iter->second.IsIntegerType()) {
 std::cout << ARITHMETIC_RESUlT_PREFIX << x << " "
 << operators[operatorIndex - 1] << " "
 << y << " is " << iter->second.AsInteger() <<
 std::endl;
 }
 else if (iter != values.end() && iter->second.IsFloatingPointType())
 {
 std::cout << ARITHMETIC_RESUlT_PREFIX << x << " "
 << operators[operatorIndex - 1] << " "
 << y << " is " << iter->second.AsDouble() << std::endl;
 }
 else {
 std::cout << "There was an error in execution. Here is the log."
 << std::endl;
 Aws::Utils::ByteBuffer buffer =
 Aws::Utils::HashingUtils::Base64Decode(
 calculatedResult.GetLogResult());

Get started with functions 1952

Amazon Lambda Developer Guide

 std::cout << "With log " << buffer.GetUnderlyingData() <<
 std::endl;
 }
 }

 answer = askQuestion("Would you like to try another operation? (y/n) ");
 } while (answer == "y");

 std::cout
 << "A list of the lambda functions will be retrieved. Press return to
 continue, ";
 std::getline(std::cin, answer);

 // 7. List the Lambda functions.

 std::vector<Aws::String> functions;
 Aws::String marker;

 do {
 Aws::Lambda::Model::ListFunctionsRequest request;
 if (!marker.empty()) {
 request.SetMarker(marker);
 }

 Aws::Lambda::Model::ListFunctionsOutcome outcome = client.ListFunctions(
 request);

 if (outcome.IsSuccess()) {
 const Aws::Lambda::Model::ListFunctionsResult &result =
 outcome.GetResult();
 std::cout << result.GetFunctions().size()
 << " lambda functions were retrieved." << std::endl;

 for (const Aws::Lambda::Model::FunctionConfiguration
 &functionConfiguration: result.GetFunctions()) {
 functions.push_back(functionConfiguration.GetFunctionName());
 std::cout << functions.size() << " "
 << functionConfiguration.GetDescription() << std::endl;
 std::cout << " "
 <<
 Aws::Lambda::Model::RuntimeMapper::GetNameForRuntime(
 functionConfiguration.GetRuntime()) << ": "
 << functionConfiguration.GetHandler()
 << std::endl;

Get started with functions 1953

Amazon Lambda Developer Guide

 }
 marker = result.GetNextMarker();
 }
 else {
 std::cerr << "Error with Lambda::ListFunctions. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 } while (!marker.empty());

 // 8. Get a Lambda function.
 if (!functions.empty()) {
 std::stringstream question;
 question << "Choose a function to retrieve between 1 and " <<
 functions.size()
 << " ";
 int functionIndex = askQuestionForIntRange(question.str(), 1,

 static_cast<int>(functions.size()));

 Aws::String functionName = functions[functionIndex - 1];

 Aws::Lambda::Model::GetFunctionRequest request;
 request.SetFunctionName(functionName);

 Aws::Lambda::Model::GetFunctionOutcome outcome =
 client.GetFunction(request);

 if (outcome.IsSuccess()) {
 std::cout << "Function retrieve.\n" <<

 outcome.GetResult().GetConfiguration().Jsonize().View().WriteReadable()
 << std::endl;
 }
 else {
 std::cerr << "Error with Lambda::GetFunction. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 }

 std::cout << "The resources will be deleted. Press return to continue, ";
 std::getline(std::cin, answer);

Get started with functions 1954

Amazon Lambda Developer Guide

 // 9. Delete the Lambda function.
 bool result = deleteLambdaFunction(client);

 // 10. Delete the IAM role.
 return result && deleteIamRole(clientConfig);
}

//! Routine which invokes a Lambda function and returns the result.
/*!
 \param jsonPayload: Payload for invoke function.
 \param logType: Log type setting for invoke function.
 \param invokeResult: InvokeResult object to receive the result.
 \param client: Lambda client.
 \return bool: Successful completion.
 */
bool
AwsDoc::Lambda::invokeLambdaFunction(const Aws::Utils::Json::JsonValue
 &jsonPayload,
 Aws::Lambda::Model::LogType logType,
 Aws::Lambda::Model::InvokeResult
 &invokeResult,
 const Aws::Lambda::LambdaClient &client) {
 int seconds = 0;
 bool result = false;
 /*
 * In this example, the Invoke function can be called before recently created
 resources are
 * available. The Invoke function is called repeatedly until the resources
 are
 * available.
 */
 do {
 Aws::Lambda::Model::InvokeRequest request;
 request.SetFunctionName(LAMBDA_NAME);
 request.SetLogType(logType);
 std::shared_ptr<Aws::IOStream> payload =
 Aws::MakeShared<Aws::StringStream>(
 "FunctionTest");
 *payload << jsonPayload.View().WriteReadable();
 request.SetBody(payload);
 request.SetContentType("application/json");
 Aws::Lambda::Model::InvokeOutcome outcome = client.Invoke(request);

 if (outcome.IsSuccess()) {

Get started with functions 1955

Amazon Lambda Developer Guide

 invokeResult = std::move(outcome.GetResult());
 result = true;
 break;
 }

 // ACCESS_DENIED: because the role is not available yet.
 // RESOURCE_CONFLICT: because the Lambda function is being created or
 updated.
 else if ((outcome.GetError().GetErrorType() ==
 Aws::Lambda::LambdaErrors::ACCESS_DENIED) ||
 (outcome.GetError().GetErrorType() ==
 Aws::Lambda::LambdaErrors::RESOURCE_CONFLICT)) {
 if ((seconds % 5) == 0) { // Log status every 10 seconds.
 std::cout << "Waiting for the invoke api to be available, status
 " <<
 ((outcome.GetError().GetErrorType() ==
 Aws::Lambda::LambdaErrors::ACCESS_DENIED ?
 "ACCESS_DENIED" : "RESOURCE_CONFLICT")) << ". " <<
 seconds
 << " seconds elapsed." << std::endl;
 }
 }
 else {
 std::cerr << "Error with Lambda::InvokeRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 break;
 }
 ++seconds;
 std::this_thread::sleep_for(std::chrono::seconds(1));
 } while (seconds < 60);

 return result;
}

• For API details, see the following topics in Amazon SDK for C++ API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

Get started with functions 1956

https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/CreateFunction
https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/DeleteFunction
https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/GetFunction
https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/Invoke

Amazon Lambda Developer Guide

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create an interactive scenario that shows you how to get started with Lambda functions.

// GetStartedFunctionsScenario shows you how to use AWS Lambda to perform the
 following
// actions:
//
// 1. Create an AWS Identity and Access Management (IAM) role and Lambda
 function, then upload handler code.
// 2. Invoke the function with a single parameter and get results.
// 3. Update the function code and configure with an environment variable.
// 4. Invoke the function with new parameters and get results. Display the
 returned execution log.
// 5. List the functions for your account, then clean up resources.
type GetStartedFunctionsScenario struct {
 sdkConfig aws.Config
 functionWrapper actions.FunctionWrapper
 questioner demotools.IQuestioner
 helper IScenarioHelper
 isTestRun bool
}

// NewGetStartedFunctionsScenario constructs a GetStartedFunctionsScenario
 instance from a configuration.
// It uses the specified config to get a Lambda client and create wrappers for
 the actions
// used in the scenario.

Get started with functions 1957

https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/ListFunctions
https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/UpdateFunctionCode
https://docs.amazonaws.cn/goto/SdkForCpp/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/lambda#code-examples

Amazon Lambda Developer Guide

func NewGetStartedFunctionsScenario(sdkConfig aws.Config, questioner
 demotools.IQuestioner,
 helper IScenarioHelper) GetStartedFunctionsScenario {
 lambdaClient := lambda.NewFromConfig(sdkConfig)
 return GetStartedFunctionsScenario{
 sdkConfig: sdkConfig,
 functionWrapper: actions.FunctionWrapper{LambdaClient: lambdaClient},
 questioner: questioner,
 helper: helper,
 }
}

// Run runs the interactive scenario.
func (scenario GetStartedFunctionsScenario) Run() {
 defer func() {
 if r := recover(); r != nil {
 log.Printf("Something went wrong with the demo.\n")
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Println("Welcome to the AWS Lambda get started with functions demo.")
 log.Println(strings.Repeat("-", 88))

 role := scenario.GetOrCreateRole()
 funcName := scenario.CreateFunction(role)
 scenario.InvokeIncrement(funcName)
 scenario.UpdateFunction(funcName)
 scenario.InvokeCalculator(funcName)
 scenario.ListFunctions()
 scenario.Cleanup(role, funcName)

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

// GetOrCreateRole checks whether the specified role exists and returns it if it
 does.
// Otherwise, a role is created that specifies Lambda as a trusted principal.
// The AWSLambdaBasicExecutionRole managed policy is attached to the role and the
 role
// is returned.
func (scenario GetStartedFunctionsScenario) GetOrCreateRole() *iamtypes.Role {

Get started with functions 1958

Amazon Lambda Developer Guide

 var role *iamtypes.Role
 iamClient := iam.NewFromConfig(scenario.sdkConfig)
 log.Println("First, we need an IAM role that Lambda can assume.")
 roleName := scenario.questioner.Ask("Enter a name for the role:",
 demotools.NotEmpty{})
 getOutput, err := iamClient.GetRole(context.TODO(), &iam.GetRoleInput{
 RoleName: aws.String(roleName)})
 if err != nil {
 var noSuch *iamtypes.NoSuchEntityException
 if errors.As(err, &noSuch) {
 log.Printf("Role %v doesn't exist. Creating it....\n", roleName)
 } else {
 log.Panicf("Couldn't check whether role %v exists. Here's why: %v\n",
 roleName, err)
 }
 } else {
 role = getOutput.Role
 log.Printf("Found role %v.\n", *role.RoleName)
 }
 if role == nil {
 trustPolicy := PolicyDocument{
 Version: "2012-10-17",
 Statement: []PolicyStatement{{
 Effect: "Allow",
 Principal: map[string]string{"Service": "lambda.amazonaws.com"},
 Action: []string{"sts:AssumeRole"},
 }},
 }
 policyArn := "arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole"
 createOutput, err := iamClient.CreateRole(context.TODO(), &iam.CreateRoleInput{
 AssumeRolePolicyDocument: aws.String(trustPolicy.String()),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Panicf("Couldn't create role %v. Here's why: %v\n", roleName, err)
 }
 role = createOutput.Role
 _, err = iamClient.AttachRolePolicy(context.TODO(), &iam.AttachRolePolicyInput{
 PolicyArn: aws.String(policyArn),
 RoleName: aws.String(roleName),
 })
 if err != nil {
 log.Panicf("Couldn't attach a policy to role %v. Here's why: %v\n", roleName,
 err)

Get started with functions 1959

Amazon Lambda Developer Guide

 }
 log.Printf("Created role %v.\n", *role.RoleName)
 log.Println("Let's give AWS a few seconds to propagate resources...")
 scenario.helper.Pause(10)
 }
 log.Println(strings.Repeat("-", 88))
 return role
}

// CreateFunction creates a Lambda function and uploads a handler written in
 Python.
// The code for the Python handler is packaged as a []byte in .zip format.
func (scenario GetStartedFunctionsScenario) CreateFunction(role *iamtypes.Role)
 string {
 log.Println("Let's create a function that increments a number.\n" +
 "The function uses the 'lambda_handler_basic.py' script found in the \n" +
 "'handlers' directory of this project.")
 funcName := scenario.questioner.Ask("Enter a name for the Lambda function:",
 demotools.NotEmpty{})
 zipPackage := scenario.helper.CreateDeploymentPackage("lambda_handler_basic.py",
 fmt.Sprintf("%v.py", funcName))
 log.Printf("Creating function %v and waiting for it to be ready.", funcName)
 funcState := scenario.functionWrapper.CreateFunction(funcName,
 fmt.Sprintf("%v.lambda_handler", funcName),
 role.Arn, zipPackage)
 log.Printf("Your function is %v.", funcState)
 log.Println(strings.Repeat("-", 88))
 return funcName
}

// InvokeIncrement invokes a Lambda function that increments a number. The
 function
// parameters are contained in a Go struct that is used to serialize the
 parameters to
// a JSON payload that is passed to the function.
// The result payload is deserialized into a Go struct that contains an int
 value.
func (scenario GetStartedFunctionsScenario) InvokeIncrement(funcName string) {
 parameters := actions.IncrementParameters{Action: "increment"}
 log.Println("Let's invoke our function. This function increments a number.")
 parameters.Number = scenario.questioner.AskInt("Enter a number to increment:",
 demotools.NotEmpty{})
 log.Printf("Invoking %v with %v...\n", funcName, parameters.Number)
 invokeOutput := scenario.functionWrapper.Invoke(funcName, parameters, false)

Get started with functions 1960

Amazon Lambda Developer Guide

 var payload actions.LambdaResultInt
 err := json.Unmarshal(invokeOutput.Payload, &payload)
 if err != nil {
 log.Panicf("Couldn't unmarshal payload from invoking %v. Here's why: %v\n",
 funcName, err)
 }
 log.Printf("Invoking %v with %v returned %v.\n", funcName, parameters.Number,
 payload)
 log.Println(strings.Repeat("-", 88))
}

// UpdateFunction updates the code for a Lambda function by uploading a simple
 arithmetic
// calculator written in Python. The code for the Python handler is packaged as a
// []byte in .zip format.
// After the code is updated, the configuration is also updated with a new log
// level that instructs the handler to log additional information.
func (scenario GetStartedFunctionsScenario) UpdateFunction(funcName string) {
 log.Println("Let's update the function to an arithmetic calculator.\n" +
 "The function uses the 'lambda_handler_calculator.py' script found in the \n" +
 "'handlers' directory of this project.")
 scenario.questioner.Ask("Press Enter when you're ready.")
 log.Println("Creating deployment package...")
 zipPackage :=
 scenario.helper.CreateDeploymentPackage("lambda_handler_calculator.py",
 fmt.Sprintf("%v.py", funcName))
 log.Println("...and updating the Lambda function and waiting for it to be
 ready.")
 funcState := scenario.functionWrapper.UpdateFunctionCode(funcName, zipPackage)
 log.Printf("Updated function %v. Its current state is %v.", funcName, funcState)
 log.Println("This function uses an environment variable to control logging
 level.")
 log.Println("Let's set it to DEBUG to get the most logging.")
 scenario.functionWrapper.UpdateFunctionConfiguration(funcName,
 map[string]string{"LOG_LEVEL": "DEBUG"})
 log.Println(strings.Repeat("-", 88))
}

// InvokeCalculator invokes the Lambda calculator function. The parameters are
 stored in a
// Go struct that is used to serialize the parameters to a JSON payload. That
 payload is then passed
// to the function.

Get started with functions 1961

Amazon Lambda Developer Guide

// The result payload is deserialized to a Go struct that stores the result as
 either an
// int or float32, depending on the kind of operation that was specified.
func (scenario GetStartedFunctionsScenario) InvokeCalculator(funcName string) {
 wantInvoke := true
 choices := []string{"plus", "minus", "times", "divided-by"}
 for wantInvoke {
 choice := scenario.questioner.AskChoice("Select an arithmetic operation:\n",
 choices)
 x := scenario.questioner.AskInt("Enter a value for x:", demotools.NotEmpty{})
 y := scenario.questioner.AskInt("Enter a value for y:", demotools.NotEmpty{})
 log.Printf("Invoking %v %v %v...", x, choices[choice], y)
 calcParameters := actions.CalculatorParameters{
 Action: choices[choice],
 X: x,
 Y: y,
 }
 invokeOutput := scenario.functionWrapper.Invoke(funcName, calcParameters, true)
 var payload any
 if choice == 3 { // divide-by results in a float.
 payload = actions.LambdaResultFloat{}
 } else {
 payload = actions.LambdaResultInt{}
 }
 err := json.Unmarshal(invokeOutput.Payload, &payload)
 if err != nil {
 log.Panicf("Couldn't unmarshal payload from invoking %v. Here's why: %v\n",
 funcName, err)
 }
 log.Printf("Invoking %v with %v %v %v returned %v.\n", funcName,
 calcParameters.X, calcParameters.Action, calcParameters.Y, payload)
 scenario.questioner.Ask("Press Enter to see the logs from the call.")
 logRes, err := base64.StdEncoding.DecodeString(*invokeOutput.LogResult)
 if err != nil {
 log.Panicf("Couldn't decode log result. Here's why: %v\n", err)
 }
 log.Println(string(logRes))
 wantInvoke = scenario.questioner.AskBool("Do you want to calculate again? (y/
n)", "y")
 }
 log.Println(strings.Repeat("-", 88))
}

// ListFunctions lists up to the specified number of functions for your account.

Get started with functions 1962

Amazon Lambda Developer Guide

func (scenario GetStartedFunctionsScenario) ListFunctions() {
 count := scenario.questioner.AskInt(
 "Let's list functions for your account. How many do you want to see?",
 demotools.NotEmpty{})
 functions := scenario.functionWrapper.ListFunctions(count)
 log.Printf("Found %v functions:", len(functions))
 for _, function := range functions {
 log.Printf("\t%v", *function.FunctionName)
 }
 log.Println(strings.Repeat("-", 88))
}

// Cleanup removes the IAM and Lambda resources created by the example.
func (scenario GetStartedFunctionsScenario) Cleanup(role *iamtypes.Role, funcName
 string) {
 if scenario.questioner.AskBool("Do you want to clean up resources created for
 this example? (y/n)",
 "y") {
 iamClient := iam.NewFromConfig(scenario.sdkConfig)
 policiesOutput, err := iamClient.ListAttachedRolePolicies(context.TODO(),
 &iam.ListAttachedRolePoliciesInput{RoleName: role.RoleName})
 if err != nil {
 log.Panicf("Couldn't get policies attached to role %v. Here's why: %v\n",
 *role.RoleName, err)
 }
 for _, policy := range policiesOutput.AttachedPolicies {
 _, err = iamClient.DetachRolePolicy(context.TODO(),
 &iam.DetachRolePolicyInput{
 PolicyArn: policy.PolicyArn, RoleName: role.RoleName,
 })
 if err != nil {
 log.Panicf("Couldn't detach policy %v from role %v. Here's why: %v\n",
 *policy.PolicyArn, *role.RoleName, err)
 }
 }
 _, err = iamClient.DeleteRole(context.TODO(), &iam.DeleteRoleInput{RoleName:
 role.RoleName})
 if err != nil {
 log.Panicf("Couldn't delete role %v. Here's why: %v\n", *role.RoleName, err)
 }
 log.Printf("Deleted role %v.\n", *role.RoleName)

 scenario.functionWrapper.DeleteFunction(funcName)
 log.Printf("Deleted function %v.\n", funcName)

Get started with functions 1963

Amazon Lambda Developer Guide

 } else {
 log.Println("Okay. Don't forget to delete the resources when you're done with
 them.")
 }
}

Create a struct that wraps individual Lambda actions.

// FunctionWrapper encapsulates function actions used in the examples.
// It contains an AWS Lambda service client that is used to perform user actions.
type FunctionWrapper struct {
 LambdaClient *lambda.Client
}

// GetFunction gets data about the Lambda function specified by functionName.
func (wrapper FunctionWrapper) GetFunction(functionName string) types.State {
 var state types.State
 funcOutput, err := wrapper.LambdaClient.GetFunction(context.TODO(),
 &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName),
 })
 if err != nil {
 log.Panicf("Couldn't get function %v. Here's why: %v\n", functionName, err)
 } else {
 state = funcOutput.Configuration.State
 }
 return state
}

// CreateFunction creates a new Lambda function from code contained in the
 zipPackage
// buffer. The specified handlerName must match the name of the file and function
// contained in the uploaded code. The role specified by iamRoleArn is assumed by
// Lambda and grants specific permissions.
// When the function already exists, types.StateActive is returned.
// When the function is created, a lambda.FunctionActiveV2Waiter is used to wait
 until the

Get started with functions 1964

Amazon Lambda Developer Guide

// function is active.
func (wrapper FunctionWrapper) CreateFunction(functionName string, handlerName
 string,
 iamRoleArn *string, zipPackage *bytes.Buffer) types.State {
 var state types.State
 _, err := wrapper.LambdaClient.CreateFunction(context.TODO(),
 &lambda.CreateFunctionInput{
 Code: &types.FunctionCode{ZipFile: zipPackage.Bytes()},
 FunctionName: aws.String(functionName),
 Role: iamRoleArn,
 Handler: aws.String(handlerName),
 Publish: true,
 Runtime: types.RuntimePython38,
 })
 if err != nil {
 var resConflict *types.ResourceConflictException
 if errors.As(err, &resConflict) {
 log.Printf("Function %v already exists.\n", functionName)
 state = types.StateActive
 } else {
 log.Panicf("Couldn't create function %v. Here's why: %v\n", functionName, err)
 }
 } else {
 waiter := lambda.NewFunctionActiveV2Waiter(wrapper.LambdaClient)
 funcOutput, err := waiter.WaitForOutput(context.TODO(),
 &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName)}, 1*time.Minute)
 if err != nil {
 log.Panicf("Couldn't wait for function %v to be active. Here's why: %v\n",
 functionName, err)
 } else {
 state = funcOutput.Configuration.State
 }
 }
 return state
}

// UpdateFunctionCode updates the code for the Lambda function specified by
 functionName.
// The existing code for the Lambda function is entirely replaced by the code in
 the

Get started with functions 1965

Amazon Lambda Developer Guide

// zipPackage buffer. After the update action is called, a
 lambda.FunctionUpdatedV2Waiter
// is used to wait until the update is successful.
func (wrapper FunctionWrapper) UpdateFunctionCode(functionName string, zipPackage
 *bytes.Buffer) types.State {
 var state types.State
 _, err := wrapper.LambdaClient.UpdateFunctionCode(context.TODO(),
 &lambda.UpdateFunctionCodeInput{
 FunctionName: aws.String(functionName), ZipFile: zipPackage.Bytes(),
 })
 if err != nil {
 log.Panicf("Couldn't update code for function %v. Here's why: %v\n",
 functionName, err)
 } else {
 waiter := lambda.NewFunctionUpdatedV2Waiter(wrapper.LambdaClient)
 funcOutput, err := waiter.WaitForOutput(context.TODO(),
 &lambda.GetFunctionInput{
 FunctionName: aws.String(functionName)}, 1*time.Minute)
 if err != nil {
 log.Panicf("Couldn't wait for function %v to be active. Here's why: %v\n",
 functionName, err)
 } else {
 state = funcOutput.Configuration.State
 }
 }
 return state
}

// UpdateFunctionConfiguration updates a map of environment variables configured
 for
// the Lambda function specified by functionName.
func (wrapper FunctionWrapper) UpdateFunctionConfiguration(functionName string,
 envVars map[string]string) {
 _, err := wrapper.LambdaClient.UpdateFunctionConfiguration(context.TODO(),
 &lambda.UpdateFunctionConfigurationInput{
 FunctionName: aws.String(functionName),
 Environment: &types.Environment{Variables: envVars},
 })
 if err != nil {
 log.Panicf("Couldn't update configuration for %v. Here's why: %v",
 functionName, err)
 }

Get started with functions 1966

Amazon Lambda Developer Guide

}

// ListFunctions lists up to maxItems functions for the account. This function
 uses a
// lambda.ListFunctionsPaginator to paginate the results.
func (wrapper FunctionWrapper) ListFunctions(maxItems int)
 []types.FunctionConfiguration {
 var functions []types.FunctionConfiguration
 paginator := lambda.NewListFunctionsPaginator(wrapper.LambdaClient,
 &lambda.ListFunctionsInput{
 MaxItems: aws.Int32(int32(maxItems)),
 })
 for paginator.HasMorePages() && len(functions) < maxItems {
 pageOutput, err := paginator.NextPage(context.TODO())
 if err != nil {
 log.Panicf("Couldn't list functions for your account. Here's why: %v\n", err)
 }
 functions = append(functions, pageOutput.Functions...)
 }
 return functions
}

// DeleteFunction deletes the Lambda function specified by functionName.
func (wrapper FunctionWrapper) DeleteFunction(functionName string) {
 _, err := wrapper.LambdaClient.DeleteFunction(context.TODO(),
 &lambda.DeleteFunctionInput{
 FunctionName: aws.String(functionName),
 })
 if err != nil {
 log.Panicf("Couldn't delete function %v. Here's why: %v\n", functionName, err)
 }
}

// Invoke invokes the Lambda function specified by functionName, passing the
 parameters
// as a JSON payload. When getLog is true, types.LogTypeTail is specified, which
 tells
// Lambda to include the last few log lines in the returned result.

Get started with functions 1967

Amazon Lambda Developer Guide

func (wrapper FunctionWrapper) Invoke(functionName string, parameters any, getLog
 bool) *lambda.InvokeOutput {
 logType := types.LogTypeNone
 if getLog {
 logType = types.LogTypeTail
 }
 payload, err := json.Marshal(parameters)
 if err != nil {
 log.Panicf("Couldn't marshal parameters to JSON. Here's why %v\n", err)
 }
 invokeOutput, err := wrapper.LambdaClient.Invoke(context.TODO(),
 &lambda.InvokeInput{
 FunctionName: aws.String(functionName),
 LogType: logType,
 Payload: payload,
 })
 if err != nil {
 log.Panicf("Couldn't invoke function %v. Here's why: %v\n", functionName, err)
 }
 return invokeOutput
}

// IncrementParameters is used to serialize parameters to the increment Lambda
 handler.
type IncrementParameters struct {
 Action string `json:"action"`
 Number int `json:"number"`
}

// CalculatorParameters is used to serialize parameters to the calculator Lambda
 handler.
type CalculatorParameters struct {
 Action string `json:"action"`
 X int `json:"x"`
 Y int `json:"y"`
}

// LambdaResultInt is used to deserialize an int result from a Lambda handler.
type LambdaResultInt struct {
 Result int `json:"result"`
}

Get started with functions 1968

Amazon Lambda Developer Guide

// LambdaResultFloat is used to deserialize a float32 result from a Lambda
 handler.
type LambdaResultFloat struct {
 Result float32 `json:"result"`
}

Create a struct that implements functions to help run the scenario.

// IScenarioHelper abstracts I/O and wait functions from a scenario so that they
// can be mocked for unit testing.
type IScenarioHelper interface {
 Pause(secs int)
 CreateDeploymentPackage(sourceFile string, destinationFile string) *bytes.Buffer
}

// ScenarioHelper lets the caller specify the path to Lambda handler functions.
type ScenarioHelper struct {
 HandlerPath string
}

// Pause waits for the specified number of seconds.
func (helper *ScenarioHelper) Pause(secs int) {
 time.Sleep(time.Duration(secs) * time.Second)
}

// CreateDeploymentPackage creates an AWS Lambda deployment package from a source
 file. The
// deployment package is stored in .zip format in a bytes.Buffer. The buffer can
 be
// used to pass a []byte to Lambda when creating the function.
// The specified destinationFile is the name to give the file when it's deployed
 to Lambda.
func (helper *ScenarioHelper) CreateDeploymentPackage(sourceFile string,
 destinationFile string) *bytes.Buffer {
 var err error
 buffer := &bytes.Buffer{}
 writer := zip.NewWriter(buffer)
 zFile, err := writer.Create(destinationFile)
 if err != nil {

Get started with functions 1969

Amazon Lambda Developer Guide

 log.Panicf("Couldn't create destination archive %v. Here's why: %v\n",
 destinationFile, err)
 }
 sourceBody, err := os.ReadFile(fmt.Sprintf("%v/%v", helper.HandlerPath,
 sourceFile))
 if err != nil {
 log.Panicf("Couldn't read handler source file %v. Here's why: %v\n",
 sourceFile, err)
 } else {
 _, err = zFile.Write(sourceBody)
 if err != nil {
 log.Panicf("Couldn't write handler %v to zip archive. Here's why: %v\n",
 sourceFile, err)
 }
 }
 err = writer.Close()
 if err != nil {
 log.Panicf("Couldn't close zip writer. Here's why: %v\n", err)
 }
 return buffer
}

Define a Lambda handler that increments a number.

import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
 """
 Accepts an action and a single number, performs the specified action on the
 number,
 and returns the result. The only allowable action is 'increment'.

 :param event: The event dict that contains the parameters sent when the
 function
 is invoked.
 :param context: The context in which the function is called.
 :return: The result of the action.

Get started with functions 1970

Amazon Lambda Developer Guide

 """
 result = None
 action = event.get("action")
 if action == "increment":
 result = event.get("number", 0) + 1
 logger.info("Calculated result of %s", result)
 else:
 logger.error("%s is not a valid action.", action)

 response = {"result": result}
 return response

Define a second Lambda handler that performs arithmetic operations.

import logging
import os

logger = logging.getLogger()

Define a list of Python lambda functions that are called by this AWS Lambda
 function.
ACTIONS = {
 "plus": lambda x, y: x + y,
 "minus": lambda x, y: x - y,
 "times": lambda x, y: x * y,
 "divided-by": lambda x, y: x / y,
}

def lambda_handler(event, context):
 """
 Accepts an action and two numbers, performs the specified action on the
 numbers,
 and returns the result.

 :param event: The event dict that contains the parameters sent when the
 function
 is invoked.
 :param context: The context in which the function is called.

Get started with functions 1971

Amazon Lambda Developer Guide

 :return: The result of the specified action.
 """
 # Set the log level based on a variable configured in the Lambda environment.
 logger.setLevel(os.environ.get("LOG_LEVEL", logging.INFO))
 logger.debug("Event: %s", event)

 action = event.get("action")
 func = ACTIONS.get(action)
 x = event.get("x")
 y = event.get("y")
 result = None
 try:
 if func is not None and x is not None and y is not None:
 result = func(x, y)
 logger.info("%s %s %s is %s", x, action, y, result)
 else:
 logger.error("I can't calculate %s %s %s.", x, action, y)
 except ZeroDivisionError:
 logger.warning("I can't divide %s by 0!", x)

 response = {"result": result}
 return response

• For API details, see the following topics in Amazon SDK for Go API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Get started with functions 1972

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.CreateFunction
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.DeleteFunction
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.GetFunction
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.Invoke
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.ListFunctions
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.UpdateFunctionCode
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/lambda#Client.UpdateFunctionConfiguration

Amazon Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

/*
 * Lambda function names appear as:
 *
 * arn:aws:lambda:us-west-2:335556666777:function:HelloFunction
 *
 * To find this value, look at the function in the AWS Management Console.
 *
 * Before running this Java code example, set up your development environment,
 including your credentials.
 *
 * For more information, see this documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * This example performs the following tasks:
 *
 * 1. Creates an AWS Lambda function.
 * 2. Gets a specific AWS Lambda function.
 * 3. Lists all Lambda functions.
 * 4. Invokes a Lambda function.
 * 5. Updates the Lambda function code and invokes it again.
 * 6. Updates a Lambda function's configuration value.
 * 7. Deletes a Lambda function.
 */

public class LambdaScenario {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 public static void main(String[] args) throws InterruptedException {
 final String usage = """

Get started with functions 1973

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/lambda#readme

Amazon Lambda Developer Guide

 Usage:
 <functionName> <filePath> <role> <handler> <bucketName> <key>
\s

 Where:
 functionName - The name of the Lambda function.\s
 filePath - The path to the .zip or .jar where the code is
 located.\s
 role - The AWS Identity and Access Management (IAM) service
 role that has Lambda permissions.\s
 handler - The fully qualified method name (for example,
 example.Handler::handleRequest).\s
 bucketName - The Amazon Simple Storage Service (Amazon S3)
 bucket name that contains the .zip or .jar used to update the Lambda function's
 code.\s
 key - The Amazon S3 key name that represents the .zip or .jar
 (for example, LambdaHello-1.0-SNAPSHOT.jar).
 """;

 if (args.length != 6) {
 System.out.println(usage);
 System.exit(1);
 }

 String functionName = args[0];
 String filePath = args[1];
 String role = args[2];
 String handler = args[3];
 String bucketName = args[4];
 String key = args[5];

 Region region = Region.US_WEST_2;
 LambdaClient awsLambda = LambdaClient.builder()
 .region(region)
 .build();

 System.out.println(DASHES);
 System.out.println("Welcome to the AWS Lambda example scenario.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("1. Create an AWS Lambda function.");

Get started with functions 1974

Amazon Lambda Developer Guide

 String funArn = createLambdaFunction(awsLambda, functionName, filePath,
 role, handler);
 System.out.println("The AWS Lambda ARN is " + funArn);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("2. Get the " + functionName + " AWS Lambda
 function.");
 getFunction(awsLambda, functionName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. List all AWS Lambda functions.");
 listFunctions(awsLambda);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Invoke the Lambda function.");
 System.out.println("*** Sleep for 1 min to get Lambda function ready.");
 Thread.sleep(60000);
 invokeFunction(awsLambda, functionName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("5. Update the Lambda function code and invoke it
 again.");
 updateFunctionCode(awsLambda, functionName, bucketName, key);
 System.out.println("*** Sleep for 1 min to get Lambda function ready.");
 Thread.sleep(60000);
 invokeFunction(awsLambda, functionName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6. Update a Lambda function's configuration value.");
 updateFunctionConfiguration(awsLambda, functionName, handler);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Delete the AWS Lambda function.");
 LambdaScenario.deleteLambdaFunction(awsLambda, functionName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("The AWS Lambda scenario completed successfully");

Get started with functions 1975

Amazon Lambda Developer Guide

 System.out.println(DASHES);
 awsLambda.close();
 }

 public static String createLambdaFunction(LambdaClient awsLambda,
 String functionName,
 String filePath,
 String role,
 String handler) {

 try {
 LambdaWaiter waiter = awsLambda.waiter();
 InputStream is = new FileInputStream(filePath);
 SdkBytes fileToUpload = SdkBytes.fromInputStream(is);

 FunctionCode code = FunctionCode.builder()
 .zipFile(fileToUpload)
 .build();

 CreateFunctionRequest functionRequest =
 CreateFunctionRequest.builder()
 .functionName(functionName)
 .description("Created by the Lambda Java API")
 .code(code)
 .handler(handler)
 .runtime(Runtime.JAVA8)
 .role(role)
 .build();

 // Create a Lambda function using a waiter
 CreateFunctionResponse functionResponse =
 awsLambda.createFunction(functionRequest);
 GetFunctionRequest getFunctionRequest = GetFunctionRequest.builder()
 .functionName(functionName)
 .build();
 WaiterResponse<GetFunctionResponse> waiterResponse =
 waiter.waitUntilFunctionExists(getFunctionRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 return functionResponse.functionArn();

 } catch (LambdaException | FileNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

Get started with functions 1976

Amazon Lambda Developer Guide

 return "";
 }

 public static void getFunction(LambdaClient awsLambda, String functionName) {
 try {
 GetFunctionRequest functionRequest = GetFunctionRequest.builder()
 .functionName(functionName)
 .build();

 GetFunctionResponse response =
 awsLambda.getFunction(functionRequest);
 System.out.println("The runtime of this Lambda function is " +
 response.configuration().runtime());

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void listFunctions(LambdaClient awsLambda) {
 try {
 ListFunctionsResponse functionResult = awsLambda.listFunctions();
 List<FunctionConfiguration> list = functionResult.functions();
 for (FunctionConfiguration config : list) {
 System.out.println("The function name is " +
 config.functionName());
 }

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void invokeFunction(LambdaClient awsLambda, String
 functionName) {

 InvokeResponse res;
 try {
 // Need a SdkBytes instance for the payload.
 JSONObject jsonObj = new JSONObject();
 jsonObj.put("inputValue", "2000");
 String json = jsonObj.toString();

Get started with functions 1977

Amazon Lambda Developer Guide

 SdkBytes payload = SdkBytes.fromUtf8String(json);

 InvokeRequest request = InvokeRequest.builder()
 .functionName(functionName)
 .payload(payload)
 .build();

 res = awsLambda.invoke(request);
 String value = res.payload().asUtf8String();
 System.out.println(value);

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void updateFunctionCode(LambdaClient awsLambda, String
 functionName, String bucketName, String key) {
 try {
 LambdaWaiter waiter = awsLambda.waiter();
 UpdateFunctionCodeRequest functionCodeRequest =
 UpdateFunctionCodeRequest.builder()
 .functionName(functionName)
 .publish(true)
 .s3Bucket(bucketName)
 .s3Key(key)
 .build();

 UpdateFunctionCodeResponse response =
 awsLambda.updateFunctionCode(functionCodeRequest);
 GetFunctionConfigurationRequest getFunctionConfigRequest =
 GetFunctionConfigurationRequest.builder()
 .functionName(functionName)
 .build();

 WaiterResponse<GetFunctionConfigurationResponse> waiterResponse =
 waiter
 .waitUntilFunctionUpdated(getFunctionConfigRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 System.out.println("The last modified value is " +
 response.lastModified());

 } catch (LambdaException e) {

Get started with functions 1978

Amazon Lambda Developer Guide

 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void updateFunctionConfiguration(LambdaClient awsLambda, String
 functionName, String handler) {
 try {
 UpdateFunctionConfigurationRequest configurationRequest =
 UpdateFunctionConfigurationRequest.builder()
 .functionName(functionName)
 .handler(handler)
 .runtime(Runtime.JAVA11)
 .build();

 awsLambda.updateFunctionConfiguration(configurationRequest);

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void deleteLambdaFunction(LambdaClient awsLambda, String
 functionName) {
 try {
 DeleteFunctionRequest request = DeleteFunctionRequest.builder()
 .functionName(functionName)
 .build();

 awsLambda.deleteFunction(request);
 System.out.println("The " + functionName + " function was deleted");

 } catch (LambdaException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• CreateFunction

Get started with functions 1979

https://docs.amazonaws.cn/goto/SdkForJavaV2/lambda-2015-03-31/CreateFunction

Amazon Lambda Developer Guide

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create an Amazon Identity and Access Management (IAM) role that grants Lambda
permission to write to logs.

 log(`Creating role (${NAME_ROLE_LAMBDA})...`);
 const response = await createRole(NAME_ROLE_LAMBDA);

import { AttachRolePolicyCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

/**
 *
 * @param {string} policyArn
 * @param {string} roleName
 */
export const attachRolePolicy = (policyArn, roleName) => {
 const command = new AttachRolePolicyCommand({
 PolicyArn: policyArn,
 RoleName: roleName,
 });

 return client.send(command);

Get started with functions 1980

https://docs.amazonaws.cn/goto/SdkForJavaV2/lambda-2015-03-31/DeleteFunction
https://docs.amazonaws.cn/goto/SdkForJavaV2/lambda-2015-03-31/GetFunction
https://docs.amazonaws.cn/goto/SdkForJavaV2/lambda-2015-03-31/Invoke
https://docs.amazonaws.cn/goto/SdkForJavaV2/lambda-2015-03-31/ListFunctions
https://docs.amazonaws.cn/goto/SdkForJavaV2/lambda-2015-03-31/UpdateFunctionCode
https://docs.amazonaws.cn/goto/SdkForJavaV2/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/lambda/scenarios/basic#code-examples

Amazon Lambda Developer Guide

};

Create a Lambda function and upload handler code.

const createFunction = async (funcName, roleArn) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${funcName}.zip`);

 const command = new CreateFunctionCommand({
 Code: { ZipFile: code },
 FunctionName: funcName,
 Role: roleArn,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file
 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

Invoke the function with a single parameter and get results.

const invoke = async (funcName, payload) => {
 const client = new LambdaClient({});
 const command = new InvokeCommand({
 FunctionName: funcName,
 Payload: JSON.stringify(payload),
 LogType: LogType.Tail,
 });

 const { Payload, LogResult } = await client.send(command);
 const result = Buffer.from(Payload).toString();
 const logs = Buffer.from(LogResult, "base64").toString();
 return { logs, result };
};

Update the function code and configure its Lambda environment with an environment
variable.

Get started with functions 1981

Amazon Lambda Developer Guide

const updateFunctionCode = async (funcName, newFunc) => {
 const client = new LambdaClient({});
 const code = await readFile(`${dirname}../functions/${newFunc}.zip`);
 const command = new UpdateFunctionCodeCommand({
 ZipFile: code,
 FunctionName: funcName,
 Architectures: [Architecture.arm64],
 Handler: "index.handler", // Required when sending a .zip file
 PackageType: PackageType.Zip, // Required when sending a .zip file
 Runtime: Runtime.nodejs16x, // Required when sending a .zip file
 });

 return client.send(command);
};

const updateFunctionConfiguration = (funcName) => {
 const client = new LambdaClient({});
 const config = readFileSync(`${dirname}../functions/config.json`).toString();
 const command = new UpdateFunctionConfigurationCommand({
 ...JSON.parse(config),
 FunctionName: funcName,
 });
 return client.send(command);
};

List the functions for your account.

const listFunctions = () => {
 const client = new LambdaClient({});
 const command = new ListFunctionsCommand({});

 return client.send(command);
};

Delete the IAM role and the Lambda function.

import { DeleteRoleCommand, IAMClient } from "@aws-sdk/client-iam";

const client = new IAMClient({});

Get started with functions 1982

Amazon Lambda Developer Guide

/**
 *
 * @param {string} roleName
 */
export const deleteRole = (roleName) => {
 const command = new DeleteRoleCommand({ RoleName: roleName });
 return client.send(command);
};

/**
 * @param {string} funcName
 */
const deleteFunction = (funcName) => {
 const client = new LambdaClient({});
 const command = new DeleteFunctionCommand({ FunctionName: funcName });
 return client.send(command);
};

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Get started with functions 1983

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/CreateFunctionCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/DeleteFunctionCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/GetFunctionCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/InvokeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/ListFunctionsCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionCodeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/lambda/command/UpdateFunctionConfigurationCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/lambda#code-examples

Amazon Lambda Developer Guide

suspend fun main(args: Array<String>) {

 val usage = """
 Usage:
 <functionName> <role> <handler> <bucketName> <updatedBucketName>
 <key>

 Where:
 functionName - The name of the AWS Lambda function.
 role - The AWS Identity and Access Management (IAM) service role that
 has AWS Lambda permissions.
 handler - The fully qualified method name (for example,
 example.Handler::handleRequest).
 bucketName - The Amazon Simple Storage Service (Amazon S3) bucket
 name that contains the ZIP or JAR used for the Lambda function's code.
 updatedBucketName - The Amazon S3 bucket name that contains the .zip
 or .jar used to update the Lambda function's code.
 key - The Amazon S3 key name that represents the .zip or .jar file
 (for example, LambdaHello-1.0-SNAPSHOT.jar).
 """

 if (args.size != 6) {
 println(usage)
 exitProcess(1)
 }

 val functionName = args[0]
 val role = args[1]
 val handler = args[2]
 val bucketName = args[3]
 val updatedBucketName = args[4]
 val key = args[5]

 println("Creating a Lambda function named $functionName.")
 val funArn = createScFunction(functionName, bucketName, key, handler, role)
 println("The AWS Lambda ARN is $funArn")

 // Get a specific Lambda function.
 println("Getting the $functionName AWS Lambda function.")
 getFunction(functionName)

 // List the Lambda functions.
 println("Listing all AWS Lambda functions.")

Get started with functions 1984

Amazon Lambda Developer Guide

 listFunctionsSc()

 // Invoke the Lambda function.
 println("*** Invoke the Lambda function.")
 invokeFunctionSc(functionName)

 // Update the AWS Lambda function code.
 println("*** Update the Lambda function code.")
 updateFunctionCode(functionName, updatedBucketName, key)

 // println("*** Invoke the function again after updating the code.")
 invokeFunctionSc(functionName)

 // Update the AWS Lambda function configuration.
 println("Update the run time of the function.")
 UpdateFunctionConfiguration(functionName, handler)

 // Delete the AWS Lambda function.
 println("Delete the AWS Lambda function.")
 delFunction(functionName)
}

suspend fun createScFunction(
 myFunctionName: String,
 s3BucketName: String,
 myS3Key: String,
 myHandler: String,
 myRole: String
): String {

 val functionCode = FunctionCode {
 s3Bucket = s3BucketName
 s3Key = myS3Key
 }

 val request = CreateFunctionRequest {
 functionName = myFunctionName
 code = functionCode
 description = "Created by the Lambda Kotlin API"
 handler = myHandler
 role = myRole
 runtime = Runtime.Java8
 }

Get started with functions 1985

Amazon Lambda Developer Guide

 // Create a Lambda function using a waiter
 LambdaClient { region = "us-west-2" }.use { awsLambda ->
 val functionResponse = awsLambda.createFunction(request)
 awsLambda.waitUntilFunctionActive {
 functionName = myFunctionName
 }
 return functionResponse.functionArn.toString()
 }
}

suspend fun getFunction(functionNameVal: String) {

 val functionRequest = GetFunctionRequest {
 functionName = functionNameVal
 }

 LambdaClient { region = "us-west-2" }.use { awsLambda ->
 val response = awsLambda.getFunction(functionRequest)
 println("The runtime of this Lambda function is
 ${response.configuration?.runtime}")
 }
}

suspend fun listFunctionsSc() {

 val request = ListFunctionsRequest {
 maxItems = 10
 }

 LambdaClient { region = "us-west-2" }.use { awsLambda ->
 val response = awsLambda.listFunctions(request)
 response.functions?.forEach { function ->
 println("The function name is ${function.functionName}")
 }
 }
}

suspend fun invokeFunctionSc(functionNameVal: String) {

 val json = """{"inputValue":"1000"}"""
 val byteArray = json.trimIndent().encodeToByteArray()
 val request = InvokeRequest {
 functionName = functionNameVal
 payload = byteArray

Get started with functions 1986

Amazon Lambda Developer Guide

 logType = LogType.Tail
 }

 LambdaClient { region = "us-west-2" }.use { awsLambda ->
 val res = awsLambda.invoke(request)
 println("The function payload is
 ${res.payload?.toString(Charsets.UTF_8)}")
 }
}

suspend fun updateFunctionCode(functionNameVal: String?, bucketName: String?,
 key: String?) {

 val functionCodeRequest = UpdateFunctionCodeRequest {
 functionName = functionNameVal
 publish = true
 s3Bucket = bucketName
 s3Key = key
 }

 LambdaClient { region = "us-west-2" }.use { awsLambda ->
 val response = awsLambda.updateFunctionCode(functionCodeRequest)
 awsLambda.waitUntilFunctionUpdated {
 functionName = functionNameVal
 }
 println("The last modified value is " + response.lastModified)
 }
}

suspend fun UpdateFunctionConfiguration(functionNameVal: String?, handlerVal:
 String?) {

 val configurationRequest = UpdateFunctionConfigurationRequest {
 functionName = functionNameVal
 handler = handlerVal
 runtime = Runtime.Java11
 }

 LambdaClient { region = "us-west-2" }.use { awsLambda ->
 awsLambda.updateFunctionConfiguration(configurationRequest)
 }
}

suspend fun delFunction(myFunctionName: String) {

Get started with functions 1987

Amazon Lambda Developer Guide

 val request = DeleteFunctionRequest {
 functionName = myFunctionName
 }

 LambdaClient { region = "us-west-2" }.use { awsLambda ->
 awsLambda.deleteFunction(request)
 println("$myFunctionName was deleted")
 }
}

• For API details, see the following topics in Amazon SDK for Kotlin API reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

namespace Lambda;

use Aws\S3\S3Client;
use GuzzleHttp\Psr7\Stream;
use Iam\IAMService;

class GettingStartedWithLambda
Get started with functions 1988

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/lambda#code-examples

Amazon Lambda Developer Guide

{
 public function run()
 {
 echo("\n");
 echo("--------------------------------------\n");
 print("Welcome to the AWS Lambda getting started demo using PHP!\n");
 echo("--------------------------------------\n");

 $clientArgs = [
 'region' => 'us-west-2',
 'version' => 'latest',
 'profile' => 'default',
];
 $uniqid = uniqid();

 $iamService = new IAMService();
 $s3client = new S3Client($clientArgs);
 $lambdaService = new LambdaService();

 echo "First, let's create a role to run our Lambda code.\n";
 $roleName = "test-lambda-role-$uniqid";
 $rolePolicyDocument = "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [
 {
 \"Effect\": \"Allow\",
 \"Principal\": {
 \"Service\": \"lambda.amazonaws.com\"
 },
 \"Action\": \"sts:AssumeRole\"
 }
]
 }";
 $role = $iamService->createRole($roleName, $rolePolicyDocument);
 echo "Created role {$role['RoleName']}.\n";

 $iamService->attachRolePolicy(
 $role['RoleName'],
 "arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole"
);
 echo "Attached the AWSLambdaBasicExecutionRole to {$role['RoleName']}.
\n";

Get started with functions 1989

Amazon Lambda Developer Guide

 echo "\nNow let's create an S3 bucket and upload our Lambda code there.
\n";
 $bucketName = "test-example-bucket-$uniqid";
 $s3client->createBucket([
 'Bucket' => $bucketName,
]);
 echo "Created bucket $bucketName.\n";

 $functionName = "doc_example_lambda_$uniqid";
 $codeBasic = __DIR__ . "/lambda_handler_basic.zip";
 $handler = "lambda_handler_basic";
 $file = file_get_contents($codeBasic);
 $s3client->putObject([
 'Bucket' => $bucketName,
 'Key' => $functionName,
 'Body' => $file,
]);
 echo "Uploaded the Lambda code.\n";

 $createLambdaFunction = $lambdaService->createFunction($functionName,
 $role, $bucketName, $handler);
 // Wait until the function has finished being created.
 do {
 $getLambdaFunction = $lambdaService-
>getFunction($createLambdaFunction['FunctionName']);
 } while ($getLambdaFunction['Configuration']['State'] == "Pending");
 echo "Created Lambda function {$getLambdaFunction['Configuration']
['FunctionName']}.\n";

 sleep(1);

 echo "\nOk, let's invoke that Lambda code.\n";
 $basicParams = [
 'action' => 'increment',
 'number' => 3,
];
 /** @var Stream $invokeFunction */
 $invokeFunction = $lambdaService->invoke($functionName, $basicParams)
['Payload'];
 $result = json_decode($invokeFunction->getContents())->result;
 echo "After invoking the Lambda code with the input of
 {$basicParams['number']} we received $result.\n";

 echo "\nSince that's working, let's update the Lambda code.\n";

Get started with functions 1990

Amazon Lambda Developer Guide

 $codeCalculator = "lambda_handler_calculator.zip";
 $handlerCalculator = "lambda_handler_calculator";
 echo "First, put the new code into the S3 bucket.\n";
 $file = file_get_contents($codeCalculator);
 $s3client->putObject([
 'Bucket' => $bucketName,
 'Key' => $functionName,
 'Body' => $file,
]);
 echo "New code uploaded.\n";

 $lambdaService->updateFunctionCode($functionName, $bucketName,
 $functionName);
 // Wait for the Lambda code to finish updating.
 do {
 $getLambdaFunction = $lambdaService-
>getFunction($createLambdaFunction['FunctionName']);
 } while ($getLambdaFunction['Configuration']['LastUpdateStatus'] !==
 "Successful");
 echo "New Lambda code uploaded.\n";

 $environment = [
 'Variable' => ['Variables' => ['LOG_LEVEL' => 'DEBUG']],
];
 $lambdaService->updateFunctionConfiguration($functionName,
 $handlerCalculator, $environment);
 do {
 $getLambdaFunction = $lambdaService-
>getFunction($createLambdaFunction['FunctionName']);
 } while ($getLambdaFunction['Configuration']['LastUpdateStatus'] !==
 "Successful");
 echo "Lambda code updated with new handler and a LOG_LEVEL of DEBUG for
 more information.\n";

 echo "Invoke the new code with some new data.\n";
 $calculatorParams = [
 'action' => 'plus',
 'x' => 5,
 'y' => 4,
];
 $invokeFunction = $lambdaService->invoke($functionName,
 $calculatorParams, "Tail");
 $result = json_decode($invokeFunction['Payload']->getContents())->result;

Get started with functions 1991

Amazon Lambda Developer Guide

 echo "Indeed, {$calculatorParams['x']} + {$calculatorParams['y']} does
 equal $result.\n";
 echo "Here's the extra debug info: ";
 echo base64_decode($invokeFunction['LogResult']) . "\n";

 echo "\nBut what happens if you try to divide by zero?\n";
 $divZeroParams = [
 'action' => 'divide',
 'x' => 5,
 'y' => 0,
];
 $invokeFunction = $lambdaService->invoke($functionName, $divZeroParams,
 "Tail");
 $result = json_decode($invokeFunction['Payload']->getContents())->result;
 echo "You get a |$result| result.\n";
 echo "And an error message: ";
 echo base64_decode($invokeFunction['LogResult']) . "\n";

 echo "\nHere's all the Lambda functions you have in this Region:\n";
 $listLambdaFunctions = $lambdaService->listFunctions(5);
 $allLambdaFunctions = $listLambdaFunctions['Functions'];
 $next = $listLambdaFunctions->get('NextMarker');
 while ($next != false) {
 $listLambdaFunctions = $lambdaService->listFunctions(5, $next);
 $next = $listLambdaFunctions->get('NextMarker');
 $allLambdaFunctions = array_merge($allLambdaFunctions,
 $listLambdaFunctions['Functions']);
 }
 foreach ($allLambdaFunctions as $function) {
 echo "{$function['FunctionName']}\n";
 }

 echo "\n\nAnd don't forget to clean up your data!\n";

 $lambdaService->deleteFunction($functionName);
 echo "Deleted Lambda function.\n";
 $iamService->deleteRole($role['RoleName']);
 echo "Deleted Role.\n";
 $deleteObjects = $s3client->listObjectsV2([
 'Bucket' => $bucketName,
]);
 $deleteObjects = $s3client->deleteObjects([
 'Bucket' => $bucketName,
 'Delete' => [

Get started with functions 1992

Amazon Lambda Developer Guide

 'Objects' => $deleteObjects['Contents'],
]
]);
 echo "Deleted all objects from the S3 bucket.\n";
 $s3client->deleteBucket(['Bucket' => $bucketName]);
 echo "Deleted the bucket.\n";
 }
}

• For API details, see the following topics in Amazon SDK for PHP API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Define a Lambda handler that increments a number.

import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
 """

Get started with functions 1993

https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/CreateFunction
https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/DeleteFunction
https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/GetFunction
https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/Invoke
https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/ListFunctions
https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/UpdateFunctionCode
https://docs.amazonaws.cn/goto/SdkForPHPV3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 Accepts an action and a single number, performs the specified action on the
 number,
 and returns the result. The only allowable action is 'increment'.

 :param event: The event dict that contains the parameters sent when the
 function
 is invoked.
 :param context: The context in which the function is called.
 :return: The result of the action.
 """
 result = None
 action = event.get("action")
 if action == "increment":
 result = event.get("number", 0) + 1
 logger.info("Calculated result of %s", result)
 else:
 logger.error("%s is not a valid action.", action)

 response = {"result": result}
 return response

Define a second Lambda handler that performs arithmetic operations.

import logging
import os

logger = logging.getLogger()

Define a list of Python lambda functions that are called by this AWS Lambda
 function.
ACTIONS = {
 "plus": lambda x, y: x + y,
 "minus": lambda x, y: x - y,
 "times": lambda x, y: x * y,
 "divided-by": lambda x, y: x / y,
}

def lambda_handler(event, context):

Get started with functions 1994

Amazon Lambda Developer Guide

 """
 Accepts an action and two numbers, performs the specified action on the
 numbers,
 and returns the result.

 :param event: The event dict that contains the parameters sent when the
 function
 is invoked.
 :param context: The context in which the function is called.
 :return: The result of the specified action.
 """
 # Set the log level based on a variable configured in the Lambda environment.
 logger.setLevel(os.environ.get("LOG_LEVEL", logging.INFO))
 logger.debug("Event: %s", event)

 action = event.get("action")
 func = ACTIONS.get(action)
 x = event.get("x")
 y = event.get("y")
 result = None
 try:
 if func is not None and x is not None and y is not None:
 result = func(x, y)
 logger.info("%s %s %s is %s", x, action, y, result)
 else:
 logger.error("I can't calculate %s %s %s.", x, action, y)
 except ZeroDivisionError:
 logger.warning("I can't divide %s by 0!", x)

 response = {"result": result}
 return response

Create functions that wrap Lambda actions.

class LambdaWrapper:
 def __init__(self, lambda_client, iam_resource):
 self.lambda_client = lambda_client
 self.iam_resource = iam_resource

Get started with functions 1995

Amazon Lambda Developer Guide

 @staticmethod
 def create_deployment_package(source_file, destination_file):
 """
 Creates a Lambda deployment package in .zip format in an in-memory
 buffer. This
 buffer can be passed directly to Lambda when creating the function.

 :param source_file: The name of the file that contains the Lambda handler
 function.
 :param destination_file: The name to give the file when it's deployed to
 Lambda.
 :return: The deployment package.
 """
 buffer = io.BytesIO()
 with zipfile.ZipFile(buffer, "w") as zipped:
 zipped.write(source_file, destination_file)
 buffer.seek(0)
 return buffer.read()

 def get_iam_role(self, iam_role_name):
 """
 Get an AWS Identity and Access Management (IAM) role.

 :param iam_role_name: The name of the role to retrieve.
 :return: The IAM role.
 """
 role = None
 try:
 temp_role = self.iam_resource.Role(iam_role_name)
 temp_role.load()
 role = temp_role
 logger.info("Got IAM role %s", role.name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "NoSuchEntity":
 logger.info("IAM role %s does not exist.", iam_role_name)
 else:
 logger.error(
 "Couldn't get IAM role %s. Here's why: %s: %s",
 iam_role_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return role

Get started with functions 1996

Amazon Lambda Developer Guide

 def create_iam_role_for_lambda(self, iam_role_name):
 """
 Creates an IAM role that grants the Lambda function basic permissions. If
 a
 role with the specified name already exists, it is used for the demo.

 :param iam_role_name: The name of the role to create.
 :return: The role and a value that indicates whether the role is newly
 created.
 """
 role = self.get_iam_role(iam_role_name)
 if role is not None:
 return role, False

 lambda_assume_role_policy = {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"Service": "lambda.amazonaws.com"},
 "Action": "sts:AssumeRole",
 }
],
 }
 policy_arn = "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"

 try:
 role = self.iam_resource.create_role(
 RoleName=iam_role_name,
 AssumeRolePolicyDocument=json.dumps(lambda_assume_role_policy),
)
 logger.info("Created role %s.", role.name)
 role.attach_policy(PolicyArn=policy_arn)
 logger.info("Attached basic execution policy to role %s.", role.name)
 except ClientError as error:
 if error.response["Error"]["Code"] == "EntityAlreadyExists":
 role = self.iam_resource.Role(iam_role_name)
 logger.warning("The role %s already exists. Using it.",
 iam_role_name)
 else:
 logger.exception(
 "Couldn't create role %s or attach policy %s.",

Get started with functions 1997

Amazon Lambda Developer Guide

 iam_role_name,
 policy_arn,
)
 raise

 return role, True

 def get_function(self, function_name):
 """
 Gets data about a Lambda function.

 :param function_name: The name of the function.
 :return: The function data.
 """
 response = None
 try:
 response =
 self.lambda_client.get_function(FunctionName=function_name)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.info("Function %s does not exist.", function_name)
 else:
 logger.error(
 "Couldn't get function %s. Here's why: %s: %s",
 function_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return response

 def create_function(
 self, function_name, handler_name, iam_role, deployment_package
):
 """
 Deploys a Lambda function.

 :param function_name: The name of the Lambda function.
 :param handler_name: The fully qualified name of the handler function.
 This
 must include the file name and the function name.
 :param iam_role: The IAM role to use for the function.

Get started with functions 1998

Amazon Lambda Developer Guide

 :param deployment_package: The deployment package that contains the
 function
 code in .zip format.
 :return: The Amazon Resource Name (ARN) of the newly created function.
 """
 try:
 response = self.lambda_client.create_function(
 FunctionName=function_name,
 Description="AWS Lambda doc example",
 Runtime="python3.8",
 Role=iam_role.arn,
 Handler=handler_name,
 Code={"ZipFile": deployment_package},
 Publish=True,
)
 function_arn = response["FunctionArn"]
 waiter = self.lambda_client.get_waiter("function_active_v2")
 waiter.wait(FunctionName=function_name)
 logger.info(
 "Created function '%s' with ARN: '%s'.",
 function_name,
 response["FunctionArn"],
)
 except ClientError:
 logger.error("Couldn't create function %s.", function_name)
 raise
 else:
 return function_arn

 def delete_function(self, function_name):
 """
 Deletes a Lambda function.

 :param function_name: The name of the function to delete.
 """
 try:
 self.lambda_client.delete_function(FunctionName=function_name)
 except ClientError:
 logger.exception("Couldn't delete function %s.", function_name)
 raise

 def invoke_function(self, function_name, function_params, get_log=False):

Get started with functions 1999

Amazon Lambda Developer Guide

 """
 Invokes a Lambda function.

 :param function_name: The name of the function to invoke.
 :param function_params: The parameters of the function as a dict. This
 dict
 is serialized to JSON before it is sent to
 Lambda.
 :param get_log: When true, the last 4 KB of the execution log are
 included in
 the response.
 :return: The response from the function invocation.
 """
 try:
 response = self.lambda_client.invoke(
 FunctionName=function_name,
 Payload=json.dumps(function_params),
 LogType="Tail" if get_log else "None",
)
 logger.info("Invoked function %s.", function_name)
 except ClientError:
 logger.exception("Couldn't invoke function %s.", function_name)
 raise
 return response

 def update_function_code(self, function_name, deployment_package):
 """
 Updates the code for a Lambda function by submitting a .zip archive that
 contains
 the code for the function.

 :param function_name: The name of the function to update.
 :param deployment_package: The function code to update, packaged as bytes
 in
 .zip format.
 :return: Data about the update, including the status.
 """
 try:
 response = self.lambda_client.update_function_code(
 FunctionName=function_name, ZipFile=deployment_package
)
 except ClientError as err:
 logger.error(

Get started with functions 2000

Amazon Lambda Developer Guide

 "Couldn't update function %s. Here's why: %s: %s",
 function_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

 def update_function_configuration(self, function_name, env_vars):
 """
 Updates the environment variables for a Lambda function.

 :param function_name: The name of the function to update.
 :param env_vars: A dict of environment variables to update.
 :return: Data about the update, including the status.
 """
 try:
 response = self.lambda_client.update_function_configuration(
 FunctionName=function_name, Environment={"Variables": env_vars}
)
 except ClientError as err:
 logger.error(
 "Couldn't update function configuration %s. Here's why: %s: %s",
 function_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response

 def list_functions(self):
 """
 Lists the Lambda functions for the current account.
 """
 try:
 func_paginator = self.lambda_client.get_paginator("list_functions")
 for func_page in func_paginator.paginate():
 for func in func_page["Functions"]:
 print(func["FunctionName"])
 desc = func.get("Description")

Get started with functions 2001

Amazon Lambda Developer Guide

 if desc:
 print(f"\t{desc}")
 print(f"\t{func['Runtime']}: {func['Handler']}")
 except ClientError as err:
 logger.error(
 "Couldn't list functions. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

Create a function that runs the scenario.

class UpdateFunctionWaiter(CustomWaiter):
 """A custom waiter that waits until a function is successfully updated."""

 def __init__(self, client):
 super().__init__(
 "UpdateSuccess",
 "GetFunction",
 "Configuration.LastUpdateStatus",
 {"Successful": WaitState.SUCCESS, "Failed": WaitState.FAILURE},
 client,
)

 def wait(self, function_name):
 self._wait(FunctionName=function_name)

def run_scenario(lambda_client, iam_resource, basic_file, calculator_file,
 lambda_name):
 """
 Runs the scenario.

 :param lambda_client: A Boto3 Lambda client.
 :param iam_resource: A Boto3 IAM resource.
 :param basic_file: The name of the file that contains the basic Lambda
 handler.

Get started with functions 2002

Amazon Lambda Developer Guide

 :param calculator_file: The name of the file that contains the calculator
 Lambda handler.
 :param lambda_name: The name to give resources created for the scenario, such
 as the
 IAM role and the Lambda function.
 """
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

 print("-" * 88)
 print("Welcome to the AWS Lambda getting started with functions demo.")
 print("-" * 88)

 wrapper = LambdaWrapper(lambda_client, iam_resource)

 print("Checking for IAM role for Lambda...")
 iam_role, should_wait = wrapper.create_iam_role_for_lambda(lambda_name)
 if should_wait:
 logger.info("Giving AWS time to create resources...")
 wait(10)

 print(f"Looking for function {lambda_name}...")
 function = wrapper.get_function(lambda_name)
 if function is None:
 print("Zipping the Python script into a deployment package...")
 deployment_package = wrapper.create_deployment_package(
 basic_file, f"{lambda_name}.py"
)
 print(f"...and creating the {lambda_name} Lambda function.")
 wrapper.create_function(
 lambda_name, f"{lambda_name}.lambda_handler", iam_role,
 deployment_package
)
 else:
 print(f"Function {lambda_name} already exists.")
 print("-" * 88)

 print(f"Let's invoke {lambda_name}. This function increments a number.")
 action_params = {
 "action": "increment",
 "number": q.ask("Give me a number to increment: ", q.is_int),
 }
 print(f"Invoking {lambda_name}...")
 response = wrapper.invoke_function(lambda_name, action_params)
 print(

Get started with functions 2003

Amazon Lambda Developer Guide

 f"Incrementing {action_params['number']} resulted in "
 f"{json.load(response['Payload'])}"
)
 print("-" * 88)

 print(f"Let's update the function to an arithmetic calculator.")
 q.ask("Press Enter when you're ready.")
 print("Creating a new deployment package...")
 deployment_package = wrapper.create_deployment_package(
 calculator_file, f"{lambda_name}.py"
)
 print(f"...and updating the {lambda_name} Lambda function.")
 update_waiter = UpdateFunctionWaiter(lambda_client)
 wrapper.update_function_code(lambda_name, deployment_package)
 update_waiter.wait(lambda_name)
 print(f"This function uses an environment variable to control logging
 level.")
 print(f"Let's set it to DEBUG to get the most logging.")
 wrapper.update_function_configuration(
 lambda_name, {"LOG_LEVEL": logging.getLevelName(logging.DEBUG)}
)

 actions = ["plus", "minus", "times", "divided-by"]
 want_invoke = True
 while want_invoke:
 print(f"Let's invoke {lambda_name}. You can invoke these actions:")
 for index, action in enumerate(actions):
 print(f"{index + 1}: {action}")
 action_params = {}
 action_index = q.ask(
 "Enter the number of the action you want to take: ",
 q.is_int,
 q.in_range(1, len(actions)),
)
 action_params["action"] = actions[action_index - 1]
 print(f"You've chosen to invoke 'x {action_params['action']} y'.")
 action_params["x"] = q.ask("Enter a value for x: ", q.is_int)
 action_params["y"] = q.ask("Enter a value for y: ", q.is_int)
 print(f"Invoking {lambda_name}...")
 response = wrapper.invoke_function(lambda_name, action_params, True)
 print(
 f"Calculating {action_params['x']} {action_params['action']}
 {action_params['y']} "
 f"resulted in {json.load(response['Payload'])}"

Get started with functions 2004

Amazon Lambda Developer Guide

)
 q.ask("Press Enter to see the logs from the call.")
 print(base64.b64decode(response["LogResult"]).decode())
 want_invoke = q.ask("That was fun. Shall we do it again? (y/n) ",
 q.is_yesno)
 print("-" * 88)

 if q.ask(
 "Do you want to list all of the functions in your account? (y/n) ",
 q.is_yesno
):
 wrapper.list_functions()
 print("-" * 88)

 if q.ask("Ready to delete the function and role? (y/n) ", q.is_yesno):
 for policy in iam_role.attached_policies.all():
 policy.detach_role(RoleName=iam_role.name)
 iam_role.delete()
 print(f"Deleted role {lambda_name}.")
 wrapper.delete_function(lambda_name)
 print(f"Deleted function {lambda_name}.")

 print("\nThanks for watching!")
 print("-" * 88)

if __name__ == "__main__":
 try:
 run_scenario(
 boto3.client("lambda"),
 boto3.resource("iam"),
 "lambda_handler_basic.py",
 "lambda_handler_calculator.py",
 "doc_example_lambda_calculator",
)
 except Exception:
 logging.exception("Something went wrong with the demo!")

• For API details, see the following topics in Amazon SDK for Python (Boto3) API Reference.

• CreateFunction

• DeleteFunction

Get started with functions 2005

https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/CreateFunction
https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/DeleteFunction

Amazon Lambda Developer Guide

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Set up pre-requisite IAM permissions for a Lambda function capable of writing logs.

 # Get an AWS Identity and Access Management (IAM) role.
 #
 # @param iam_role_name: The name of the role to retrieve.
 # @param action: Whether to create or destroy the IAM apparatus.
 # @return: The IAM role.
 def manage_iam(iam_role_name, action)
 role_policy = {
 'Version': "2012-10-17",
 'Statement': [
 {
 'Effect': "Allow",
 'Principal': {
 'Service': "lambda.amazonaws.com"
 },
 'Action': "sts:AssumeRole"
 }
]
 }
 case action
 when "create"
 role = $iam_client.create_role(
 role_name: iam_role_name,

Get started with functions 2006

https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/GetFunction
https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/Invoke
https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/ListFunctions
https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/UpdateFunctionCode
https://docs.amazonaws.cn/goto/boto3/lambda-2015-03-31/UpdateFunctionConfiguration
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/lambda#code-examples

Amazon Lambda Developer Guide

 assume_role_policy_document: role_policy.to_json
)
 $iam_client.attach_role_policy(
 {
 policy_arn: "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole",
 role_name: iam_role_name
 }
)
 $iam_client.wait_until(:role_exists, { role_name: iam_role_name }) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 @logger.debug("Successfully created IAM role: #{role['role']['arn']}")
 @logger.debug("Enforcing a 10-second sleep to allow IAM role to activate
 fully.")
 sleep(10)
 return role, role_policy.to_json
 when "destroy"
 $iam_client.detach_role_policy(
 {
 policy_arn: "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole",
 role_name: iam_role_name
 }
)
 $iam_client.delete_role(
 role_name: iam_role_name
)
 @logger.debug("Detached policy & deleted IAM role: #{iam_role_name}")
 else
 raise "Incorrect action provided. Must provide 'create' or 'destroy'"
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error creating role or attaching policy:\n
 #{e.message}")
 end

Define a Lambda handler that increments a number provided as an invocation parameter.

require "logger"

Get started with functions 2007

Amazon Lambda Developer Guide

A function that increments a whole number by one (1) and logs the result.
Requires a manually-provided runtime parameter, 'number', which must be Int
#
@param event [Hash] Parameters sent when the function is invoked
@param context [Hash] Methods and properties that provide information
about the invocation, function, and execution environment.
@return incremented_number [String] The incremented number.
def lambda_handler(event:, context:)
 logger = Logger.new($stdout)
 log_level = ENV["LOG_LEVEL"]
 logger.level = case log_level
 when "debug"
 Logger::DEBUG
 when "info"
 Logger::INFO
 else
 Logger::ERROR
 end
 logger.debug("This is a debug log message.")
 logger.info("This is an info log message. Code executed successfully!")
 number = event["number"].to_i
 incremented_number = number + 1
 logger.info("You provided #{number.round} and it was incremented to
 #{incremented_number.round}")
 incremented_number.round.to_s
end

Zip your Lambda function into a deployment package.

 # Creates a Lambda deployment package in .zip format.
 # This zip can be passed directly as a string to Lambda when creating the
 function.
 #
 # @param source_file: The name of the object, without suffix, for the Lambda
 file and zip.
 # @return: The deployment package.
 def create_deployment_package(source_file)
 Dir.chdir(File.dirname(__FILE__))
 if File.exist?("lambda_function.zip")
 File.delete("lambda_function.zip")
 @logger.debug("Deleting old zip: lambda_function.zip")
 end

Get started with functions 2008

Amazon Lambda Developer Guide

 Zip::File.open("lambda_function.zip", create: true) {
 |zipfile|
 zipfile.add("lambda_function.rb", "#{source_file}.rb")
 }
 @logger.debug("Zipping #{source_file}.rb into: lambda_function.zip.")
 File.read("lambda_function.zip").to_s
 rescue StandardError => e
 @logger.error("There was an error creating deployment package:\n
 #{e.message}")
 end

Create a new Lambda function.

 # Deploys a Lambda function.
 #
 # @param function_name: The name of the Lambda function.
 # @param handler_name: The fully qualified name of the handler function. This
 # must include the file name and the function name.
 # @param role_arn: The IAM role to use for the function.
 # @param deployment_package: The deployment package that contains the function
 # code in .zip format.
 # @return: The Amazon Resource Name (ARN) of the newly created function.
 def create_function(function_name, handler_name, role_arn, deployment_package)
 response = @lambda_client.create_function({
 role: role_arn.to_s,
 function_name: function_name,
 handler: handler_name,
 runtime: "ruby2.7",
 code: {
 zip_file: deployment_package
 },
 environment: {
 variables: {
 "LOG_LEVEL" => "info"
 }
 }
 })
 @lambda_client.wait_until(:function_active_v2, { function_name:
 function_name}) do |w|
 w.max_attempts = 5
 w.delay = 5
 end

Get started with functions 2009

Amazon Lambda Developer Guide

 response
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error creating #{function_name}:\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n
 #{e.message}")
 end

Invoke your Lambda function with optional runtime parameters.

 # Invokes a Lambda function.
 # @param function_name [String] The name of the function to invoke.
 # @param payload [nil] Payload containing runtime parameters.
 # @return [Object] The response from the function invocation.
 def invoke_function(function_name, payload = nil)
 params = { function_name: function_name}
 params[:payload] = payload unless payload.nil?
 @lambda_client.invoke(params)
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error executing #{function_name}:\n
 #{e.message}")
 end

Update your Lambda function's configuration to inject a new environment variable.

 # Updates the environment variables for a Lambda function.
 # @param function_name: The name of the function to update.
 # @param log_level: The log level of the function.
 # @return: Data about the update, including the status.
 def update_function_configuration(function_name, log_level)
 @lambda_client.update_function_configuration({
 function_name: function_name,
 environment: {
 variables: {
 "LOG_LEVEL" => log_level
 }
 }
 })
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name}) do |w|
 w.max_attempts = 5

Get started with functions 2010

Amazon Lambda Developer Guide

 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating configurations for
 #{function_name}:\n #{e.message}")
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to activate:\n
 #{e.message}")
 end

Update your Lambda function's code with a different deployment package containing
different code.

 # Updates the code for a Lambda function by submitting a .zip archive that
 contains
 # the code for the function.

 # @param function_name: The name of the function to update.
 # @param deployment_package: The function code to update, packaged as bytes in
 # .zip format.
 # @return: Data about the update, including the status.
 def update_function_code(function_name, deployment_package)
 @lambda_client.update_function_code(
 function_name: function_name,
 zip_file: deployment_package
)
 @lambda_client.wait_until(:function_updated_v2, { function_name:
 function_name}) do |w|
 w.max_attempts = 5
 w.delay = 5
 end
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error updating function code for:
 #{function_name}:\n #{e.message}")
 nil
 rescue Aws::Waiters::Errors::WaiterFailed => e
 @logger.error("Failed waiting for #{function_name} to update:\n
 #{e.message}")
 end

List all existing Lambda functions using the built-in paginator.

Get started with functions 2011

Amazon Lambda Developer Guide

 # Lists the Lambda functions for the current account.
 def list_functions
 functions = []
 @lambda_client.list_functions.each do |response|
 response["functions"].each do |function|
 functions.append(function["function_name"])
 end
 end
 functions
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error executing #{function_name}:\n
 #{e.message}")
 end

Delete a specific Lambda function.

 # Deletes a Lambda function.
 # @param function_name: The name of the function to delete.
 def delete_function(function_name)
 print "Deleting function: #{function_name}..."
 @lambda_client.delete_function(
 function_name: function_name
)
 print "Done!".green
 rescue Aws::Lambda::Errors::ServiceException => e
 @logger.error("There was an error deleting #{function_name}:\n #{e.message}")
 end

• For API details, see the following topics in Amazon SDK for Ruby API Reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

Get started with functions 2012

https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/CreateFunction
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/DeleteFunction
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/GetFunction
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/Invoke
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/ListFunctions
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionCode
https://docs.amazonaws.cn/goto/SdkForRubyV3/lambda-2015-03-31/UpdateFunctionConfiguration

Amazon Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

The Cargo.toml with dependencies used in this scenario.

[package]
name = "lambda-code-examples"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-lang.org/cargo/
reference/manifest.html

[dependencies]
aws-config = { version = "1.0.1", features = ["behavior-version-latest"] }
aws-sdk-ec2 = { version = "1.3.0" }
aws-sdk-iam = { version = "1.3.0" }
aws-sdk-lambda = { version = "1.3.0" }
aws-sdk-s3 = { version = "1.4.0" }
aws-smithy-types = { version = "1.0.1" }
aws-types = { version = "1.0.1" }
clap = { version = "~4.4", features = ["derive"] }
tokio = { version = "1.20.1", features = ["full"] }
tracing-subscriber = { version = "0.3.15", features = ["env-filter"] }
tracing = "0.1.37"
serde_json = "1.0.94"
anyhow = "1.0.71"
uuid = { version = "1.3.3", features = ["v4"] }
lambda_runtime = "0.8.0"
serde = "1.0.164"

A collection of utilities that streamline calling Lambda for this scenario. This file is src/
ations.rs in the crate.

Get started with functions 2013

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/lambda#code-examples

Amazon Lambda Developer Guide

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

use anyhow::anyhow;
use aws_sdk_iam::operation::delete_role::DeleteRoleOutput;
use aws_sdk_lambda::{
 operation::{
 delete_function::DeleteFunctionOutput, get_function::GetFunctionOutput,
 invoke::InvokeOutput, list_functions::ListFunctionsOutput,
 update_function_code::UpdateFunctionCodeOutput,
 update_function_configuration::UpdateFunctionConfigurationOutput,
 },
 primitives::ByteStream,
 types::{Environment, FunctionCode, LastUpdateStatus, State},
};
use aws_sdk_s3::{
 operation::{delete_bucket::DeleteBucketOutput,
 delete_object::DeleteObjectOutput},
 types::CreateBucketConfiguration,
};
use aws_smithy_types::Blob;
use serde::{ser::SerializeMap, Serialize};
use std::{path::PathBuf, str::FromStr, time::Duration};
use tracing::{debug, info, warn};

/* Operation describes */
#[derive(Clone, Copy, Debug, Serialize)]
pub enum Operation {
 #[serde(rename = "plus")]
 Plus,
 #[serde(rename = "minus")]
 Minus,
 #[serde(rename = "times")]
 Times,
 #[serde(rename = "divided-by")]
 DividedBy,
}

impl FromStr for Operation {
 type Err = anyhow::Error;

 fn from_str(s: &str) -> Result<Self, Self::Err> {
 match s {

Get started with functions 2014

Amazon Lambda Developer Guide

 "plus" => Ok(Operation::Plus),
 "minus" => Ok(Operation::Minus),
 "times" => Ok(Operation::Times),
 "divided-by" => Ok(Operation::DividedBy),
 _ => Err(anyhow!("Unknown operation {s}")),
 }
 }
}

impl ToString for Operation {
 fn to_string(&self) -> String {
 match self {
 Operation::Plus => "plus".to_string(),
 Operation::Minus => "minus".to_string(),
 Operation::Times => "times".to_string(),
 Operation::DividedBy => "divided-by".to_string(),
 }
 }
}

/**
 * InvokeArgs will be serialized as JSON and sent to the AWS Lambda handler.
 */
#[derive(Debug)]
pub enum InvokeArgs {
 Increment(i32),
 Arithmetic(Operation, i32, i32),
}

impl Serialize for InvokeArgs {
 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
 where
 S: serde::Serializer,
 {
 match self {
 InvokeArgs::Increment(i) => serializer.serialize_i32(*i),
 InvokeArgs::Arithmetic(o, i, j) => {
 let mut map: S::SerializeMap =
 serializer.serialize_map(Some(3))?;
 map.serialize_key(&"op".to_string())?;
 map.serialize_value(&o.to_string())?;
 map.serialize_key(&"i".to_string())?;
 map.serialize_value(&i)?;
 map.serialize_key(&"j".to_string())?;

Get started with functions 2015

Amazon Lambda Developer Guide

 map.serialize_value(&j)?;
 map.end()
 }
 }
 }
}

/** A policy document allowing Lambda to execute this function on the account's
 behalf. */
const ROLE_POLICY_DOCUMENT: &str = r#"{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": { "Service": "lambda.amazonaws.com" },
 "Action": "sts:AssumeRole"
 }
]
}"#;

/**
 * A LambdaManager gathers all the resources necessary to run the Lambda example
 scenario.
 * This includes instantiated aws_sdk clients and details of resource names.
 */
pub struct LambdaManager {
 iam_client: aws_sdk_iam::Client,
 lambda_client: aws_sdk_lambda::Client,
 s3_client: aws_sdk_s3::Client,
 lambda_name: String,
 role_name: String,
 bucket: String,
 own_bucket: bool,
}

// These unit type structs provide nominal typing on top of String parameters for
 LambdaManager::new
pub struct LambdaName(pub String);
pub struct RoleName(pub String);
pub struct Bucket(pub String);
pub struct OwnBucket(pub bool);

impl LambdaManager {
 pub fn new(

Get started with functions 2016

Amazon Lambda Developer Guide

 iam_client: aws_sdk_iam::Client,
 lambda_client: aws_sdk_lambda::Client,
 s3_client: aws_sdk_s3::Client,
 lambda_name: LambdaName,
 role_name: RoleName,
 bucket: Bucket,
 own_bucket: OwnBucket,
) -> Self {
 Self {
 iam_client,
 lambda_client,
 s3_client,
 lambda_name: lambda_name.0,
 role_name: role_name.0,
 bucket: bucket.0,
 own_bucket: own_bucket.0,
 }
 }

 /**
 * Load the AWS configuration from the environment.
 * Look up lambda_name and bucket if none are given, or generate a random
 name if not present in the environment.
 * If the bucket name is provided, the caller needs to have created the
 bucket.
 * If the bucket name is generated, it will be created.
 */
 pub async fn load_from_env(lambda_name: Option<String>, bucket:
 Option<String>) -> Self {
 let sdk_config = aws_config::load_from_env().await;
 let lambda_name = LambdaName(lambda_name.unwrap_or_else(|| {
 std::env::var("LAMBDA_NAME").unwrap_or_else(|_|
 "rust_lambda_example".to_string())
 }));
 let role_name = RoleName(format!("{}_role", lambda_name.0));
 let (bucket, own_bucket) =
 match bucket {
 Some(bucket) => (Bucket(bucket), false),
 None => (
 Bucket(std::env::var("LAMBDA_BUCKET").unwrap_or_else(|_| {
 format!("rust-lambda-example-{}", uuid::Uuid::new_v4())
 })),
 true,
),

Get started with functions 2017

Amazon Lambda Developer Guide

 };

 let s3_client = aws_sdk_s3::Client::new(&sdk_config);

 if own_bucket {
 info!("Creating bucket for demo: {}", bucket.0);
 s3_client
 .create_bucket()
 .bucket(bucket.0.clone())
 .create_bucket_configuration(
 CreateBucketConfiguration::builder()

 .location_constraint(aws_sdk_s3::types::BucketLocationConstraint::from(
 sdk_config.region().unwrap().as_ref(),
))
 .build(),
)
 .send()
 .await
 .unwrap();
 }

 Self::new(
 aws_sdk_iam::Client::new(&sdk_config),
 aws_sdk_lambda::Client::new(&sdk_config),
 s3_client,
 lambda_name,
 role_name,
 bucket,
 OwnBucket(own_bucket),
)
 }

 // snippet-start:[lambda.rust.scenario.prepare_function]
 /**
 * Upload function code from a path to a zip file.
 * The zip file must have an AL2 Linux-compatible binary called `bootstrap`.
 * The easiest way to create such a zip is to use `cargo lambda build --
output-format Zip`.
 */
 async fn prepare_function(
 &self,
 zip_file: PathBuf,
 key: Option<String>,

Get started with functions 2018

Amazon Lambda Developer Guide

) -> Result<FunctionCode, anyhow::Error> {
 let body = ByteStream::from_path(zip_file).await?;

 let key = key.unwrap_or_else(|| format!("{}_code", self.lambda_name));

 info!("Uploading function code to s3://{}/{}", self.bucket, key);
 let _ = self
 .s3_client
 .put_object()
 .bucket(self.bucket.clone())
 .key(key.clone())
 .body(body)
 .send()
 .await?;

 Ok(FunctionCode::builder()
 .s3_bucket(self.bucket.clone())
 .s3_key(key)
 .build())
 }
 // snippet-end:[lambda.rust.scenario.prepare_function]

 // snippet-start:[lambda.rust.scenario.create_function]
 /**
 * Create a function, uploading from a zip file.
 */
 pub async fn create_function(&self, zip_file: PathBuf) -> Result<String,
 anyhow::Error> {
 let code = self.prepare_function(zip_file, None).await?;

 let key = code.s3_key().unwrap().to_string();

 self.create_role().await;

 let role = self
 .iam_client
 .create_role()
 .role_name(self.role_name.clone())
 .assume_role_policy_document(ROLE_POLICY_DOCUMENT)
 .send()
 .await?;

 info!("Created iam role, waiting 15s for it to become active");
 tokio::time::sleep(Duration::from_secs(15)).await;

Get started with functions 2019

Amazon Lambda Developer Guide

 info!("Creating lambda function {}", self.lambda_name);
 let _ = self
 .lambda_client
 .create_function()
 .function_name(self.lambda_name.clone())
 .code(code)
 .role(role.role().map(|r| r.arn()).unwrap_or_default())
 .runtime(aws_sdk_lambda::types::Runtime::Providedal2)
 .handler("_unused")
 .send()
 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 self.lambda_client
 .publish_version()
 .function_name(self.lambda_name.clone())
 .send()
 .await?;

 Ok(key)
 }
 // snippet-end:[lambda.rust.scenario.create_function]

 /**
 * Create an IAM execution role for the managed Lambda function.
 */
 async fn create_role(&self) {
 info!("Creating execution role for function");
 if let Ok(_response) = self
 .iam_client
 .get_role()
 .role_name(self.role_name.clone())
 .send()
 .await
 {
 let delete_response = self
 .iam_client
 .delete_role()
 .role_name(self.role_name.clone())
 .send()
 .await;

Get started with functions 2020

Amazon Lambda Developer Guide

 match delete_response {
 Ok(_) => debug!("Deleted role first"),
 Err(_) => {
 warn!("Failed to delete role, will probably fail to create
 the new role")
 }
 }
 }
 }

 /**
 * Poll `is_function_ready` with a 1-second delay. It returns when the
 function is ready or when there's an error checking the function's state.
 */
 pub async fn wait_for_function_ready(&self) -> Result<(), anyhow::Error> {
 info!("Waiting for function");
 while !self.is_function_ready(None).await? {
 info!("Function is not ready, sleeping 1s");
 tokio::time::sleep(Duration::from_secs(1)).await;
 }
 Ok(())
 }

 /**
 * Check if a Lambda function is ready to be invoked.
 * A Lambda function is ready for this scenario when its state is active and
 its LastUpdateStatus is Successful.
 * Additionally, if a sha256 is provided, the function must have that as its
 current code hash.
 * Any missing properties or failed requests will be reported as an Err.
 */
 async fn is_function_ready(
 &self,
 expected_code_sha256: Option<&str>,
) -> Result<bool, anyhow::Error> {
 match self.get_function().await {
 Ok(func) => {
 if let Some(config) = func.configuration() {
 if let Some(state) = config.state() {
 info!(?state, "Checking if function is active");
 if !matches!(state, State::Active) {
 return Ok(false);
 }
 }

Get started with functions 2021

Amazon Lambda Developer Guide

 match config.last_update_status() {
 Some(last_update_status) => {
 info!(?last_update_status, "Checking if function is
 ready");
 match last_update_status {
 LastUpdateStatus::Successful => {
 // continue
 }
 LastUpdateStatus::Failed |
 LastUpdateStatus::InProgress => {
 return Ok(false);
 }
 unknown => {
 warn!(
 status_variant = unknown.as_str(),
 "LastUpdateStatus unknown"
);
 return Err(anyhow!(
 "Unknown LastUpdateStatus, fn config is
 {config:?}"
));
 }
 }
 }
 None => {
 warn!("Missing last update status");
 return Ok(false);
 }
 };
 if expected_code_sha256.is_none() {
 return Ok(true);
 }
 if let Some(code_sha256) = config.code_sha256() {
 return Ok(code_sha256 ==
 expected_code_sha256.unwrap_or_default());
 }
 }
 }
 Err(e) => {
 warn!(?e, "Could not get function while waiting");
 }
 }
 Ok(false)
 }

Get started with functions 2022

Amazon Lambda Developer Guide

 // snippet-start:[lambda.rust.scenario.get_function]
 /** Get the Lambda function with this Manager's name. */
 pub async fn get_function(&self) -> Result<GetFunctionOutput, anyhow::Error>
 {
 info!("Getting lambda function");
 self.lambda_client
 .get_function()
 .function_name(self.lambda_name.clone())
 .send()
 .await
 .map_err(anyhow::Error::from)
 }
 // snippet-end:[lambda.rust.scenario.get_function]

 // snippet-start:[lambda.rust.scenario.list_functions]
 /** List all Lambda functions in the current Region. */
 pub async fn list_functions(&self) -> Result<ListFunctionsOutput,
 anyhow::Error> {
 info!("Listing lambda functions");
 self.lambda_client
 .list_functions()
 .send()
 .await
 .map_err(anyhow::Error::from)
 }
 // snippet-end:[lambda.rust.scenario.list_functions]

 // snippet-start:[lambda.rust.scenario.invoke]
 /** Invoke the lambda function using calculator InvokeArgs. */
 pub async fn invoke(&self, args: InvokeArgs) -> Result<InvokeOutput,
 anyhow::Error> {
 info!(?args, "Invoking {}", self.lambda_name);
 let payload = serde_json::to_string(&args)?;
 debug!(?payload, "Sending payload");
 self.lambda_client
 .invoke()
 .function_name(self.lambda_name.clone())
 .payload(Blob::new(payload))
 .send()
 .await
 .map_err(anyhow::Error::from)
 }
 // snippet-end:[lambda.rust.scenario.invoke]

Get started with functions 2023

Amazon Lambda Developer Guide

 // snippet-start:[lambda.rust.scenario.update_function_code]
 /** Given a Path to a zip file, update the function's code and wait for the
 update to finish. */
 pub async fn update_function_code(
 &self,
 zip_file: PathBuf,
 key: String,
) -> Result<UpdateFunctionCodeOutput, anyhow::Error> {
 let function_code = self.prepare_function(zip_file, Some(key)).await?;

 info!("Updating code for {}", self.lambda_name);
 let update = self
 .lambda_client
 .update_function_code()
 .function_name(self.lambda_name.clone())
 .s3_bucket(self.bucket.clone())
 .s3_key(function_code.s3_key().unwrap().to_string())
 .send()
 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 Ok(update)
 }
 // snippet-end:[lambda.rust.scenario.update_function_code]

 // snippet-start:[lambda.rust.scenario.update_function_configuration]
 /** Update the environment for a function. */
 pub async fn update_function_configuration(
 &self,
 environment: Environment,
) -> Result<UpdateFunctionConfigurationOutput, anyhow::Error> {
 info!(
 ?environment,
 "Updating environment for {}", self.lambda_name
);
 let updated = self
 .lambda_client
 .update_function_configuration()
 .function_name(self.lambda_name.clone())
 .environment(environment)
 .send()

Get started with functions 2024

Amazon Lambda Developer Guide

 .await
 .map_err(anyhow::Error::from)?;

 self.wait_for_function_ready().await?;

 Ok(updated)
 }
 // snippet-end:[lambda.rust.scenario.update_function_configuration]

 // snippet-start:[lambda.rust.scenario.delete_function]
 /** Delete a function and its role, and if possible or necessary, its
 associated code object and bucket. */
 pub async fn delete_function(
 &self,
 location: Option<String>,
) -> (
 Result<DeleteFunctionOutput, anyhow::Error>,
 Result<DeleteRoleOutput, anyhow::Error>,
 Option<Result<DeleteObjectOutput, anyhow::Error>>,
) {
 info!("Deleting lambda function {}", self.lambda_name);
 let delete_function = self
 .lambda_client
 .delete_function()
 .function_name(self.lambda_name.clone())
 .send()
 .await
 .map_err(anyhow::Error::from);

 info!("Deleting iam role {}", self.role_name);
 let delete_role = self
 .iam_client
 .delete_role()
 .role_name(self.role_name.clone())
 .send()
 .await
 .map_err(anyhow::Error::from);

 let delete_object: Option<Result<DeleteObjectOutput, anyhow::Error>> =
 if let Some(location) = location {
 info!("Deleting object {location}");
 Some(
 self.s3_client
 .delete_object()

Get started with functions 2025

Amazon Lambda Developer Guide

 .bucket(self.bucket.clone())
 .key(location)
 .send()
 .await
 .map_err(anyhow::Error::from),
)
 } else {
 info!(?location, "Skipping delete object");
 None
 };

 (delete_function, delete_role, delete_object)
 }
 // snippet-end:[lambda.rust.scenario.delete_function]

 pub async fn cleanup(
 &self,
 location: Option<String>,
) -> (
 (
 Result<DeleteFunctionOutput, anyhow::Error>,
 Result<DeleteRoleOutput, anyhow::Error>,
 Option<Result<DeleteObjectOutput, anyhow::Error>>,
),
 Option<Result<DeleteBucketOutput, anyhow::Error>>,
) {
 let delete_function = self.delete_function(location).await;

 let delete_bucket = if self.own_bucket {
 info!("Deleting bucket {}", self.bucket);
 if delete_function.2.is_none() ||
 delete_function.2.as_ref().unwrap().is_ok() {
 Some(
 self.s3_client
 .delete_bucket()
 .bucket(self.bucket.clone())
 .send()
 .await
 .map_err(anyhow::Error::from),
)
 } else {
 None
 }
 } else {

Get started with functions 2026

Amazon Lambda Developer Guide

 info!("No bucket to clean up");
 None
 };

 (delete_function, delete_bucket)
 }
}

/**
 * Testing occurs primarily as an integration test running the `scenario` bin
 successfully.
 * Each action relies deeply on the internal workings and state of Amazon Simple
 Storage Service (Amazon S3), Lambda, and IAM working together.
 * It is therefore infeasible to mock the clients to test the individual actions.
 */
#[cfg(test)]
mod test {
 use super::{InvokeArgs, Operation};
 use serde_json::json;

 /** Make sure that the JSON output of serializing InvokeArgs is what's
 expected by the calculator. */
 #[test]
 fn test_serialize() {
 assert_eq!(json!(InvokeArgs::Increment(5)), 5);
 assert_eq!(
 json!(InvokeArgs::Arithmetic(Operation::Plus, 5, 7)).to_string(),
 r#"{"op":"plus","i":5,"j":7}"#.to_string(),
);
 }
}

A binary to run the scenario from front to end, using command line flags to control some
behavior. This file is src/bin/scenario.rs in the crate.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

/*
Service actions

Get started with functions 2027

Amazon Lambda Developer Guide

Service actions wrap the SDK call, taking a client and any specific parameters
 necessary for the call.

* CreateFunction
* GetFunction
* ListFunctions
* Invoke
* UpdateFunctionCode
* UpdateFunctionConfiguration
* DeleteFunction

Scenario
A scenario runs at a command prompt and prints output to the user on the result
 of each service action. A scenario can run in one of two ways: straight through,
 printing out progress as it goes, or as an interactive question/answer script.

Getting started with functions

Use an SDK to manage AWS Lambda functions: create a function, invoke it, update
 its code, invoke it again, view its output and logs, and delete it.

This scenario uses two Lambda handlers:
Note: Handlers don't use AWS SDK API calls.

The increment handler is straightforward:

1. It accepts a number, increments it, and returns the new value.
2. It performs simple logging of the result.

The arithmetic handler is more complex:
1. It accepts a set of actions ['plus', 'minus', 'times', 'divided-by'] and two
 numbers, and returns the result of the calculation.
2. It uses an environment variable to control log level (such as DEBUG, INFO,
 WARNING, ERROR).
It logs a few things at different levels, such as:
 * DEBUG: Full event data.
 * INFO: The calculation result.
 * WARN~ING~: When a divide by zero error occurs.
 * This will be the typical `RUST_LOG` variable.

The steps of the scenario are:

Get started with functions 2028

Amazon Lambda Developer Guide

1. Create an AWS Identity and Access Management (IAM) role that meets the
 following requirements:
 * Has an assume_role policy that grants 'lambda.amazonaws.com' the
 'sts:AssumeRole' action.
 * Attaches the 'arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole' managed role.
 * _You must wait for ~10 seconds after the role is created before you can use
 it!_
2. Create a function (CreateFunction) for the increment handler by packaging it
 as a zip and doing one of the following:
 * Adding it with CreateFunction Code.ZipFile.
 * --or--
 * Uploading it to Amazon Simple Storage Service (Amazon S3) and adding it
 with CreateFunction Code.S3Bucket/S3Key.
 * _Note: Zipping the file does not have to be done in code._
 * If you have a waiter, use it to wait until the function is active.
 Otherwise, call GetFunction until State is Active.
3. Invoke the function with a number and print the result.
4. Update the function (UpdateFunctionCode) to the arithmetic handler by
 packaging it as a zip and doing one of the following:
 * Adding it with UpdateFunctionCode ZipFile.
 * --or--
 * Uploading it to Amazon S3 and adding it with UpdateFunctionCode S3Bucket/
S3Key.
5. Call GetFunction until Configuration.LastUpdateStatus is 'Successful' (or
 'Failed').
6. Update the environment variable by calling UpdateFunctionConfiguration and
 pass it a log level, such as:
 * Environment={'Variables': {'RUST_LOG': 'TRACE'}}
7. Invoke the function with an action from the list and a couple of values.
 Include LogType='Tail' to get logs in the result. Print the result of the
 calculation and the log.
8. [Optional] Invoke the function to provoke a divide-by-zero error and show the
 log result.
9. List all functions for the account, using pagination (ListFunctions).
10. Delete the function (DeleteFunction).
11. Delete the role.

Each step should use the function created in Service Actions to abstract calling
 the SDK.
 */

use aws_sdk_lambda::{operation::invoke::InvokeOutput, types::Environment};
use clap::Parser;

Get started with functions 2029

Amazon Lambda Developer Guide

use std::{collections::HashMap, path::PathBuf};
use tracing::{debug, info, warn};
use tracing_subscriber::EnvFilter;

use lambda_code_examples::actions::{
 InvokeArgs::{Arithmetic, Increment},
 LambdaManager, Operation,
};

#[derive(Debug, Parser)]
pub struct Opt {
 /// The AWS Region.
 #[structopt(short, long)]
 pub region: Option<String>,

 // The bucket to use for the FunctionCode.
 #[structopt(short, long)]
 pub bucket: Option<String>,

 // The name of the Lambda function.
 #[structopt(short, long)]
 pub lambda_name: Option<String>,

 // The number to increment.
 #[structopt(short, long, default_value = "12")]
 pub inc: i32,

 // The left operand.
 #[structopt(long, default_value = "19")]
 pub num_a: i32,

 // The right operand.
 #[structopt(long, default_value = "23")]
 pub num_b: i32,

 // The arithmetic operation.
 #[structopt(short, long, default_value = "plus")]
 pub operation: Operation,

 #[structopt(long)]
 pub cleanup: Option<bool>,

 #[structopt(long)]
 pub no_cleanup: Option<bool>,

Get started with functions 2030

Amazon Lambda Developer Guide

}

fn code_path(lambda: &str) -> PathBuf {
 PathBuf::from(format!("../target/lambda/{lambda}/bootstrap.zip"))
}

// snippet-start:[lambda.rust.scenario.log_invoke_output]
fn log_invoke_output(invoke: &InvokeOutput, message: &str) {
 if let Some(payload) = invoke.payload().cloned() {
 let payload = String::from_utf8(payload.into_inner());
 info!(?payload, message);
 } else {
 info!("Could not extract payload")
 }
 if let Some(logs) = invoke.log_result() {
 debug!(?logs, "Invoked function logs")
 } else {
 debug!("Invoked function had no logs")
 }
}
// snippet-end:[lambda.rust.scenario.log_invoke_output]

async fn main_block(
 opt: &Opt,
 manager: &LambdaManager,
 code_location: String,
) -> Result<(), anyhow::Error> {
 let invoke = manager.invoke(Increment(opt.inc)).await?;
 log_invoke_output(&invoke, "Invoked function configured as increment");

 let update_code = manager
 .update_function_code(code_path("arithmetic"), code_location.clone())
 .await?;

 let code_sha256 = update_code.code_sha256().unwrap_or("Unknown SHA");
 info!(?code_sha256, "Updated function code with arithmetic.zip");

 let arithmetic_args = Arithmetic(opt.operation, opt.num_a, opt.num_b);
 let invoke = manager.invoke(arithmetic_args).await?;
 log_invoke_output(&invoke, "Invoked function configured as arithmetic");

 let update = manager
 .update_function_configuration(
 Environment::builder()

Get started with functions 2031

Amazon Lambda Developer Guide

 .set_variables(Some(HashMap::from([(
 "RUST_LOG".to_string(),
 "trace".to_string(),
)])))
 .build(),
)
 .await?;
 let updated_environment = update.environment();
 info!(?updated_environment, "Updated function configuration");

 let invoke = manager
 .invoke(Arithmetic(opt.operation, opt.num_a, opt.num_b))
 .await?;
 log_invoke_output(
 &invoke,
 "Invoked function configured as arithmetic with increased logging",
);

 let invoke = manager
 .invoke(Arithmetic(Operation::DividedBy, opt.num_a, 0))
 .await?;
 log_invoke_output(
 &invoke,
 "Invoked function configured as arithmetic with divide by zero",
);

 Ok::<(), anyhow::Error>(())
}

#[tokio::main]
async fn main() {
 tracing_subscriber::fmt()
 .without_time()
 .with_file(true)
 .with_line_number(true)
 .with_env_filter(EnvFilter::from_default_env())
 .init();

 let opt = Opt::parse();
 let manager = LambdaManager::load_from_env(opt.lambda_name.clone(),
 opt.bucket.clone()).await;

 let key = match manager.create_function(code_path("increment")).await {
 Ok(init) => {

Get started with functions 2032

Amazon Lambda Developer Guide

 info!(?init, "Created function, initially with increment.zip");
 let run_block = main_block(&opt, &manager, init.clone()).await;
 info!(?run_block, "Finished running example, cleaning up");
 Some(init)
 }
 Err(err) => {
 warn!(?err, "Error happened when initializing function");
 None
 }
 };

 if Some(false) == opt.cleanup || Some(true) == opt.no_cleanup {
 info!("Skipping cleanup")
 } else {
 let delete = manager.cleanup(key).await;
 info!(?delete, "Deleted function & cleaned up resources");
 }
}

• For API details, see the following topics in Amazon SDK for Rust API reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

• UpdateFunctionConfiguration

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Get started with functions 2033

https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://docs.rs/releases/search?query=aws-sdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/lambda#code-examples

Amazon Lambda Developer Guide

 TRY.
 "Create an AWS Identity and Access Management (IAM) role that grants AWS
 Lambda permission to write to logs."
 DATA(lv_policy_document) = `{` &&
 `"Version":"2012-10-17",` &&
 `"Statement": [` &&
 `{` &&
 `"Effect": "Allow",` &&
 `"Action": [` &&
 `"sts:AssumeRole"` &&
 `],` &&
 `"Principal": {` &&
 `"Service": [` &&
 `"lambda.amazonaws.com"` &&
 `]` &&
 `}` &&
 `}` &&
 `]` &&
 `}`.
 TRY.
 DATA(lo_create_role_output) = lo_iam->createrole(
 iv_rolename = iv_role_name
 iv_assumerolepolicydocument = lv_policy_document
 iv_description = 'Grant lambda permission to write to logs'
).
 MESSAGE 'IAM role created.' TYPE 'I'.
 WAIT UP TO 10 SECONDS. " Make sure that the IAM role is
 ready for use. "
 CATCH /aws1/cx_iamentityalrdyexex.
 MESSAGE 'IAM role already exists.' TYPE 'E'.
 CATCH /aws1/cx_iaminvalidinputex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_iammalformedplydocex.
 MESSAGE 'Policy document in the request is malformed.' TYPE 'E'.
 ENDTRY.

 TRY.
 lo_iam->attachrolepolicy(
 iv_rolename = iv_role_name
 iv_policyarn = 'arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole'
).

Get started with functions 2034

Amazon Lambda Developer Guide

 MESSAGE 'Attached policy to the IAM role.' TYPE 'I'.
 CATCH /aws1/cx_iaminvalidinputex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_iamnosuchentityex.
 MESSAGE 'The requested resource entity does not exist.' TYPE 'E'.
 CATCH /aws1/cx_iamplynotattachableex.
 MESSAGE 'Service role policies can only be attached to the service-
linked role for their service.' TYPE 'E'.
 CATCH /aws1/cx_iamunmodableentityex.
 MESSAGE 'Service that depends on the service-linked role is not
 modifiable.' TYPE 'E'.
 ENDTRY.

 " Create a Lambda function and upload handler code. "
 " Lambda function performs 'increment' action on a number. "
 TRY.
 lo_lmd->createfunction(
 iv_functionname = iv_function_name
 iv_runtime = `python3.9`
 iv_role = lo_create_role_output->get_role()->get_arn()
 iv_handler = iv_handler
 io_code = io_initial_zip_file
 iv_description = 'AWS Lambda code example'
).
 MESSAGE 'Lambda function created.' TYPE 'I'.
 CATCH /aws1/cx_lmdcodestorageexcdex.
 MESSAGE 'Maximum total code size per account exceeded.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 ENDTRY.

 " Verify the function is in Active state "
 WHILE lo_lmd->getfunction(iv_functionname = iv_function_name)-
>get_configuration()->ask_state() <> 'Active'.
 IF sy-index = 10.
 EXIT. " Maximum 10 seconds. "
 ENDIF.
 WAIT UP TO 1 SECONDS.
 ENDWHILE.

 "Invoke the function with a single parameter and get results."
 TRY.

Get started with functions 2035

Amazon Lambda Developer Guide

 DATA(lv_json) = /aws1/cl_rt_util=>string_to_xstring(
 `{` &&
 `"action": "increment",` &&
 `"number": 10` &&
 `}`
).
 DATA(lo_initial_invoke_output) = lo_lmd->invoke(
 iv_functionname = iv_function_name
 iv_payload = lv_json
).
 ov_initial_invoke_payload = lo_initial_invoke_output->get_payload().
 " ov_initial_invoke_payload is returned for testing purposes. "
 DATA(lo_writer_json) = cl_sxml_string_writer=>create(type =
 if_sxml=>co_xt_json).
 CALL TRANSFORMATION id SOURCE XML ov_initial_invoke_payload RESULT
 XML lo_writer_json.
 DATA(lv_result) = cl_abap_codepage=>convert_from(lo_writer_json-
>get_output()).
 MESSAGE 'Lambda function invoked.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvrequestcontex.
 MESSAGE 'Unable to parse request body as JSON.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdunsuppedmediatyp00.
 MESSAGE 'Invoke request body does not have JSON as its content type.'
 TYPE 'E'.
 ENDTRY.

 " Update the function code and configure its Lambda environment with an
 environment variable. "
 " Lambda function is updated to perform 'decrement' action also. "
 TRY.
 lo_lmd->updatefunctioncode(
 iv_functionname = iv_function_name
 iv_zipfile = io_updated_zip_file
).
 WAIT UP TO 10 SECONDS. " Make sure that the update is
 completed. "
 MESSAGE 'Lambda function code updated.' TYPE 'I'.
 CATCH /aws1/cx_lmdcodestorageexcdex.
 MESSAGE 'Maximum total code size per account exceeded.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvparamvalueex.

Get started with functions 2036

Amazon Lambda Developer Guide

 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 ENDTRY.

 TRY.
 DATA lt_variables TYPE /aws1/
cl_lmdenvironmentvaria00=>tt_environmentvariables.
 DATA ls_variable LIKE LINE OF lt_variables.
 ls_variable-key = 'LOG_LEVEL'.
 ls_variable-value = NEW /aws1/cl_lmdenvironmentvaria00(iv_value =
 'info').
 INSERT ls_variable INTO TABLE lt_variables.

 lo_lmd->updatefunctionconfiguration(
 iv_functionname = iv_function_name
 io_environment = NEW /aws1/cl_lmdenvironment(it_variables =
 lt_variables)
).
 WAIT UP TO 10 SECONDS. " Make sure that the update is
 completed. "
 MESSAGE 'Lambda function configuration/settings updated.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourceconflictex.
 MESSAGE 'Resource already exists or another operation is in
 progress.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 ENDTRY.

 "Invoke the function with new parameters and get results. Display the
 execution log that's returned from the invocation."
 TRY.
 lv_json = /aws1/cl_rt_util=>string_to_xstring(
 `{` &&
 `"action": "decrement",` &&
 `"number": 10` &&
 `}`
).
 DATA(lo_updated_invoke_output) = lo_lmd->invoke(
 iv_functionname = iv_function_name
 iv_payload = lv_json
).

Get started with functions 2037

Amazon Lambda Developer Guide

 ov_updated_invoke_payload = lo_updated_invoke_output->get_payload().
 " ov_updated_invoke_payload is returned for testing purposes. "
 lo_writer_json = cl_sxml_string_writer=>create(type =
 if_sxml=>co_xt_json).
 CALL TRANSFORMATION id SOURCE XML ov_updated_invoke_payload RESULT
 XML lo_writer_json.
 lv_result = cl_abap_codepage=>convert_from(lo_writer_json-
>get_output()).
 MESSAGE 'Lambda function invoked.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdinvrequestcontex.
 MESSAGE 'Unable to parse request body as JSON.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 CATCH /aws1/cx_lmdunsuppedmediatyp00.
 MESSAGE 'Invoke request body does not have JSON as its content type.'
 TYPE 'E'.
 ENDTRY.

 " List the functions for your account. "
 TRY.
 DATA(lo_list_output) = lo_lmd->listfunctions().
 DATA(lt_functions) = lo_list_output->get_functions().
 MESSAGE 'Retrieved list of Lambda functions.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 ENDTRY.

 " Delete the Lambda function. "
 TRY.
 lo_lmd->deletefunction(iv_functionname = iv_function_name).
 MESSAGE 'Lambda function deleted.' TYPE 'I'.
 CATCH /aws1/cx_lmdinvparamvalueex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_lmdresourcenotfoundex.
 MESSAGE 'The requested resource does not exist.' TYPE 'E'.
 ENDTRY.

 " Detach role policy. "
 TRY.
 lo_iam->detachrolepolicy(
 iv_rolename = iv_role_name

Get started with functions 2038

Amazon Lambda Developer Guide

 iv_policyarn = 'arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole'
).
 MESSAGE 'Detached policy from the IAM role.' TYPE 'I'.
 CATCH /aws1/cx_iaminvalidinputex.
 MESSAGE 'The request contains a non-valid parameter.' TYPE 'E'.
 CATCH /aws1/cx_iamnosuchentityex.
 MESSAGE 'The requested resource entity does not exist.' TYPE 'E'.
 CATCH /aws1/cx_iamplynotattachableex.
 MESSAGE 'Service role policies can only be attached to the service-
linked role for their service.' TYPE 'E'.
 CATCH /aws1/cx_iamunmodableentityex.
 MESSAGE 'Service that depends on the service-linked role is not
 modifiable.' TYPE 'E'.
 ENDTRY.

 " Delete the IAM role. "
 TRY.
 lo_iam->deleterole(iv_rolename = iv_role_name).
 MESSAGE 'IAM role deleted.' TYPE 'I'.
 CATCH /aws1/cx_iamnosuchentityex.
 MESSAGE 'The requested resource entity does not exist.' TYPE 'E'.
 CATCH /aws1/cx_iamunmodableentityex.
 MESSAGE 'Service that depends on the service-linked role is not
 modifiable.' TYPE 'E'.
 ENDTRY.

 CATCH /aws1/cx_rt_service_generic INTO lo_exception.
 DATA(lv_error) = lo_exception->get_longtext().
 MESSAGE lv_error TYPE 'E'.
 ENDTRY.

• For API details, see the following topics in Amazon SDK for SAP ABAP API reference.

• CreateFunction

• DeleteFunction

• GetFunction

• Invoke

• ListFunctions

• UpdateFunctionCode

Get started with functions 2039

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html

Amazon Lambda Developer Guide

• UpdateFunctionConfiguration

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Serverless examples for Lambda using Amazon SDKs

The following code examples show how to use Lambda with Amazon SDKs.

Examples

• Connecting to an Amazon RDS database in a Lambda function

• Invoke a Lambda function from a Kinesis trigger

• Invoke a Lambda function from a DynamoDB trigger

• Invoke a Lambda function from an Amazon S3 trigger

• Invoke a Lambda function from an Amazon SNS trigger

• Invoke a Lambda function from an Amazon SQS trigger

• Reporting batch item failures for Lambda functions with a Kinesis trigger

• Reporting batch item failures for Lambda functions with a DynamoDB trigger

• Reporting batch item failures for Lambda functions with an Amazon SQS trigger

Connecting to an Amazon RDS database in a Lambda function

The following code example shows how to implement a Lambda function that connects to an RDS
database. The function makes a simple database request and returns the result.

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Serverless examples 2040

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-connect-rds-iam

Amazon Lambda Developer Guide

Reporting Kinesis batch item failures with Lambda using Javascript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
/*
Node.js code here.
*/
// ES6+ example
import { Signer } from "@aws-sdk/rds-signer";
import mysql from 'mysql2/promise';

async function createAuthToken() {
 // Define connection authentication parameters
 const dbinfo = {

 hostname: process.env.ProxyHostName,
 port: process.env.Port,
 username: process.env.DBUserName,
 region: process.env.AWS_REGION,

 }

 // Create RDS Signer object
 const signer = new Signer(dbinfo);

 // Request authorization token from RDS, specifying the username
 const token = await signer.getAuthToken();
 return token;
}

async function dbOps() {

 // Obtain auth token
 const token = await createAuthToken();
 // Define connection configuration
 let connectionConfig = {
 host: process.env.ProxyHostName,
 user: process.env.DBUserName,
 password: token,
 database: process.env.DBName,
 ssl: 'Amazon RDS'
 }
 // Create the connection to the DB
 const conn = await mysql.createConnection(connectionConfig);

Connecting to an Amazon RDS database in a Lambda function 2041

Amazon Lambda Developer Guide

 // Obtain the result of the query
 const [res,] = await conn.execute('select ?+? as sum', [3, 2]);
 return res;

}

export const handler = async (event) => {
 // Execute database flow
 const result = await dbOps();
 // Return result
 return {
 statusCode: 200,
 body: JSON.stringify("The selected sum is: " + result[0].sum)
 }
};

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from a Kinesis trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving records from a Kinesis stream. The function retrieves the Kinesis payload,
decodes from Base64, and logs the record contents.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

Invoke a Lambda function from a Kinesis trigger 2042

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace KinesisIntegrationSampleCode;

public class Function
{
 // Powertools Logger requires an environment variables against your function
 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task FunctionHandler(KinesisEvent evnt, ILambdaContext context)
 {
 if (evnt.Records.Count == 0)
 {
 Logger.LogInformation("Empty Kinesis Event received");
 return;
 }

 foreach (var record in evnt.Records)
 {
 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 throw;
 }
 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 }

Invoke a Lambda function from a Kinesis trigger 2043

Amazon Lambda Developer Guide

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {
 byte[] bytes = record.Data.ToArray();
 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work
 return data;
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "log"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, kinesisEvent events.KinesisEvent) error {
 if len(kinesisEvent.Records) == 0 {
 log.Printf("empty Kinesis event received")
 return nil
 }

 for _, record := range kinesisEvent.Records {

Invoke a Lambda function from a Kinesis trigger 2044

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

 log.Printf("processed Kinesis event with EventId: %v", record.EventID)
 recordDataBytes := record.Kinesis.Data
 recordDataText := string(recordDataBytes)
 log.Printf("record data: %v", recordDataText)
 // TODO: Do interesting work based on the new data
 }
 log.Printf("successfully processed %v records", len(kinesisEvent.Records))
 return nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent;

public class Handler implements RequestHandler<KinesisEvent, Void> {
 @Override
 public Void handleRequest(final KinesisEvent event, final Context context) {
 LambdaLogger logger = context.getLogger();
 if (event.getRecords().isEmpty()) {
 logger.log("Empty Kinesis Event received");

Invoke a Lambda function from a Kinesis trigger 2045

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda#readme

Amazon Lambda Developer Guide

 return null;
 }
 for (KinesisEvent.KinesisEventRecord record : event.getRecords()) {
 try {
 logger.log("Processed Event with EventId: "+record.getEventID());
 String data = new String(record.getKinesis().getData().array());
 logger.log("Data:"+ data);
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex) {
 logger.log("An error occurred:"+ex.getMessage());
 throw ex;
 }
 }
 logger.log("Successfully processed:"+event.getRecords().size()+"
 records");
 return null;
 }

}

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);

Invoke a Lambda function from a Kinesis trigger 2046

https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

 // TODO: Do interesting work based on the new data
 } catch (err) {
 console.error(`An error occurred ${err}`);
 throw err;
 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

Consuming a Kinesis event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 logger.info(`Record Data: ${recordData}`);

Invoke a Lambda function from a Kinesis trigger 2047

Amazon Lambda Developer Guide

 // TODO: Do interesting work based on the new data
 } catch (err) {
 logger.error(`An error occurred ${err}`);
 throw err;
 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 }
};

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Kinesis event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Kinesis\KinesisEvent;
use Bref\Event\Kinesis\KinesisHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

Invoke a Lambda function from a Kinesis trigger 2048

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

class Handler extends KinesisHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handleKinesis(KinesisEvent $event, Context $context): void
 {
 $this->logger->info("Processing records");
 $records = $event->getRecords();
 foreach ($records as $record) {
 $data = $record->getData();
 $this->logger->info(json_encode($data));
 // TODO: Do interesting work based on the new data

 // Any exception thrown will be logged and the invocation will be
 marked as failed
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Invoke a Lambda function from a Kinesis trigger 2049

Amazon Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a Kinesis event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import base64
def lambda_handler(event, context):

 for record in event['Records']:
 try:
 print(f"Processed Kinesis Event - EventID: {record['eventID']}")
 record_data = base64.b64decode(record['kinesis']
['data']).decode('utf-8')
 print(f"Record Data: {record_data}")
 # TODO: Do interesting work based on the new data
 except Exception as e:
 print(f"An error occurred {e}")
 raise e
 print(f"Successfully processed {len(event['Records'])} records.")

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Invoke a Lambda function from a Kinesis trigger 2050

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

Consuming an Kinesis event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

def lambda_handler(event:, context:)
 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data
 rescue => err
 $stderr.puts "An error occurred #{err}"
 raise err
 end
 end
 puts "Successfully processed #{event['Records'].length} records."
end

def get_record_data_async(payload)
 data = Base64.decode64(payload['data']).force_encoding('UTF-8')
 # Placeholder for actual async work
 # You can use Ruby's asynchronous programming tools like async/await or fibers
 here.
 return data
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an Kinesis event with Lambda using Rust.

Invoke a Lambda function from a Kinesis trigger 2051

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda

Amazon Lambda Developer Guide

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::kinesis::KinesisEvent;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<KinesisEvent>) -> Result<(), Error>
 {
 if event.payload.records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(());
 }

 event.payload.records.iter().for_each(|record| {
 tracing::info!("EventId:
 {}",record.event_id.as_deref().unwrap_or_default());

 let record_data = std::str::from_utf8(&record.kinesis.data);

 match record_data {
 Ok(data) => {
 // log the record data
 tracing::info!("Data: {}", data);
 }
 Err(e) => {
 tracing::error!("Error: {}", e);
 }
 }
 });

 tracing::info!(
 "Successfully processed {} records",
 event.payload.records.len()
);

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)

Invoke a Lambda function from a Kinesis trigger 2052

Amazon Lambda Developer Guide

 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from a DynamoDB trigger

The following code example shows how to implement a Lambda function that receives an event
triggered by receiving records from a DynamoDB stream. The function retrieves the DynamoDB
payload and logs the record contents.

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);
 });
};

const logDynamoDBRecord = (record) => {

Invoke a Lambda function from a DynamoDB trigger 2053

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

Amazon Lambda Developer Guide

 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);
};

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from an Amazon S3 trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by uploading an object to an S3 bucket. The function retrieves the S3 bucket name and
object key from the event parameter and calls the Amazon S3 API to retrieve and log the content
type of the object.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Threading.Tasks;
using Amazon.Lambda.Core;
using Amazon.S3;
using System;
using Amazon.Lambda.S3Events;
using System.Web;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.

Invoke a Lambda function from an Amazon S3 trigger 2054

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon Lambda Developer Guide

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace S3Integration
{
 public class Function
 {
 private static AmazonS3Client _s3Client;
 public Function() : this(null)
 {
 }

 internal Function(AmazonS3Client s3Client)
 {
 _s3Client = s3Client ?? new AmazonS3Client();
 }

 public async Task<string> Handler(S3Event evt, ILambdaContext context)
 {
 try
 {
 if (evt.Records.Count <= 0)
 {
 context.Logger.LogLine("Empty S3 Event received");
 return string.Empty;
 }

 var bucket = evt.Records[0].S3.Bucket.Name;
 var key = HttpUtility.UrlDecode(evt.Records[0].S3.Object.Key);

 context.Logger.LogLine($"Request is for {bucket} and {key}");

 var objectResult = await _s3Client.GetObjectAsync(bucket, key);

 context.Logger.LogLine($"Returning {objectResult.Key}");

 return objectResult.Key;
 }
 catch (Exception e)
 {
 context.Logger.LogLine($"Error processing request -
 {e.Message}");

 return string.Empty;

Invoke a Lambda function from an Amazon S3 trigger 2055

Amazon Lambda Developer Guide

 }
 }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "log"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/s3"
)

func handler(ctx context.Context, s3Event events.S3Event) error {
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 log.Printf("failed to load default config: %s", err)
 return err
 }
 s3Client := s3.NewFromConfig(sdkConfig)

 for _, record := range s3Event.Records {
 bucket := record.S3.Bucket.Name
 key := record.S3.Object.URLDecodedKey

Invoke a Lambda function from an Amazon S3 trigger 2056

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon Lambda Developer Guide

 headOutput, err := s3Client.HeadObject(ctx, &s3.HeadObjectInput{
 Bucket: &bucket,
 Key: &key,
 })
 if err != nil {
 log.Printf("error getting head of object %s/%s: %s", bucket, key, err)
 return err
 }
 log.Printf("successfully retrieved %s/%s of type %s", bucket, key,
 *headOutput.ContentType)
 }

 return nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import software.amazon.awssdk.services.s3.model.HeadObjectRequest;
import software.amazon.awssdk.services.s3.model.HeadObjectResponse;
import software.amazon.awssdk.services.s3.S3Client;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

Invoke a Lambda function from an Amazon S3 trigger 2057

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda#readme

Amazon Lambda Developer Guide

import com.amazonaws.services.lambda.runtime.events.S3Event;
import
 com.amazonaws.services.lambda.runtime.events.models.s3.S3EventNotification.S3EventNotificationRecord;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class Handler implements RequestHandler<S3Event, String> {
 private static final Logger logger = LoggerFactory.getLogger(Handler.class);
 @Override
 public String handleRequest(S3Event s3event, Context context) {
 try {
 S3EventNotificationRecord record = s3event.getRecords().get(0);
 String srcBucket = record.getS3().getBucket().getName();
 String srcKey = record.getS3().getObject().getUrlDecodedKey();

 S3Client s3Client = S3Client.builder().build();
 HeadObjectResponse headObject = getHeadObject(s3Client, srcBucket,
 srcKey);

 logger.info("Successfully retrieved " + srcBucket + "/" + srcKey + " of
 type " + headObject.contentType());

 return "Ok";
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 private HeadObjectResponse getHeadObject(S3Client s3Client, String bucket,
 String key) {
 HeadObjectRequest headObjectRequest = HeadObjectRequest.builder()
 .bucket(bucket)
 .key(key)
 .build();
 return s3Client.headObject(headObjectRequest);
 }
}

Invoke a Lambda function from an Amazon S3 trigger 2058

Amazon Lambda Developer Guide

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
const aws = require('aws-sdk');

const s3 = new aws.S3({ apiVersion: '2006-03-01' });

exports.handler = async (event, context) => {
 // Get the object from the event and show its content type
 const bucket = event.Records[0].s3.bucket.name;
 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g,
 ' '));
 const params = {
 Bucket: bucket,
 Key: key,
 };
 try {
 const { ContentType } = await s3.headObject(params).promise();
 console.log('CONTENT TYPE:', ContentType);
 return ContentType;
 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}. Make
 sure they exist and your bucket is in the same region as this function.`;
 console.log(message);
 throw new Error(message);
 }
};

Consuming an S3 event with Lambda using TypeScript.

Invoke a Lambda function from an Amazon S3 trigger 2059

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon Lambda Developer Guide

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { S3Event } from 'aws-lambda';
import { S3Client, HeadObjectCommand } from '@aws-sdk/client-s3';

const s3 = new S3Client({ region: process.env.AWS_REGION });

export const handler = async (event: S3Event): Promise<string | undefined> => {
 // Get the object from the event and show its content type
 const bucket = event.Records[0].s3.bucket.name;
 const key = decodeURIComponent(event.Records[0].s3.object.key.replace(/\+/g, '
 '));
 const params = {
 Bucket: bucket,
 Key: key,
 };
 try {
 const { ContentType } = await s3.send(new HeadObjectCommand(params));
 console.log('CONTENT TYPE:', ContentType);
 return ContentType;
 } catch (err) {
 console.log(err);
 const message = `Error getting object ${key} from bucket ${bucket}. Make sure
 they exist and your bucket is in the same region as this function.`;
 console.log(message);
 throw new Error(message);
 }
};

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using Python.

Invoke a Lambda function from an Amazon S3 trigger 2060

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon Lambda Developer Guide

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import json
import urllib.parse
import boto3

print('Loading function')

s3 = boto3.client('s3')

def lambda_handler(event, context):
 #print("Received event: " + json.dumps(event, indent=2))

 # Get the object from the event and show its content type
 bucket = event['Records'][0]['s3']['bucket']['name']
 key = urllib.parse.unquote_plus(event['Records'][0]['s3']['object']['key'],
 encoding='utf-8')
 try:
 response = s3.get_object(Bucket=bucket, Key=key)
 print("CONTENT TYPE: " + response['ContentType'])
 return response['ContentType']
 except Exception as e:
 print(e)
 print('Error getting object {} from bucket {}. Make sure they exist and
 your bucket is in the same region as this function.'.format(key, bucket))
 raise e

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an S3 event with Lambda using Rust.

Invoke a Lambda function from an Amazon S3 trigger 2061

https://github.com/aws-samples/serverless-snippets/tree/main/integration-s3-to-lambda

Amazon Lambda Developer Guide

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::s3::S3Event;
use aws_sdk_s3::{Client};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

/// Main function
#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 // Initialize the AWS SDK for Rust
 let config = aws_config::load_from_env().await;
 let s3_client = Client::new(&config);

 let res = run(service_fn(|request: LambdaEvent<S3Event>| {
 function_handler(&s3_client, request)
 })).await;

 res
}

async fn function_handler(
 s3_client: &Client,
 evt: LambdaEvent<S3Event>
) -> Result<(), Error> {
 tracing::info!(records = ?evt.payload.records.len(), "Received request from
 SQS");

 if evt.payload.records.len() == 0 {
 tracing::info!("Empty S3 event received");
 }

 let bucket = evt.payload.records[0].s3.bucket.name.as_ref().expect("Bucket
 name to exist");
 let key = evt.payload.records[0].s3.object.key.as_ref().expect("Object key to
 exist");

Invoke a Lambda function from an Amazon S3 trigger 2062

Amazon Lambda Developer Guide

 tracing::info!("Request is for {} and object {}", bucket, key);

 let s3_get_object_result = s3_client
 .get_object()
 .bucket(bucket)
 .key(key)
 .send()
 .await;

 match s3_get_object_result {
 Ok(_) => tracing::info!("S3 Get Object success, the s3GetObjectResult
 contains a 'body' property of type ByteStream"),
 Err(_) => tracing::info!("Failure with S3 Get Object request")
 }

 Ok(())
}

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from an Amazon SNS trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving messages from an SNS topic. The function retrieves the messages from the
event parameter and logs the content of each message.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Invoke a Lambda function from an Amazon SNS trigger 2063

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SNSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SnsIntegration;

public class Function
{
 public async Task FunctionHandler(SNSEvent evnt, ILambdaContext context)
 {
 foreach (var record in evnt.Records)
 {
 await ProcessRecordAsync(record, context);
 }
 context.Logger.LogInformation("done");
 }

 private async Task ProcessRecordAsync(SNSEvent.SNSRecord record,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed record
 {record.Sns.Message}");

 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }
 }
}

Invoke a Lambda function from an Amazon SNS trigger 2064

Amazon Lambda Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "fmt"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, snsEvent events.SNSEvent) {
 for _, record := range snsEvent.Records {
 processMessage(record)
 }
 fmt.Println("done")
}

func processMessage(record events.SNSEventRecord) {
 message := record.SNS.Message
 fmt.Printf("Processed message: %s\n", message)
 // TODO: Process your record here
}

func main() {
 lambda.Start(handler)
}

Invoke a Lambda function from an Amazon SNS trigger 2065

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.LambdaLogger;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SNSEvent;
import com.amazonaws.services.lambda.runtime.events.SNSEvent.SNSRecord;

import java.util.Iterator;
import java.util.List;

public class SNSEventHandler implements RequestHandler<SNSEvent, Boolean> {
 LambdaLogger logger;

 @Override
 public Boolean handleRequest(SNSEvent event, Context context) {
 logger = context.getLogger();
 List<SNSRecord> records = event.getRecords();
 if (!records.isEmpty()) {
 Iterator<SNSRecord> recordsIter = records.iterator();
 while (recordsIter.hasNext()) {
 processRecord(recordsIter.next());
 }
 }
 return Boolean.TRUE;
 }

 public void processRecord(SNSRecord record) {

Invoke a Lambda function from an Amazon SNS trigger 2066

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda#readme

Amazon Lambda Developer Guide

 try {
 String message = record.getSNS().getMessage();
 logger.log("message: " + message);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

}

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record) {
 try {
 const message = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");

Invoke a Lambda function from an Amazon SNS trigger 2067

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

 throw err;
 }
}

Consuming an SNS event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SNSEvent, Context, SNSHandler, SNSEventRecord } from "aws-lambda";

export const functionHandler: SNSHandler = async (
 event: SNSEvent,
 context: Context
): Promise<void> => {
 for (const record of event.Records) {
 await processMessageAsync(record);
 }
 console.info("done");
};

async function processMessageAsync(record: SNSEventRecord): Promise<any> {
 try {
 const message: string = JSON.stringify(record.Sns.Message);
 console.log(`Processed message ${message}`);
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Invoke a Lambda function from an Amazon SNS trigger 2068

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

Consuming an SNS event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

/*
Since native PHP support for AWS Lambda is not available, we are utilizing Bref's
 PHP functions runtime for AWS Lambda.
For more information on Bref's PHP runtime for Lambda, refer to: https://bref.sh/
docs/runtimes/function

Another approach would be to create a custom runtime.
A practical example can be found here: https://aws.amazon.com/blogs/apn/aws-
lambda-custom-runtime-for-php-a-practical-example/
*/

// Additional composer packages may be required when using Bref or any other PHP
 functions runtime.
// require __DIR__ . '/vendor/autoload.php';

use Bref\Context\Context;
use Bref\Event\Sns\SnsEvent;
use Bref\Event\Sns\SnsHandler;

class Handler extends SnsHandler
{
 public function handleSns(SnsEvent $event, Context $context): void
 {
 foreach ($event->getRecords() as $record) {
 $message = $record->getMessage();

 // TODO: Implement your custom processing logic here
 // Any exception thrown will be logged and the invocation will be
 marked as failed

 echo "Processed Message: $message" . PHP_EOL;
 }
 }
}

return new Handler();

Invoke a Lambda function from an Amazon SNS trigger 2069

Amazon Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event, context):
 for record in event['Records']:
 process_message(record)
 print("done")

def process_message(record):
 try:
 message = record['Sns']['Message']
 print(f"Processed message {message}")
 # TODO; Process your record here

 except Exception as e:
 print("An error occurred")
 raise e

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Invoke a Lambda function from an Amazon SNS trigger 2070

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

Consuming an SNS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].map { |record| process_message(record) }
end

def process_message(record)
 message = record['Sns']['Message']
 puts("Processing message: #{message}")
rescue StandardError => e
 puts("Error processing message: #{e}")
 raise
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SNS event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::sns::SnsEvent;
use aws_lambda_events::sns::SnsRecord;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};
use tracing::info;

// Built with the following dependencies:
// aws_lambda_events = { version = "0.10.0", default-features = false, features
 = ["sns"] }
// lambda_runtime = "0.8.1"
// tokio = { version = "1", features = ["macros"] }

Invoke a Lambda function from an Amazon SNS trigger 2071

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sns-to-lambda

Amazon Lambda Developer Guide

// tracing = { version = "0.1", features = ["log"] }
// tracing-subscriber = { version = "0.3", default-features = false, features =
 ["fmt"] }

async fn function_handler(event: LambdaEvent<SnsEvent>) -> Result<(), Error> {
 for event in event.payload.records {
 process_record(&event)?;
 }

 Ok(())
}

fn process_record(record: &SnsRecord) -> Result<(), Error> {
 info!("Processing SNS Message: {}", record.sns.message);

 // Implement your record handling code here.

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from an Amazon SQS trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving messages from an SQS queue. The function retrieves the messages from the
event parameter and logs the content of each message.

Invoke a Lambda function from an Amazon SQS trigger 2072

Amazon Lambda Developer Guide

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace SqsIntegrationSampleCode
{
 public async Task FunctionHandler(SQSEvent evnt, ILambdaContext context)
 {
 foreach (var message in evnt.Records)
 {
 await ProcessMessageAsync(message, context);
 }

 context.Logger.LogInformation("done");
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 try
 {
 context.Logger.LogInformation($"Processed message {message.Body}");

 // TODO: Do interesting work based on the new message

Invoke a Lambda function from an Amazon SQS trigger 2073

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

 await Task.CompletedTask;
 }
 catch (Exception e)
 {
 //You can use Dead Letter Queue to handle failures. By configuring a
 Lambda DLQ.
 context.Logger.LogError($"An error occurred");
 throw;
 }

 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package integration_sqs_to_lambda

import (
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(event events.SQSEvent) error {
 for _, record := range event.Records {
 err := processMessage(record)
 if err != nil {
 return err
 }

Invoke a Lambda function from an Amazon SQS trigger 2074

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

 }
 fmt.Println("done")
 return nil
}

func processMessage(record events.SQSMessage) error {
 fmt.Printf("Processed message %s\n", record.Body)
 // TODO: Do interesting work based on the new message
 return nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSEvent.SQSMessage;

public class Function implements RequestHandler<SQSEvent, Void> {
 @Override
 public Void handleRequest(SQSEvent sqsEvent, Context context) {
 for (SQSMessage msg : sqsEvent.getRecords()) {
 processMessage(msg, context);
 }
 context.getLogger().log("done");

Invoke a Lambda function from an Amazon SQS trigger 2075

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda#readme

Amazon Lambda Developer Guide

 return null;
 }

 private void processMessage(SQSMessage msg, Context context) {
 try {
 context.getLogger().log("Processed message " + msg.getBody());

 // TODO: Do interesting work based on the new message

 } catch (Exception e) {
 context.getLogger().log("An error occurred");
 throw e;
 }

 }
}

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message) {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message

Invoke a Lambda function from an Amazon SQS trigger 2076

https://github.com/aws-samples/serverless-snippets/blob/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

Consuming an SQS event with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { SQSEvent, Context, SQSHandler, SQSRecord } from "aws-lambda";

export const functionHandler: SQSHandler = async (
 event: SQSEvent,
 context: Context
): Promise<void> => {
 for (const message of event.Records) {
 await processMessageAsync(message);
 }
 console.info("done");
};

async function processMessageAsync(message: SQSRecord): Promise<any> {
 try {
 console.log(`Processed message ${message.body}`);
 // TODO: Do interesting work based on the new message
 await Promise.resolve(1); //Placeholder for actual async work
 } catch (err) {
 console.error("An error occurred");
 throw err;
 }
}

Invoke a Lambda function from an Amazon SQS trigger 2077

Amazon Lambda Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\InvalidLambdaEvent;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends SqsHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws InvalidLambdaEvent
 */
 public function handleSqs(SqsEvent $event, Context $context): void
 {
 foreach ($event->getRecords() as $record) {
 $body = $record->getBody();
 // TODO: Do interesting work based on the new message
 }

Invoke a Lambda function from an Amazon SQS trigger 2078

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event, context):
 for message in event['Records']:
 process_message(message)
 print("done")

def process_message(message):
 try:
 print(f"Processed message {message['body']}")
 # TODO: Do interesting work based on the new message
 except Exception as err:
 print("An error occurred")
 raise err

Invoke a Lambda function from an Amazon SQS trigger 2079

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming an SQS event with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def lambda_handler(event:, context:)
 event['Records'].each do |message|
 process_message(message)
 end
 puts "done"
end

def process_message(message)
 begin
 puts "Processed message #{message['body']}"
 # TODO: Do interesting work based on the new message
 rescue StandardError => err
 puts "An error occurred"
 raise err
 end
end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Invoke a Lambda function from an Amazon SQS trigger 2080

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda

Amazon Lambda Developer Guide

Consuming an SQS event with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::event::sqs::SqsEvent;
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<SqsEvent>) -> Result<(), Error> {
 event.payload.records.iter().for_each(|record| {
 // process the record
 tracing::info!("Message body: {}",
 record.body.as_deref().unwrap_or_default())
 });

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Reporting batch item failures for Lambda functions with a Kinesis
trigger

The following code examples show how to implement partial batch response for Lambda functions
that receive events from a Kinesis stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

Reporting batch item failures for Lambda functions with a Kinesis trigger 2081

Amazon Lambda Developer Guide

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text;
using System.Text.Json.Serialization;
using Amazon.Lambda.Core;
using Amazon.Lambda.KinesisEvents;
using AWS.Lambda.Powertools.Logging;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace KinesisIntegration;

public class Function
{
 // Powertools Logger requires an environment variables against your function
 // POWERTOOLS_SERVICE_NAME
 [Logging(LogEvent = true)]
 public async Task<StreamsEventResponse> FunctionHandler(KinesisEvent evnt,
 ILambdaContext context)
 {
 if (evnt.Records.Count == 0)
 {
 Logger.LogInformation("Empty Kinesis Event received");
 return new StreamsEventResponse();
 }

 foreach (var record in evnt.Records)
 {

Reporting batch item failures for Lambda functions with a Kinesis trigger 2082

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

 try
 {
 Logger.LogInformation($"Processed Event with EventId:
 {record.EventId}");
 string data = await GetRecordDataAsync(record.Kinesis, context);
 Logger.LogInformation($"Data: {data}");
 // TODO: Do interesting work based on the new data
 }
 catch (Exception ex)
 {
 Logger.LogError($"An error occurred {ex.Message}");
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 return new StreamsEventResponse
 {
 BatchItemFailures = new
 List<StreamsEventResponse.BatchItemFailure>
 {
 new StreamsEventResponse.BatchItemFailure
 { ItemIdentifier = record.Kinesis.SequenceNumber }
 }
 };
 }
 }
 Logger.LogInformation($"Successfully processed {evnt.Records.Count}
 records.");
 return new StreamsEventResponse();
 }

 private async Task<string> GetRecordDataAsync(KinesisEvent.Record record,
 ILambdaContext context)
 {
 byte[] bytes = record.Data.ToArray();
 string data = Encoding.UTF8.GetString(bytes);
 await Task.CompletedTask; //Placeholder for actual async work
 return data;
 }
}

public class StreamsEventResponse
{
 [JsonPropertyName("batchItemFailures")]

Reporting batch item failures for Lambda functions with a Kinesis trigger 2083

Amazon Lambda Developer Guide

 public IList<BatchItemFailure> BatchItemFailures { get; set; }
 public class BatchItemFailure
 {
 [JsonPropertyName("itemIdentifier")]
 public string ItemIdentifier { get; set; }
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, kinesisEvent events.KinesisEvent)
 (map[string]interface{}, error) {
 batchItemFailures := []map[string]interface{}{}

 for _, record := range kinesisEvent.Records {
 curRecordSequenceNumber := ""

 // Process your record
 if /* Your record processing condition here */ {
 curRecordSequenceNumber = record.Kinesis.SequenceNumber
 }

Reporting batch item failures for Lambda functions with a Kinesis trigger 2084

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

 // Add a condition to check if the record processing failed
 if curRecordSequenceNumber != "" {
 batchItemFailures = append(batchItemFailures, map[string]interface{}
{"itemIdentifier": curRecordSequenceNumber})
 }
 }

 kinesisBatchResponse := map[string]interface{}{
 "batchItemFailures": batchItemFailures,
 }
 return kinesisBatchResponse, nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import com.amazonaws.services.lambda.runtime.events.StreamsEventResponse;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

Reporting batch item failures for Lambda functions with a Kinesis trigger 2085

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling#readme

Amazon Lambda Developer Guide

public class ProcessKinesisRecords implements RequestHandler<KinesisEvent,
 StreamsEventResponse> {

 @Override
 public StreamsEventResponse handleRequest(KinesisEvent input, Context
 context) {

 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<>();
 String curRecordSequenceNumber = "";

 for (KinesisEvent.KinesisEventRecord kinesisEventRecord :
 input.getRecords()) {
 try {
 //Process your record
 KinesisEvent.Record kinesisRecord =
 kinesisEventRecord.getKinesis();
 curRecordSequenceNumber = kinesisRecord.getSequenceNumber();

 } catch (Exception e) {
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 batchItemFailures.add(new
 StreamsEventResponse.BatchItemFailure(curRecordSequenceNumber));
 return new StreamsEventResponse(batchItemFailures);
 }
 }

 return new StreamsEventResponse(batchItemFailures);
 }
}

Reporting batch item failures for Lambda functions with a Kinesis trigger 2086

Amazon Lambda Developer Guide

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Javascript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 for (const record of event.Records) {
 try {
 console.log(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 console.log(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 console.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 console.log(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

async function getRecordDataAsync(payload) {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

Reporting batch item failures for Lambda functions with a Kinesis trigger 2087

https://github.com/aws-samples/serverless-snippets/blob/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

Reporting Kinesis batch item failures with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import {
 KinesisStreamEvent,
 Context,
 KinesisStreamHandler,
 KinesisStreamRecordPayload,
 KinesisStreamBatchResponse,
} from "aws-lambda";
import { Buffer } from "buffer";
import { Logger } from "@aws-lambda-powertools/logger";

const logger = new Logger({
 logLevel: "INFO",
 serviceName: "kinesis-stream-handler-sample",
});

export const functionHandler: KinesisStreamHandler = async (
 event: KinesisStreamEvent,
 context: Context
): Promise<KinesisStreamBatchResponse> => {
 for (const record of event.Records) {
 try {
 logger.info(`Processed Kinesis Event - EventID: ${record.eventID}`);
 const recordData = await getRecordDataAsync(record.kinesis);
 logger.info(`Record Data: ${recordData}`);
 // TODO: Do interesting work based on the new data
 } catch (err) {
 logger.error(`An error occurred ${err}`);
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return {
 batchItemFailures: [{ itemIdentifier: record.kinesis.sequenceNumber }],
 };
 }
 }
 logger.info(`Successfully processed ${event.Records.length} records.`);
 return { batchItemFailures: [] };
};

Reporting batch item failures for Lambda functions with a Kinesis trigger 2088

Amazon Lambda Developer Guide

async function getRecordDataAsync(
 payload: KinesisStreamRecordPayload
): Promise<string> {
 var data = Buffer.from(payload.data, "base64").toString("utf-8");
 await Promise.resolve(1); //Placeholder for actual async work
 return data;
}

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\Kinesis\KinesisEvent;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

Reporting batch item failures for Lambda functions with a Kinesis trigger 2089

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handle(mixed $event, Context $context): array
 {
 $kinesisEvent = new KinesisEvent($event);
 $this->logger->info("Processing records");
 $records = $kinesisEvent->getRecords();

 $failedRecords = [];
 foreach ($records as $record) {
 try {
 $data = $record->getData();
 $this->logger->info(json_encode($data));
 // TODO: Do interesting work based on the new data
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $failedRecords[] = $record->getSequenceNumber();
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");

 // change format for the response
 $failures = array_map(
 fn(string $sequenceNumber) => ['itemIdentifier' => $sequenceNumber],
 $failedRecords
);

 return [
 'batchItemFailures' => $failures
];
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Reporting batch item failures for Lambda functions with a Kinesis trigger 2090

Amazon Lambda Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def handler(event, context):
 records = event.get("Records")
 curRecordSequenceNumber = ""

 for record in records:
 try:
 # Process your record
 curRecordSequenceNumber = record["kinesis"]["sequenceNumber"]
 except Exception as e:
 # Return failed record's sequence number
 return {"batchItemFailures":[{"itemIdentifier":
 curRecordSequenceNumber}]}

 return {"batchItemFailures":[]}

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting batch item failures for Lambda functions with a Kinesis trigger 2091

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling
https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

Reporting Kinesis batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'aws-sdk'

def lambda_handler(event:, context:)
 batch_item_failures = []

 event['Records'].each do |record|
 begin
 puts "Processed Kinesis Event - EventID: #{record['eventID']}"
 record_data = get_record_data_async(record['kinesis'])
 puts "Record Data: #{record_data}"
 # TODO: Do interesting work based on the new data
 rescue StandardError => err
 puts "An error occurred #{err}"
 # Since we are working with streams, we can return the failed item
 immediately.
 # Lambda will immediately begin to retry processing from this failed item
 onwards.
 return { batchItemFailures: [{ itemIdentifier: record['kinesis']
['sequenceNumber'] }] }
 end
 end

 puts "Successfully processed #{event['Records'].length} records."
 { batchItemFailures: batch_item_failures }
end

def get_record_data_async(payload)
 data = Base64.decode64(payload['data']).force_encoding('utf-8')
 # Placeholder for actual async work
 sleep(1)
 data
end

Reporting batch item failures for Lambda functions with a Kinesis trigger 2092

Amazon Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting Kinesis batch item failures with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::{
 event::kinesis::KinesisEvent,
 kinesis::KinesisEventRecord,
 streams::{KinesisBatchItemFailure, KinesisEventResponse},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn function_handler(event: LambdaEvent<KinesisEvent>) ->
 Result<KinesisEventResponse, Error> {
 let mut response = KinesisEventResponse {
 batch_item_failures: vec![],
 };

 if event.payload.records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(response);
 }

 for record in &event.payload.records {
 tracing::info!(
 "EventId: {}",
 record.event_id.as_deref().unwrap_or_default()
);

 let record_processing_result = process_record(record);

 if record_processing_result.is_err() {
 response.batch_item_failures.push(KinesisBatchItemFailure {
 item_identifier: record.kinesis.sequence_number.clone(),

Reporting batch item failures for Lambda functions with a Kinesis trigger 2093

https://github.com/aws-samples/serverless-snippets/tree/main/integration-kinesis-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

 });
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return Ok(response);
 }
 }

 tracing::info!(
 "Successfully processed {} records",
 event.payload.records.len()
);

 Ok(response)
}

fn process_record(record: &KinesisEventRecord) -> Result<(), Error> {
 let record_data = std::str::from_utf8(record.kinesis.data.as_slice());

 if let Some(err) = record_data.err() {
 tracing::error!("Error: {}", err);
 return Err(Error::from(err));
 }

 let record_data = record_data.unwrap_or_default();

 // do something interesting with the data
 tracing::info!("Data: {}", record_data);

 Ok(())
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

Reporting batch item failures for Lambda functions with a Kinesis trigger 2094

Amazon Lambda Developer Guide

 run(service_fn(function_handler)).await
}

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Reporting batch item failures for Lambda functions with a DynamoDB
trigger

The following code examples show how to implement partial batch response for Lambda functions
that receive events from a DynamoDB stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent;
import com.amazonaws.services.lambda.runtime.events.StreamsEventResponse;
import com.amazonaws.services.lambda.runtime.events.models.dynamodb.StreamRecord;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

public class ProcessDynamodbRecords implements RequestHandler<DynamodbEvent,
 Serializable> {

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2095

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling#readme

Amazon Lambda Developer Guide

 @Override
 public StreamsEventResponse handleRequest(DynamodbEvent input, Context
 context) {

 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<>();
 String curRecordSequenceNumber = "";

 for (DynamodbEvent.DynamodbStreamRecord dynamodbStreamRecord :
 input.getRecords()) {
 try {
 //Process your record
 StreamRecord dynamodbRecord = dynamodbStreamRecord.getDynamodb();
 curRecordSequenceNumber = dynamodbRecord.getSequenceNumber();

 } catch (Exception e) {
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 batchItemFailures.add(new
 StreamsEventResponse.BatchItemFailure(curRecordSequenceNumber));
 return new StreamsEventResponse(batchItemFailures);
 }
 }

 return new StreamsEventResponse();
 }
}

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting batch item failures for Lambda functions with a DynamoDB trigger 2096

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

Reporting DynamoDB batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def handler(event, context):
 records = event.get("Records")
 curRecordSequenceNumber = ""

 for record in records:
 try:
 # Process your record
 curRecordSequenceNumber = record["dynamodb"]["SequenceNumber"]
 except Exception as e:
 # Return failed record's sequence number
 return {"batchItemFailures":[{"itemIdentifier":
 curRecordSequenceNumber}]}

 return {"batchItemFailures":[]}

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Reporting batch item failures for Lambda functions with an Amazon
SQS trigger

The following code examples show how to implement partial batch response for Lambda functions
that receive events from an SQS queue. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2097

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

Reporting SQS batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using Amazon.Lambda.Core;
using Amazon.Lambda.SQSEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]
namespace sqsSample;

public class Function
{
 public async Task<SQSBatchResponse> FunctionHandler(SQSEvent evnt,
 ILambdaContext context)
 {
 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 List<SQSBatchResponse.BatchItemFailure>();
 foreach(var message in evnt.Records)
 {
 try
 {
 //process your message
 await ProcessMessageAsync(message, context);
 }
 catch (System.Exception)
 {
 //Add failed message identifier to the batchItemFailures list
 batchItemFailures.Add(new
 SQSBatchResponse.BatchItemFailure{ItemIdentifier=message.MessageId});
 }
 }
 return new SQSBatchResponse(batchItemFailures);
 }

 private async Task ProcessMessageAsync(SQSEvent.SQSMessage message,
 ILambdaContext context)
 {
 if (String.IsNullOrEmpty(message.Body))
 {
 throw new Exception("No Body in SQS Message.");
 }

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2098

Amazon Lambda Developer Guide

 context.Logger.LogInformation($"Processed message {message.Body}");
 // TODO: Do interesting work based on the new message
 await Task.CompletedTask;
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "encoding/json"
 "fmt"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

func handler(ctx context.Context, sqsEvent events.SQSEvent)
 (map[string]interface{}, error) {
 batchItemFailures := []map[string]interface{}{}

 for _, message := range sqsEvent.Records {

 if /* Your message processing condition here */ {
 batchItemFailures = append(batchItemFailures, map[string]interface{}
{"itemIdentifier": message.MessageId})
 }
 }

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2099

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

 sqsBatchResponse := map[string]interface{}{
 "batchItemFailures": batchItemFailures,
 }
 return sqsBatchResponse, nil
}

func main() {
 lambda.Start(handler)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.services.lambda.runtime.events.SQSBatchResponse;

import java.util.ArrayList;
import java.util.List;

public class ProcessSQSMessageBatch implements RequestHandler<SQSEvent,
 SQSBatchResponse> {
 @Override
 public SQSBatchResponse handleRequest(SQSEvent sqsEvent, Context context) {

 List<SQSBatchResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<SQSBatchResponse.BatchItemFailure>();
 String messageId = "";
 for (SQSEvent.SQSMessage message : sqsEvent.getRecords()) {

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2100

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures#readme

Amazon Lambda Developer Guide

 try {
 //process your message
 messageId = message.getMessageId();
 } catch (Exception e) {
 //Add failed message identifier to the batchItemFailures list
 batchItemFailures.add(new
 SQSBatchResponse.BatchItemFailure(messageId));
 }
 }
 return new SQSBatchResponse(batchItemFailures);
 }
}

JavaScript

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
export const handler = async (event, context) => {
 const batchItemFailures = [];

 for (const record of event.Records) {
 try {
 await processMessageAsync(record, context);
 } catch (error) {
 batchItemFailures.push({ itemIdentifier: record.messageId });
 }
 }

 return { batchItemFailures };
};

async function processMessageAsync(record, context) {

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2101

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

 if (record.body && record.body.includes("error")) {
 throw new Error("There is an error in the SQS Message.");
 }
 console.log(`Processed message: ${record.body}`);
}

Reporting SQS batch item failures with Lambda using TypeScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import { APIGatewayProxyEvent, APIGatewayProxyResult, Context } from 'aws-
lambda';

export const handler = async (event: APIGatewayProxyEvent, context: Context):
 Promise<APIGatewayProxyResult> => {
 const batchItemFailures: { ItemIdentifier: string }[] = [];

 for (const record of event.Records) {
 try {
 await processMessageAsync(record, context);
 } catch (error) {
 batchItemFailures.push({ ItemIdentifier: record.messageId });
 }
 }

 return {
 statusCode: 200,
 body: JSON.stringify({ batchItemFailures }),
 };
};

async function processMessageAsync(record: any, context: Context): Promise<void>
 {
 if (!record.body) {
 throw new Error('No Body in SQS Message.');
 }
 context.log(`Processed message ${record.body}`);
}

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2102

Amazon Lambda Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using PHP.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
<?php

use Bref\Context\Context;
use Bref\Event\Sqs\SqsEvent;
use Bref\Event\Sqs\SqsHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends SqsHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handleSqs(SqsEvent $event, Context $context): void
 {
 $this->logger->info("Processing SQS records");
 $records = $event->getRecords();

 foreach ($records as $record) {
 try {
 // Assuming the SQS message is in JSON format

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2103

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

 $message = json_decode($record->getBody(), true);
 $this->logger->info(json_encode($message));
 // TODO: Implement your custom processing logic here
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $this->markAsFailed($record);
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords SQS records");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
import json
def lambda_handler(event, context):
 if event:
 batch_item_failures = []
 sqs_batch_response = {}

 for record in event["Records"]:
 try:
 # process message
 except Exception as e:

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2104

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

 batch_item_failures.append({"itemIdentifier":
 record['messageId']})

 sqs_batch_response["batchItemFailures"] = batch_item_failures
 return sqs_batch_response

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Ruby.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
require 'json'

def lambda_handler(event:, context:)
 if event
 batch_item_failures = []
 sqs_batch_response = {}

 event["Records"].each do |record|
 begin
 # process message
 rescue StandardError => e
 batch_item_failures << {"itemIdentifier" => record['messageId']}
 end
 end

 sqs_batch_response["batchItemFailures"] = batch_item_failures
 return sqs_batch_response
 end
end

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2105

https://github.com/aws-samples/serverless-snippets/tree/main/integration-sqs-to-lambda-with-batch-item-handling

Amazon Lambda Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting SQS batch item failures with Lambda using Rust.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use aws_lambda_events::{
 event::sqs::{SqsBatchResponse, SqsEvent},
 sqs::{BatchItemFailure, SqsMessage},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

async fn process_record(_: &SqsMessage) -> Result<(), Error> {
 Err(Error::from("Error processing message"))
}

async fn function_handler(event: LambdaEvent<SqsEvent>) ->
 Result<SqsBatchResponse, Error> {
 let mut batch_item_failures = Vec::new();
 for record in event.payload.records {
 match process_record(&record).await {
 Ok(_) => (),
 Err(_) => batch_item_failures.push(BatchItemFailure {
 item_identifier: record.message_id.unwrap(),
 }),
 }
 }

 Ok(SqsBatchResponse {
 batch_item_failures,
 })
}

#[tokio::main]
async fn main() -> Result<(), Error> {

Reporting batch item failures for Lambda functions with an Amazon SQS trigger 2106

https://github.com/aws-samples/serverless-snippets/tree/main/lambda-function-sqs-report-batch-item-failures

Amazon Lambda Developer Guide

 run(service_fn(function_handler)).await
}

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Cross-service examples for Lambda using Amazon SDKs

The following sample applications use Amazon SDKs to combine Lambda with other Amazon Web
Services. Each example includes a link to GitHub, where you can find instructions on how to set up
and run the application.

Examples

• Create an API Gateway REST API to track COVID-19 data

• Create a lending library REST API

• Create a messenger application with Step Functions

• Create a photo asset management application that lets users manage photos using labels

• Create a websocket chat application with API Gateway

• Create an application that analyzes customer feedback and synthesizes audio

• Invoke a Lambda function from a browser

• Transform data for your application with S3 Object Lambda

• Use API Gateway to invoke a Lambda function

• Use Step Functions to invoke Lambda functions

• Use scheduled events to invoke a Lambda function

Create an API Gateway REST API to track COVID-19 data

The following code example shows how to create a REST API that simulates a system to track daily
cases of COVID-19 in the United States, using fictional data.

Cross-service examples 2107

Amazon Lambda Developer Guide

Python

SDK for Python (Boto3)

Shows how to use Amazon Chalice with the Amazon SDK for Python (Boto3) to create
a serverless REST API that uses Amazon API Gateway, Amazon Lambda, and Amazon
DynamoDB. The REST API simulates a system that tracks daily cases of COVID-19 in the
United States, using fictional data. Learn how to:

• Use Amazon Chalice to define routes in Lambda functions that are called to handle REST
requests that come through API Gateway.

• Use Lambda functions to retrieve and store data in a DynamoDB table to serve REST
requests.

• Define table structure and security role resources in an Amazon CloudFormation template.

• Use Amazon Chalice and CloudFormation to package and deploy all necessary resources.

• Use CloudFormation to clean up all created resources.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• Amazon CloudFormation

• DynamoDB

• Lambda

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a lending library REST API

The following code example shows how to create a lending library where patrons can borrow and
return books by using a REST API backed by an Amazon Aurora database.

Create a lending library REST API 2108

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/apigateway_covid-19_tracker

Amazon Lambda Developer Guide

Python

SDK for Python (Boto3)

Shows how to use the Amazon SDK for Python (Boto3) with the Amazon Relational
Database Service (Amazon RDS) API and Amazon Chalice to create a REST API backed by an
Amazon Aurora database. The web service is fully serverless and represents a simple lending
library where patrons can borrow and return books. Learn how to:

• Create and manage a serverless Aurora database cluster.

• Use Amazon Secrets Manager to manage database credentials.

• Implement a data storage layer that uses Amazon RDS to move data into and out of the
database.

• Use Amazon Chalice to deploy a serverless REST API to Amazon API Gateway and Amazon
Lambda.

• Use the Requests package to send requests to the web service.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• Aurora

• Lambda

• Secrets Manager

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a messenger application with Step Functions

The following code example shows how to create an Amazon Step Functions messenger
application that retrieves message records from a database table.

Create a messenger application 2109

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/aurora_rest_lending_library

Amazon Lambda Developer Guide

Python

SDK for Python (Boto3)

Shows how to use the Amazon SDK for Python (Boto3) with Amazon Step Functions to
create a messenger application that retrieves message records from an Amazon DynamoDB
table and sends them with Amazon Simple Queue Service (Amazon SQS). The state machine
integrates with an Amazon Lambda function to scan the database for unsent messages.

• Create a state machine that retrieves and updates message records from an Amazon
DynamoDB table.

• Update the state machine definition to also send messages to Amazon Simple Queue
Service (Amazon SQS).

• Start and stop state machine runs.

• Connect to Lambda, DynamoDB, and Amazon SQS from a state machine by using service
integrations.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

• Amazon SQS

• Step Functions

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a photo asset management application that lets users manage
photos using labels

The following code examples show how to create a serverless application that lets users manage
photos using labels.

Create a serverless application to manage photos 2110

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/stepfunctions_messenger

Amazon Lambda Developer Guide

.NET

Amazon SDK for .NET

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

C++

SDK for C++

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

Create a serverless application to manage photos 2111

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/photo_asset_manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon Lambda Developer Guide

• Amazon S3

• Amazon SNS

Java

SDK for Java 2.x

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

Create a serverless application to manage photos 2112

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/pam_source_files
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo-asset-manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon Lambda Developer Guide

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Kotlin

SDK for Kotlin

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

PHP

SDK for PHP

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Create a serverless application to manage photos 2113

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/creating_pam
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/applications/photo_asset_manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon Lambda Developer Guide

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Rust

SDK for Rust

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create a websocket chat application with API Gateway

The following code example shows how to create a chat application that is served by a websocket
API built on Amazon API Gateway.

Create a websocket chat application 2114

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/cross_service/photo_asset_management
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon Lambda Developer Guide

Python

SDK for Python (Boto3)

Shows how to use the Amazon SDK for Python (Boto3) with Amazon API Gateway V2 to
create a websocket API that integrates with Amazon Lambda and Amazon DynamoDB.

• Create a websocket API served by API Gateway.

• Define a Lambda handler that stores connections in DynamoDB and posts messages to
other chat participants.

• Connect to the websocket chat application and send messages with the Websockets
package.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Create an application that analyzes customer feedback and synthesizes
audio

The following code examples show how to create an application that analyzes customer comment
cards, translates them from their original language, determines their sentiment, and generates an
audio file from the translated text.

.NET

Amazon SDK for .NET

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into

Create an application to analyze customer feedback 2115

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/apigateway_websocket_chat

Amazon Lambda Developer Guide

the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the Amazon CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

Java

SDK for Java 2.x

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into
the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the Amazon CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

Create an application to analyze customer feedback 2116

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/FeedbackSentimentAnalyzer
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_fsa_app

Amazon Lambda Developer Guide

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

JavaScript

SDK for JavaScript (v3)

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into
the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the Amazon CDK. For source code and deployment
instructions, see the project in GitHub. The following excerpts show how the Amazon SDK
for JavaScript is used inside of Lambda functions.

import {
 ComprehendClient,
 DetectDominantLanguageCommand,
 DetectSentimentCommand,
} from "@aws-sdk/client-comprehend";

/**
 * Determine the language and sentiment of the extracted text.
 *
 * @param {{ source_text: string}} extractTextOutput
 */
export const handler = async (extractTextOutput) => {
 const comprehendClient = new ComprehendClient({});

 const detectDominantLanguageCommand = new DetectDominantLanguageCommand({
 Text: extractTextOutput.source_text,

Create an application to analyze customer feedback 2117

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/feedback-sentiment-analyzer

Amazon Lambda Developer Guide

 });

 // The source language is required for sentiment analysis and
 // translation in the next step.
 const { Languages } = await comprehendClient.send(
 detectDominantLanguageCommand,
);

 const languageCode = Languages[0].LanguageCode;

 const detectSentimentCommand = new DetectSentimentCommand({
 Text: extractTextOutput.source_text,
 LanguageCode: languageCode,
 });

 const { Sentiment } = await comprehendClient.send(detectSentimentCommand);

 return {
 sentiment: Sentiment,
 language_code: languageCode,
 };
};

import {
 DetectDocumentTextCommand,
 TextractClient,
} from "@aws-sdk/client-textract";

/**
 * Fetch the S3 object from the event and analyze it using Amazon Textract.
 *
 * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">}
 eventBridgeS3Event
 */
export const handler = async (eventBridgeS3Event) => {
 const textractClient = new TextractClient();

 const detectDocumentTextCommand = new DetectDocumentTextCommand({
 Document: {
 S3Object: {
 Bucket: eventBridgeS3Event.bucket,
 Name: eventBridgeS3Event.object,
 },

Create an application to analyze customer feedback 2118

Amazon Lambda Developer Guide

 },
 });

 // Textract returns a list of blocks. A block can be a line, a page, word, etc.
 // Each block also contains geometry of the detected text.
 // For more information on the Block type, see https://docs.aws.amazon.com/
textract/latest/dg/API_Block.html.
 const { Blocks } = await textractClient.send(detectDocumentTextCommand);

 // For the purpose of this example, we are only interested in words.
 const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map(
 (b) => b.Text,
);

 return extractedWords.join(" ");
};

import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly";
import { S3Client } from "@aws-sdk/client-s3";
import { Upload } from "@aws-sdk/lib-storage";

/**
 * Synthesize an audio file from text.
 *
 * @param {{ bucket: string, translated_text: string, object: string}}
 sourceDestinationConfig
 */
export const handler = async (sourceDestinationConfig) => {
 const pollyClient = new PollyClient({});

 const synthesizeSpeechCommand = new SynthesizeSpeechCommand({
 Engine: "neural",
 Text: sourceDestinationConfig.translated_text,
 VoiceId: "Ruth",
 OutputFormat: "mp3",
 });

 const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand);

 const audioKey = `${sourceDestinationConfig.object}.mp3`;

 // Store the audio file in S3.
 const s3Client = new S3Client();

Create an application to analyze customer feedback 2119

Amazon Lambda Developer Guide

 const upload = new Upload({
 client: s3Client,
 params: {
 Bucket: sourceDestinationConfig.bucket,
 Key: audioKey,
 Body: AudioStream,
 ContentType: "audio/mp3",
 },
 });

 await upload.done();
 return audioKey;
};

import {
 TranslateClient,
 TranslateTextCommand,
} from "@aws-sdk/client-translate";

/**
 * Translate the extracted text to English.
 *
 * @param {{ extracted_text: string, source_language_code: string}}
 textAndSourceLanguage
 */
export const handler = async (textAndSourceLanguage) => {
 const translateClient = new TranslateClient({});

 const translateCommand = new TranslateTextCommand({
 SourceLanguageCode: textAndSourceLanguage.source_language_code,
 TargetLanguageCode: "en",
 Text: textAndSourceLanguage.extracted_text,
 });

 const { TranslatedText } = await translateClient.send(translateCommand);

 return { translated_text: TranslatedText };
};

Services used in this example

• Amazon Comprehend

• Lambda

Create an application to analyze customer feedback 2120

Amazon Lambda Developer Guide

• Amazon Polly

• Amazon Textract

• Amazon Translate

Ruby

SDK for Ruby

This example application analyzes and stores customer feedback cards. Specifically, it fulfills
the need of a fictitious hotel in New York City. The hotel receives feedback from guests in
various languages in the form of physical comment cards. That feedback is uploaded into
the app through a web client. After an image of a comment card is uploaded, the following
steps occur:

• Text is extracted from the image using Amazon Textract.

• Amazon Comprehend determines the sentiment of the extracted text and its language.

• The extracted text is translated to English using Amazon Translate.

• Amazon Polly synthesizes an audio file from the extracted text.

The full app can be deployed with the Amazon CDK. For source code and deployment
instructions, see the project in GitHub.

Services used in this example

• Amazon Comprehend

• Lambda

• Amazon Polly

• Amazon Textract

• Amazon Translate

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Invoke a Lambda function from a browser

The following code example shows how to invoke an Amazon Lambda function from a browser.

Invoke a Lambda function from a browser 2121

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/cross_service_examples/feedback_sentiment_analyzer

Amazon Lambda Developer Guide

JavaScript

SDK for JavaScript (v2)

You can create a browser-based application that uses an Amazon Lambda function to
update an Amazon DynamoDB table with user selections.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

SDK for JavaScript (v3)

You can create a browser-based application that uses an Amazon Lambda function to
update an Amazon DynamoDB table with user selections. This app uses Amazon SDK for
JavaScript v3.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Transform data for your application with S3 Object Lambda

The following code example shows how to transform data for your application with S3 Object
Lambda.

Transform data with S3 Object Lambda 2122

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/lambda/lambda-for-browser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-for-browser

Amazon Lambda Developer Guide

.NET

Amazon SDK for .NET

Shows how to add custom code to standard S3 GET requests to modify the requested object
retrieved from S3 so that the object suit the needs of the requesting client or application.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Lambda

• Amazon S3

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use API Gateway to invoke a Lambda function

The following code examples show how to create an Amazon Lambda function invoked by Amazon
API Gateway.

Java

SDK for Java 2.x

Shows how to create an Amazon Lambda function by using the Lambda Java runtime API.
This example invokes different Amazon services to perform a specific use case. This example
demonstrates how to create a Lambda function invoked by Amazon API Gateway that scans
an Amazon DynamoDB table for work anniversaries and uses Amazon Simple Notification
Service (Amazon SNS) to send a text message to your employees that congratulates them at
their one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

Use API Gateway to invoke a Lambda function 2123

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/S3ObjectLambdaFunction
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_lambda_apigateway

Amazon Lambda Developer Guide

• DynamoDB

• Lambda

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to create an Amazon Lambda function by using the Lambda JavaScript runtime
API. This example invokes different Amazon services to perform a specific use case.
This example demonstrates how to create a Lambda function invoked by Amazon API
Gateway that scans an Amazon DynamoDB table for work anniversaries and uses Amazon
Simple Notification Service (Amazon SNS) to send a text message to your employees that
congratulates them at their one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the Amazon SDK for JavaScript v3 developer guide.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon SNS

Python

SDK for Python (Boto3)

This example shows how to create and use an Amazon API Gateway REST API that targets
an Amazon Lambda function. The Lambda handler demonstrates how to route based on
HTTP methods; how to get data from the query string, header, and body; and how to return
a JSON response.

• Deploy a Lambda function.

• Create an API Gateway REST API.

Use API Gateway to invoke a Lambda function 2124

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-api-gateway
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/api-gateway-invoking-lambda-example.html

Amazon Lambda Developer Guide

• Create a REST resource that targets the Lambda function.

• Grant permission to let API Gateway invoke the Lambda function.

• Use the Requests package to send requests to the REST API.

• Clean up all resources created during the demo.

This example is best viewed on GitHub. For complete source code and instructions on how to
set up and run, see the full example on GitHub.

Services used in this example

• API Gateway

• Lambda

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use Step Functions to invoke Lambda functions

The following code examples show how to create an Amazon Step Functions state machine that
invokes Amazon Lambda functions in sequence.

Java

SDK for Java 2.x

Shows how to create an Amazon serverless workflow by using Amazon Step Functions and
the Amazon SDK for Java 2.x. Each workflow step is implemented using an Amazon Lambda
function.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

• Amazon SES

• Step Functions

Use Step Functions to invoke Lambda functions 2125

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#readme
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_workflows_stepfunctions

Amazon Lambda Developer Guide

JavaScript

SDK for JavaScript (v3)

Shows how to create an Amazon serverless workflow by using Amazon Step Functions
and the Amazon SDK for JavaScript. Each workflow step is implemented using an Amazon
Lambda function.

Lambda is a compute service that enables you to run code without provisioning or managing
servers. Step Functions is a serverless orchestration service that lets you combine Lambda
functions and other Amazon services to build business-critical applications.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the Amazon SDK for JavaScript v3 developer guide.

Services used in this example

• DynamoDB

• Lambda

• Amazon SES

• Step Functions

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use scheduled events to invoke a Lambda function

The following code examples show how to create an Amazon Lambda function invoked by an
Amazon EventBridge scheduled event.

Java

SDK for Java 2.x

Shows how to create an Amazon EventBridge scheduled event that invokes an Amazon
Lambda function. Configure EventBridge to use a cron expression to schedule when the

Use scheduled events to invoke a Lambda function 2126

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-step-functions
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/serverless-step-functions-example.html

Amazon Lambda Developer Guide

Lambda function is invoked. In this example, you create a Lambda function by using the
Lambda Java runtime API. This example invokes different Amazon services to perform a
specific use case. This example demonstrates how to create an app that sends a mobile text
message to your employees that congratulates them at the one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to create an Amazon EventBridge scheduled event that invokes an Amazon
Lambda function. Configure EventBridge to use a cron expression to schedule when the
Lambda function is invoked. In this example, you create a Lambda function by using the
Lambda JavaScript runtime API. This example invokes different Amazon services to perform
a specific use case. This example demonstrates how to create an app that sends a mobile
text message to your employees that congratulates them at the one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the Amazon SDK for JavaScript v3 developer guide.

Services used in this example

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

Use scheduled events to invoke a Lambda function 2127

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_scheduled_events
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-scheduled-events
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/scheduled-events-invoking-lambda-example.html

Amazon Lambda Developer Guide

Python

SDK for Python (Boto3)

This example shows how to register an Amazon Lambda function as the target of a
scheduled Amazon EventBridge event. The Lambda handler writes a friendly message and
the full event data to Amazon CloudWatch Logs for later retrieval.

• Deploys a Lambda function.

• Creates an EventBridge scheduled event and makes the Lambda function the target.

• Grants permission to let EventBridge invoke the Lambda function.

• Prints the latest data from CloudWatch Logs to show the result of the scheduled
invocations.

• Cleans up all resources created during the demo.

This example is best viewed on GitHub. For complete source code and instructions on how to
set up and run, see the full example on GitHub.

Services used in this example

• CloudWatch Logs

• EventBridge

• Lambda

For a complete list of Amazon SDK developer guides and code examples, see Using Lambda with an
Amazon SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use scheduled events to invoke a Lambda function 2128

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#readme

Amazon Lambda Developer Guide

Lambda quotas

Important

New Amazon Web Services accounts have reduced concurrency and memory quotas.
Amazon raises these quotas automatically based on your usage.

Compute and storage

Lambda sets quotas for the amount of compute and storage resources that you can use to run and
store functions. Quotas for concurrent executions and storage apply per Amazon Web Services
Region. Elastic network interface (ENI) quotas apply per virtual private cloud (VPC), regardless of
Region. The following quotas can be increased from their default values. For more information, see
Requesting a quota increase in the Service Quotas User Guide.

Resource Default quota Can be
increased up
to

Concurrent executions 1,000 Tens of
thousands

Storage for uploaded functions (.zip file
archives) and layers. Each function version and
layer version consumes storage.

For best practices on managing your code
storage, see Monitoring Lambda code storage
in Serverless Land.

75 GB Terabytes

Storage for functions defined as container
images. These images are stored in Amazon
ECR.

See Amazon ECR service
quotas.

Elastic network interfaces per virtual private
cloud (VPC)

250 Thousands

Compute and storage 2129

https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html
https://serverlessland.com/content/service/lambda/guides/aws-lambda-operator-guide/code-storage
https://docs.amazonaws.cn/AmazonECR/latest/userguide/service-quotas.html
https://docs.amazonaws.cn/AmazonECR/latest/userguide/service-quotas.html

Amazon Lambda Developer Guide

Resource Default quota Can be
increased up
to

Note

This quota is shared with other
services, such as Amazon Elastic File
System (Amazon EFS). See Amazon
VPC quotas.

For details on concurrency and how Lambda scales your function concurrency in response to traffic,
see Lambda function scaling.

Function configuration, deployment, and execution

The following quotas apply to function configuration, deployment, and execution. Except as noted,
they can't be changed.

Note

The Lambda documentation, log messages, and console use the abbreviation MB (rather
than MiB) to refer to 1,024 KB.

Resource Quota

Function memory allocation 128 MB to 10,240 MB, in 1-MB
increments.

Note: Lambda allocates CPU power
in proportion to the amount of
memory configured. You can
increase or decrease the memory
and CPU power allocated to your
function using the Memory (MB)

Function configuration, deployment, and execution 2130

https://docs.amazonaws.cn/vpc/latest/userguide/amazon-vpc-limits.html
https://docs.amazonaws.cn/vpc/latest/userguide/amazon-vpc-limits.html

Amazon Lambda Developer Guide

Resource Quota

setting. At 1,769 MB, a function has
the equivalent of one vCPU.

Function timeout 900 seconds (15 minutes)

Function environment variables 4 KB, for all environment variables
associated with the function, in
aggregate

Function resource-based policy 20 KB

Function layers five layers

Function concurrency scaling limit For each function, 1,000 execution
environments every 10 seconds

Invocation payload (request and response) 6 MB each for request and response
(synchronous)

20 MB for each streamed response
(Synchronous. The payload size
for streamed responses can be
increased from default values.
Contact Amazon Web Services
Support to inquire further.)

256 KB (asynchronous)

1 MB for the total combined size of
request line and header values

Bandwidth for streamed responses Uncapped for the first 6 MB of your
function's response

For responses larger than 6 MB,
2MBps for the remainder of the
response

Function configuration, deployment, and execution 2131

Amazon Lambda Developer Guide

Resource Quota

Deployment package (.zip file archive) size 50 MB (zipped, for direct upload)

250 MB (unzipped)

This quota applies to all the files you
upload, including layers and custom
runtimes.

3 MB (console editor)

Container image settings size 16 KB

Container image code package size 10 GB (maximum uncompressed
image size, including all layers)

Test events (console editor) 10

/tmp directory storage Between 512 MB and 10,240 MB, in
1-MB increments

File descriptors 1,024

Execution processes/threads 1,024

Lambda API requests

The following quotas are associated with Lambda API requests.

Resource Quota

Invocation requests per function per Region (synchron
ous)

Each instance of your execution
environment can serve up to 10
requests per second. In other words,
the total invocation limit is 10 times
your concurrency limit. See Lambda
function scaling.

Lambda API requests 2132

Amazon Lambda Developer Guide

Resource Quota

Invocation requests per function per Region (asynchro
nous)

Each instance of your execution
environment can serve an unlimited
number of requests. In other words,
the total invocation limit is based
only on concurrency available to
your function. See Lambda function
scaling.

Invocation requests per function version or alias
(requests per second)

10 x allocated provisioned concurren
cy

Note

This quota applies only to
functions that use provision
ed concurrency.

GetFunction API requests 100 requests per second. Cannot be
increased.

GetPolicy API requests 15 requests per second. Cannot be
increased.

Remainder of the control plane API requests (excludes
invocation, GetFunction, and GetPolicy requests)

15 requests per second across all
APIs (not 15 requests per second per
API). Cannot be increased.

Other services

Quotas for other services, such as Amazon Identity and Access Management (IAM), Amazon
CloudFront (Lambda@Edge), and Amazon Virtual Private Cloud (Amazon VPC), can impact your
Lambda functions. For more information, see Amazon Web Service quotas in the Amazon Web
Services General Reference, and Using Amazon Lambda with other services.

Other services 2133

https://docs.amazonaws.cn/lambda/latest/api/API_GetFunction.html
https://docs.amazonaws.cn/lambda/latest/api/API_GetPolicy.html
https://docs.amazonaws.cn/general/latest/gr/aws_service_limits.html

Amazon Lambda Developer Guide

Amazon Glossary

For the latest Amazon terminology, see the Amazon glossary in the Amazon Web Services Glossary
Reference.

2134

https://docs.amazonaws.cn/glossary/latest/reference/glos-chap.html

Amazon Lambda Developer Guide

Document history

The following table describes the important changes to the Amazon Lambda Developer Guide since
May 2018. For notification about updates to this documentation, subscribe to the RSS feed.

Change Description Date

Support for SnapStart in new
Regions

Lambda SnapStart is now
available in the following
Regions: Europe (Spain),
Europe (Zurich), Asia Pacific
(Melbourne), Asia Pacific
(Hyderabad), and Middle East
(UAE).

January 12, 2024

Amazon managed policy
updates

Service Quotas updated
an existing Amazon
managed policy (AWSLambda
VPCAccessExecution
Role).

January 5, 2024

Python 3.12 runtime Lambda now supports Python
3.12 as a managed runtime
and container base image. For
more information, see Python
3.12 runtime now available
in Amazon Lambda on the
Amazon Compute Blog.

December 14, 2023

Java 21 runtime Lambda now supports Java
21 as a managed runtime
and container base image
(java21).

November 16, 2023

Node.js 20.x runtime Lambda now supports Node.js
20 as a managed runtime
and container base image

November 14, 2023

2135

https://docs.amazonaws.cn/lambda/latest/dg/lambda-updates.rss
https://docs.amazonaws.cn/lambda/latest/dg/snapstart.html#snapstart-supported-regions
https://docs.amazonaws.cn/lambda/latest/dg/snapstart.html#snapstart-supported-regions
https://docs.amazonaws.cn/lambda/latest/dg/snapstart.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-security-iam-awsmanpol.html#lambda-security-iam-awsmanpol-updates
https://docs.amazonaws.cn/lambda/latest/dg/lambda-security-iam-awsmanpol.html#lambda-security-iam-awsmanpol-updates
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html
https://amazonaws-china.com/blogs/compute/python-3-12-runtime-now-available-in-aws-lambda/
https://amazonaws-china.com/blogs/compute/python-3-12-runtime-now-available-in-aws-lambda/
https://amazonaws-china.com/blogs/compute/python-3-12-runtime-now-available-in-aws-lambda/
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html

Amazon Lambda Developer Guide

(nodejs20.x)). For more
information, see Node.js
20.x runtime now available
in Amazon Lambda on the
Amazon Compute Blog.

provided.al2023 runtime Lambda now supports
Amazon Linux 2023 as
a managed runtime and
container base image. For
more information, see
Introducing the Amazon Linux
2023 runtime for Amazon
Lambda on the Amazon
Compute Blog.

November 9, 2023

IPv6 support for dual-stack
subnets

Lambda now supports
outbound IPv6 traffic to
dual-stack subnets. For more
information, see IPv6 support.

October 12, 2023

Testing serverless functions
and applications

Learn about techniques
to debug and automate
testing serverless functions
in the cloud. There is now a
testing chapter and resources
included in the Python and
Typescript language sections.
For details, see Testing
serverless functions and
applications.

June 16, 2023

Ruby 3.2 runtime Lambda now supports a
new runtime for Ruby 3.2.
For more information, see
Building Lambda functions
with Ruby.

June 7, 2023

2136

https://amazonaws-china.com/blogs/compute/node-js-20-x-runtime-now-available-in-aws-lambda/
https://amazonaws-china.com/blogs/compute/node-js-20-x-runtime-now-available-in-aws-lambda/
https://amazonaws-china.com/blogs/compute/node-js-20-x-runtime-now-available-in-aws-lambda/
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html
https://amazonaws-china.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://amazonaws-china.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://amazonaws-china.com/blogs/compute/introducing-the-amazon-linux-2023-runtime-for-aws-lambda/
https://docs.amazonaws.cn/lambda/latest/dg/foundation-networking.html?icmpid=docs_lambda_rss#foundation-nw-ipv6
https://docs.amazonaws.cn/lambda/latest/dg/foundation-networking.html?icmpid=docs_lambda_rss#foundation-nw-ipv6
https://docs.amazonaws.cn/lambda/latest/dg/foundation-networking.html?icmpid=docs_lambda_rss#foundation-nw-ipv6
https://docs.amazonaws.cn/lambda/latest/dg/testing-guide.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/testing-guide.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/testing-guide.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/testing-guide.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/testing-guide.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Response streaming Lambda now supports
streaming responses from
functions. For more informati
on, see Configuring a Lambda
function to stream responses.

April 6, 2023

Asynchronous invocation
metrics

Lambda releases asynchron
ous invocation metrics.
For more information, see
Asynchronous invocation
metrics.

February 9, 2023

Runtime version controls Lambda releases new runtime
versions that include security
updates, bug fixes, and new
features. You can now control
when your functions get
updated to the new runtime
versions. For more informati
on, see Lambda runtime
updates.

January 23, 2023

Lambda SnapStart Use Lambda SnapStart to
reduce startup time for Java
functions without provision
ing additional resources
or implementing complex
performance optimizat
ions. For more informati
on, see Improving startup
performance with with
Lambda SnapStart.

November 28, 2022

2137

https://docs.amazonaws.cn/lambda/latest/dg/configuration-response-streaming.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-response-streaming.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-response-streaming.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-update.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-update.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-update.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/snapstart.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/snapstart.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/snapstart.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/snapstart.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Node.js 18 runtime Lambda now supports a
new runtime for Node.js 18.
Node.js 18 uses Amazon Linux
2. For details, see Building
Lambda functions with
Node.js.

November 18, 2022

lambda:SourceFunctionArn
condition key

For an Amazon resource, the
lambda:SourceFunct
ionArn condition key filters
access to the resource by the
ARN of a Lambda function.
For details, see Working with
Lambda execution environme
nt credentials.

July 1, 2022

Node.js 16 runtime Lambda now supports a
new runtime for Node.js 16.
Node.js 16 uses Amazon Linux
2. For details, see Building
Lambda functions with
Node.js.

May 11, 2022

Lambda function URLs Lambda now supports
function URLs, which are
dedicated HTTP(S) endpoints
for Lambda functions. For
details, see Lambda function
URLs.

April 6, 2022

Shared test events in the
Amazon Lambda console

Lambda now supports sharing
test events with other users
in the same Amazon Web
Services account. For details,
see Testing Lambda functions
in the console.

March 16, 2022

2138

https://docs.amazonaws.cn/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html?icmpid=docs_lambda_rss#permissions-executionrole-source-function-arn
https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html?icmpid=docs_lambda_rss#permissions-executionrole-source-function-arn
https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html?icmpid=docs_lambda_rss#permissions-executionrole-source-function-arn
https://docs.amazonaws.cn/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-nodejs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-urls.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-urls.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-urls.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/testing-functions.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/testing-functions.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/testing-functions.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/testing-functions.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

PrincipalOrgId in resource-
based policies

Lambda now supports
granting permissions to an
organization in Amazon
Organizations. For details, see
Using resource-based policies
for Amazon Lambda.

March 11, 2022

.NET 6 runtime Lambda now supports a
new runtime for .NET 6. For
details, see Lambda runtimes.

February 23, 2022

Event filtering for Kinesis,
DynamoDB, and Amazon SQS
event sources

Lambda now supports
event filtering for Kinesis,
DynamoDB, and Amazon SQS
event sources. For details, see
Lambda event filtering.

November 24, 2021

mTLS authentication for
Amazon MSK and self-mana
ged Apache Kafka event
sources

Lambda now supports mTLS
authentication for Amazon
MSK and self-managed
Apache Kafka event sources.
For details, see Using Lambda
with Amazon MSK.

November 19, 2021

Lambda on Graviton2 Lambda now supports
Graviton2 for functions using
arm64 architecture. For
details, see Lambda instructi
on set architectures.

September 29, 2021

Python 3.9 runtime Lambda now supports a new
runtime for Python 3.9. For
details, see Lambda runtimes.

August 16, 2021

New runtime versions for
Node.js, Python, and Java

New runtime versions are
available for Node.js, Python,
and Java. For details, see
Lambda runtimes.

July 21, 2021

2139

https://docs.amazonaws.cn/lambda/latest/dg/access-control-resource-based.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/access-control-resource-based.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/access-control-resource-based.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/access-control-resource-based.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/foundation-arch.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/foundation-arch.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/foundation-arch.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Support for RabbitMQ as an
event source on Lambda

Lambda now supports
Amazon MQ for RabbitMQ as
an event source. Amazon MQ
is a managed message broker
service for Apache ActiveMQ
and RabbitMQ that makes it
easy to set up and operate
message brokers in the cloud.
For details, see Using Lambda
with Amazon MQ.

July 7, 2021

SASL/PLAIN authentication
for self-managed Kafka on
Lambda

SASL/PLAIN is now a
supported authentication
mechanism for self-mana
ged Kafka event sources on
Lambda Customers already
using SASL/PLAIN on their
self-managed Kafka cluster
can now easily use Lambda
to build consumer applicati
ons without having to modify
the way they authenticate.
For details, see Using Lambda
with self-managed Apache
Kafka.

June 29, 2021

Lambda Extensions API General availability for
Lambda extensions. Use
extensions to augment your
Lambda functions. You can
use extensions provided by
Lambda Partners, or you can
create your own Lambda
extensions. For details, see
Lambda Extensions API.

May 24, 2021

2140

https://docs.amazonaws.cn/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kafka.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-extensions-api.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-extensions-api.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

New Lambda console
experience

The Lambda console has
been redesigned to improve
performance and consistency.

March 2, 2021

Node.js 14 runtime Lambda now supports a
new runtime for Node.js 14.
Node.js 14 uses Amazon Linux
2. For details, see Building
Lambda functions with
Node.js.

January 27, 2021

Lambda container images Lambda now supports
functions defined as container
images. You can combine the
flexibility of container tooling
with the agility and operation
al simplicity of Lambda to
build applications. For details,
see Using container images
with Lambda.

December 1, 2020

Code signing for Lambda
functions

Lambda now supports code
signing. Administrators can
configure Lambda functions
to accept only signed code on
deployment. Lambda checks
the signatures to ensure
that the code is not altered
or tampered. Additionally,
Lambda ensures that the
code is signed by trusted
developers before accepting
the deployment. For details,
see Configuring code signing
for Lambda.

November 23, 2020

2141

https://docs.amazonaws.cn/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/images-create.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/images-create.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/images-create.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-codesigning.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-codesigning.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-codesigning.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-codesigning.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Preview: Lambda Runtime
Logs API

Lambda now supports the
Runtime Logs API. Lambda
extensions can use the
Logs API to subscribe to log
streams in the execution
environment. For details, see
Lambda Runtime Logs API.

November 12, 2020

New event source to for
Amazon MQ

Lambda now supports
Amazon MQ as an event
source. Use a Lambda
function to process records
from your Amazon MQ
message broker. For details,
see Using Lambda with
Amazon MQ.

November 5, 2020

Preview: Lambda Extensions
API

Use Lambda extensions
to augment your Lambda
functions. You can use
extensions provided by
Lambda Partners, or you can
create your own Lambda
extensions. For details, see
Lambda Extensions API.

October 8, 2020

Support for Java 8 and
custom runtimes on AL2

Lambda now supports Java
8 and custom runtimes on
Amazon Linux 2. For details,
see Lambda runtimes.

August 12, 2020

2142

https://docs.amazonaws.cn/lambda/latest/dg/runtimes-logs-api.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-logs-api.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-logs-api.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-mq.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-extensions-api.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-extensions-api.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-extensions-api.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

New event source for Amazon
Managed Streaming for
Apache Kafka

Lambda now supports
Amazon MSK as an event
source. Use a Lambda
function with Amazon MSK
to process records in a Kafka
topic. For details, see Using
Lambda with Amazon MSK.

August 11, 2020

IAM condition keys for
Amazon VPC settings

You can now use Lambda-sp
ecific condition keys for VPC
settings. For example, you
can require that all functions
in your organization are
connected to a VPC. You
can also specify the subnets
and security groups that the
function's users can and can't
use. For details, see Configuri
ng VPC for IAM functions.

August 10, 2020

Concurrency settings for
Kinesis HTTP/2 stream
consumers

You can now use the
following concurrency
settings for Kinesis consumers
with enhanced fan-out
(HTTP/2 streams): Paralleli
zationFactor, MaximumRe
tryAttempts, MaximumRe
cordAgeInSeconds, Destinati
onConfig, and BisectBat
chOnFunctionError. For
details, see Using Amazon
Lambda with Amazon Kinesis.

July 7, 2020

2143

https://docs.amazonaws.cn/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-msk.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Batch window for Kinesis
HTTP/2 stream consumers

You can now configure a
batch window (MaximumB
atchingWindowInSeconds)
for HTTP/2 streams. Lambda
reads records from the stream
until it has gathered a full
batch, or until the batch
window expires. For details,
see Using Amazon Lambda
with Amazon Kinesis.

June 18, 2020

Support for Amazon EFS file
systems

You can now connect an
Amazon EFS file system to
your Lambda functions for
shared network file access.
For details, see Configuring
file system access for Lambda
functions.

June 16, 2020

Amazon CDK sample applicati
ons in the Lambda console

The Lambda console now
includes sample applications
that use the Amazon Cloud
Development Kit (Amazon
CDK) for TypeScript. The
Amazon CDK is a framework
that enables you to define
your application resources
in TypeScript, Python, Java,
or .NET. For a tutorial on
creating applications, see
Creating an application with
continuous delivery in the
Lambda console.

June 1, 2020

2144

https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-filesystem.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-filesystem.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-filesystem.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-filesystem.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-filesystem.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Support for .NET Core 3.1.0
runtime in Amazon Lambda

Amazon Lambda now
supports the .NET Core 3.1.0
runtime. For details, see .NET
Core CLI.

March 31, 2020

Support for API Gateway
HTTP APIs

Updated and expanded
documentation for using
Lambda with API Gateway,
including support for HTTP
APIs. Added a sample
application that creates
an API and function with
Amazon CloudFormation. For
details, see Using Lambda
with Amazon API Gateway.

March 23, 2020

Ruby 2.7 A new runtime is available
for Ruby 2.7, ruby2.7, which
is the first Ruby runtime to
use Amazon Linux 2. For
details, see Building Lambda
functions with Ruby.

February 19, 2020

Concurrency metrics Lambda now reports the
ConcurrentExecutio
ns metric for all functions,
aliases, and versions. You can
view a graph for this metric
on the monitoring page for
your function. Previously,
ConcurrentExecutio
ns was only reported at
the account level and for
functions that use reserved
concurrency. For details, see
Amazon Lambda function
metrics.

February 18, 2020

2145

https://docs.amazonaws.cn/lambda/latest/dg/csharp-package-cli.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/csharp-package-cli.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/csharp-package-cli.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/csharp-package-cli.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/services-apigateway.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/services-apigateway.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/services-apigateway.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/services-apigateway.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Update to function states Function states are now
enforced for all functions by
default. When you connect
a function to a VPC, Lambda
creates shared elastic network
interfaces. This enables
your function to scale up
without creating additiona
l network interfaces. During
this time, you can't perform
additional operations on
the function, including
 updating its configuration
and publishing versions. In
some cases, invocation is also
impacted. Details about a
function's current state are
available from the Lambda
API.

This update is being released
in phases. For details, see
Updated Lambda states
lifecycle for VPC networkin
g on the Amazon Compute
Blog. For more information
about states, see Amazon
Lambda function states.

January 24, 2020

2146

https://docs.amazonaws.cn/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss
https://amazonaws-china.com/blogs/compute/coming-soon-updated-lambda-states-lifecycle-for-vpc-networking/
https://amazonaws-china.com/blogs/compute/coming-soon-updated-lambda-states-lifecycle-for-vpc-networking/
https://amazonaws-china.com/blogs/compute/coming-soon-updated-lambda-states-lifecycle-for-vpc-networking/
https://docs.amazonaws.cn/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Updates to function configura
tion API output

Added reason codes to
StateReasonCode (InvalidS
ubnet, InvalidSecurityGro
up) and LastUpdateStatusRe
asonCode (SubnetOu
tOfIPAddresses, InvalidSu
bnet, InvalidSecurityGroup)
for functions that connect
to a VPC. For more informati
on about states, see Amazon
Lambda function states.

January 20, 2020

Provisioned concurrency You can now allocate
provisioned concurrency
for a function version or
alias. Provisioned concurren
cy enables a function to
scale without fluctuations
in latency. For details, see
Managing concurrency for a
Lambda function.

December 3, 2019

Create a database proxy You can now use the Lambda
console to create a database
proxy for a Lambda function.
A database proxy enables
a function to reach high
concurrency levels without
exhausting database
connections. For details, see
Configuring database access
for a Lambda function.

December 3, 2019

Percentiles support for the
duration metric

You can now filter the
duration metric based on
percentiles. For details, see
Amazon Lambda metrics.

November 26, 2019

2147

https://docs.amazonaws.cn/lambda/latest/dg/configuration-function-zip.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-function-zip.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-function-zip.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-concurrency.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-concurrency.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-concurrency.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-database.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-database.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-database.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Increased concurrency for
stream event sources

A new option for DynamoDB
stream and Kinesis stream
event source mappings
enables you to process more
than one batch at a time
from each shard. When
you increase the number of
concurrent batches per shard,
your function's concurren
cy can be up to 10 times
the number of shards in
your stream. For details,
see Lambda event source
mapping.

November 25, 2019

Function states When you create or update a
function, it enters a pending
state while Lambda provision
s resources to support it. If
you connect your function
to a VPC, Lambda can create
a shared elastic network
interface right away, instead
of creating network interface
s when your function is
invoked. This results in better
performance for VPC-conne
cted functions, but might
require an update to your
automation. For details, see
Amazon Lambda function
states.

November 25, 2019

2148

https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/functions-states.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Error handling options for
asynchronous invocation

New configuration options are
available for asynchronous
invocation. You can configure
Lambda to limit retries and
set a maximum event age. For
details, see Configuring error
handling for asynchronous
invocation.

November 25, 2019

Error handling for stream
event sources

New configuration options
are available for event source
mappings that read from
streams. You can configure
DynamoDB stream and
Kinesis stream event source
mappings to limit retries and
set a maximum record age.
When errors occur, you can
configure the event source
mapping to split batches
before retrying, and to send
invocation records for failed
batches to a queue or topic.
For details, see Lambda event
source mapping.

November 25, 2019

2149

https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-errors
https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-errors
https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-errors
https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-errors
https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-errors
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventsourcemapping.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Destinations for asynchronous
invocation

You can now configure
Lambda to send records of
asynchronous invocations
to another service. Invocatio
n records contain details
about the event, context,
and function response.
You can send invocation
records to an SQS queue,
SNS topic, Lambda function,
or EventBridge event bus.
For details, see Configuring
destinations for asynchronous
invocation.

November 25, 2019

New runtimes for Node.js,
Python, and Java

New runtimes are available
for Node.js 12, Python 3.8,
and Java 11. For details, see
Lambda runtimes.

November 18, 2019

FIFO queue support for
Amazon SQS event sources

You can now create an event
source mapping that reads
from a first-in, first-out
(FIFO) queue. Previously,
only standard queues were
supported. For details, see
Using Lambda with Amazon
SQS.

November 18, 2019

Create applications in the
Lambda console

Application creation in the
Lambda console is now
generally available. For
instructions, see Creating an
application with continuou
s delivery in the Lambda
console.

October 31, 2019

2150

https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-destinations
https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-destinations
https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-destinations
https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-destinations
https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html?icmpid=docs_lambda_rss#invocation-async-destinations
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-runtimes.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-sqs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-sqs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-sqs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-sqs.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Create applications in the
Lambda console (beta)

You can now create a Lambda
application with an integrate
d continuous delivery pipeline
in the Lambda console. The
console provides sample
applications that you can
use as a starting point for
your own project. Choose
between Amazon CodeCommi
t and GitHub for source
control. Each time you push
changes to your repository,
the included pipeline builds
and deploys them automatic
ally. For instructions, see
Creating an application with
continuous delivery in the
Lambda console.

October 3, 2019

2151

https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-tutorial.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Performance improvements
for VPC-connected functions

Lambda now uses a new type
of elastic network interface
that is shared by all functions
in a virtual private cloud
(VPC) subnet. When you
connect a function to a VPC,
Lambda creates a network
interface for each combinati
on of security group and
subnet that you choose. When
the shared network interface
s are available, the function
no longer needs to create
additional network interfaces
as it scales up. This dramatica
lly improves startup times.
For details, see Configuring
a Lambda function to access
resources in a VPC.

September 3, 2019

Stream batch settings You can now configure a
batch window for Amazon
DynamoDB and Amazon
Kinesis event source
mappings. Configure a batch
window of up to five minutes
to buffer incoming records
until a full batch is available
. This reduces the number of
times that your function is
invoked when the stream is
less active.

August 29, 2019

2152

https://docs.amazonaws.cn/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/configuration-vpc.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-ddb.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

CloudWatch Logs Insights
integration

The monitoring page in
the Lambda console now
includes reports from Amazon
CloudWatch Logs Insights.
For details, see Monitorin
g functions in the Amazon
Lambda console.

June 18, 2019

Amazon Linux 2018.03 The Lambda execution
environment is being updated
to use Amazon Linux 2018.03.
For details, see Execution
 environment.

May 21, 2019

Node.js 10 A new runtime is available for
Node.js 10, nodejs10.x. This
runtime uses Node.js 10.15
and will be updated with the
latest point release of Node.js
10 periodically. Node.js 10
is also the first runtime to
use Amazon Linux 2. For
details, see Building Lambda
functions with Node.js.

May 13, 2019

GetLayerVersionByArn API Use the GetLayerVersionByA
rn API to download layer
version information with
the version ARN as input.
Compared to GetLayerV
ersion, GetLayerVersionByArn
lets you use the ARN directly
instead of parsing it to get
the layer name and version
number.

April 25, 2019

2153

https://docs.amazonaws.cn/lambda/latest/dg/monitoring-functions-access-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-functions-access-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-functions-access-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-functions-access-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-functions-access-metrics.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/current-supported-versions.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/current-supported-versions.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/current-supported-versions.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Ruby Amazon Lambda now
supports Ruby 2.5 with a
new runtime. For details, see
Building Lambda functions
with Ruby.

November 29, 2018

Layers With Lambda layers, you can
package and deploy libraries
, custom runtimes, and other
dependencies separately
from your function code.
Share your layers with your
other accounts or the whole
world. For details, see Lambda
layers.

November 29, 2018

Custom runtimes Build a custom runtime to
run Lambda functions in
your favorite programming
language. For details, see
Custom Lambda runtimes.

November 29, 2018

Application Load Balancer
triggers

Elastic Load Balancing now
supports Lambda functions as
a target for Application Load
Balancers. For details, see
Using Lambda with applicati
on load balancers.

November 29, 2018

2154

https://docs.amazonaws.cn/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-ruby.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/chapter-layers.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-custom.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/runtimes-custom.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/services-alb.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/services-alb.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/services-alb.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/services-alb.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Use Kinesis HTTP/2 stream
consumers as a trigger

You can use Kinesis HTTP/2
data stream consumers to
send events to Amazon
Lambda. Stream consumers
have dedicated read
throughput from each shard
in your data stream and use
HTTP/2 to minimize latency.
For details, see Using Lambda
with Kinesis.

November 19, 2018

Python 3.7 Amazon Lambda now
supports Python 3.7 with
a new runtime. For more
information, see Building
Lambda functions with
Python.

November 19, 2018

Payload limit increase for
asynchronous function
invocation

The maximum payload size
for asynchronous invocatio
ns increased from 128 KB to
256 KB, which matches the
maximum message size from
an Amazon SNS trigger. For
details, see Lambda quotas.

November 16, 2018

Amazon GovCloud (US-East)
Region

Amazon Lambda is now
available in the Amazon
GovCloud (US-East) Region.

November 12, 2018

2155

https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-python.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-python.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-python.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-python.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/gettingstarted-limits.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/gettingstarted-limits.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/gettingstarted-limits.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/limits.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-releases.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-releases.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Moved Amazon SAM topics to
a separate Developer Guide

A number of topics were
focused on building serverles
s applications using the
Amazon Serverless Applicati
on Model (Amazon SAM).
These topics have been
moved to Amazon Serverless
Application Model developer
guide.

October 25, 2018

View Lambda applications in
the console

You can view the status of
your Lambda applications
on the Applications page in
the Lambda console. This
page shows the status of the
Amazon CloudFormation
stack. It includes links to
pages where you can view
more information about
the resources in the stack.
You can also view aggregate
metrics for the application
and create custom monitoring
dashboards.

October 11, 2018

Function execution timeout
limit

To allow for long-running
functions, the maximum
configurable execution
timeout increased from 5
minutes to 15 minutes. For
details, see Lambda limits.

October 10, 2018

2156

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/
https://docs.amazonaws.cn/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/applications-console.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/limits.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/limits.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/limits.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Support for PowerShell Core
language in Amazon Lambda

Amazon Lambda now
supports the PowerShell Core
language. For more informati
on, see Programming model
for authoring Lambda
functions in PowerShell.

September 11, 2018

Support for .NET Core 2.1.0
runtime in Amazon Lambda

Amazon Lambda now
supports the .NET Core 2.1.0
runtime. For more informati
on, see .NET Core CLI.

July 9, 2018

Updates now available over
RSS

You can now subscribe to an
RSS feed to follow releases
for this guide.

July 5, 2018

Support for Amazon SQS as
event source

Amazon Lambda now
supports Amazon Simple
Queue Service (Amazon SQS)
as an event source. For more
information, see Invoking
Lambda functions.

June 28, 2018

China (Ningxia) Region Amazon Lambda is now
available in the China
(Ningxia) Region. For more
information about Lambda
Regions and endpoints, see
Regions and endpoints in the
Amazon Web Services General
Reference.

June 28, 2018

Earlier updates

The following table describes the important changes in each release of the Amazon Lambda
Developer Guide before June 2018.

Earlier updates 2157

https://docs.amazonaws.cn/lambda/latest/dg/powershell-programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/powershell-programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/powershell-programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/powershell-programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/powershell-programming-model.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-dotnet-coreclr-deployment-package.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-dotnet-coreclr-deployment-package.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-dotnet-coreclr-deployment-package.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/history.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/history.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-invocation.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-invocation.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-invocation.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/lambda-invocation.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/lambda/latest/dg/history.html?icmpid=docs_lambda_rss
https://docs.amazonaws.cn/general/latest/gr/rande.html?icmpid=docs_lambda_rss

Amazon Lambda Developer Guide

Change Description Date

Runtime support for
Node.js runtime 8.10

Amazon Lambda now supports Node.js runtime version
8.10. For more information, see Building Lambda
functions with Node.js.

April 2,
2018

Function and alias
revision IDs

Amazon Lambda now supports revision IDs on your
function versions and aliases. You can use these IDs
to track and apply conditional updates when you are
updating your function version or alias resources.

January
25, 2018

Runtime support for
Go and .NET 2.0

Amazon Lambda has added runtime support for Go
and .NET 2.0. For more information, see Building Lambda
functions with Go and Building Lambda functions with C#.

January
15, 2018

Console Redesign Amazon Lambda has introduced a new Lambda console
to simplify your experience and added a Cloud9 Code
Editor to enhance your ability debug and revise your
function code. For more information, see Edit code using
the Lambda console editor.

November
30,2017

Setting Concurrency
Limits on Individual
Functions

Amazon Lambda now supports setting concurrency
limits on individual functions. For more information, see
Configuring reserved concurrency.

November
30,2017

Shifting Traffic with
Aliases

Amazon Lambda now supports shifting traffic with
aliases. For more information, see Rolling deployments for
Lambda functions.

November
28, 2017

Gradual Code
Deployment

Amazon Lambda now supports safely deploying new
versions of your Lambda function by leveraging Code
Deploy. For more information, see Gradual code
deployment.

November
28, 2017

China (Beijing) Region Amazon Lambda is now available in the China (Beijing)
Region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the Amazon Web
Services General Reference.

November
9, 2017

Earlier updates 2158

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/automating-updates-to-serverless-apps.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/automating-updates-to-serverless-apps.html
https://docs.amazonaws.cn/general/latest/gr/rande.html#lambda_region

Amazon Lambda Developer Guide

Change Description Date

Introducing SAM
Local

Amazon Lambda introduces SAM Local (now known as
SAM CLI), a Amazon CLI tool that provides an environme
nt for you to develop, test, and analyze your serverles
s applications locally before uploading them to the
Lambda runtime. For more information, see Testing and
debugging serverless applications.

August
11, 2017

Canada (Central)
Region

Amazon Lambda is now available in the Canada (Central)
Region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the Amazon Web
Services General Reference.

June 22,
2017

South America (São
Paulo) Region

Amazon Lambda is now available in the South America
(São Paulo) Region. For more information about Lambda
regions and endpoints, see Regions and endpoints in the
Amazon Web Services General Reference.

June 6,
2017

Amazon Lambda
support for Amazon
X-Ray.

Lambda introduces support for X-Ray, which allows you
to detect, analyze, and optimize performance issues with
your Lambda applications. For more information, see
Using Amazon Lambda with Amazon X-Ray.

April 19,
2017

Asia Pacific (Mumbai)
Region

Amazon Lambda is now available in the Asia Pacific
(Mumbai) Region. For more information about Lambda
regions and endpoints, see Regions and endpoints in the
Amazon Web Services General Reference.

March 28,
2017

Amazon Lambda
now supports Node.js
runtime v6.10

Amazon Lambda added support for Node.js runtime
v6.10. For more information, see Building Lambda
functions with Node.js.

March 22,
2017

Europe (London)
Region

Amazon Lambda is now available in the Europe (London)
Region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the Amazon Web
Services General Reference.

February
1, 2017

Earlier updates 2159

https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.amazonaws.cn/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://docs.amazonaws.cn/general/latest/gr/rande.html#lambda_region
https://docs.amazonaws.cn/general/latest/gr/rande.html#lambda_region
https://docs.amazonaws.cn/general/latest/gr/rande.html#lambda_region
https://docs.amazonaws.cn/general/latest/gr/rande.html#lambda_region

Amazon Lambda Developer Guide

Change Description Date

Amazon Lambda
support for the .NET
runtime, Lambda@Ed
ge (Preview), Dead
Letter Queues
and automated
 deployment of
serverless applicati
ons.

Amazon Lambda added support for C#. For more
information, see Building Lambda functions with C#.

Lambda@Edge allows you to run Lambda functions at the
Amazon Edge locations in response to CloudFront events.
For more information, see Using Amazon Lambda with
CloudFront Lambda@Edge.

December
3, 2016

Amazon Lambda
adds Amazon Lex as
a supported event
source.

Using Lambda and Amazon Lex, you can quickly build chat
bots for various services like Slack and Facebook. For more
information, see Using Amazon Lambda with Amazon Lex.

November
30, 2016

US West (N. Californi
a) Region

Amazon Lambda is now available in the US West (N.
California) Region. For more information about Lambda
regions and endpoints, see Regions and endpoints in the
Amazon Web Services General Reference.

November
21, 2016

Introduced the
Amazon SAM
for creating and
deploying Lambda-ba
sed applications and
using environment
variables for Lambda
function configura
tion settings.

Amazon SAM: You can now use the Amazon SAM to define
the syntax for expressing resources within a serverless
application. In order to deploy your application, simply
specify the resources you need as part of your applicati
on, along with their associated permissions policies in a
Amazon CloudFormation template file (written in either
JSON or YAML), package your deployment artifacts, and
deploy the template. For more information, see Amazon
Lambda applications.

Environment variables: You can use environment
variables to specify configuration settings for your
Lambda function outside of your function code. For more
information, see Using Lambda environment variables.

November
18, 2016

Earlier updates 2160

https://docs.amazonaws.cn/general/latest/gr/rande.html#lambda_region

Amazon Lambda Developer Guide

Change Description Date

Asia Pacific (Seoul)
Region

Amazon Lambda is now available in the Asia Pacific
(Seoul) Region. For more information about Lambda
regions and endpoints, see Regions and endpoints in the
Amazon Web Services General Reference.

August
29, 2016

Asia Pacific (Sydney)
Region

Lambda is now available in the Asia Pacific (Sydney)
Region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the Amazon Web
Services General Reference.

June 23,
2016

Updates to the
Lambda console

The Lambda console has been updated to simplify the
role-creation process.

June 23,
2016

Amazon Lambda
now supports Node.js
runtime v4.3

Amazon Lambda added support for Node.js runtime v4.3.
For more information, see Building Lambda functions with
Node.js.

April 07,
2016

Europe (Frankfurt)
region

Lambda is now available in the Europe (Frankfurt)
region. For more information about Lambda regions and
endpoints, see Regions and endpoints in the Amazon Web
Services General Reference.

March 14,
2016

VPC support You can now configure a Lambda function to access
resources in your VPC. For more information, see
Connecting outbound networking to resources in a VPC.

February
11, 2016

Lambda runtime has
been updated.

The execution environment has been updated. November
4, 2015

Earlier updates 2161

https://docs.amazonaws.cn/general/latest/gr/rande.html#lambda_region
https://docs.amazonaws.cn/general/latest/gr/rande.html#lambda_region
https://docs.amazonaws.cn/general/latest/gr/rande.html#lambda_region

Amazon Lambda Developer Guide

Change Description Date

Versioning support,
Python for developin
g code for Lambdafun
ctions, scheduled
events, and increase
in execution time

You can now develop your Lambda function code using
Python. For more information, see Building Lambda
functions with Python.

Versioning: You can maintain one or more versions of
your Lambda function. Versioning allows you to control
which Lambda function version is executed in different
environments (for example, development, testing, or
production). For more information, see Lambda function
versions.

Scheduled events: You can also set up Lambda to invoke
your code on a regular, scheduled basis using the Lambda
console. You can specify a fixed rate (number of hours,
days, or weeks) or you can specify a cron expression. For
an example, see Using Amazon Lambda with Amazon
EventBridge (CloudWatch Events).

Increase in execution time: You can now set up your
Lambda functions to run for up to five minutes allowing
longer running functions such as large volume data
ingestion and processing jobs.

October
08, 2015

Support for
DynamoDB Streams

DynamoDB Streams is now generally available and you
can use it in all the regions where DynamoDB is available
. You can enable DynamoDB Streams for your table and
use a Lambda function as a trigger for the table. Triggers
are custom actions you take in response to updates made
to the DynamoDB table. For an example walkthrough, see
Tutorial: Using Amazon Lambda with Amazon DynamoDB
streams.

July 14,
2015

Earlier updates 2162

Amazon Lambda Developer Guide

Change Description Date

Lambda now supports
invoking Lambda
functions with REST-
compatible clients.

Until now, to invoke your Lambda function from your
web, mobile, or IoT application you needed the Amazon
SDKs (for example, Amazon SDK for Java, Amazon SDK
for Android, or Amazon SDK for iOS). Now, Lambda
supports invoking a Lambda function with REST-comp
atible clients through a customized API that you can
create using Amazon API Gateway. You can send requests
to your Lambda function endpoint URL. You can configure
security on the endpoint to allow open access, leverage
Amazon Identity and Access Management (IAM) to
authorize access, or use API keys to meter access to your
Lambda functions by others.

For an example Getting Started exercise, see Using
Amazon Lambda with Amazon API Gateway.

For more information about the Amazon API Gateway, see
http://www.amazonaws.cn/api-gateway/.

July 09,
2015

The Lambda console
now provides
blueprints to easily
create Lambda
functions and test
them.

Lambda console provides a set of blueprints. Each
blueprint provides a sample event source configuration
and sample code for your Lambda function that you can
use to easily create Lambda-based applications. All of the
Lambda Getting Started exercises now use the blueprints.
For more information, see Getting started with Lambda.

July 09,
2015

Lambda now supports
Java to author your
Lambda functions.

You can now author Lambda code in Java. For more
information, see Building Lambda functions with Java.

June 15,
2015

Earlier updates 2163

http://www.amazonaws.cn/api-gateway/

Amazon Lambda Developer Guide

Change Description Date

Lambda now supports
specifying an Amazon
S3 object as the
function .zip when
creating or updating a
Lambda function.

You can upload a Lambda function deployment package
(.zip file) to an Amazon S3 bucket in the same region
where you want to create a Lambda function. Then, you
can specify the bucket name and object key name when
you create or update a Lambda function.

May 28,
2015

Lambda now
generally available
with added support
for mobile backends

Lambda is now generally available for production use.
The release also introduces new features that make it
easier to build mobile, tablet, and Internet of Things (IoT)
backends using Lambda that scale automatically without
provisioning or managing infrastructure. Lambda now
supports both real-time (synchronous) and asynchronous
events. Additional features include easier event source
configuration and management. The permission model
and the programming model have been simplified by
the introduction of resource policies for your Lambda
functions.

The documentation has been updated accordingly. For
information, see the following topics:

Getting started with Lambda

Amazon Lambda

April 9,
2015

Preview release Preview release of the Amazon Lambda Developer Guide. November
13, 2014

Earlier updates 2164

http://www.amazonaws.cn/lambda/

	Amazon Lambda
	Table of Contents
	What is Amazon Lambda?
	When to use Lambda
	Key features

	Getting started with Lambda
	Prerequisites
	Sign up for an Amazon Web Services account
	Secure IAM users

	Create a Lambda function with the console
	Invoke the Lambda function using the console
	Clean up
	Additional resources and next steps

	Amazon Lambda foundations
	Lambda concepts
	Function
	Trigger
	Event
	Execution environment
	Instruction set architecture
	Deployment package
	Runtime
	Layer
	Extension
	Concurrency
	Qualifier
	Destination

	Lambda programming model
	Lambda execution environment
	Lambda execution environment lifecycle
	Init phase
	Failures during the Init phase
	Restore phase (Lambda SnapStart only)
	Failures during the Restore phase

	Invoke phase
	Failures during the invoke phase
	Shutdown phase

	Lambda deployment packages
	Container images
	.zip file archives
	Using the Lambda console
	Using the Amazon CLI
	Using Amazon S3

	Layers
	Using other Amazon services to build a deployment package
	Deployment packages with C or C++ libraries
	Deployment packages over 50 MB

	Using Lambda with infrastructure as code (IaC)
	IaC tools for Lambda
	Getting started with IaC for Lambda
	Prerequisites
	Create a Lambda function
	View the Amazon SAM template for your function
	Use Amazon Application Composer to design a serverless application
	Deploy your serverless application using Amazon SAM (optional)
	Updated Python function code

	Testing your deployed application (optional)

	Next steps
	Supported regions for Lambda integration with Application Composer

	Private networking with VPC
	VPC network elements
	Connecting Lambda functions to your VPC
	Shared subnets
	Lambda Hyperplane ENIs
	Creating ENIs
	Managing ENIs
	Deleting ENIs

	Connections
	IPv6 support
	Security
	Observability

	Lambda instruction set architectures (ARM/x86)
	Advantages of using arm64 architecture
	Requirements for migration to arm64 architecture
	Function code compatibility with arm64 architecture
	How to migrate to arm64 architecture
	Configuring the instruction set architecture

	Edit code using the Lambda console editor
	Working with files and folders
	Working with code
	Working with tab buttons
	Working with the status bar

	Working in fullscreen mode
	Working with preferences

	Additional Lambda features
	Scaling
	Concurrency controls
	Function URLs
	Asynchronous invocation
	Event source mappings
	Destinations
	Function blueprints
	Testing and deployment tools
	Application templates

	Learn how to build serverless solutions

	Lambda runtimes
	Supported runtimes
	New runtime releases
	Runtime deprecation policy
	Shared responsibility model
	Runtime use after deprecation
	Receiving runtime deprecation notifications
	Listing functions that use a deprecated runtime
	Deprecated runtimes
	Lambda runtime updates
	Runtime management controls
	Two-phase runtime version rollout
	Roll back a runtime version
	Roll back a runtime version using Manual runtime update mode
	Roll back a runtime version using published function versions

	Identifying runtime version changes
	Configure runtime management settings
	Shared responsibility model
	High-compliance applications

	Modifying the runtime environment
	Language-specific environment variables
	Wrapper scripts
	Example: Create and use a wrapper script with Python 3.8

	Lambda runtime API
	Next invocation
	Invocation response
	Initialization error
	Invocation error

	OS-only runtimes for Amazon Lambda
	Building a custom runtime for Amazon Lambda
	Requirements
	Intitialization tasks
	Processing tasks
	Entrypoint

	Implementing response streaming in a custom runtime

	Tutorial: Building a custom runtime
	Prerequisites
	Create a function
	Create a layer
	Update the function
	Update the runtime
	Share the layer
	Clean up

	Using AVX2 vectorization in Lambda
	Compiling from source
	Enabling AVX2 for Intel MKL
	AVX2 support in other languages

	Configuring Amazon Lambda functions
	Configure Lambda function memory
	Determining the appropriate memory setting for a Lambda function
	Configuring function memory (console)
	Configuring function memory (Amazon CLI)
	Configuring function memory (Amazon SAM)
	Accepting function memory recommendations (console)

	Configure ephemeral storage for Lambda functions
	Common use cases for increased ephemeral storage
	Configuring ephemeral storage (console)
	Configuring ephemeral storage (Amazon CLI)
	Configuring ephemeral storage (Amazon SAM)

	Configure Lambda function timeout
	Determining the appropriate timeout value for a Lambda function
	Configuring timeout (console)
	Configuring timeout (Amazon CLI)
	Configuring timeout (Amazon SAM)

	Using Lambda environment variables
	Configuring environment variables (console)
	Configuring environment variables (API)
	Configuring environment variables (Amazon CLI)
	Configuring environment variables (Amazon SAM)
	Example scenario for environment variables
	Retrieve environment variables
	Defined runtime environment variables
	Securing environment variables
	Managing permissions to your server-side encryption KMS key

	Sample code and templates

	Connecting outbound networking to resources in a VPC
	Managing VPC connections
	Execution role and user permissions
	Configuring VPC access (console)
	Configuring VPC access (API)
	Using IAM condition keys for VPC settings
	Example policies with condition keys for VPC settings
	Ensure that users deploy only VPC-connected functions
	Deny users access to specific VPCs, subnets, or security groups
	Allow users to create and update functions with specific VPC settings

	Internet and service access for VPC-connected functions
	VPC tutorials
	Sample VPC configurations

	Connecting inbound interface VPC endpoints for Lambda
	Considerations for Lambda interface endpoints
	Keep-alive for persistent connections
	Billing Considerations
	VPC Peering Considerations

	Creating an interface endpoint for Lambda
	Creating an interface endpoint policy for Lambda

	Configuring file system access for Lambda functions
	Execution role and user permissions
	Configuring a file system and access point
	Connecting to a file system (console)
	Configuring file system access with the Lambda API
	Mounting an Amazon EFS file system in another Amazon Web Services account
	Amazon CloudFormation and Amazon SAM
	Sample applications

	Lambda function aliases
	Creating a function alias (Console)
	Managing aliases with the Lambda API
	Managing aliases with Amazon SAM and Amazon CloudFormation
	Using aliases
	Resource policies
	Alias routing configuration
	Configuring alias routing using CLI
	Determining which version has been invoked

	Lambda function versions
	Creating function versions
	Using versions
	Granting permissions

	Configuring a Lambda function to stream responses
	Writing response streaming-enabled functions
	Configuring a handler function to stream responses
	Ending the stream

	Invoking a response streaming enabled function using Lambda function URLs
	Bandwidth limits for response streaming
	Tutorial: Creating a response streaming Lambda function with a function URL
	Prerequisites
	Create an execution role
	Create a response streaming function (Amazon CLI)
	Test the function URL endpoint
	Clean up your resources

	Deploying Lambda functions
	.zip file archives
	Deployment package file permissions

	Container images
	Image security

	Deploying Lambda functions as .zip file archives
	Creating the function
	Using the console code editor
	Updating function code
	Changing the runtime
	Changing the architecture
	Using the Lambda API
	Amazon CloudFormation

	Working with Lambda container images
	Requirements
	Using an Amazon base image for Lambda
	Using an Amazon OS-only base image
	Using a non-Amazon base image
	Runtime interface clients
	Amazon ECR permissions
	Amazon ECR repository policies
	Amazon ECR cross-account permissions

	Container image settings

	Testing Lambda container images locally
	Guidelines for using the runtime interface emulator
	Environment variables
	Testing images built from Amazon base images
	Testing images built from alternative base images
	Building the runtime interface emulator into an image
	Install the runtime interface emulator locally

	Invoking Lambda functions
	Invoking Lambda functions from another Amazon Web Service
	Invoking Lambda functions from a stream or queue
	Errors and retries
	Testing Lambda functions in the console
	Invoking functions with test events
	Creating private test events
	Creating shareable test events
	Deleting shareable test event schemas

	Synchronous invocation
	Asynchronous invocation
	How Lambda handles asynchronous invocations
	Configuring error handling for asynchronous invocation
	Configuring destinations for asynchronous invocation
	Tracing requests to destinations

	Asynchronous invocation configuration API
	Dead-letter queues

	Lambda event source mappings
	Creating an event source mapping
	Updating an event source mapping
	Deleting an event source mapping
	Batching behavior
	Configuring destinations for event source mapping invocations

	Lambda event filtering
	Event filtering basics
	Handling records that don't meet filter criteria
	Filter rule syntax
	Attaching filter criteria to an event source mapping (console)
	Attaching filter criteria to an event source mapping (Amazon CLI)
	Attaching filter criteria to an event source mapping (Amazon SAM)
	Using filters with different Amazon Web Services
	Filtering with DynamoDB
	Filtering with Kinesis
	Filtering Kinesis aggregated records

	Filtering with Amazon MQ
	Filtering with Amazon MSK and self-managed Apache Kafka
	Filtering with Amazon SQS

	Lambda function states
	Function states while updating

	Error handling and automatic retries in Amazon Lambda
	Lambda recursive loop detection
	Understanding recursive loop detection
	Supported Amazon Web Services and SDKs
	Supported Amazon Web Services
	Supported Amazon SDKs

	Recursive loop notifications
	Amazon Health Dashboard notifications
	Email alerts
	Amazon CloudWatch metrics

	Responding to recursive loop detection notifications

	Lambda function URLs
	Creating and managing Lambda function URLs
	Creating a function URL (console)
	To create a function URL for an existing function (console)
	To create a function URL for an existing alias (console)
	To create a new function with a function URL (console)

	Creating a function URL (Amazon CLI)
	Adding a function URL to a CloudFormation template
	JSON
	YAML
	Parameters

	Cross-origin resource sharing (CORS)
	Throttling function URLs
	Deactivating function URLs
	Deleting function URLs

	Security and auth model for Lambda function URLs
	Using the AWS_IAM auth type
	Using the NONE auth type
	Governance and access control
	Condition keys

	Invoking Lambda function URLs
	Function URL invocation basics
	Request and response payloads
	Request payload format
	Response payload format
	Cookies

	Monitoring Lambda function URLs
	Monitoring function URLs with CloudTrail
	CloudWatch metrics for function URLs

	Tutorial: Creating a Lambda function with a function URL
	Prerequisites
	Create an execution role
	Create a Lambda function with a function URL (.zip file archive)
	Test the function URL endpoint
	Create a Lambda function with a function URL (CloudFormation)
	Create a Lambda function with a function URL (Amazon SAM)
	Clean up your resources

	Managing Amazon Lambda functions
	Using Lambda with the Amazon CLI
	Prerequisites
	Create the execution role
	Create the function
	Update the function
	List the Lambda functions in your account
	Retrieve a Lambda function
	Clean up

	Lambda function scaling
	Understanding and visualizing concurrency
	How to calculate concurrency
	Test your understanding of concurrency
	Answer

	Concurrency vs. requests per second
	Test your understanding of concurrency (sub-100 ms functions)
	Answer

	Reserved concurrency and provisioned concurrency
	Reserved concurrency
	Provisioned concurrency
	How Lambda allocates provisioned concurrency
	Comparing reserved concurrency and provisioned concurrency

	Concurrency quotas
	Configuring reserved concurrency
	Configuring reserved concurrency
	Configuring concurrency with the Lambda API

	Configuring provisioned concurrency
	Configuring provisioned concurrency
	Accurately estimating required provisioned concurrency
	Optimizing latency with provisioned concurrency
	Managing provisioned concurrency with Application Auto Scaling
	Scheduled scaling
	Target tracking

	Lambda scaling behavior
	Concurrency scaling rate

	Monitoring concurrency
	General concurrency metrics
	Provisioned concurrency metrics
	Working with the ClaimedAccountConcurrency metric
	Setting up the ClaimedAccountConcurrency metric in CloudWatch

	Configuring code signing for Amazon Lambda
	Signature validation
	Configuration prerequisites
	Creating code signing configurations
	Updating a code signing configuration
	Deleting a code signing configuration
	Enabling code signing for a function
	Configuring IAM policies
	Configuring code signing with the Lambda API

	Using tags on Lambda functions
	Permissions required for working with tags
	Using tags with the Lambda console
	Using tags with the Amazon CLI
	Adding and removing tags
	Viewing tags on a function
	Filtering functions by tag

	Requirements for tags

	Testing serverless functions and applications
	Targeted business outcomes
	What to test
	How to test serverless
	Testing techniques
	Testing in the cloud
	Testing with mocks
	Testing with emulation

	Best practices
	Prioritize testing in the cloud
	Structure your code for testability
	Accelerate development feedback loops
	Focus on integration tests
	Create isolated test environments
	Use mocks for isolated business logic
	Use emulators sparingly

	Challenges testing locally
	Example: Lambda function creates an S3 bucket
	Example: Lambda function processes messages from an Amazon SQS queue

	FAQ
	Next steps and resources

	Building Lambda functions with Node.js
	Node.js initialization
	Designating a function handler as an ES module

	Runtime-included SDK versions
	Using keep-alive for TCP connections
	CA certificate loading
	Amazon Lambda function handler in Node.js
	Naming
	Using async/await
	Using callbacks

	Deploy Node.js Lambda functions with .zip file archives
	Runtime dependencies in Node.js
	Creating a .zip deployment package with no dependencies
	Creating a .zip deployment package with dependencies
	Creating a Node.js layer for your dependencies
	Dependency search path and runtime-included libraries
	Creating and updating Node.js Lambda functions using .zip files
	Creating and updating functions with .zip files using the console
	Updating .zip file functions using the console code editor
	Creating and updating functions with .zip files using the Amazon CLI
	Creating and updating functions with .zip files using the Lambda API
	Creating and updating functions with .zip files using Amazon SAM
	Creating and updating functions with .zip files using Amazon CloudFormation

	Deploy Node.js Lambda functions with container images
	Amazon base images for Node.js
	Using an Amazon base image for Node.js
	Prerequisites
	Creating an image from a base image
	(Optional) Test the image locally
	Deploying the image

	Using an alternative base image with the runtime interface client
	Prerequisites
	Creating an image from an alternative base image
	(Optional) Test the image locally
	Deploying the image

	Amazon Lambda context object in Node.js
	Amazon Lambda function logging in Node.js
	Creating a function that returns logs
	Using Lambda advanced logging controls with Node.js
	Using structured JSON logs with Node.js
	Example JSON formatted log outputs

	Using embedded metric format (EMF) client libraries with structured JSON logs
	Using log-level filtering with Node.js

	Using the Lambda console
	Using the CloudWatch console
	Using the Amazon Command Line Interface (Amazon CLI)
	Deleting logs

	Amazon Lambda function errors in Node.js
	Syntax
	How it works
	Using the Lambda console
	Using the Amazon Command Line Interface (Amazon CLI)
	Error handling in other Amazon services
	What's next?

	Instrumenting Node.js code in Amazon Lambda
	Using ADOT to instrument your Node.js functions
	Using the X-Ray SDK to instrument your Node.js functions
	Activating tracing with the Lambda console
	Activating tracing with the Lambda API
	Activating tracing with Amazon CloudFormation
	Interpreting an X-Ray trace
	Storing runtime dependencies in a layer (X-Ray SDK)

	Building Lambda functions with TypeScript
	Setting up a TypeScript development environment
	Amazon Lambda function handler in TypeScript
	Using async/await
	Using callbacks
	Using types for the event object

	Deploy transpiled TypeScript code in Lambda with .zip file archives
	Using Amazon SAM to deploy TypeScript code to Lambda
	Using the Amazon CDK to deploy TypeScript code to Lambda
	Using the Amazon CLI and esbuild to deploy TypeScript code to Lambda

	Deploy transpiled TypeScript code in Lambda with container images
	Using a Node.js base image to build and package TypeScript function code
	Prerequisites
	Creating an image from a base image
	(Optional) Test the image locally
	Deploying the image

	Amazon Lambda context object in TypeScript
	Amazon Lambda function logging in TypeScript
	Tools and libraries
	Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM for structured logging
	Managing log retention

	Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for structured logging
	Using the Lambda console
	Using the CloudWatch console

	Amazon Lambda function testing in TypeScript
	Testing your serverless applications
	Testing in the cloud
	Testing tools

	Amazon Lambda function errors in TypeScript
	Tracing TypeScript code in Amazon Lambda
	Using Powertools for Amazon Lambda (TypeScript) and Amazon SAM for tracing
	Using Powertools for Amazon Lambda (TypeScript) and the Amazon CDK for tracing
	Interpreting an X-Ray trace

	Building Lambda functions with Python
	Runtime-included SDK versions
	Response format
	Graceful shutdown for extensions
	Lambda function handler in Python
	Naming
	How it works
	Returning a value
	Examples
	Returning a message
	Parsing a response
	Returning a calculation

	Working with .zip file archives for Python Lambda functions
	Runtime dependencies in Python
	Creating a .zip deployment package with no dependencies
	Creating a .zip deployment package with dependencies
	Dependency search path and runtime-included libraries
	Using __pycache__ folders
	Creating .zip deployment packages with native libraries
	Working with built distributions (wheels)
	Working with source distributions

	Creating and updating Python Lambda functions using .zip files
	Creating and updating functions with .zip files using the console
	Updating .zip file functions using the console code editor
	Creating and updating functions with .zip files using the Amazon CLI
	Creating and updating functions with .zip files using the Lambda API
	Creating and updating functions with .zip files using Amazon SAM
	Creating and updating functions with .zip files using Amazon CloudFormation

	Deploy Python Lambda functions with container images
	Amazon base images for Python
	Dependency search path in the base images

	Using an Amazon base image for Python
	Prerequisites
	Creating an image from a base image
	(Optional) Test the image locally
	Deploying the image

	Using an alternative base image with the runtime interface client
	Prerequisites
	Creating an image from an alternative base image
	(Optional) Test the image locally
	Deploying the image

	Working with layers for Python Lambda functions
	Prerequisites
	Python layer compatibility with Amazon Linux
	Layer paths for Python runtimes
	Packaging the layer content
	Creating the layer
	Adding the layer to your function
	(Optional) Create an execution role
	(Optional) Invoke your function without attaching a layer
	(Optional) Clean up your resources

	Working with manylinux wheel distributions
	(Optional) Invoke your function without attaching a layer

	Amazon Lambda context object in Python
	Amazon Lambda function logging in Python
	Printing to the log
	Using a logging library
	Using Lambda advanced logging controls with Python
	Using structured JSON logs with Python
	Standard JSON log outputs using Python logging library
	Logging extra parameters in JSON
	Logging exceptions in JSON
	JSON structured logs with other logging tools

	Using log-level filtering with Python

	Viewing logs in Lambda console
	Viewing logs in CloudWatch console
	Viewing logs with Amazon CLI
	Deleting logs
	Tools and libraries
	Using Powertools for Amazon Lambda (Python) and Amazon SAM for structured logging
	Managing log retention

	Using Powertools for Amazon Lambda (Python) and Amazon CDK for structured logging

	Amazon Lambda function testing in Python
	Testing your serverless applications
	Testing in the cloud
	Testing tools

	Amazon Lambda function errors in Python
	How it works
	Using the Lambda console
	Using the Amazon Command Line Interface (Amazon CLI)
	Error handling in other Amazon services
	Error examples
	Sample applications
	What's next?

	Instrumenting Python code in Amazon Lambda
	Using Powertools for Amazon Lambda (Python) and Amazon SAM for tracing
	Using Powertools for Amazon Lambda (Python) and the Amazon CDK for tracing
	Using ADOT to instrument your Python functions
	Using the X-Ray SDK to instrument your Python functions
	Activating tracing with the Lambda console
	Activating tracing with the Lambda API
	Activating tracing with Amazon CloudFormation
	Interpreting an X-Ray trace
	Storing runtime dependencies in a layer (X-Ray SDK)

	Building Lambda functions with Ruby
	Runtime-included SDK versions
	Enabling Yet Another Ruby JIT (YJIT)
	Amazon Lambda function handler in Ruby
	Working with .zip file archives for Ruby Lambda functions
	Dependencies in Ruby
	Creating a .zip deployment package with no dependencies
	Creating a .zip deployment packaged with dependencies
	Creating a Ruby layer for your dependencies
	Creating .zip deployment packages with native libraries
	Creating and updating Ruby Lambda functions using .zip files
	Creating and updating functions with .zip files using the console
	Updating .zip file functions using the console code editor
	Creating and updating functions with .zip files using the Amazon CLI
	Creating and updating functions with .zip files using the Lambda API
	Creating and updating functions with .zip files using Amazon SAM
	Creating and updating functions with .zip files using Amazon CloudFormation

	Deploy Ruby Lambda functions with container images
	Amazon base images for Ruby
	Using an Amazon base image for Ruby
	Prerequisites
	Creating an image from a base image
	(Optional) Test the image locally
	Deploying the image

	Using an alternative base image with the runtime interface client
	Prerequisites
	Creating an image from an alternative base image
	(Optional) Test the image locally
	Deploying the image

	Amazon Lambda context object in Ruby
	Amazon Lambda function logging in Ruby
	Creating a function that returns logs
	Using the Lambda console
	Using the CloudWatch console
	Using the Amazon Command Line Interface (Amazon CLI)
	Deleting logs
	Logger library

	Amazon Lambda function errors in Ruby
	Syntax
	How it works
	Using the Lambda console
	Using the Amazon Command Line Interface (Amazon CLI)
	Error handling in other Amazon services
	Sample applications
	What's next?

	Instrumenting Ruby code in Amazon Lambda
	Enabling active tracing with the Lambda API
	Enabling active tracing with Amazon CloudFormation
	Storing runtime dependencies in a layer

	Building Lambda functions with Java
	Amazon Lambda function handler in Java
	Example handler: Java 17 runtimes
	Example handler: Java 11 runtimes and below
	Initialization code
	Choosing input and output types
	Handler interfaces
	Sample handler code

	Deploy Java Lambda functions with .zip or JAR file archives
	Prerequisites
	Tools and libraries
	Building a deployment package with Gradle
	Creating a Java layer for your dependencies
	Building a deployment package with Maven
	Uploading a deployment package with the Lambda console
	Uploading a deployment package with the Amazon CLI
	Uploading a deployment package with Amazon SAM

	Deploy Java Lambda functions with container images
	Amazon base images for Java
	Using an Amazon base image for Java
	Prerequisites
	Creating an image from a base image
	(Optional) Test the image locally
	Deploying the image

	Using an alternative base image with the runtime interface client
	Prerequisites
	Creating an image from an alternative base image
	(Optional) Test the image locally
	Deploying the image

	Improving startup performance with Lambda SnapStart
	Supported features and limitations
	Supported Regions
	Compatibility considerations
	SnapStart pricing
	Comparing Lambda SnapStart and provisioned concurrency
	Additional resources
	Activating and managing Lambda SnapStart
	Activating SnapStart (console)
	Activating SnapStart (Amazon CLI)
	Activating SnapStart (API)
	Lambda SnapStart and function states
	Updating a snapshot
	Using SnapStart with the Amazon SDK for Java
	Using SnapStart with Amazon CloudFormation, Amazon SAM, and Amazon CDK
	Deleting snapshots

	Handling uniqueness with Lambda SnapStart
	Avoid saving state that depends on uniqueness during initialization
	Use cryptographically secure pseudorandom number generators (CSPRNGs)
	SnapStart scanning tool

	Runtime hooks for Lambda SnapStart
	Step 1: Update the build configuration
	Step 2: Update the Lambda handler

	Monitoring for Lambda SnapStart
	CloudWatch for SnapStart
	X-Ray active tracing for SnapStart
	Telemetry API events for SnapStart
	Amazon API Gateway and function URL metrics

	Security model for Lambda SnapStart
	Best practices for working with Lambda SnapStart
	Network connections
	Performance tuning

	Java Lambda function customization settings
	JAVA_TOOL_OPTIONS environment variable
	Example: Customize tiered compilation settings
	Example: Customizing GC behavior using JAVA_TOOL_OPTIONS

	Amazon Lambda context object in Java
	Context in sample applications

	Amazon Lambda function logging in Java
	Creating a function that returns logs
	Using Lambda advanced logging controls with Java
	Using structured JSON log format with Java
	Using log-level filtering with Java

	Advanced logging with Log4j2 and SLF4J
	Other tools and libraries
	Using Powertools for Amazon Lambda (Java) and Amazon SAM for structured logging
	Managing log retention

	Using the Lambda console
	Using the CloudWatch console
	Using the Amazon Command Line Interface (Amazon CLI)
	Deleting logs
	Sample logging code

	Amazon Lambda function errors in Java
	Syntax
	How it works
	Creating a function that returns exceptions
	Using the Lambda console
	Using the Amazon Command Line Interface (Amazon CLI)
	Error handling in other Amazon services
	Sample applications
	What's next?

	Instrumenting Java code in Amazon Lambda
	Using Powertools for Amazon Lambda (Java) and Amazon SAM for tracing
	Using Powertools for Amazon Lambda (Java) and the Amazon CDK for tracing
	Using ADOT to instrument your Java functions
	Using the X-Ray SDK to instrument your Java functions
	Activating tracing with the Lambda console
	Activating tracing with the Lambda API
	Activating tracing with Amazon CloudFormation
	Interpreting an X-Ray trace
	Storing runtime dependencies in a layer (X-Ray SDK)
	X-Ray tracing in sample applications (X-Ray SDK)

	Java sample applications for Amazon Lambda

	Building Lambda functions with Go
	Go runtime support
	Tools and libraries
	Amazon Lambda function handler in Go
	Naming
	Lambda function handler using structured types
	Valid handler signatures

	Using global state

	Amazon Lambda context object in Go
	Accessing invoke context information

	Deploy Go Lambda functions with .zip file archives
	Creating a .zip file on macOS and Linux
	Using the provided runtime family

	Creating a .zip file on Windows
	Using the provided runtime family

	Creating and updating Go Lambda functions using .zip files
	Creating and updating functions with .zip files using the console
	Creating and updating functions with .zip files using the Amazon CLI
	Creating and updating functions with .zip files using the Lambda API
	Creating and updating functions with .zip files using Amazon SAM
	Creating and updating functions with .zip files using Amazon CloudFormation

	Creating a Go layer for your dependencies

	Deploy Go Lambda functions with container images
	Amazon base images for deploying Go functions
	Go runtime interface client
	Using an Amazon OS-only base image
	Prerequisites
	Creating an image from the provided.al2023 base image
	(Optional) Test the image locally
	Deploying the image

	Using a non-Amazon base image
	Prerequisites
	Creating an image from an alternative base image
	(Optional) Test the image locally
	Deploying the image

	Amazon Lambda function logging in Go
	Creating a function that returns logs
	Using the Lambda console
	Using the CloudWatch console
	Using the Amazon Command Line Interface (Amazon CLI)
	Deleting logs

	Amazon Lambda function errors in Go
	Creating a function that returns exceptions
	How it works
	Using the Lambda console
	Using the Amazon Command Line Interface (Amazon CLI)
	Error handling in other Amazon services
	What's next?

	Instrumenting Go code in Amazon Lambda
	Using ADOT to instrument your Go functions
	Using the X-Ray SDK to instrument your Go functions
	Activating tracing with the Lambda console
	Activating tracing with the Lambda API
	Activating tracing with Amazon CloudFormation
	Interpreting an X-Ray trace

	Using environment variables

	Building Lambda functions with C#
	Setting up your .NET development environment
	Installing the .NET project templates
	Installing and updating the CLI tools

	Lambda function handler in C#
	.NET execution models for Lambda
	Class library handlers
	Executable assembly handlers
	Serialization in Lambda functions
	Using source generated serialization
	Using reflection-based serialization

	Simplify function code with the Lambda Annotations framework
	Dependency injection with Lambda Annotations framework

	Lambda function handler restrictions

	Build and deploy C# Lambda functions with .zip file archives
	Using the .NET Lambda Global CLI
	Prerequisites
	Creating .NET projects using the .NET CLI
	Deploying .NET projects using the .NET CLI
	Using Lambda layers with the .NET CLI

	Using the Amazon Serverless Application Model (Amazon SAM)
	Prerequisites
	Deploy a sample Amazon SAM application
	Next steps

	Using the Amazon Cloud Development Kit (Amazon CDK)
	Prerequisites
	Deploy a sample Amazon CDK application
	Next steps

	Deploy ASP.NET applications
	Prerequisites
	Deploying an ASP.NET Web API to Lambda
	Deploying ASP.NET minimal APIs to Lambda

	Deploy .NET Lambda functions with container images
	Amazon base images for .NET
	Using an Amazon base image for .NET
	Prerequisites
	Creating and deploying an image using a base image

	Using an alternative base image with the runtime interface client
	Prerequisites
	Creating and deploying an image using an alternative base image

	.NET functions with native AOT compilation
	Lambda runtime
	Prerequisites
	Getting started
	Serialization
	Trimming
	Troubleshooting

	Amazon Lambda context object in C#
	Lambda function logging in C#
	Creating a function that returns logs
	Tools and libraries
	Using Powertools for Amazon Lambda (.NET) and Amazon SAM for structured logging
	Managing log retention

	Using the Lambda console
	Using the CloudWatch console
	Using the Amazon Command Line Interface (Amazon CLI)
	Deleting logs

	Amazon Lambda function errors in C#
	Syntax
	How it works
	Using the Lambda console
	Using the Amazon Command Line Interface (Amazon CLI)
	Error handling in other Amazon services
	What's next?

	Instrumenting C# code in Amazon Lambda
	Using Powertools for Amazon Lambda (.NET) and Amazon SAM for tracing
	Using the X-Ray SDK to instrument your .NET functions
	Activating tracing with the Lambda console
	Activating tracing with the Lambda API
	Activating tracing with Amazon CloudFormation
	Interpreting an X-Ray trace

	Amazon Lambda function testing in C#
	Testing your serverless applications
	Testing in the cloud
	Testing tools

	Building Lambda functions with PowerShell
	Setting Up a PowerShell Development Environment
	Deploy PowerShell Lambda functions with .zip file archives
	Creating the Lambda function

	Amazon Lambda function handler in PowerShell
	Returning data

	Amazon Lambda context object in PowerShell
	Amazon Lambda function logging in PowerShell
	Creating a function that returns logs
	Using the Lambda console
	Using the CloudWatch console
	Using the Amazon Command Line Interface (Amazon CLI)
	Deleting logs

	Amazon Lambda function errors in PowerShell
	Syntax
	How it works
	Using the Lambda console
	Using the Amazon Command Line Interface (Amazon CLI)
	Error handling in other Amazon services
	What's next?

	Building Lambda functions with Rust
	Lambda function handler in Rust
	Using shared state

	Lambda context object in Rust
	Accessing invoke context information

	Processing HTTP events with Rust
	Deploy Rust Lambda functions with .zip file archives
	Prerequisites
	Building Rust functions on macOS, Windows, or Linux
	Deploying the Rust function binary with Cargo Lambda
	Deploying your Rust function binary with the Amazon CLI
	Deploying your Rust function binary with the Amazon SAM CLI

	Invoking your Rust function with Cargo Lambda
	Invoking your Rust function with the Amazon CLI

	Lambda function logging in Rust
	Creating a function that writes logs
	Advanced logging with the Tracing crate

	Lambda function errors in Rust
	Creating a function that returns errors

	Using Amazon Lambda with other services
	Listing of services and links to more information
	Event-driven invocation
	Lambda polling
	Common Lambda application types and use cases
	Example 1: Amazon S3 pushes events and invokes a Lambda function
	Example 2: Amazon Lambda pulls events from a Kinesis stream and invokes a Lambda function

	Using Amazon Lambda with Alexa
	Using Lambda with self-managed Apache Kafka
	Example event
	Kafka cluster authentication
	VPC access
	SASL/SCRAM authentication
	Mutual TLS authentication
	Configuring the client certificate secret
	Configuring the server root CA certificate secret

	Managing API access and permissions
	Required Lambda function permissions
	Optional Lambda function permissions
	Secrets Manager and Amazon KMS permissions
	VPC permissions
	Sending records to a destination

	Adding permissions to your execution role
	Granting users access with an IAM policy

	Authentication and authorization errors
	Cluster failed to authorize Lambda
	SASL authentication failed
	Server failed to authenticate Lambda
	Lambda failed to authenticate server
	Provided certificate or private key is invalid

	Network configuration
	VPC security group rules
	Working with VPC endpoints

	Adding a Kafka cluster as an event source
	Prerequisites
	Customizable consumer group ID
	On-failure destinations
	SNS and SQS destinations
	S3 destinations
	Configuring on-failure destinations

	Adding a self-managed Kafka cluster (console)
	Adding a self-managed Kafka cluster (Amazon CLI)
	Using SASL/SCRAM
	Using a VPC
	Viewing the status using the Amazon CLI

	Using a Kafka cluster as an event source
	Polling and stream starting positions
	Auto scaling of the Kafka event source
	Event source API operations
	Event source mapping errors
	Amazon CloudWatch metrics
	Self-managed Apache Kafka configuration parameters

	Using Amazon Lambda with Amazon API Gateway
	Adding an endpoint to your Lambda function
	Proxy integration
	Event format
	Response format
	Permissions
	Handling errors with an API Gateway API
	Choosing an API type
	Sample applications
	Tutorial: Using Lambda with API Gateway
	Prerequisites
	Sign up for an Amazon Web Services account
	Secure IAM users
	Install the Amazon Command Line Interface

	Create a permissions policy
	Create an execution role
	Create the function
	Invoke the function using the Amazon CLI
	Create a REST API using API Gateway
	Create a resource on your REST API
	Create an HTTP POST method
	Create a DynamoDB table
	Test the integration of API Gateway, Lambda, and DynamoDB
	Deploy the API
	Use curl to invoke your function using HTTP requests
	Clean up your resources (optional)

	Using Amazon Lambda with Amazon Application Composer
	Exporting a Lambda function to Application Composer
	Amazon S3 transfer bucket configuration
	Required permissions

	Other resources

	Using Amazon Lambda with Amazon CloudTrail
	Logging Amazon Lambda API calls using Amazon CloudTrail
	Lambda data events in CloudTrail
	Lambda management events in CloudTrail
	Using CloudTrail to troubleshoot disabled Lambda event sources
	Lambda event examples

	Sample function code
	Node.js

	Using Lambda with CloudWatch Logs
	Using Amazon Lambda with Amazon CloudFormation
	Using Amazon Lambda with CloudFront Lambda@Edge
	Using Amazon Lambda with Amazon CodeCommit
	Using Amazon Lambda with Amazon CodePipeline
	Permissions

	Working with Amazon CodeWhisperer in the Lambda console
	Using Amazon Lambda with Amazon Cognito
	Using Lambda with Amazon Connect
	Using Lambda with Amazon DocumentDB
	Example Amazon DocumentDB event
	Prerequisites and permissions
	Network configuration
	VPC security group rules
	Working with VPC endpoints

	Creating an Amazon DocumentDB event source mapping (console)
	Creating an Amazon DocumentDB event source mapping (SDK or CLI)
	Polling and stream starting positions
	Monitoring your Amazon DocumentDB event source
	Tutorial: Using Amazon Lambda with Amazon DocumentDB Streams
	Prerequisites
	Sign up for an Amazon Web Services account
	Secure IAM users
	Install the Amazon Command Line Interface

	Create the Amazon Cloud9 environment
	Create the EC2 security group
	Create the secret in Secrets Manager
	Create the DocumentDB cluster
	Install the mongo shell
	Connect to the DocumentDB cluster
	Activate change streams
	Create interface VPC endpoints
	Create the execution role
	Create the Lambda function
	Create the Lambda event source mapping
	Test your function - manual invoke
	Test your function - insert a record
	Test your function - update a record
	Test your function - delete a record
	Clean up your resources

	Using Amazon Lambda with Amazon DynamoDB
	Example event
	Polling and batching streams
	Polling and stream starting positions
	Simultaneous readers of a shard in DynamoDB Streams
	Execution role permissions
	Add permissions and create the event source mapping
	Event source mapping APIs
	Error handling
	Amazon CloudWatch metrics
	Time windows
	Aggregation and processing
	Configuration

	Reporting batch item failures
	Report syntax
	Success and failure conditions
	Bisecting a batch

	Amazon DynamoDB Streams configuration parameters
	Tutorial: Using Amazon Lambda with Amazon DynamoDB streams
	Prerequisites
	Create the execution role
	Create the function
	Test the Lambda function
	Create a DynamoDB table with a stream enabled
	Add an event source in Amazon Lambda
	Test the setup
	Clean up your resources

	Sample function code
	Node.js
	Java 11
	C#
	Python 3
	Go

	Amazon SAM template for a DynamoDB application

	Using Amazon Lambda with Amazon EC2
	Permissions

	Tutorial: Configuring a Lambda function to access Amazon ElastiCache in an Amazon VPC
	Using Amazon Lambda with an Application Load Balancer
	Using Amazon EFS with Lambda
	Connections
	Throughput
	IOPS

	Using Amazon Lambda with Amazon EventBridge (CloudWatch Events)
	Schedule expressions using rate or cron

	Using Lambda with Amazon EventBridge Scheduler
	Set up the execution role
	Create a schedule
	Related resources

	Using Amazon Lambda with Amazon IoT
	Using Amazon Lambda with Amazon IoT Events
	Using Amazon Lambda with Amazon Data Firehose
	Using Amazon Lambda with Amazon Kinesis
	Example event
	Polling and batching streams
	Polling and stream starting position
	Configuring your data stream and function
	Execution role permissions
	Add permissions and create the event source mapping
	Filtering Kinesis events
	Event source mapping API
	Error handling
	Amazon CloudWatch metrics
	Time windows
	Aggregation and processing
	Configuration

	Reporting batch item failures
	Report syntax
	Success and failure conditions
	Bisecting a batch

	Amazon Kinesis configuration parameters
	Tutorial: Using Amazon Lambda with Amazon Kinesis
	Prerequisites
	Create the execution role
	Create the function
	Test the Lambda function
	Create a Kinesis stream
	Add an event source in Amazon Lambda
	Test the setup
	Clean up your resources

	Sample function code
	Node.js 12.x
	Java 11
	C#
	Python 3
	Go

	Amazon SAM template for a Kinesis application

	Using Lambda with Kubernetes
	Amazon Controllers for Kubernetes (ACK)
	Crossplane

	Using Amazon Lambda with Amazon Lex
	Roles and permissions

	Using Lambda with Amazon MQ
	Lambda consumer group
	Execution role permissions
	Network configuration
	VPC security group rules
	Working with VPC endpoints

	Add permissions and create the event source mapping
	Event source mapping API
	Event source mapping errors
	Amazon MQ and RabbitMQ configuration parameters

	Using Lambda with Amazon MSK
	Example event
	MSK cluster authentication
	Unauthenticated access
	SASL/SCRAM authentication
	IAM role-based authentication
	Mutual TLS authentication
	Configuring the mTLS secret
	How Lambda chooses a bootstrap broker

	Managing API access and permissions
	Required Lambda function execution role permissions
	VPC permissions
	Optional Lambda function permissions
	Secrets Manager and Amazon KMS permissions
	Sending records to a destination

	Adding permissions to your execution role
	Granting users access with an IAM policy

	Authentication and authorization errors
	Cluster failed to authorize Lambda
	SASL authentication failed
	Server failed to authenticate Lambda
	Provided certificate or private key is invalid

	Network configuration
	VPC security group rules
	Working with VPC endpoints

	Adding Amazon MSK as an event source
	Prerequisites
	Customizable consumer group ID
	On-failure destinations
	SNS and SQS destinations
	S3 destinations
	Configuring on-failure destinations

	Adding an Amazon MSK trigger (console)
	Adding an Amazon MSK trigger (Amazon CLI)
	Creating a trigger using the Amazon CLI
	Viewing the status using the Amazon CLI

	Creating cross-account event source mappings
	Auto scaling of the Amazon MSK event source
	Polling and stream starting positions
	Amazon CloudWatch metrics
	Amazon MSK configuration parameters

	Using Amazon Lambda with Amazon RDS
	Configuring your function
	Process event notifications from Amazon RDS
	Lambda and Amazon RDS tutorial

	Using Amazon Lambda with Amazon S3
	Tutorial: Using an Amazon S3 trigger to invoke a Lambda function
	Prerequisites
	Sign up for an Amazon Web Services account
	Secure IAM users

	Create an Amazon S3 bucket
	Upload a test object to your bucket
	Create a permissions policy
	Create an execution role
	Create the Lambda function
	Deploy the function code
	Create the Amazon S3 trigger
	Test your Lambda function with a dummy event
	Test the Lambda function with the Amazon S3 trigger

	Clean up your resources
	Next steps

	Tutorial: Using an Amazon S3 trigger to create thumbnail images
	Prerequisites
	Sign up for an Amazon Web Services account
	Secure IAM users

	Create two Amazon S3 buckets
	Upload a test image to your source bucket
	Create a permissions policy
	Create an execution role
	Create the function deployment package
	Create the Lambda function
	Configure Amazon S3 to invoke the function
	Test your Lambda function with a dummy event
	Test your function using the Amazon S3 trigger
	Clean up your resources

	Using Amazon Lambda with Amazon S3 batch operations
	Invoking Lambda functions from Amazon S3 batch operations

	Transforming S3 Objects with S3 Object Lambda
	Using Amazon Lambda with Secrets Manager
	Using Amazon Lambda with Amazon SES
	Using Amazon Lambda with Amazon SNS
	Tutorial: Using Amazon Lambda with Amazon Simple Notification Service
	Prerequisites
	Sign up for an Amazon Web Services account
	Secure IAM users
	Install the Amazon Command Line Interface

	Create an Amazon SNS topic (account A)
	Create a function execution role (account B)
	Create a Lambda function (account B)
	Add permissions to function (account B)
	Grant cross-account permission for Amazon SNS subscription (account A)
	Create a subscription (account B)
	Publish messages to topic (account A and account B)
	Clean up your resources

	Sample function code
	Node.js
	Java 11
	Go
	Python 3

	Using Lambda with Amazon SQS
	Example standard queue message event
	Example FIFO queue message event
	Configuring a queue to use with Lambda
	Execution role permissions
	Add permissions and create the event source mapping
	Scaling and processing
	Configuring maximum concurrency for Amazon SQS event sources
	Event source mapping APIs
	Backoff strategy for failed invocations
	Implementing partial batch responses
	Success and failure conditions
	CloudWatch metrics

	Amazon SQS configuration parameters
	Tutorial: Using Lambda with Amazon SQS
	Prerequisites
	Sign up for an Amazon Web Services account
	Secure IAM users
	Install the Amazon Command Line Interface

	Create the execution role
	Create the function
	Test the function
	Create an Amazon SQS queue
	Configure the event source
	Send a test message
	Check the CloudWatch logs
	Clean up your resources

	Tutorial: Using a cross-account Amazon SQS queue as an event source
	Prerequisites
	Create the execution role (Account A)
	Create the function (Account A)
	Test the function (Account A)
	Create an Amazon SQS queue (Account B)
	Configure the event source (Account A)
	Test the setup
	Clean up your resources

	Sample Amazon SQS function code
	Node.js
	Java
	C#
	Go
	Python

	Amazon SAM template for an Amazon SQS application

	Using Amazon Lambda with Amazon VPC Lattice
	VPC Lattice concepts
	Using Lambda with VPC Lattice and VPC-enabled functions

	Prerequisites and permissions
	Limitations
	Registering your Lambda function with a VPC Lattice network
	Updating the target of a service in a VPC Lattice network
	Deregistering a Lambda function target
	Cross-account networking
	Receiving events from VPC Lattice
	Sample V1 event structure
	Sample V2 event structure

	Sending responses back to VPC Lattice
	Monitoring a service in a VPC Lattice network

	Best practices for working with Amazon Lambda functions
	Function code
	Function configuration
	Function scalability
	Metrics and alarms
	Working with streams
	Security best practices

	Lambda resource access permissions
	Lambda execution role
	Creating an execution role in the IAM console
	Grant least privilege access to your Lambda execution role
	Managing roles with the IAM API
	Session duration for temporary security credentials
	Amazon managed policies for Lambda features
	Working with Lambda execution environment credentials

	Identity-based IAM policies for Lambda
	Function development
	Layer development and use
	Cross-account roles
	Condition keys for VPC settings

	Attribute-based access control for Lambda
	Prerequisites
	Step 1: Require tags on new functions
	Step 2: Allow actions based on tags attached to a Lambda function and IAM principal
	Step 3: Grant list permissions
	Step 4: Grant IAM permissions
	Step 5: Create the IAM role
	Step 6: Create the IAM user
	Step 7: Test the permissions
	Step 8: Clean up your resources

	Using resource-based policies for Lambda
	Supported API actions
	Granting function access to Amazon services
	Granting function access to an organization
	Granting function access to other accounts
	Granting layer access to other accounts
	Cleaning up resource-based policies

	Resources and conditions for Lambda actions
	Policy conditions
	Function resource names
	Function actions
	Event source mapping actions
	Layer actions

	Using permissions boundaries for Amazon Lambda applications

	Security in Amazon Lambda
	Data protection in Amazon Lambda
	Encryption in transit
	Encryption at rest

	Identity and Access Management for Amazon Lambda
	Audience
	Authenticating with identities
	Amazon Web Services account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Lambda works with IAM
	Identity-based policies for Lambda
	Identity-based policy examples for Lambda

	Resource-based policies within Lambda
	Policy actions for Lambda
	Policy resources for Lambda
	Policy condition keys for Lambda
	ACLs in Lambda
	ABAC with Lambda
	Using temporary credentials with Lambda
	Forward access sessions for Lambda
	Service roles for Lambda
	Service-linked roles for Lambda

	Identity-based policy examples for Amazon Lambda
	Policy best practices
	Using the Lambda console
	Allow users to view their own permissions

	Amazon managed policies for Amazon Lambda
	Amazon managed policy: AWSLambda_FullAccess
	Amazon managed policy: AWSLambda_ReadOnlyAccess
	Amazon managed policy: AWSLambdaBasicExecutionRole
	Amazon managed policy: AWSLambdaDynamoDBExecutionRole
	Amazon managed policy: AWSLambdaENIManagementAccess
	Amazon managed policy: AWSLambdaExecute
	Amazon managed policy: AWSLambdaInvocation-DynamoDB
	Amazon managed policy: AWSLambdaKinesisExecutionRole
	Amazon managed policy: AWSLambdaMSKExecutionRole
	Amazon managed policy: AWSLambdaRole
	Amazon managed policy: AWSLambdaSQSQueueExecutionRole
	Amazon managed policy: AWSLambdaVPCAccessExecutionRole
	Lambda updates to Amazon managed policies

	Troubleshooting Amazon Lambda identity and access
	I am not authorized to perform an action in Lambda
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my Amazon Web Services account to access my Lambda resources

	Governance for Amazon Lambda
	Proactive controls for Lambda with Amazon CloudFormation Guard
	Caveats

	Proactive controls for Lambda with Amazon Config
	Detective controls for Lambda with Amazon Config
	Phase 1: Identify access resources
	Phase 2: Visualize and design
	Phase 3: Implement and enforce

	Lambda code signing with Amazon Signer
	Lambda code scanning with Amazon Inspector
	Implement observability for Lambda security and compliance
	Visibility into Lambda configurations
	Visibility into Lambda compliance
	Visibility into Lambda function boundaries using Security Hub
	Addressing the observability findings

	Compliance validation for Amazon Lambda
	Resilience in Amazon Lambda
	Infrastructure security in Amazon Lambda

	Monitoring and troubleshooting Lambda functions
	Monitoring functions on the Lambda console
	Pricing
	Using the Lambda console
	Types of monitoring graphs
	Viewing graphs on the Lambda console
	Viewing queries on the CloudWatch Logs console
	What's next?

	Working with Lambda function metrics
	Viewing metrics on the CloudWatch console
	Types of metrics
	Invocation metrics
	Performance metrics
	Concurrency metrics
	Asynchronous invocation metrics

	Using Amazon CloudWatch logs with Amazon Lambda
	Prerequisites
	Pricing
	Configuring advanced logging controls for your Lambda function
	Configuring JSON and plain text log formats
	Supported runtimes and logging methods
	Default log formats
	JSON format for system logs
	JSON format for application logs
	Setting your function's log format

	Log-level filtering
	Configuring log-level filtering
	System log level event mapping
	Application log-level filtering with custom runtimes

	Configuring CloudWatch log groups
	Execution role permissions

	Accessing logs with the Lambda console
	Accessing logs with the Amazon CLI
	Runtime function logging
	What's next?

	Using Amazon Lambda with Amazon X-Ray
	Execution role permissions
	The Amazon X-Ray daemon
	Enabling active tracing with the Lambda API
	Enabling active tracing with Amazon CloudFormation

	Using Lambda Insights in Amazon CloudWatch
	How Lambda Insights monitors serverless applications
	Pricing
	Supported runtimes
	Enabling Lambda Insights in the Lambda console
	Enabling Lambda Insights programmatically
	Using the Lambda Insights dashboard
	Example workflow to detect function anomalies
	Example workflow using queries to troubleshoot a function
	What's next?

	Using CodeGuru Profiler with your Lambda function
	Supported runtimes
	Activating CodeGuru Profiler from the Lambda console
	What happens when you activate CodeGuru Profiler from the Lambda console?
	What's next?

	Example workflows using other Amazon services
	Prerequisites
	Using Amazon X-Ray
	Using Amazon Trusted Advisor

	Pricing
	Example Amazon X-Ray workflow to view a trace map
	Example Amazon X-Ray workflow to view trace details
	Example Amazon Trusted Advisor workflow to view recommendations
	What's next?

	Working with Lambda layers
	How to use layers
	Layers and layer versions
	Packaging your layer content
	Layer paths for each Lambda runtime

	Creating and deleting layers in Lambda
	Creating a layer
	Deleting a layer version

	Adding layers to functions
	Accessing layer content from your function
	Finding layer information

	Using Amazon CloudFormation with layers
	Using Amazon SAM with layers

	Lambda extensions
	Execution environment
	Impact on performance and resources
	Permissions
	Configuring Lambda extensions
	Configuring extensions (.zip file archive)
	Using extensions in container images
	Example: Adding an external extension

	Next steps

	Amazon Lambda extensions partners
	Amazon managed extensions

	Lambda Extensions API
	Lambda execution environment lifecycle
	Init phase
	Invoke phase
	Shutdown phase
	Permissions and configuration
	Failure handling
	Troubleshooting extensions

	Extensions API reference
	Register
	Next
	Init error
	Exit error

	Lambda Telemetry API
	Creating extensions using the Telemetry API
	Registering your extension
	Creating a telemetry listener
	Specifying a destination protocol
	Configuring memory usage and buffering
	Sending a subscription request to the Telemetry API
	Inbound Telemetry API messages
	Lambda Telemetry API reference
	Subscribe
	Example Subscribe API request

	Lambda Telemetry API Event schema reference
	Telemetry API Event object types
	platform.initStart
	platform.initRuntimeDone
	platform.initReport
	platform.start
	platform.runtimeDone
	platform.report
	platform.restoreStart
	platform.restoreRuntimeDone
	platform.restoreReport
	platform.extension
	platform.telemetrySubscription
	platform.logsDropped
	function
	extension

	Shared object types
	InitPhase
	InitReportMetrics
	InitType
	ReportMetrics
	RestoreReportMetrics
	RuntimeDoneMetrics
	Span
	Status
	TraceContext
	TracingType

	Converting Lambda Telemetry API Event objects to OpenTelemetry Spans
	Map to OTel Spans with Span Events
	Map to OTel Spans with Child Spans

	Lambda Logs API
	Subscribing to receive logs
	Memory usage
	Destination protocols
	Buffering configuration
	Example subscription
	Sample code for Logs API
	Logs API reference
	Subscribe

	Log messages
	Function logs
	Extension logs
	Platform logs
	Example platform log messages
	Platform runtimeDone messages
	Examples

	Troubleshooting issues in Lambda
	Troubleshoot deployment issues in Lambda
	General: Permission is denied / Cannot load such file
	General: Error occurs when calling the UpdateFunctionCode
	Amazon S3: Error Code PermanentRedirect.
	General: Cannot find, cannot load, unable to import, class not found, no such file or directory
	General: Undefined method handler
	Lambda: Layer conversion failed
	Lambda: InvalidParameterValueException or RequestEntityTooLargeException
	Lambda: InvalidParameterValueException
	Lambda: Concurrency and memory quotas

	Troubleshoot invocation issues in Lambda
	IAM: lambda:InvokeFunction not authorized
	Lambda: Couldn't find valid bootstrap (Runtime.InvalidEntrypoint)
	Lambda: Operation cannot be performed ResourceConflictException
	Lambda: Function is stuck in Pending
	Lambda: One function is using all concurrency
	General: Cannot invoke function with other accounts or services
	General: Function invocation is looping
	Lambda: Alias routing with provisioned concurrency
	Lambda: Cold starts with provisioned concurrency
	Lambda: Cold starts with new versions
	EFS: Function could not mount the EFS file system
	EFS: Function could not connect to the EFS file system
	EFS: Function could not mount the EFS file system due to timeout
	Lambda: Lambda detected an IO process that was taking too long

	Troubleshoot execution issues in Lambda
	Lambda: Execution takes too long
	Lambda: Logs or traces don't appear
	Lambda: Not all of my function's logs appear
	Lambda: The function returns before execution finishes
	Amazon SDK: Versions and updates
	Python: Libraries load incorrectly

	Troubleshoot networking issues in Lambda
	VPC: Function loses internet access or times out
	VPC: Function needs access to Amazon services without using the internet
	VPC: Elastic network interface limit reached
	EC2: Elastic network interface with type of "lambda"

	Troubleshoot container image issues in Lambda
	Container: CodeArtifactUserException errors related to the code artifact.
	Container: ManifestKeyCustomerException errors related to the code manifest key.
	Container: Error occurs on runtime InvalidEntrypoint
	Lambda: System provisioning additional capacity
	CloudFormation: ENTRYPOINT is being overridden with a null or empty value

	Amazon Lambda applications
	Managing applications in the Amazon Lambda console
	Monitoring applications
	Custom monitoring dashboards

	Creating an application with continuous delivery in the Lambda console
	Prerequisites
	Create an application
	Invoke the function
	Add an Amazon resource
	Update the permissions boundary
	Update the function code
	Next steps
	Troubleshooting
	Clean up

	Rolling deployments for Lambda functions
	Example Amazon SAM Lambda template

	Invoking Lambda functions with the Amazon Mobile SDK for Android
	Tutorial: Using Amazon Lambda with the Mobile SDK for Android
	Prerequisites
	Create the execution role
	Create the function
	Test the Lambda function
	Create an Amazon Cognito identity pool
	Create an Android application

	Sample function code
	Node.js
	Java

	Orchestrating functions with Step Functions
	State machine application patterns
	State machine components
	State machine application patterns
	Applying patterns to state machines
	Example branching application pattern

	Managing state machines in the Lambda console
	Viewing state machine details
	Editing a state machine
	Running a state machine

	Orchestration examples with Step Functions
	Configuring a Lambda function as a task
	Configuring a state machine as an event source
	Handling function and service errors
	Amazon CloudFormation and Amazon SAM

	Lambda sample applications
	Blank function sample application for Amazon Lambda
	Architecture and handler code
	Deployment automation with Amazon CloudFormation and the Amazon CLI
	Instrumentation with the Amazon X-Ray
	Dependency management with layers

	Error processor sample application for Amazon Lambda
	Architecture and event structure
	Instrumentation with Amazon X-Ray
	Amazon CloudFormation template and additional resources

	List manager sample application for Amazon Lambda
	Architecture and event structure
	Instrumentation with Amazon X-Ray
	Amazon CloudFormation templates and additional resources

	Using Lambda with an Amazon SDK
	Code examples for Lambda using Amazon SDKs
	Hello Lambda
	Actions for Lambda using Amazon SDKs
	Use CreateAlias with an Amazon SDK or command line tool
	Use CreateFunction with an Amazon SDK or command line tool
	Use DeleteAlias with an Amazon SDK or command line tool
	Use DeleteFunction with an Amazon SDK or command line tool
	Use DeleteFunctionConcurrency with an Amazon SDK or command line tool
	Use DeleteProvisionedConcurrencyConfig with an Amazon SDK or command line tool
	Use GetAccountSettings with an Amazon SDK or command line tool
	Use GetAlias with an Amazon SDK or command line tool
	Use GetFunction with an Amazon SDK or command line tool
	Use GetFunctionConcurrency with an Amazon SDK or command line tool
	Use GetFunctionConfiguration with an Amazon SDK or command line tool
	Use GetPolicy with an Amazon SDK or command line tool
	Use GetProvisionedConcurrencyConfig with an Amazon SDK or command line tool
	Use Invoke with an Amazon SDK or command line tool
	Use ListFunctions with an Amazon SDK or command line tool
	Use ListProvisionedConcurrencyConfigs with an Amazon SDK or command line tool
	Use ListTags with an Amazon SDK or command line tool
	Use ListVersionsByFunction with an Amazon SDK or command line tool
	Use PublishVersion with an Amazon SDK or command line tool
	Use PutFunctionConcurrency with an Amazon SDK or command line tool
	Use PutProvisionedConcurrencyConfig with an Amazon SDK or command line tool
	Use RemovePermission with an Amazon SDK or command line tool
	Use TagResource with an Amazon SDK or command line tool
	Use UntagResource with an Amazon SDK or command line tool
	Use UpdateAlias with an Amazon SDK or command line tool
	Use UpdateFunctionCode with an Amazon SDK or command line tool
	Use UpdateFunctionConfiguration with an Amazon SDK or command line tool

	Scenarios for Lambda using Amazon SDKs
	Get started creating and invoking Lambda functions using an Amazon SDK

	Serverless examples for Lambda using Amazon SDKs
	Connecting to an Amazon RDS database in a Lambda function
	Invoke a Lambda function from a Kinesis trigger
	Invoke a Lambda function from a DynamoDB trigger
	Invoke a Lambda function from an Amazon S3 trigger
	Invoke a Lambda function from an Amazon SNS trigger
	Invoke a Lambda function from an Amazon SQS trigger
	Reporting batch item failures for Lambda functions with a Kinesis trigger
	Reporting batch item failures for Lambda functions with a DynamoDB trigger
	Reporting batch item failures for Lambda functions with an Amazon SQS trigger

	Cross-service examples for Lambda using Amazon SDKs
	Create an API Gateway REST API to track COVID-19 data
	Create a lending library REST API
	Create a messenger application with Step Functions
	Create a photo asset management application that lets users manage photos using labels
	Create a websocket chat application with API Gateway
	Create an application that analyzes customer feedback and synthesizes audio
	Invoke a Lambda function from a browser
	Transform data for your application with S3 Object Lambda
	Use API Gateway to invoke a Lambda function
	Use Step Functions to invoke Lambda functions
	Use scheduled events to invoke a Lambda function

	Lambda quotas
	Compute and storage
	Function configuration, deployment, and execution
	Lambda API requests
	Other services

	Amazon Glossary
	Document history
	Earlier updates

