
This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d
Amazon SDK for .NET

(version 2, deprecated)
Developer Guide

Amazon SDK for .NET (version 2, deprecated): Developer Guide

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Table of Contents
. iii

Amazon SDK for .NET Developer Guide 1
Getting Started with the Amazon SDK for .NET 3
Programming with the Amazon SDK for .NET 8

... 8
Configuring Your Amazon SDK for .NET Application 8

Configuring Amazon Credentials ... 9
Amazon Region Selection 13
Configuring Other Application Parameters ... 14
Configuration Files Reference for Amazon SDK for .NET 18

Amazon Web Services Asynchronous APIs for .NET 26
Retries and Timeouts 32
Migrating Your Code to the Version 2 of the Amazon SDK for .NET 34
Platform Differences in the Amazon SDK for .NET 38
Install Amazon Assemblies with NuGet 39

Programming Amazon Services with the Amazon SDK for .NET 42
.... 42

Programming with the Amazon Resource APIs for .NET 42
Amazon CloudFormation Programming with the Amazon SDK for .NET 45
Amazon DynamoDB Programming with the Amazon SDK for .NET 47

Amazon DynamoDB Programming with Expressions by Using the Amazon SDK for .NET 53
JSON Support in Amazon DynamoDB with the Amazon SDK for .NET 62
Managing ASP.NET Session State with Amazon DynamoDB 64

Amazon Elastic Compute Cloud Programming with the Amazon SDK for .NET 67
Tutorial: Creating Amazon EC2 Instances with the Amazon SDK for .NET 67
Tutorial: Amazon EC2 Spot Instances 77

Amazon S3 Glacier Programming with the Amazon SDK for .NET 84
Amazon Identity and Access Management Programming with the Amazon SDK for .NET 88

Amazon Identity and Access Management Code Examples with the Amazon Resource APIs
for .NET 90
Tutorial: Grant Access Using an IAM Role and the Amazon SDK for .NET 102

Amazon Route 53 Programming with the Amazon SDK for .NET 106
Amazon Simple Storage Service Programming with the Amazon SDK for .NET 110
Amazon Simple Notification Service Programming with the Amazon SDK for .NET 111
Amazon Simple Queue Service Programming with the Amazon SDK for .NET 114

Creating and Using an Amazon SQS Queue with the Amazon SDK for .NET 115
Programming Additional Amazon Services with the Amazon SDK for .NET 120

Additional Resources 122
Document History 123

ii

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

End of support announcement: http://amazonaws-china.com/blogs/developer/announcing-the-end-of-
support-for-the-aws-sdk-for-net-version-2/.

This documentation is for version 2.0 of the Amazon SDK for .NET. For current content, see the latest
version of the Amazon SDK for .NET developer guide instead.

iii

http://amazonaws-china.com/blogs/developer/announcing-the-end-of-support-for-the-aws-sdk-for-net-version-2/
http://amazonaws-china.com/blogs/developer/announcing-the-end-of-support-for-the-aws-sdk-for-net-version-2/
https://docs.amazonaws.cn/sdk-for-net/latest/developer-guide/
https://docs.amazonaws.cn/sdk-for-net/latest/developer-guide/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Version 2 content (see announcement above)

Amazon SDK for .NET Developer
Guide

Warning
This documentation has been deprecated.
This documentation is for version 2.0 of the Amazon SDK for .NET. For current content, see the
latest version of the Amazon SDK for .NET developer guide instead.

Version 2 content (see announcement above)
The Amazon SDK for .NET makes it easier for Windows developers to build .NET applications that tap
into the cost-effective, scalable, and reliable Amazon services such as Amazon Simple Storage Service
(Amazon S3) and Amazon Elastic Compute Cloud (Amazon EC2). The the SDK supports development on
any platform that supports the .NET Framework 3.5 or later, and you can develop applications with the
SDK using Visual Studio 2010 or later.

The Amazon SDK for .NET includes the following:

• The current version of the Amazon SDK for .NET.
• All previous major versions of the Amazon SDK for .NET.
• Sample code that demonstrates how to use the Amazon SDK for .NET with several Amazon services.

To simplify installation, Amazon provides the Amazon Tools for Windows, which is a Windows
installation package that includes:

• The Amazon SDK for .NET.
• The Amazon Tools for Windows PowerShell. For more information about the Amazon Tools for

Windows PowerShell, see the Amazon Tools for PowerShell User Guide.
• The Amazon Toolkit for Visual Studio. For more information about the Amazon Toolkit for Visual

Studio, see the Amazon Toolkit for Visual Studio User Guide.

As an alternative to installing the Amazon Tools for Windows, you can use NuGet to download
the AWSSDK assembly for a specific application project. For more information, see Install Amazon
Assemblies with NuGet (p. 39).

Note
We recommend using Visual Studio Professional 2010 or higher to implement your applications.
It is possible to use Visual Studio Express to implement applications with the the SDK, including
installing the Toolkit for Visual Studio. However, the installation includes only the Amazon
project templates and the Standalone Deployment Tool. In particular, Toolkit for Visual Studio
on Visual Studio Express does not support Amazon Explorer.

How to Use This Guide
The Amazon SDK for .NET Developer Guide describes how to implement applications for Amazon using
the the SDK, and includes the following:

1

https://docs.amazonaws.cn/sdk-for-net/latest/developer-guide/
https://docs.amazonaws.cn/powershell/latest/userguide/
https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Supported Services and Revision History

Getting Started with the Amazon SDK for .NET (p. 3)

How to install and configure the the SDK. If you have not used the the SDK before or are having
trouble with its configuration, you should start here.

Programming with the Amazon SDK for .NET (p. 8)

The basics of how to implement applications with the the SDK that applies to all Amazon services.
This chapter also includes information about how to migrate code to the latest version of the the
SDK, and describes the differences between the last version and this one.

Programming Amazon Services with the Amazon SDK for .NET (p. 42)

A set of tutorials, walkthroughs, and examples of how to use the the SDK to create applications for
particular Amazon services.

Additional Resources (p. 122)

Additional resources outside of this guide that provide more information about Amazon and the the
SDK.

Note
A related document, Amazon SDK for .NET API Reference, provides a detailed description of
each namespace and class.

Supported Services and Revision History
The Amazon SDK for .NET supports most Amazon infrastructure products, and we regularly release
updates to the the SDK to support new services and new service features. To see what changed with a
given release, see the the SDK README file.

To see what changed in a given release, see the the SDK change log.

About Amazon Web Services
Amazon Web Services is a collection of digital infrastructure services that developers can leverage
when developing their applications. The services include computing, storage, database, and application
synchronization (messaging and queuing).

Amazon uses a pay-as-you-go service model. You are charged only for the services that you—or your
applications—use. Also, to make Amazon useful as a platform for prototyping and experimentation,
Amazon offers a free usage tier, in which services are free below a certain level of usage. For more
information about Amazon costs and the free usage tier go to Using the Amazon Free Tier.

To obtain an Amazon account, go to the Amazon home page and click Sign Up Now.

2

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/
https://github.com/aws/aws-sdk-net/blob/master/README.md
https://github.com/aws/aws-sdk-net/blob/master/SDK.CHANGELOG.md
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/billing-free-tier.html
https://portal.amazonaws.cn/gp/aws/developer/registration/index.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Version 2 content (see announcement above)

Getting Started with the Amazon
SDK for .NET

Version 2 content (see announcement above)
To get started with the Amazon SDK for .NET, complete the following tasks:

Topics
• Create an Amazon Account and Credentials (p. 3)
• Install the .NET Development Environment (p. 3)
• Install the Amazon SDK for .NET (p. 4)
• Start a New Project (p. 4)

Create an Amazon Account and Credentials
To access Amazon, you need an Amazon account.

To sign up for an Amazon account

1. Open http://www.amazonaws.cn/, and then choose Create an Amazon Account.
2. Follow the instructions. Part of the sign-up procedure involves receiving a phone call and entering a

PIN using the phone keypad.

Amazon sends you a confirmation email after the sign-up process is complete. At any time, you can view
your current account activity and manage your account by going to http://www.amazonaws.cn/ and
clicking My Account/Console.

To use the SDK, you must have a set of valid Amazon credentials, which consist of an access key and
a secret key. These keys are used to sign programmatic web service requests and enable Amazon to
verify that the request comes from an authorized source. You can obtain a set of account credentials
when you create your account. However, we recommend that you do not use these credentials with the
SDK. Instead, create one or more IAM users, and use those credentials. For applications that run on EC2
instances, you can use IAM roles to provide temporary credentials.

The preferred approach for handling credentials is to create a profile for each set of credentials in the
SDK Store. You can create and manage profiles with the Amazon Toolkit for Visual Studio, PowerShell
cmdlets, or programmatically with the SDK. These credentials are encrypted and stored separately from
any project. You then reference the profile by name in your application, and the credentials are inserted
at build time. This approach ensures that your credentials are not unintentionally exposed with your
project on a public site. For more information, see Setting Up the Amazon Toolkit for Visual Studio and
Configuring Amazon Credentials (p. 9).

For more information about managing your credentials, see Best Practices for Managing Amazon Access
Keys.

Install the .NET Development Environment
To use the SDK, you must have the following installed.

3

http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/Using_SettingUpUser.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/WorkingWithRoles.html
https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/getting-set-up.html
https://docs.amazonaws.cn/general/latest/gr/aws-access-keys-best-practices.html
https://docs.amazonaws.cn/general/latest/gr/aws-access-keys-best-practices.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Install the Amazon SDK for .NET

Requirements
• (Required) Microsoft .NET Framework 3.5 or later
• (Required) Microsoft Visual Studio 2010 or later
• (Required) The SDK
• (Recommended) Amazon Toolkit for Visual Studio, a plugin that provides a user interface for managing

your Amazon resources from Visual Studio, and includes the SDK. For more information, see Amazon
Toolkit for Visual Studio.

Note
We recommend using Visual Studio Professional 2010 or higher to implement your applications.

Install the Amazon SDK for .NET
The following procedure describes how to install the Amazon Tools for Windows, which contains the
Amazon SDK for .NET.

To install the SDK

1. Go to Amazon SDK for .NET. Click the Download button in the upper right corner of the page. Your
browser will prompt you to save the install file.

Note
The Amazon SDK for .NET is also available on GitHub.

2. To begin the install process, open the saved install file and follow the on-screen instructions. Version 2
of the SDK can be found in the past-releases folder of the SDK installation directory.

Note
By default, the Amazon Tools for Windows is installed in the Program Files directory,
which requires administrator privileges. To install the Amazon Tools for Windows as a non-
administrator, specify a different installation directory.

3. (Optional) You can install extensions for the SDK, which include a session state provider and a trace
listener. For more information, see Install Amazon Assemblies with NuGet (p. 39).

Start a New Project
If you have installed the Toolkit for Visual Studio on Visual Studio Professional, it includes C# project
templates for a variety of Amazon services, including the following basic templates:

Amazon Console Project

A console application that makes basic requests to Amazon S3, Amazon SimpleDB, and Amazon EC2.
Amazon Empty Project

A console application that does not include any code.
Amazon Web Project

An ASP.NET application that makes basic requests to Amazon S3, Amazon SimpleDB, and Amazon
EC2.

You can also base your application on one of the standard Visual Studio project templates. Just add a
reference to the Amazon .NET library (AWSSDK.dll), which is located in the past-releases folder of
the SDK installation directory.

4

https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/welcome.html
https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/welcome.html
http://www.amazonaws.cn/sdk-for-net/
https://github.com/aws/aws-sdk-net

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Start a New Project

The following procedure gets you started by creating and running a new Amazon Console project for
Visual Studio 2012; the process is similar for other project types and Visual Studio versions. For more
information on how to configure an Amazon application, see Configuring Your Amazon SDK for .NET
Application (p. 8).

To start a new project

1. In Visual Studio, on the File menu, select New, and then click Project to open the New Project dialog
box.

2. Select Amazon from the list of installed templates and select the Amazon Console Project project
template. Enter a project name, and then click OK.

3. Use the Amazon Access Credentials dialog box to configure your application.

• Specify which account profile your code should use to access Amazon. To use an existing profile, click
Use existing profile and select the profile from the list. To add a new profile, click Use a new profile
and enter the credentials information. For more information about profiles, see Configuring Your
Amazon SDK for .NET Application (p. 8).

• Specify a default Amazon region.

5

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Start a New Project

1. Click OK to accept the configuration, which opens the project. Examine the project’s App.config file,
which will contain something like the following:

<configuration>
 <appSettings>
 <add key="AWSProfileName" value="development"/>
 <add key="AWSRegion" value="us-west-2"/>
 </appSettings>
</configuration>

The Toolkit for Visual Studio puts the values you specified in the Amazon Access Credentials dialog
box into the two key-value pairs in appSettings.

Note
Although using the appSettings element is still supported, we recommend that you move
to using the aws element instead, for example:

<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK"/>
 </configSections>
 <aws region="us-west-2" profileName="development"/>
</configuration>

For more information on use of the aws element, see Configuration Files Reference for
Amazon SDK for .NET (p. 18).

6

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Start a New Project

2. Click F5 to compile and run the application, which prints the number of EC2 instances, Amazon
SimpleDB tables, and Amazon S3 buckets in your account.

For more information about configuring an Amazon application, see Configuring Your Amazon SDK
for .NET Application (p. 8).

7

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Version 2 content (see announcement above)

Programming with the Amazon SDK
for .NET

Version 2 content (see announcement above)
This section provides general information for developing software with the Amazon SDK for .NET.

For information about developing software with the Amazon SDK for .NET for specific Amazon services,
see Programming Amazon Services with the Amazon SDK for .NET (p. 42).

Topics

• Configuring Your Amazon SDK for .NET Application (p. 8)

• Amazon Web Services Asynchronous APIs for .NET (p. 26)

• Retries and Timeouts (p. 32)

• Migrating Your Code to the Version 2 of the Amazon SDK for .NET (p. 34)

• Platform Differences in the Amazon SDK for .NET (p. 38)

• Install Amazon Assemblies with NuGet (p. 39)

Configuring Your Amazon SDK for .NET
Application

Version 2 content (see announcement above)
You can configure your Amazon SDK for .NET application to specify Amazon credentials, logging options,
endpoints, or signature version 4 support with Amazon S3.

The recommended way to configure an application is to use the <aws> element in the project’s
App.config or Web.config file. The following example specifies the AWSRegion (p. 16) and
AWSLogging (p. 15) parameters.

<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws region="us-west-2">
 <logging logTo="Log4Net"/>
 </aws>
</configuration>

Another way to configure an application is to edit the <appSettings> element in the project’s
App.config or Web.config file. The following example specifies the AWSRegion (p. 16) and
AWSLogging (p. 15) parameters.

8

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Configuring Amazon Credentials

<configuration>
 <appSettings>
 <add key="AWSRegion" value="us-west-2"/>
 <add key="AWSLogging" value="log4net"/>
 </appSettings>
</configuration>

These settings take effect only after the application has been rebuilt.

Although you can configure an Amazon SDK for .NET application programmatically by setting property
values in the AWSConfigs class, we recommend you use the aws element instead. The following example
specifies the AWSRegion (p. 16) and AWSLogging (p. 15) parameters:

AWSConfigs.AWSRegion = "us-west-2";
AWSConfigs.Logging = LoggingOptions.Log4Net;

Programmatically defined parameters override any values that were specified in an App.config or
Web.config file. Some programmatically defined parameter values take effect immediately; others
take effect only after you create a new client object. For more information, see Configuring Amazon
Credentials (p. 9).

Topics
• Configuring Amazon Credentials (p. 9)
• Amazon Region Selection (p. 13)
• Configuring Other Application Parameters (p. 14)
• Configuration Files Reference for Amazon SDK for .NET (p. 18)

Configuring Amazon Credentials
Version 2 content (see announcement above)

This topic describes how to configure your application’s Amazon credentials. It assumes you have created
an Amazon account and have access to your credentials, as described in Create an Amazon Account and
Credentials (p. 3). It is important to manage your credentials securely and avoid practices that could
unintentionally expose your credentials publicly. In particular:

• Don’t use your account’s root credentials to access your Amazon resources. These credentials provide
unrestricted account access and are difficult to revoke.

• Don’t put literal access keys in your application, including the project’s App.config or Web.config
file. Doing so creates a risk of accidentally exposing your credentials if, for example, you upload the
project to a public repository.

Some general guidelines for securely managing credentials include:

• Create IAM users and use the credentials for the IAM users instead of your account’s root credentials
to provide account access. IAM user credentials are easier to revoke if they are compromised. You can
apply to each IAM user a policy that restricts the user to a specified set of resources and actions.

• The preferred approach for managing credentials during application development is to put a profile
for each set of IAM user credentials in the SDK Store. You can also use a credentials file to store
profiles that contain credentials. You can then reference a particular profile programmatically or in
your application’s App.config or Web.config file instead of storing the credentials in your project
files. To limit the risk of unintentionally exposing credentials, the SDK Store or credentials file should
be stored separately from your project files.

9

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TAWSConfigsNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Configuring Amazon Credentials

• Use IAM roles for applications that are running on Amazon EC2 instances.

• Use temporary credentials for applications that are available to users outside your organization.

The following topics describe how to manage credentials for an Amazon SDK for .NET application. For
a general discussion of how to securely manage Amazon credentials, see Best Practices for Managing
Amazon Access Keys.

Topics

• Using the SDK Store (p. 10)

• Using a Credentials File (p. 10)

• Using Credentials in an Application (p. 11)

Using the SDK Store

During development of your Amazon SDK for .NET application, you should add a profile to the SDK Store
for each set of credentials you want to use in your application. This will prevent the accidental exposure
of your Amazon credentials while developing your application. The SDK Store provides the following
benefits:

• The SDK Store can contain multiple profiles from any number of accounts.

• The credentials in the SDK Store are encrypted, and the SDK Store resides in the user’s home directory,
which limits the risk of accidentally exposing your credentials.

• You reference the profile by name in your application and the associated credentials are incorporated
at build time. Your source files never contain the credentials.

• If you include a profile named default, the Amazon SDK for .NET will use that profile by default.

• The SDK Store also provides credentials to the Amazon Tools for PowerShell User Guide.

SDK Store profiles are specific to a particular user on a particular host. They cannot be copied to other
hosts or other users. For this reason, SDK Store profiles cannot be used in production applications. For
more information, see Using Credentials in an Application (p. 11).

There are several ways to manage the profiles in the SDK Store.

• The Toolkit for Visual Studio includes a graphical user interface for managing profiles. For more
information about adding credentials to the SDK Store with the graphical user interface, see
Specifying Credentials in the Amazon Toolkit for Visual Studio User Guide.

• You can manage your profiles from the command line by using the Amazon Tools for Windows
PowerShell. For more information, see Using Amazon Credentials in the Amazon Tools for Windows
PowerShell User Guide.

• You can manage your profiles programmatically using the Amazon.Util.ProfileManager class. The
following example uses the RegisterProfile method to add a new profile to the SDK Store.

Amazon.Util.ProfileManager.RegisterProfile({profileName}, {accessKey}, {secretKey})

The RegisterProfile method is used to register a new profile. Your application will normally call
this method only once for each profile.

Using a Credentials File

You can also store profiles in a credentials file, which can be used by the other Amazon SDKs, the
Amazon CLI, and Tools for Windows PowerShell. To reduce the risk of accidentally exposing credentials,

10

https://docs.amazonaws.cn/general/latest/gr/aws-access-keys-best-practices.html
https://docs.amazonaws.cn/general/latest/gr/aws-access-keys-best-practices.html
https://docs.amazonaws.cn/powershell/latest/userguide/
https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/tkv_setup.html
https://docs.amazonaws.cn/powershell/latest/userguide/specifying-your-aws-credentials.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TUtilProfileManagerNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MUtilProfileManagerRegisterProfileStringStringStringNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Configuring Amazon Credentials

the credentials file should be stored separately from any project files, usually in the user’s home folder.
Be aware that the profiles in a credentials files are stored in plaintext.

You use a text editor to manage the profiles in a credentials file. The file is named credentials, and
the default location is under your user’s home folder. For example, if your user name is awsuser, the
credentials file would be C:\users\awsuser\.aws\credentials.

Each profile has the following format:

[{profile_name}]
aws_access_key_id = {accessKey}
aws_secret_access_key = {secretKey}

A profile can optionally include a session token. For more information, see Best Practices for Managing
Amazon Access Keys.

If federated account information is used for access, the credential file must include the session token.
Otherwise the SDK returns an Invalid Session Token exception. An example profile with a session token:

[{profile_name}]
aws_access_key_id = {accessKey}
aws_secret_access_key = {secretKey}
aws_session_token = {sessionToken}

Note
If you include a profile named default, the Amazon SDK for .NET will use that profile by
default if it cannot find the specified profile.

You can store profiles in a credentials file in a location you choose, such as C:
\aws_service_credentials\credentials. You then explicitly specify the file path in the
profilesLocation attribute in your project’s App.config or Web.config file. For more information,
see Specifying a Profile (p. 12).

Using Credentials in an Application

The Amazon SDK for .NET searches for credentials in the following order and uses the first available set
for the current application.

1. Access key and secret key values that are stored in the application’s App.config or Web.config file.
We strongly recommend using profiles rather than storing literal credentials in your project files.

2. If a profile is specified:
a. The specified profile in the SDK Store.
b. The specified profile in the credentials file.

If no profile is specified:
a. A profile named default in the SDK Store.
b. A profile named default in the credentials file.

3. Credentials stored in the AWS_ACCESS_KEY_ID and AWS_SECRET_KEY environment variables.
4. For applications running on an Amazon EC2 instance, credentials stored in an instance profile.

SDK Store profiles are specific to a particular user on a particular host. They cannot be copied to other
hosts or other users. For this reason, SDK Store profiles cannot be used in production applications. If
your application is running on an Amazon EC2 instance, you should use an IAM role as described in Using
IAM Roles for EC2 Instances with the Amazon SDK for .NET (p. 102). Otherwise, you should store your
credentials in a credentials file on the server your web application has access to.

11

https://docs.amazonaws.cn/general/latest/gr/aws-access-keys-best-practices.html
https://docs.amazonaws.cn/general/latest/gr/aws-access-keys-best-practices.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Configuring Amazon Credentials

Specifying a Profile

Profiles are the preferred way to use credentials in an Amazon SDK for .NET application. You don’t have
to specify where the profile is stored; you only reference the profile by name. The Amazon SDK for .NET
retrieves the corresponding credentials, as described in the previous section.

The recommended way to specify a profile is to define an <aws> element in your application’s
App.config or Web.config file. The associated credentials are incorporated into the application
during the build process.

The following example specifies a profile named development.

<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws profileName="development"/>
</configuration>

Note
The <configSections> element must be the first child of the <configuration> element.

Another way to specify a profile is to define an AWSProfileName value in the appSettings section of
your application’s App.config or Web.config file. The associated credentials are incorporated into the
application during the build process.

The following example specifies a profile named development.

<configuration>
 <appSettings>
 <add key="AWSProfileName" value="development"/>
 </appSettings>
</configuration>

This example assumes the profile exists in the SDK Store or a credentials file in the default location.
If your profiles are stored in a credentials file in another location, specify the location by adding
a profilesLocation attribute value to the <aws> element. The following example specifies
C:aws_service_credentialscredentials as the credentials file by using the recommended <aws>
element.

<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK"/>
 </configSections>
 <aws profileName="development" profilesLocation="C:\aws_service_credentials\credentials"/
>
</configuration>

Another way to specify a credentials file is with the <appSettings> element.

<configuration>
 <appSettings>
 <add key="AWSProfileName" value="development"/>
 <add key="AWSProfilesLocation" value="C:\aws_service_credentials\credentials"/>
 </appSettings>
</configuration>

Although you can reference a profile programmatically using the
Amazon.Runtime.StoredProfileAWSCredentials class, we recommend that you use the aws element

12

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRuntimeStoredProfileAWSCredentialsNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Region Selection

instead. The following example demonstrates how to create an AmazonS3Client object that uses the
credentials for a specific profile.

var credentials = new StoredProfileAWSCredentials(profileName);
var s3Client = new AmazonS3Client(credentials, RegionEndpoint.USWest2);

Note
If you want to use the default profile, omit the AWSCredentials object, and the Amazon SDK
for .NET will automatically use your default credentials to create the client object.

Specifying Roles or Temporary Credentials

For applications that run on Amazon EC2 instances, the most secure way to manage credentials is to use
IAM roles, as described in Using IAM Roles for EC2 Instances with the Amazon SDK for .NET (p. 102).

For application scenarios in which the software executable will be available to users outside your
organization, we recommend you design the software to use temporary security credentials. In addition
to providing restricted access to Amazon resources, these credentials have the benefit of expiring after a
specified period of time. For more information about temporary security credentials, go to:

• Using Security Tokens to Grant Temporary Access to Your Amazon Resources
• Authenticating Users of Amazon Mobile Applications with a Token Vending Machine.

Although the title of the second article refers specifically to mobile applications, the article contains
information that is useful for any Amazon application deployed outside of your organization.

Using Proxy Credentials

If your software communicates with Amazon through a proxy, you can specify credentials for the proxy
using the ProxyCredentials property on the ClientConfig class for the service. For example, for
Amazon S3, you could use code similar to the following, where {my-username} and {my-password} are
the proxy user name and password specified in a NetworkCredential object.

AmazonS3Config config = new AmazonS3Config();
config.ProxyCredentials = new NetworkCredential("my-username", "my-password");

Earlier versions of the SDK used ProxyUsername and ProxyPassword, but these properties have been
deprecated.

Amazon Region Selection
Version 2 content (see announcement above)

Amazon regions allow you to access Amazon services that reside physically in a specific geographic
region. This can be useful both for redundancy and to keep your data and applications running close to
where you and your users will access them. To select a particular region, configure the Amazon client
object with an endpoint that corresponds to that region.

For example:

AmazonEC2Config config = new AmazonEC2Config();
config.ServiceURL = "https://us-west-2.amazonaws.com";
Amazon.Runtime.AWSCredentials credentials = new
 Amazon.Runtime.StoredProfileAWSCredentials("profile_name");
AmazonEC2Client ec2 = new AmazonEC2Client(credentials, config);

13

https://docs.amazonaws.cn/IAM/latest/UserGuide/TokenBasedAuth.html
http://www.amazonaws.cn/articles/4611615499399490
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRuntimeClientConfigNET45.html
http://msdn.microsoft.com/en-us/library/system.net.networkcredential.aspx

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuring Other Application Parameters

You can also specify the region using the RegionEndpoint class. Here is an example that instantiates an
Amazon EC2 client using AWSClientFactory and specifies the region:

Amazon.Runtime.AWSCredentials credentials = new
 Amazon.Runtime.StoredProfileAWSCredentials("profile_name");
AmazonEC2Client ec2 = AWSClientFactory.CreateAmazonEC2Client(
 credentials, RegionEndpoint.USEast1);

Regions are isolated from each other. For example, you can’t access US East resources when using the
EU West region. If your code needs access to multiple Amazon regions, we recommend that you create a
client specific to each region.

Regions are logically isolated from each other; you can’t access another region’s resources when
communicating with the China (Beijing) Region endpoint.

Go to Regions and Endpoints in the Amazon Web Services General Reference to view the current list of
regions and corresponding endpoints for each of the services offered by Amazon.

Configuring Other Application Parameters
Version 2 content (see announcement above)

In addition to configuring credentials (p. 9), you can configure a number of other application
parameters:

Topics

• AWSEndpointDefinition (p. 14)

• AWSLogging (p. 15)

• AWSLogMetrics (p. 15)

• AWSRegion (p. 16)

• AWSResponseLogging (p. 16)

• AWS.DynamoDBContext.TableNamePrefix (p. 17)

• AWS.S3.UseSignatureVersion4 (p. 17)

These parameters can be configured in the application’s App.config or Web.config file. Although you
can also configure these with the Amazon SDK for .NET API, we recommend you use the application’s
.config file. Both approaches are described here.

For more information about use of the <aws> element as described later in this topic, see Configuration
Files Reference for Amazon SDK for .NET (p. 18).

AWSEndpointDefinition

Configures whether the SDK should use a custom configuration file that defines the regions and
endpoints. To set the endpoint definition file in the .config file, we recommend setting the
endpointDefinition attribute value in the <aws> element.

<aws endpointDefinition="c:\config\endpoints.xml"/>

Alternatively, you can set the AWSEndpointDefinition key in the <appSettings> section:

<add key="AWSEndpointDefinition" value="c:\config\endpoints.xml"/>

14

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRegionEndpointNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TAWSClientFactoryNET45.html
https://docs.amazonaws.cn/general/latest/gr/rande.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuring Other Application Parameters

Alternatively, to set the endpoint definition file with the Amazon SDK for .NET API, set the
AWSConfigs.EndpointDefinition property:

AWSConfigs.EndpointDefinition = @"c:\config\endpoints.xml";

If no file name is provided, then a custom configuration file will not be used. Changes to this setting take
effect only for new Amazon client instances.

AWSLogging

Configures how the SDK should log events, if at all. For example, the recommended approach is to use
the <logging> element, which is a child element of the <aws> element:

<aws>
 <logging logTo="Log4Net"/>
</aws>

Alternatively:

<add key="AWSLogging" value="log4net"/>

The possible values are:

None

Turn off event logging. This is the default.
log4net

Log using log4net.
SystemDiagnostics

Log using the System.Diagnostics class.

You can set multiple values for the logTo attribute, separated by commas. The following example sets
both log4net and System.Diagnostics logging in the .config file:

<logging logTo="Log4Net, SystemDiagnostics"/>

Alternatively:

<add key="AWSLogging" value="log4net, SystemDiagnostics"/>

Alternatively, using the Amazon SDK for .NET API, combine the values of the LoggingOptions
enumeration and set the AWSConfigs.Logging property:

AWSConfigs.Logging = LoggingOptions.Log4Net | LoggingOptions.SystemDiagnostics;

Changes to this setting take effect only for new Amazon client instances.

AWSLogMetrics

Specifies whether or not the SDK should log performance metrics. To set the metrics logging
configuration in the .config file, set the logMetrics attribute value in the <logging> element,
which is a child element of the <aws> element:

15

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TAWSConfigsNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TLoggingOptionsNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TAWSConfigsNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuring Other Application Parameters

<aws>
 <logging logMetrics="true"/>
</aws>

Alternatively, set the AWSLogMetrics key in the <appSettings> section:

<add key="AWSLogMetrics" value="true">

Alternatively, to set metrics logging with the Amazon SDK for .NET API, set the AWSConfigs.LogMetrics
property:

AWSConfigs.LogMetrics = true;

This setting configures the default LogMetrics property for all clients/configs. Changes to this setting
take effect only for new Amazon client instances.

AWSRegion

Configures the default Amazon region for clients that have not explicitly specified a region. To set the
region in the .config file, the recommended approach is to set the region attribute value in the aws
element:

<aws region="us-west-2"/>

Alternatively, set the AWSRegion key in the <appSettings> section:

<add key="AWSRegion" value="us-west-2"/>

lternatively, to set the region with the Amazon SDK for .NET API, set the AWSConfigs.AWSRegion
property:

AWSConfigs.AWSRegion = "us-west-2";

For more information about creating an Amazon client for a specific region, see Amazon Region
Selection (p. 13). Changes to this setting take effect only for new Amazon client instances.

AWSResponseLogging

Configures when the SDK should log service responses.

The possible values are:

Never

Never log service responses. This is the default.
Always

Always log service responses.
OnError

Only log service responses when an error occurs.

To set the service logging configuration in the .config file, the recommended approach is to set the
logResponses attribute value in the <logging> element, which is a child element of the <aws>
element:

16

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TAWSConfigsNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TAWSConfigsNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuring Other Application Parameters

<aws>
 <logging logResponses="OnError"/>
</aws>

Alternatively, set the AWSResponseLogging key in the <appSettings> section:

<add key="AWSResponseLogging" value="OnError"/>

Alternatively, to set service logging with the Amazon SDK for .NET API, set the
AWSConfigs.ResponseLogging property to one of the values of the ResponseLoggingOption
enumeration:

AWSConfigs.ResponseLogging = ResponseLoggingOption.OnError;

Changes to this setting take effect immediately.

AWS.DynamoDBContext.TableNamePrefix

Configures the default TableNamePrefix the DynamoDBContext will use if not manually
configured. To set the table name prefix in the .config file, the recommended approach is to set the
tableNamePrefix attribute value in the <dynamoDBContext> element, which is a child element of the
<dynamoDB> element, which itself is a child element of the <aws> element:

<dynamoDBContext tableNamePrefix="Test-"/>

Alternatively, set the AWS.DynamoDBContext.TableNamePrefix key in the <appSettings> section:

<add key="AWS.DynamoDBContext.TableNamePrefix" value="Test-"/>

AWSConfigs.DynamoDBContextTableNamePrefix = "Test-";

Changes to this setting will take effect only in newly constructed instances of
DynamoDBContextConfig and DynamoDBContext.

AWS.S3.UseSignatureVersion4

Configures whether or not the Amazon S3 client should use signature version 4 signing with requests.
To set signature version 4 signing for Amazon S3 in the .config file, the recommended approach is to
set the useSignatureVersion4 attribute of the <s3> element, which is a child element of the <aws>
element:

<aws>
 <s3 useSignatureVersion4="true"/>
</aws>

Alternatively, set the AWS.S3.UseSignatureVersion4 key to true in the <appSettings> section:

<add key="AWS.S3.UseSignatureVersion4" value="true"/>

Alternatively, to set signature version 4 signing with the Amazon SDK for .NET API, set the
AWSConfigs.S3UseSignatureVersion4 property to true:

AWSConfigs.S3UseSignatureVersion4 = true;

17

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TAWSConfigsNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TResponseLoggingOptionNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TAWSConfigsNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuration Files Reference for Amazon SDK for .NET

By default, this setting is false, but signature version 4 may be used by default in some cases or with
some regions. When the setting is true, signature version 4 will be used for all requests. Changes to this
setting take effect only for new Amazon S3 client instances.

Configuration Files Reference for Amazon SDK
for .NET
Version 2 content (see announcement above)

You can use a .NET project’s App.config or Web.config file to specify certain Amazon settings such
as Amazon credentials, logging options, Amazon service endopoints, and Amazon regions, as well as
certain settings for Amazon services such as Amazon DynamoDB, Amazon EC2, and Amazon S3. The
following information describes how to properly format an App.config or Web.config file to specify
these types of settings.

Note
Although you can continue to use the <appSettings> element in an App.config
or Web.config file to specify Amazon settings, we recommend that you use the
<configSections> and <aws> elements as described later in this topic. (For more information
about the <appSettings> element, see the <appSettings> element examples in Configuring
Your Amazon SDK for .NET Application (p. 8).)
Although you can continue to use the following AWSConfigs class properties in a code file to
specify Amazon settings, the following properties are deprecated and may not be supported in
future releases:

• DynamoDBContextTableNamePrefix

• EC2UseSignatureVersion4

• LoggingOptions

• LogMetrics

• ResponseLoggingOption

• S3UseSignatureVersion4

In general, we recommend that instead of using AWSConfigs class properties in a code file to
specify Amazon settings, you should use the <configSections> and <aws> elements in an
App.config or Web.config file to specify Amazon settings, as described later in this topic.
(For more information about the preceding properties, see the AWSConfigs code examples in
Configuring Your Amazon SDK for .NET Application (p. 8).)

Topics
• Declaring an Amazon Settings Section (p. 18)
• Allowed Elements (p. 19)
• Elements Reference (p. 20)

Declaring an Amazon Settings Section

You specify Amazon settings in an App.config or Web.config file from within the <aws> element.
Before you can begin using the <aws> element, you must create a <section> element (which is a child
element of the <configSections> element) and set its name attribute to aws and its type attribute to
Amazon.AWSSection, AWSSDK, as shown in the following example:

<?xml version="1.0"?>
<configuration>
 ...

18

TAWSConfigsNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuration Files Reference for Amazon SDK for .NET

 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws>
 <!-- Add your desired AWS settings declarations here. -->
 </aws>
 ...
</configuration>

Note that the Visual Studio Editor does not provide automatic code completion (IntelliSense) for either
the <aws> element or its child elements.

To assist you in creating a correctly-formatted version of the <aws> element, call the
Amazon.AWSConfigs.GenerateConfigTemplate method. This outputs a canonical version of the
<aws> element as a pretty-printed string, which you can adapt to your needs. The following sections
describe the <aws> element’s attributes and child elements.

Allowed Elements

The following is a list of the logical relationships among the allowed elements in an
Amazon settings section. You can generate the latest version of this list by calling the
Amazon.AWSConfigs.GenerateConfigTemplate method, which outputs a canonical version of the
<aws> element as a string that you can adapt to your needs.

...
<aws
 endpointDefinition="string value"
 region="string value"
 profileName="string value"
 profilesLocation="string value">
 <logging
 logTo="None, Log4Net, SystemDiagnostics"
 logResponses="Never | OnError | Always"
 logMetrics="true | false"
 logMetricsFormat="Standard | JSON"
 logMetricsCustomFormatter="NameSpace.Class, Assembly" />
 <dynamoDB
 conversionSchema="V1 | V2">
 <dynamoDBContext
 tableNamePrefix="string value">
 <alias
 fromTable="string value"
 toTable="string value" />
 <map
 type="NameSpace.Class, Assembly"
 targetTable="string value">
 <property
 name="string value"
 attribute="string value"
 ignore="true | false"
 version="true | false"
 converter="NameSpace.Class, Assembly" />
 </map>
 </dynamoDBContext>
 </dynamoDB>
 <s3
 useSignatureVersion4="true | false" />
 <ec2
 useSignatureVersion4="true | false" />
 <proxy
 host="string value"
 port="1234"
 username="string value"

19

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuration Files Reference for Amazon SDK for .NET

 password="string value" />
</aws>
...

Elements Reference

The following is a list of the elements that are allowed in an Amazon settings section. For each element,
its allowed attributes and parent-child elements are listed.

Topics
• alias (p. 20)
• aws (p. 20)
• dynamoDB (p. 21)
• dynamoDBContext (p. 22)
• ec2 (p. 22)
• logging (p. 22)
• map (p. 24)
• property (p. 24)
• proxy (p. 25)
• s3 (p. 26)

alias

The <alias> element represents a single item in a collection of one or more from-table
to to-table mappings that specifies a different table than one that is configured for a type.
(This element maps to an instance of the Amazon.Util.TableAlias class from the
Amazon.AWSConfigs.DynamoDBConfig.Context.TableAliases property in the Amazon SDK
for .NET.) Remapping is done before applying a table name prefix. This element can include the following
attributes:

fromTable

The from-table portion of the from-table to to-table mapping. (This attribute maps to the
Amazon.Util.TableAlias.FromTable property in the Amazon SDK for .NET.)

toTable

The to-table portion of the from-table to to-table mapping. (This attribute maps to the
Amazon.Util.TableAlias.ToTable property in the Amazon SDK for .NET.)

The parent of the <alias> element is the <dynamoDBContext> (p. 22) element.

The <alias> element contains no child elements.

The following is an example of the <alias> element in use:

...
<alias
 fromTable="Studio"
 toTable="Studios" />
...

aws

The <aws> element represents the top-most element in an Amazon settings section. This element can
include the following attributes:

20

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuration Files Reference for Amazon SDK for .NET

endpointDefinition

The absolute path to a custom configuration file that defines the desired Amazon regions and
endpoints to use. (This attribute maps to the Amazon.AWSConfigs.EndpointDefinition
property in the Amazon SDK for .NET.)

profileName

The desired profile name for stored Amazon credentials that will be used to make service calls.
(This attribute maps to the Amazon.AWSConfigs.AWSProfileName property in the Amazon SDK
for .NET.)

profilesLocation

The absolute path to the location of the credentials file shared with other Amazon SDKs. By default,
the credentials file is stored in the .aws directory in the current user’s home directory. (This
attribute maps to the Amazon.AWSConfigs.AWSProfilesLocation property in the Amazon SDK
for .NET.)

region

The default Amazon region ID for clients that have not explicitly specified a region. (This attribute
maps to the Amazon.AWSConfigs.AWSRegion property in the Amazon SDK for .NET.)

The <aws> element has no parent element.

The <aws> element can include the following child elements:

• <dynamoDB>

• <ec2>

• <logging>

• <proxy>

• <s3>

The following is an example of the <aws> element in use:

...
<aws
 endpointDefinition="C:\Configs\endpoints.xml"
 region="us-west-2"
 profileName="development"
 profilesLocation="C:\Configs">
 ...
</aws>
...

dynamoDB

The <dynamoDB> element represents a collection of settings for Amazon DynamoDB. This element
can include the conversionSchema attribute, which represents the version to use for converting
between .NET and DynamoDB objects. Allowed values include V1 and V2. (This attribute maps to
the Amazon.DynamoDBv2.DynamoDBEntryConversion class in the Amazon SDK for .NET.) For more
information, see DynamoDB Series - Conversion Schemas.

The parent of the <dynamoDB> element is the element.

The <dynamoDB> element can include the child element.

The following is an example of the <dynamoDB> element in use:

21

http://blogs.aws.amazon.com/net/post/Tx2TCOGWG7ARUH5/DynamoDB-Series-Conversion-Schemas

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuration Files Reference for Amazon SDK for .NET

...
<dynamoDB
 conversionSchema="V2">
 ...
</dynamoDB>
...

dynamoDBContext

The <dynamoDBContext> element represents a collection of Amazon DynamoDB context-specific
settings. This element can include the tableNamePrefix attribute, which represents the default table
name prefix that the DynamoDB context will use if it is not manually configured. (This attribute
maps to the Amazon.Util.DynamoDBContextConfig.TableNamePrefix property from the
Amazon.AWSConfigs.DynamoDBConfig.Context.TableNamePrefix property in the Amazon SDK
for .NET.) For more information, see Enhancements to the DynamoDB SDK.

The parent of the <dynamoDBContext> element is the element.

The <dynamoDBContext> element can include the following child elements:

• <alias> (one or more instances)

• <map> (one or more instances)

The following is an example of the <dynamoDBContext> element in use:

...
<dynamoDBContext
 tableNamePrefix="Test-">
 ...
</dynamoDBContext>
...

ec2

The <ec2> element represents a collection of Amazon EC2 settings. This element can include the
useSignatureVersion4 attribute, which specifies whether Signature Version 4 signing will be used for
all requests (true) or whether Signature Version 4 signing will not be used for all requests (false, the
default). (This attribute maps to the Amazon.Util.EC2Config.UseSignatureVersion4 property
from the Amazon.AWSConfigs.EC2Config.UseSignatureVersion4 property in the Amazon SDK
for .NET.)

The parent of the <ec2> element is the element.

The <ec2> element contains no child elements.

The following is an example of the <ec2> element in use:

...
<ec2
 useSignatureVersion4="true" />
...

logging

The <logging> element represents a collection of settings for response logging and performance
metrics logging. This element can include the following attributes:

22

http://blogs.aws.amazon.com/net/post/Tx2C4MHH2H0SA5W/Enhancements-to-the-DynamoDB-SDK

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuration Files Reference for Amazon SDK for .NET

logMetrics

Whether performance metrics will be logged for all clients and configurations (true); otherwise,
false. (This attribute maps to the Amazon.Util.LoggingConfig.LogMetrics property from the
Amazon.AWSConfigs.LoggingConfig.LogMetrics property in the Amazon SDK for .NET.)

logMetricsCustomFormatter

The data type and assembly name of a custom formatter for logging metrics. (This attribute maps
to the Amazon.Util.LoggingConfig.LogMetricsCustomFormatter property from the
Amazon.AWSConfigs.LoggingConfig.LogMetricsCustomFormatter property in the Amazon
SDK for .NET.)

logMetricsFormat

The format in which the logging metrics are presented. (This attribute maps to
the Amazon.Util.LoggingConfig.LogMetricsFormat property from the
Amazon.AWSConfigs.LoggingConfig.LogMetricsFormat property in the Amazon SDK
for .NET.) Allowed values include
JSON

Use JSON format.
Standard

Use the default format.
logResponses

When to log service responses. (This attribute maps to the
Amazon.Util.LoggingConfig.LogResponses property from the
Amazon.AWSConfigs.LoggingConfig.LogResponses property in the Amazon SDK for .NET.)
Allowed values include:
Always

Always log service responses.
Never

Never log service responses.
OnError

Log service responses only when there are errors.
logTo

Where to log to. (This attribute maps to the A:code:mazon.Util.LoggingConfig.LogTo property from
the Amazon.AWSConfigs.LoggingConfig.LogTo property in the Amazon SDK for .NET.)

Allowed values include:
Log4Net

Log to log4net.
None

Completely disable logging.
SystemDiagnostics

Log to System.Diagnostics.

The parent of the <logging> element is the element.

23

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuration Files Reference for Amazon SDK for .NET

The <logging> element contains no child elements.

The following is an example of the <logging> element in use:

...
<logging
 logTo="SystemDiagnostics"
 logResponses="OnError"
 logMetrics="true"
 logMetricsFormat="JSON"
 logMetricsCustomFormatter="MyLib.Util.MyMetricsFormatter, MyLib" />
...

map

The <map> element represents a single item in a collection of type-to-table mappings from .NET types
to DynamoDB tables. (This element maps to an instance of the Amazon.Util.TypeMapping class from
the Amazon.AWSConfigs.DynamoDBConfig.Context.TypeMappings property in the Amazon SDK
for .NET.) For more information, see Enhancements to the DynamoDB SDK. This element can include the
following attributes:

targetTable

The DynamoDB table to which the mapping applies. (This attribute maps to the
Amazon.Util.TypeMapping.TargetTable property in the Amazon SDK for .NET.)

type

The type and assembly name to which the mapping applies. (This attribute maps to the
Amazon.Util.TypeMapping.Type property in the Amazon SDK for .NET.)

The parent of the <map> element is the element.

The <map> element can include one or more instances of the child element.

The following is an example of the <map> element in use:

...
<map
 type="SampleApp.Models.Movie, SampleDLL"
 targetTable="Movies">
 ...
</map>
...

property

The <property> element represents a DynamoDB property. (This element maps to an instance of
the Amazon.Util.PropertyConfig class from the Amazon.Util.TypeMapping.AddProperty method in the
Amazon SDK for .NET.) For more information, see Enhancements to the DynamoDB SDK and DynamoDB
Attributes. This element can include the following attributes:

attribute

The name of an attribute for the property, such as the name of a range key. (This attribute maps to
the Amazon.Util.PropertyConfig.Attribute property in the Amazon SDK for .NET.)

converter

The type of converter that should be used for this property. (This attribute maps to the
Amazon.Util.PropertyConfig.Converter property in the Amazon SDK for .NET.)

24

http://blogs.aws.amazon.com/net/post/Tx2C4MHH2H0SA5W/Enhancements-to-the-DynamoDB-SDK
http://blogs.aws.amazon.com/net/post/Tx2C4MHH2H0SA5W/Enhancements-to-the-DynamoDB-SDK
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DeclarativeTagsList.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DeclarativeTagsList.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Configuration Files Reference for Amazon SDK for .NET

ignore

Whether the associated property should be ignored (true); otherwise, false. (This attribute maps to
the Amazon.Util.PropertyConfig.Ignore property in the Amazon SDK for .NET.)

name

The name of the property. (This attribute maps to the Amazon.Util.PropertyConfig.Name
property in the Amazon SDK for .NET.)

version

Whether this property should store the item version number (true); otherwise, false. (This
attribute maps to the Amazon.Util.PropertyConfig.Version property in the Amazon SDK
for .NET.)

The parent of the <property> element is the element.

The <property> element contains no child elements.

The following is an example of the <property> element in use:

...
<property
 name="Rating"
 converter="SampleApp.Models.RatingConverter, SampleDLL" />
...

proxy

The <proxy> element represents settings for configuring a proxy for the the SDK to use. This element
can include the following attributes:

host

The host name or IP address of the proxy server. (This attributes maps to the
Amazon.Util.ProxyConfig.Host property from the Amazon.AWSConfigs.ProxyConfig.Host
property in the Amazon SDK for .NET.)

password

The password to authenticate with the proxy server. (This attributes
maps to the Amazon.Util.ProxyConfig.Password property from the
Amazon.AWSConfigs.ProxyConfig.Password property in the Amazon SDK for .NET.)

port

The port number of the proxy. (This attributes maps to the Amazon.Util.ProxyConfig.Port
property from the Amazon.AWSConfigs.ProxyConfig.Port property in the Amazon SDK
for .NET.)

username

The username to authenticate with the proxy server. (This attributes
maps to the Amazon.Util.ProxyConfig.Username property from the
mazon.AWSConfigs.ProxyConfig.Username property in the Amazon SDK for .NET.)

The parent of the <proxy> element is the element.

The <proxy> element contains no child elements.

The following is an example of the <proxy> element in use:

25

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Web Services Asynchronous APIs for .NET

...
<proxy
 host="192.0.2.0"
 port="1234"
 username="My-Username-Here"
 password="My-Password-Here" />
...

s3

The <s3> element represents a collection of Amazon S3 settings. This element can include the
useSignatureVersion4 attribute, which specifies whether Signature Version 4 signing will be used
for all requests (true) or whether Signature Version 4 signing will not be used for all requests (false,
the default). (This attribute maps to the Amazon.AWSConfigs.S3Config.UseSignatureVersion4
property in the Amazon SDK for .NET.)

The parent of the <s3> element is the element.

The <s3> element contains no child elements.

The following is an example of the <s3> element in use:

...
<s3
 useSignatureVersion4="true" />
...

Amazon Web Services Asynchronous APIs for .NET
Version 2 content (see announcement above)
Topics

• Asynchronous API for .NET 4.5, Windows Store, and Windows Phone 8 (p. 26)
• Asynchronous API for .NET 3.5 (p. 26)

Asynchronous API for .NET 4.5, Windows Store, and Windows Phone 8

The Amazon SDK for .NET uses the new task-based asynchronous pattern for .NET 4.5, Windows
Store, and Windows Phone 8. You can use the async and await keywords to perform and manage
asynchronous operations for all Amazon products without blocking.

To learn more about the task-based asynchronous pattern, see Task-based Asynchronous Pattern (TAP)
on MSDN.

Asynchronous API for .NET 3.5

The Amazon SDK for .NET supports asynchronous (async) versions of most of the method calls exposed
by the .NET client classes. The async methods enable you to call Amazon services without having your
code block on the response from the service. For example, you could make a request to write data to
Amazon S3 or DynamoDB and then have your code continue to do other work while Amazon processes
the requests.

Syntax of Async Request Methods

There are two phases to making an asynchronous request to an Amazon service. The first is to call the
Begin method for the request. This method initiates the asynchronous operation. Then, after some

26

http://msdn.microsoft.com/en-us/library/hh873175(v=vs.110).aspx

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Web Services Asynchronous APIs for .NET

period of time, you would call the corresponding End method. This method retrieves the response from
the service and also provides an opportunity to handle exceptions that might have occurred during the
operation.

Note
It is not required that you call the End method. Assuming that no errors are encountered, the
asynchronous operation will complete whether or not you call End.

Begin Method Syntax

In addition to taking a request object parameter, such as PutItemRequest, the async Begin methods
take two additional parameters: a callback function, and a state object. Instead of returning a service
response object, the Begin methods return a result of type IAsyncResult. For the definition of this
type, go to the MSDN documentation.

Synchronous Method

PutItemResponse PutItem(
 PutItemRequest putItemRequest
)

Asynchronous Method

IAsyncResult BeginPutItem(GetSessionTokenRequest getSessionTokenRequest, {AsyncCallback
 callback}, {Object state}
)

AsyncCallback callback

The callback function is called when the asynchronous operation completes. When the function is called,
it receives a single parameter of type IAsyncResult. The callback function has the following signature.

void Callback(IAsyncResult asyncResult)

Object state

The third parameter, state, is a user-defined object that is made available to the callback function as
the AsyncState property of the asyncResult parameter, that is, asyncResult.AsyncState.

Calling Patterns

• Passing a callback function and a state object.
• Passing a callback function, but passing null for the state object.
• Passing null for both the callback function and the state object.

This topic provides an example of each of these patterns.

Examples

All of the following examples assume the following initialization code.

public static void TestPutObjectAsync() {
 // Create a client
 AmazonS3Client client = new AmazonS3Client();
 PutObjectResponse response;
 IAsyncResult asyncResult;

27

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TDynamoDBv2PutItemRequestNET35.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRuntimeWebServiceResponseNET35.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRuntimeWebServiceResponseNET35.html
http://msdn.microsoft.com/en-us/library/bkbsbb9x.aspx
http://msdn.microsoft.com/en-us/library/bkbsbb9x.aspx

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Web Services Asynchronous APIs for .NET

 //
 // Create a PutObject request
 //
 // You will need to use your own bucket name below in order
 // to run this sample code.
 //
 PutObjectRequest request = new PutObjectRequest { BucketName = "{PUT YOUR OWN EXISTING
 BUCKET NAME HERE}",
 Key = "Item",
 ContentBody = "This is sample content..."
 };

 //
 // additional example code
 //
}

Using IAsyncResult.AsyncWaitHandle

In some circumstances, the code that calls the Begin method might need to enable another method
that it calls to wait on the completion of the asynchronous operation. In these situations, it can pass
the method the WaitHandle returned by the IAsyncResult.AsyncWaitHandle property of the
IAsyncResult return value. The method can then wait for the asynchronous operation to complete by
calling WaitOne on this WaitHandle.

No Callback Specified

The following example code calls BeginPutObject, performs some work, then calls EndPutObject
to retrieve the service response. The call to EndPutObject is enclosed in a try block to catch any
exceptions that might have been thrown during the operation.

asyncResult = client.BeginPutObject(request, null, null);
while (! asyncResult.IsCompleted) {
 //
 // Do some work here
 //
}
try {
 response = client.EndPutObject(asyncResult);
}
catch (AmazonS3Exception s3Exception) {
 //
 // Code to process exception
 //
}

Simple Callback

This example assumes that the following callback function has been defined.

public static void SimpleCallback(IAsyncResult asyncResult)
{
 Console.WriteLine("Finished PutObject operation with simple callback");
}

The following line of code calls BeginPutObject and specifies the above callback function. When
the PutObject operation completes, the callback function is called. The call to BeginPutObject
specifies null for the state parameter because the simple callback function does not access the
AsyncState property of the asyncResult parameter. Neither the calling code or the callback function

28

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Web Services Asynchronous APIs for .NET

call EndPutObject. Therefore, the service response is effectively discarded and any exceptions that
occur during the operation are ignored.

asyncResult = client.BeginPutObject(request, SimpleCallback, null);

Callback with Client

This example assumes that the following callback function has been defined.

public static void CallbackWithClient(IAsyncResult asyncResult)
{
 try {
 AmazonS3Client s3Client = (AmazonS3Client) asyncResult.AsyncState;
 PutObjectResponse response = s3Client.EndPutObject(asyncResult);
 Console.WriteLine("Finished PutObject operation with client callback");
 }
 catch (AmazonS3Exception s3Exception) {
 //
 // Code to process exception
 //
 }
}

The following line of code calls BeginPutObject and specifies the preceding callback function.
When the PutObject operation completes, the callback function is called. In this example, the call
to BeginPutObject specifies the Amazon S3 client object for the state parameter. The callback
function uses the client to call the EndPutObject method to retrieve the server response. Because any
exceptions that occurred during the operation will be received when the callback calls EndPutObject,
this call is placed within a try block.

asyncResult = client.BeginPutObject(request, CallbackWithClient, client);

Callback with State Object

This example assumes that the following class and callback function have been defined.

class ClientState
{
 AmazonS3Client client;
 DateTime startTime;

 public AmazonS3Client Client
 {
 get { return client; }
 set { client = value; }
 }

 public DateTime Start
 {
 get { return startTime; }
 set { startTime = value; }
 }
}

public static void CallbackWithState(IAsyncResult asyncResult)
{
 try {
 ClientState state = asyncResult.AsyncState as ClientState;
 AmazonS3Client s3Client = (AmazonS3Client)state.Client;
 PutObjectResponse response = state.Client.EndPutObject(asyncResult);

29

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Web Services Asynchronous APIs for .NET

 Console.WriteLine("Finished PutObject. Elapsed time: {0}",
 (DateTime.Now - state.Start).ToString());
 }
 catch (AmazonS3Exception s3Exception) {
 //
 // Code to process exception
 //
 }
}

The following line of code calls BeginPutObject and specifies the above callback function. When
the PutObject operation completes, the callback function is called. In this example, the call to
BeginPutObject specifies, for the state parameter, an instance of the ClientState class defined
previously. This class embeds the Amazon S3 client as well as the time at which BeginPutObject is
called. The callback function uses the Amazon S3 client object to call the EndPutObject method to
retrieve the server response. The callback also extracts the start time for the operation and uses it to
print the time it took for the asynchronous operation to complete.

As in the previous examples, because exceptions that occur during the operation are received when
EndPutObject is called, this call is placed within a try block.

asyncResult = client.BeginPutObject(
 request, CallbackWithState, new ClientState { Client = client, Start = DateTime.Now });

Complete Sample

The following code sample demonstrates the various patterns that you can use when calling the
asynchronous request methods.

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Text;
using System.Threading;

using Amazon;
using Amazon.Runtime;
using Amazon.S3;
using Amazon.S3.Model;

namespace async_aws_net
{
 class ClientState
 {
 AmazonS3Client client;
 DateTime startTime;

 public AmazonS3Client Client
 {
 get { return client; }
 set { client = value; }
 }

 public DateTime Start
 {
 get { return startTime; }
 set { startTime = value; }
 }
 }

 class Program

30

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Web Services Asynchronous APIs for .NET

 {
 public static void Main(string[] args)
 {
 TestPutObjectAsync();
 }

 public static void SimpleCallback(IAsyncResult asyncResult)
 {
 Console.WriteLine("Finished PutObject operation with simple callback");
 Console.Write("\n\n");
 }

 public static void CallbackWithClient(IAsyncResult asyncResult)
 {
 try {
 AmazonS3Client s3Client = (AmazonS3Client) asyncResult.AsyncState;
 PutObjectResponse response = s3Client.EndPutObject(asyncResult);
 Console.WriteLine("Finished PutObject operation with client callback");
 Console.WriteLine("Service Response:");
 Console.WriteLine("-----------------");
 Console.WriteLine(response);
 Console.Write("\n\n");
 }
 catch (AmazonS3Exception s3Exception) {
 //
 // Code to process exception
 //
 }
 }

 public static void CallbackWithState(IAsyncResult asyncResult)
 {
 try {
 ClientState state = asyncResult.AsyncState as ClientState;
 AmazonS3Client s3Client = (AmazonS3Client)state.Client;
 PutObjectResponse response = state.Client.EndPutObject(asyncResult);
 Console.WriteLine(
 "Finished PutObject operation with state callback that started at {0}",
 (DateTime.Now - state.Start).ToString() + state.Start);
 Console.WriteLine("Service Response:");
 Console.WriteLine("-----------------");
 Console.WriteLine(response);
 Console.Write("\n\n");
 }
 catch (AmazonS3Exception s3Exception) {
 //
 // Code to process exception
 //
 }
 }

 public static void TestPutObjectAsync()
 {
 // Create a client
 AmazonS3Client client = new AmazonS3Client();

 PutObjectResponse response;
 IAsyncResult asyncResult;

 //
 // Create a PutObject request
 //
 // You will need to change the BucketName below in order to run this
 // sample code.
 //
 PutObjectRequest request = new PutObjectRequest

31

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Retries and Timeouts

 {
 BucketName = "PUT-YOUR-OWN-EXISTING-BUCKET-NAME-HERE",
 Key = "Item",
 ContentBody = "This is sample content..."
 };

 response = client.PutObject(request);
 Console.WriteLine("Finished PutObject operation for {0}.", request.Key);
 Console.WriteLine("Service Response:");
 Console.WriteLine("-----------------");
 Console.WriteLine("{0}", response);
 Console.Write("\n\n");

 request.Key = "Item1";
 asyncResult = client.BeginPutObject(request, null, null);
 while (! asyncResult.IsCompleted) {
 //
 // Do some work here
 //
 }
 try {
 response = client.EndPutObject(asyncResult);
 }
 catch (AmazonS3Exception s3Exception) {
 //
 // Code to process exception
 //
 }

 Console.WriteLine("Finished Async PutObject operation for {0}.", request.Key);
 Console.WriteLine("Service Response:");
 Console.WriteLine("-----------------");
 Console.WriteLine(response);
 Console.Write("\n\n");

 request.Key = "Item2";
 asyncResult = client.BeginPutObject(request, SimpleCallback, null);

 request.Key = "Item3";
 asyncResult = client.BeginPutObject(request, CallbackWithClient, client);

 request.Key = "Item4";
 asyncResult = client.BeginPutObject(request, CallbackWithState,
 new ClientState { Client = client, Start = DateTime.Now });

 Thread.Sleep(TimeSpan.FromSeconds(5));
 }
 }
}

See Also

• Getting Started with the Amazon SDK for .NET (p. 3)
• Programming with the Amazon SDK for .NET (p. 8)

Retries and Timeouts
Version 2 content (see announcement above)
The Amazon SDK for .NET allows you to configure the number of retries and the timeout values for HTTP
requests to Amazon services. If the default values for retries and timeouts are not appropriate for your

32

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Retries and Timeouts

application, you can adjust them for your specific requirements, but it is important to understand how
doing so will affect the behavior of your application.

To determine which values to use for retries and timeouts, consider the following:

• How should the SDK and your application respond when network connectivity degrades or an Amazon
service is unreachable? Do you want the call to fail fast, or is it appropriate for the call to keep retrying
on your behalf?

• Is your application a user-facing application or website that must be responsive, or is it a background
processing job that has more tolerance for increased latencies?

• Is the application deployed on a reliable network with low latency, or it is deployed at a remote
location with unreliable connectivity?

Topics
• Retries (p. 33)
• Timeouts (p. 33)
• Example (p. 34)

Retries

The SDK will retry requests that fail due to server-side throttling or dropped connections. You can
use the MaxErrorRetry property of the ClientConfig class to specify the number of retries at the
service client level. The SDK will retry the operation the specified number of times before failing
and throwing an exception. By default, the MaxErrorRetry property is set to 4, except for the
AmazonDynamoDBConfig class, which defaults to 10 retries. When a retry occurs, it increases the latency
of your request. You should configure your retries based on your application limits for total request
latency and error rates.

Timeouts

The SDK allows you to configure the request timeout and socket read/write timeout values at the service
client level. These values are specified in the Timeout and the ReadWriteTimeout properties of the
ClientConfig class, respectively. These values are passed on as the Timeout and ReadWriteTimeout
properties of the HttpWebRequest objects created by the Amazon service client object. By default, the
Timeout value is 100 seconds and the ReadWriteTimeout value is 300 seconds.

When your network has high latency, or conditions exist that cause an operation to be retried, using long
timeout values and a high number of retries can cause some SDK operations to seem unresponsive.

Note
The version of the SDK that targets the portable class library (PCL) uses the HttpClient class
instead of the HttpWebRequest class, and supports the Timeout property only.

• Timeout and ReadWriteTimeout are set to the maximum values if the method being
called uploads a stream, such as AmazonS3Client.PutObject(), AmazonS3Client.UploadPart(),
AmazonGlacierClient.UploadArchive(), and so on.

• The version of the SDK that targets the .NET Framework 4.5 sets Timeout and ReadWriteTimeout to
the maximum values for all AmazonS3Client and AmazonGlacierClient objects.

• The version of the SDK that targets the portable class library (PCL) sets Timeout to the maximum
value for all AmazonS3Client and AmazonGlacierClient objects.

The following are the exceptions to the default timeout values. These values are overridden
when you explicitly set the timeout values. Timeout and ReadWriteTimeout are set to the
maximum values if the method being called uploads a stream, such as AmazonS3Client.PutObject(),

33

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRuntimeClientConfigNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TDynamoDBv2DynamoDBConfigNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRuntimeClientConfigNET45.html
https://msdn.microsoft.com/en-us/library/System.Net.HttpWebRequest%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/system.net.http.httpclient%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.net.http.httpclient.timeout%28v=vs.110%29.aspx
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MS3S3PutObjectPutObjectRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MS3S3UploadPartUploadPartRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MGlacierGlacierUploadArchiveUploadArchiveRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3S3NET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TGlacierGlacierNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3S3NET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TGlacierGlacierNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MS3S3PutObjectPutObjectRequestNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Migrating Your Code to the Version
2 of the Amazon SDK for .NET

AmazonS3Client.UploadPart(), AmazonGlacierClient.UploadArchive(), and so on. The version of the SDK
that targets the .NET Framework 4.5 sets Timeout and ReadWriteTimeout to the maximum values for
all AmazonS3Client and AmazonGlacierClient objects. The version of the SDK that targets the portable
class library (PCL) sets Timeout to the maximum value for all AmazonS3Client and AmazonGlacierClient
objects.

Example

The following example shows how to specify a maximum of 2 retries, a timeout of 10 seconds, and a
read/write timeout of 10 seconds for an AmazonS3Client object.

var client = new AmazonS3Client(
 new AmazonS3Config
 {
 Timeout = TimeSpan.FromSeconds(10), // Default value is 100 seconds
 ReadWriteTimeout = TimeSpan.FromSeconds(10), // Default value is 300 seconds
 MaxErrorRetry = 2 // Default value is 4 retries
 });

Migrating Your Code to the Version 2 of the
Amazon SDK for .NET

Version 2 content (see announcement above)

This guide describes changes in the version 2 of the SDK, and how you can migrate your code to this
version of the SDK.

Topics

• Introduction (p. 34)

• What’s New (p. 34)

• What’s Different (p. 35)

Introduction

The Amazon SDK for .NET was released in November 2009 and was originally designed for .NET
Framework 2.0. Since then, .NET has improved with .NET 4.0 and .NET 4.5. Since .NET 2.0, .NET has also
added new target platforms: WinRT and Windows Phone 8.

Amazon SDK for .NET version 2 has been updated to take advantage of the new features of the .NET
platform and to target WinRT and Windows Phone 8.

What’s New

• Support for Task-based asynchronous API

• Support for Windows Store apps

• Support for Windows Phone 8

• Ability to configure service region via App.config or Web.config

• Collapsed Response and Result classes

• Updated names for classes and properties to follow .NET conventions

34

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MS3S3UploadPartUploadPartRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MGlacierGlacierUploadArchiveUploadArchiveRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3S3NET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TGlacierGlacierNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3S3NET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TGlacierGlacierNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3S3NET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Migrating Your Code to the Version
2 of the Amazon SDK for .NET

What’s Different

Architecture

The Amazon SDK for .NET uses a common runtime library to make Amazon service requests. In version
1 of the SDK, this “common” runtime was added after the initial release, and several of the older
Amazon services did not use it. As a result, there was a higher degree of variability among services in the
functionality provided by the Amazon SDK for .NET version 1.

In version 2 of the SDK, all services now use the common runtime, so future changes to the core runtime
will propagate to all services, increasing their uniformity and easing demands on developers who want to
target multiple services.

However, separate runtimes are provided for .NET 3.5 and .NET 4.5:

• The version 2 runtime for .NET 3.5 is similar to the existing version 1 runtime, which is based on the
System.Net.HttpWebRequest class and uses the Begin and End pattern for asynchronous methods.

• The version 2 runtime for .NET 4.5 is based on the new System.Net.Http.HttpClient class and uses
Tasks for asynchronous methods, which enables users to use the new async and await keywords in
C# 5.0.

The WinRT and Windows Phone 8 versions of the SDK reuse the runtime for .NET 4.5, with the
exception that they support asynchronous methods only. Windows Phone 8 doesn’t natively support
System.Net.Http.HttpClient, so the SDK depends on Microsoft’s portable class implementation of
HttpClient, which is hosted on NuGet at the following URL:

• http://nuget.org/packages/Microsoft.Net.Http/2.1.10

Removal of the “With” Methods

The “With” methods have been removed from version 2 of the SDK for the following reasons:

• In .NET 3.0, constructor initializers were added, making the “With” methods redundant.
• The “With” methods added significant overhead to the API design and worked poorly in cases of

inheritance.

For example, in version 1 of the SDK, you would use “With” methods to set up a
TransferUtilityUploadRequest:

TransferUtilityUploadRequest uploadRequest = new TransferUtilityUploadRequest()
 .WithBucketName("my-bucket")
 .WithKey("test")
 .WithFilePath("c:\test.txt")
 .WithServerSideEncryptionMethod(ServerSideEncryptionMethod.AES256);

In the current version of the SDK, use constructor initializers instead:

TransferUtilityUploadRequest uploadRequest = new TransferUtilityUploadRequest() {
 BucketName = "my-bucket", Key = "test", FilePath = "c:\test.txt",
 ServerSideEncryptionMethod = ServerSideEncryptionMethod.AES256
};

Removal of SecureString

The use of System.Security.SecureString was removed in version 2 of the SDK because it is not
available on the WinRT and Windows Phone 8 platforms.

35

http://msdn.microsoft.com/en-us/library/system.net.httpwebrequest%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/library/system.net.http.httpclient%28v=vs.110%29.aspx
http://nuget.org/packages/Microsoft.Net.Http/2.1.10

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Migrating Your Code to the Version
2 of the Amazon SDK for .NET

Breaking Changes

Many classes and properties were changed to either meet .NET naming conventions or more closely
follow service documentation. Amazon Simple Storage Service (Amazon S3) and Amazon Elastic
Compute Cloud (Amazon EC2) were the most affected by this because they are the oldest services in the
SDK and were moved to the new common runtime. Below are the most visible changes.

• All client interfaces have been renamed to follow the .NET convention of starting with the letter “I”.
For example, the AmazonEC2 class is now IAmazonEC2.

• Properties for collections have been properly pluralized.
• AWSClientFactory.CreateAmazonSNSClient has been renamed

CreateAmazonSimpleNotificationServiceClient.
• AWSClientFactory.CreateAmazonIdentityManagementClient has been renamed

CreateAmazonIdentityManagementServiceClient.

Amazon DynamoDB

• The amazon.dynamodb namespace has been removed; only the amazon.dynamodbv2 namespace
remains.

• Service-response collections that were set to null in version 1 are now set to an empty collection. For
example, QueryResult.LastEvaluatedKey and ScanResponse.LastEvaluatedKey will be set to empty
collections when there are no more items to query/scan. If your code depends on LastEvaluatedKey
to be null, it now has to check the collection’s Count field to avoid a possible infinite loop.

Amazon EC2

• Amazon.EC2.Model.RunningInstance has been renamed Instance.

Additionally, the GroupName and GroupId properties of RunningInstance have been combined into
the SecurityGroups property, which takes a GroupIdentifier object, in Instance.

• Amazon.EC2.Model.IpPermissionSpecification has been renamed IpPermission.
• Amazon.EC2.Model.Volume.Status has been renamed State.
• AuthorizeSecurityGroupIngressRequest removed root properties for ToPort and FromPort in favor of

always using IpPermissions.

This was done because the root properties were silently ignored when set for an instance running in a
VPC.

• The AmazonEC2Exception class is now based on AmazonServiceException instead of
System.Exception.

As a result, many of the exception properties have changed; the XML property is no longer provided,
for example.

Amazon Redshift

• The ClusterVersion.Name property has been renamed ClusterVersion.Version.

Amazon S3

• AmazonS3Config.CommunicationProtocol was removed to be consistent with other services
where ServiceURL contains the protocol.

• The PutACLRequest.ACL property has been renamed AccessControlList to make it consistent with
GetACLResponse.

36

TEC2IEC2NET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MAWSClientFactoryCreateSNSClientNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MAWSClientFactoryCreateIdentityManagementServiceClientNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NDynamoDBv2NET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PDynamoDBv2QueryResultLastEvaluatedKeyNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PDynamoDBv2ScanResultLastEvaluatedKeyNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2InstanceNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2InstanceSecurityGroupsNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2GroupIdentifierNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2IpPermissionNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2VolumeStateNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2AuthorizeSecurityGroupIngressRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2AuthorizeSecurityGroupIngressRequestIpPermissionsNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2EC2ExceptionNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRuntimeServiceExceptionNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PRedshiftClusterVersionVersionNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PRuntimeClientConfigServiceURLNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PS3PutACLRequestAccessControlListNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3GetACLResponseNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Migrating Your Code to the Version
2 of the Amazon SDK for .NET

• GetNotificationConfigurationRequest/Response and
SetNotificationConfigurationRequest/Response have been renamed
GetBucketNotificationRequest/ Response and PutBucketNotificationRequest/ Response, respectively.

• EnableBucketLoggingRequest/Response and DisableBucketLoggingRequest/Response
were consolidated into PutBucketLoggingRequest/ Response.

• The GenerateMD5 property has been removed from PutObjectRequest and UploadPartRequest
because this is now automatically computed as the object is being written to Amazon S3 and
compared against the MD5 returned in the response from Amazon S3.

• The PutBucketTagging.TagSets collection is now PutBucketTagging.TagSet, and now takes a list of
Tag objects.

• The AmazonS3Util utility methods DoesS3BucketExist, SetObjectStorageClass,
SetServerSideEncryption, SetWebsiteRedirectLocation, and DeleteS3BucketWithObjects were changed
to take IAmazonS3 as the first parameter to be consistent with other high-level APIs in the SDK.

• Only responses that return a Stream like GetObjectResponse are IDisposable. In version 1, all
responses were IDisposable.

• The BucketName property has been removed from Amazon.S3.Model.S3Object.

Amazon Simple Workflow Service

• The DomainInfos.Name property has been renamed DomainInfos.Infos.

Configuring the Amazon Region

Regions can be set in the App.config or Web.config files (depending on your project type). The
recommended approach is to use the aws element, although using the appSettings element is still
supported.

For example, the following specification configures all clients that don’t explicitly set the region to point
to us-west-2 through use of the aws element.

<configuration> <configSections> <section name="aws" type="Amazon.AWSSection, AWSSDK"/> </
configSections> <aws profileName="{profile_name}" region="us-west-2"/>
</configuration>

Alternatively, you can use the appSettings element.

 <configuration> <appSettings> <add key="AWSProfileName" value="{profile_name}"/>
 <add key="AWSRegion" value="us-west-2"/>
 </appSettings>
</configuration>

Response and Result Classes

To simplify your code, the Response and Result classes that are returned when creating a service
object have been collapsed. For example, the code to get an Amazon SQS queue URL previously looked
like this:

GetQueueUrlResponse response = SQSClient.GetQueueUrl(request);
Console.WriteLine(response.CreateQueueResult.QueueUrl);

You can now get the queue URL simply by referring to the QueueUrl member of the
CreateQueueResponse returned by the AmazonSQSClient.CreateQueue method:

Console.WriteLine(response.QueueUrl);

37

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3GetBucketNotificationRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3GetBucketNotificationResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3PutBucketNotificationRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3PutBucketNotificationResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3PutBucketLoggingRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3PutBucketLoggingResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3PutObjectRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3UploadPartRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PS3PutBucketTaggingRequestTagSetNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3TagNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3UtilS3UtilNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MS3UtilS3UtilDoesS3BucketExistIS3StringNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MS3UtilS3UtilSetObjectStorageClassIS3StringStringS3StorageClassNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MS3UtilS3UtilSetServerSideEncryptionIS3StringStringServerSideEncryptionMethodNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MS3UtilS3UtilSetWebsiteRedirectLocationIS3StringStringStringNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MS3UtilS3UtilDeleteS3BucketWithObjectsIS3StringNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3IS3NET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3GetObjectResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3S3ObjectNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PSimpleWorkflowDomainInfosInfosNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSCreateQueueResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MSQSSQSCreateQueueCreateQueueRequestNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Platform Differences in the Amazon SDK for .NET

The CreateQueueResult property still exists, but has been marked as deprecated, and may be removed
in a future version of the SDK. Use the QueueUrl member instead.

Additionally, all of the service response values are based on a common response class,
AmazonWebServiceResponse, instead of individual response classes per service. For example, the
PutBucketResponse class in Amazon S3 is now based on this common class instead of S3Response in
version 1. As a result, the methods and properties available for PutBucketResponse have changed.

Refer to the return value type of the Create* method for the service client that you’re using to see what
values are returned. These are all listed in the Amazon SDK for .NET Reference.

Platform Differences in the Amazon SDK for .NET
Version 2 content (see announcement above)
The Amazon SDK for .NET provides four distinct assemblies for developers to target different platforms.
However, not all SDK functionality is available on each of these platforms. This topic describes the
differences in support for each platform.

Amazon SDK for .NET Framework 3.5

This version of the the SDK is the one most similar to version 1. This version, compiled against .NET
Framework 3.5, supports the same set of services as version 1. It also uses the same pattern for making
asynchronous calls (p. 26).

Note
This version contains a number of changes that may break code that was designed for version 1.
For more information, see the Migration Guide (p. 34).

Amazon SDK for .NET Framework 4.5

The version of the the SDK compiled against .NET Framework 4.5 supports the same set of services as
version 1 of the SDK. However, it uses a different pattern for asynchronous calls. Instead of the Begin/
End pattern it uses the task-based pattern, which allows developers to use the new async and await
keywords introduced in C# 5.0.

Amazon SDK for Windows RT

The version of the the SDK compiled for WinRT supports only asynchronous method calls using async
and await.

This version does not provide all of the functionality for Amazon S3 and DynamoDB that was available in
version 1 of the SDK. The following Amazon S3 functionality is currently unavailable in the Windows RT
version of SDK.

• Transfer Utility
• IO Namespace

The Windows RT version of the SDK does not support decryption of the Windows password using the
GetDecryptedPassword method.

Amazon SDK for Windows Phone 8

The version of the the SDK compiled for Windows Phone 8 has a programming model similar to
Windows RT. As with the Windows RT version, it supports only asynchronous method calls using async

38

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRuntimeWebServiceResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3PutBucketResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/
http://msdn.microsoft.com/en-us/library/vstudio/hh191443.aspx
https://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29#Versions
http://windows.microsoft.com/en-us/windows/rt-welcome
TS3TransferTransferUtilityNET45.html
NS3IONET45.html
MEC2GetPasswordDataResultGetDecryptedPasswordStringNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Install Amazon Assemblies with NuGet

and await. Also, because Windows Phone 8 doesn’t natively support System.Net.Http.HttpClient,
the SDK depends on Microsoft’s portable class implementation of HttpClient, which is hosted on
nuget at the following URL:

• http://nuget.org/packages/Microsoft.Net.Http/2.1.10

This version of the Amazon SDK for .NET supports the same set of services supported in the Amazon
Mobile SDK for Android and the Amazon Mobile SDK for iOS:

• Amazon EC2

• Elastic Load Balancing

• Auto Scaling

• Amazon S3

• Amazon SNS

• Amazon SQS

• Amazon SES

• DynamoDB

• Amazon SimpleDB

• CloudWatch

• Amazon STS

This version does not provide all of the functionality for Amazon S3 and DynamoDB available in version
1 of the SDK. The following Amazon S3 functionality is currently unavailable in the Windows Phone 8
version of SDK.

• Transfer Utility

• IO Namespace

Also, the Windows Phone 8 version of the SDK does not support decryption of the Windows password
using the GetDecryptedPassword method.

Install Amazon Assemblies with NuGet
Version 2 content (see announcement above)
NuGet is a package management system for the .NET platform. With NuGet, you can add the AWSSDK
assembly and the TraceListener and SessionProvider extensions to your application without first
installing the SDK.

NuGet always has the most recent versions of the Amazon .NET assemblies, and also enables you to
install previous versions. NuGet is aware of dependencies between assemblies and installs required
assemblies automatically. Assemblies that are installed with NuGet are stored with your solution rather
than in a central location such as Program Files. This enables you to install assembly versions specific
to a given application without creating compatibility issues for other applications.

For more information about NuGet, go to the NuGet documentation.

Topics

• Installation (p. 40)

39

http://nuget.org/packages/Microsoft.Net.Http/2.1.10
http://www.amazonaws.cn/mobile/sdk/
http://www.amazonaws.cn/mobile/sdk/
http://www.amazonaws.cn/mobile/sdk/
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TS3TransferTransferUtilityNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NS3IONET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2GetPasswordDataResultGetDecryptedPasswordStringNET45.html
http://nuget.org/
http://nuget.org/packages/AWSSDK
http://nuget.org/packages/AWSSDK
http://www.nuget.org/packages/AWS.TraceListener
http://www.nuget.org/packages/AWS.SessionProvider
http://docs.nuget.org/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Install Amazon Assemblies with NuGet

• NuGet from Solution Explorer (p. 40)

• NuGet Package Manager Console (p. 40)

Installation

To use NuGet, install it from the Visual Studio Gallery on MSDN. If you are using Visual Studio 2010 or
later, NuGet is installed automatically.

You can use NuGet either from Solution Explorer or from the Package Manager Console.

NuGet from Solution Explorer

To use NuGet from Solution Explorer, right-click on your project and select Manage NuGet Packages…
from the context menu.

From the Manage NuGet Packages dialog box, select Online in the left pane. You can then search for the
package that you want to install using the search box in the upper right corner. The screenshot shows the
AWS.Extensions assembly package. Notice that NuGet is aware that this package has a dependency
on the AWSSDK assembly package; NuGet will therefore install the AWSSDK package if it is not already
installed.

NuGet Package Manager Console

To use NuGet from the Package Manager Console within Visual Studio:

• Visual Studio 2010 – From the Tools menu, select Library Package Manager, and click Package
Manager Console.

• Visual Studio 2012 – From the Tools menu, select Nuget Package Manager, and click Package
Manager Console.

40

http://visualstudiogallery.msdn.microsoft.com/27077b70-9dad-4c64-adcf-c7cf6bc9970c

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Install Amazon Assemblies with NuGet

From the console, you can install the Amazon assemblies using the Install-Package command. For
example, to install the Amazon SDK for .NET assembly, use the following command line:

PM> Install-Package AWSSDK

To install an earlier version of a package, use the -Version option and specify the desired package
version. For example, to install version 1.5.1.0 of the Amazon SDK for .NET assembly, use the following
command line:

PM> Install-Package AWSSDK -Version 1.5.1.0

The NuGet website provides a page for every package that is available through NuGet such as the
AWSSDK and AWS.Extensions assemblies. The page for each package includes a sample command line
for installing the package using the console. Each page also includes a list of the previous versions of the
package that are available through NuGet.

For more information on Package Manager Console commands, see Package Manager Console
Commands (v1.3).

41

http://nuget.org/packages/AWSSDK
http://nuget.org/packages/AWS.Extensions
http://nuget.codeplex.com/wikipage?title=Package%20Manager%20Console%20Command%20Reference%20%28v1.3%29
http://nuget.codeplex.com/wikipage?title=Package%20Manager%20Console%20Command%20Reference%20%28v1.3%29

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Version 2 content (see announcement above)

Programming Amazon Services with
the Amazon SDK for .NET

Version 2 content (see announcement above)
The following concepts, tutorials, and examples demonstrate how to use the Amazon SDK for .NET to
work with individual Amazon Web Services.

Before you begin, be sure that you have set up the Amazon SDK for .NET (p. 3) and that you have
reviewed the material in the Programming with the Amazon SDK for .NET (p. 8).

Topics

• Programming with the Amazon Resource APIs for .NET (p. 42)
• Amazon CloudFormation Programming with the Amazon SDK for .NET (p. 45)
• Amazon DynamoDB Programming with the Amazon SDK for .NET (p. 47)
• Amazon Elastic Compute Cloud Programming with the Amazon SDK for .NET (p. 67)
• Amazon S3 Glacier Programming with the Amazon SDK for .NET (p. 84)
• Amazon Identity and Access Management Programming with the Amazon SDK for .NET (p. 88)
• Amazon Route 53 Programming with the Amazon SDK for .NET (p. 106)
• Amazon Simple Storage Service Programming with the Amazon SDK for .NET (p. 110)
• Amazon Simple Notification Service Programming with the Amazon SDK for .NET (p. 111)
• Amazon Simple Queue Service Programming with the Amazon SDK for .NET (p. 114)
• Programming Additional Amazon Services with the Amazon SDK for .NET (p. 120)

Programming with the Amazon Resource APIs
for .NET

Version 2 content (see announcement above)
The Amazon SDK for .NET provides the Amazon Resource APIs for .NET. These resource APIs provide a
resource-level programming model that enables you to write code to work more directly with resources
that are managed by Amazon services. A resource is a logical object that is exposed by an Amazon
service’s APIs. For example, Amazon Identity and Access Management (IAM) exposes users and groups
as resources that can be programmatically accessed more directly by these resource APIs than by other
means.

The Amazon Resource APIs for .NET are currently provided as a preview. This means that these resource
APIs may frequently change in response to customer feedback, and these changes may happen without
advance notice. Until these resource APIs exit the preview stage, please be cautious about writing and
distributing production-quality code that relies on them.

Using the Amazon Resource APIs for .NET provide these benefits:

• The resource APIs in the the SDK are easier to understand conceptually than their low-level API
counterparts. The low-level APIs in the the SDK typically consist of sets of matching request-and-
response objects that correspond to HTTP-based API calls focusing on somewhat isolated Amazon

42

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Programming with the Amazon Resource APIs for .NET

service constructs. In contrast, these resource APIs represent logical relationships among resources
within Amazon services and intuitively use familiar .NET programming constructs.

• Code that you write with the resource APIs is easier for you and others to comprehend when compared
to their low-level API equivalents. Instead of writing somewhat complex request-and-response
style code with the low-level APIs to access resources, you can get directly to resources with the
resource APIs. If you’re working with a team of developers in the same code base, it’s typically easier to
understand what has already been coded and to start contributing quickly to existing code.

• You will typically write less code with the resource APIs than with equivalent low-level API code.
Request-and-response style code with the low-level APIs can sometimes be quite long. Equivalent
resource APIs code is typically much shorter, more compact, and easer to debug.

Here’s a brief example of using C# and the Amazon Resource APIs for .NET to create a new IAM user
account:

// using Amazon.IdentityManagement.Resources;
// using Amazon.IdentityManagement.Model;

var iam = new IdentityManagementService();

try
{
 var user = iam.CreateUser("DemoUser");

 Console.WriteLine("User Name = '{0}', ARN = '{1}'",
 user.Name, user.Arn);
}
catch (EntityAlreadyExistsException)
{
 Console.WriteLine("User 'DemoUser' already exists.");
}

Compare this to an equivalent example of using the low-level APIs:

// using Amazon.IdentityManagement;
// using Amazon.IdentityManagement.Model;

var client = new AmazonIdentityManagementServiceClient();
var request = new CreateUserRequest
{
 UserName = "DemoUser"
};

try
{
 var response = client.CreateUser(request);

 Console.WriteLine("User Name = '{0}', ARN = '{1}'",
 response.User.UserName, response.User.Arn);
}
catch (EntityAlreadyExistsException)
{
 Console.WriteLine("User 'DemoUser' already exists.");
}

Even with this brief code example, you’ll see that the resource APIs code is a bit easier to comprehend
than the low-level code, and the resource APIs code is a bit shorter and more compact than its low-level
counterpart.

There are a few limitations to note when using the resource APIs as compared to the low-level APIs in the
the SDK:

43

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Programming with the Amazon Resource APIs for .NET

• Not all of the Amazon services currently have resource APIs (although this number is growing).
Currently, the following Amazon services have resource APIs in the the SDK:

• Amazon CloudFormation

• Amazon S3 Glacier

• Amazon Identity and Access Management (IAM)

• Amazon Simple Notification Service (Amazon SNS)

• Amazon Simple Queue Service (Amazon SQS)

• The resource APIs are currently provided as a preview. Please be cautious about writing and
distributing production-quality code that relies on these resource APIs, especially as the resource APIs
may undergo frequent changes during the preview stage.

The following information describes how to download and reference the resource APIs. Links to code
examples and related programming concepts for supported Amazon services are also provided.

Download and Reference the Amazon Resource APIs for .NET

1. If you have an existing project in Visual Studio that you want to use the resource APIs with, and that
project is already referencing the Amazon .NET library file (AWSSDK.dll), you must remove this
reference. This reference is set by default if you have the Amazon Toolkit for Visual Studio installed
and you have created a project based upon one of the Amazon project templates (for example, the
Visual C# Amazon Console Project template). Or, you may have previously set a reference to the
library explicitly, which the the SDK typically installs to drive:\Program Files (x86)\AWS SDK
for .NET\bin. To remove the reference for example in Solution Explorer in Visual Studio, in the
References folder, right-click AWSSDK and then click Remove.

2. Download the Amazon Resource APIs for .NET library file from the resourceAPI-preview branch of the
aws-sdk-net GitHub repository onto your development machine. To do this, in the binaries folder at
that location, download and then unzip the file named dotnet35.zip (for projects that rely on the .NET
Framework 3.5) or dotnet45.zip (for projects that rely on the .NET Framework 4.5). Note that because
these zip files contains a file that is also named AWSSDK.dll, make sure to unzip the file to a location
other than where your Amazon .NET library file is already installed. For example, unzip the file to any
location other than drive:\Program Files (x86)\Amazon SDK for .NET\bin. The unzipped
contents contain both .NET Framework 3.5 and 4.5 versions of the Amazon Resource APIs for .NET
library file (AWSSDK.dll), which you can set a reference to from your projects.

Note that after unzipping, there will be three files: AWSSDK.dll, AWSSDK.pdb, and AWSSDK.xml.
To enable robust debugging and help within Visual Studio, make sure that these three files remain
together in the same folder.

3. From the project in Visual Studio that you want to use the resource APIs with, set a reference to the
Amazon Resource APIs for .NET library file that you just unzipped. To do this for example in Solution
Explorer in Visual Studio, right-click the References folder; click Add Reference; click Browse; browse
to and select the AWSSDK.dll file that you just unzipped; click Add and then click OK.

4. Import the specific resource APIs in the Amazon Resource APIs for .NET that you want to use in your
project’s code. These APIs typically take the format Amazon.ServiceName.Resources, where
{ServiceName} is typically some recognizable phrase that corresponds to the specific service. For
example for the Amazon Identity and Access Management resource APIs, in C# you would include the
following using directive at the top of a class file:

using Amazon.IdentityManagement.Resources;

5. As needed, import any corresponding low-level APIs that the specific resource APIs rely upon.
These APIs typically take the format Amazon.ServiceName.Model and sometimes also
Amazon.ServiceName, where {ServiceName} is typically some recognizable phrase that corresponds
to the specific service. For example for the Amazon Identity and Access Management low-level APIs, in
C# you would include the following using directives at the top of a class file:

44

https://github.com/aws/aws-sdk-net/tree/resourceAPI-preview
https://github.com/aws/aws-sdk-net/tree/resourceAPI-preview/binaries
https://github.com/aws/aws-sdk-net/tree/resourceAPI-preview/binaries/dotnet35.zip
https://github.com/aws/aws-sdk-net/tree/resourceAPI-preview/binaries/dotnet45.zip

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon CloudFormation Programming
with the Amazon SDK for .NET

using Amazon.IdentityManagement.Model;
// Possibly also the following, depending on which of the resource APIs that you use:
using Amazon.IdentityManagement

6. Because the resource APIs are currently provided as a preview, you should be cautious about writing
production-quality code that relies on them, especially as the resource APIs may undergo frequent
changes during the preview stage. However, if you choose to distribute the project anyway, make sure
to include a copy of the Amazon Resource APIs for .NET library file. To do this for example in Solution
Explorer in Visual Studio, within the References folder, click AWSSDK; in the Properties window, next
to Copy Local, select True if it is not already selected.

Note
If you distribute a project that has a copy of the resource APIs library file included, and then
the resource library APIs change, the only way for your project to include the new changes is
to redistribute your project with an updated resource APIs library file copied locally.

Code Examples for Resource APIs

The following links provide code examples for Amazon services that support resource-level APIs in the
the SDK.

• CloudFormation (p. 46)

• Amazon Glacier (p. 86)

• Amazon Identity and Access Management (IAM) (p. 90)

• Amazon Simple Notification Service (Amazon SNS) (p. 113)

• Amazon Simple Queue Service (Amazon SQS) (p. 115)

Amazon CloudFormation Programming with the
Amazon SDK for .NET

Version 2 content (see announcement above)

The Amazon SDK for .NET supports Amazon CloudFormation, which creates and provision Amazon
infrastructure deployments predictably and repeatedly. For more information, see Amazon
CloudFormation Getting Started Guide.

The following information introduces you to the Amazon CloudFormation programming models in the
the SDK.

Programming Models

The the SDK provides two programming models for working with Amazon CloudFormation. These
programming models are known as the low-level and resource models. The following information
describes these models, how to use them, and why you would want to use them.

Low-Level APIs

The the SDK provides low-level APIs for programming with Amazon CloudFormation. These low-level
APIs typically consist of sets of matching request-and-response objects that correspond to HTTP-based
API calls focusing on their corresponding service-level constructs.

45

https://docs.amazonaws.cn/AWSCloudFormation/latest/GettingStartedGuide/
https://docs.amazonaws.cn/AWSCloudFormation/latest/GettingStartedGuide/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon CloudFormation Programming
with the Amazon SDK for .NET

The following example shows how to use the low-level APIs to list accessible resources in Amazon
CloudFormation:

// using Amazon.CloudFormation;
// using Amazon.CloudFormation.Model;

var client = new AmazonCloudFormationClient();
var request = new DescribeStacksRequest();
var response = client.DescribeStacks(request);

foreach (var stack in response.Stacks)
{
 Console.WriteLine("Stack: {0}", stack.StackName);
 Console.WriteLine(" Status: {0}", stack.StackStatus);
 Console.WriteLine(" Created: {0}", stack.CreationTime);

 var ps = stack.Parameters;

 if (ps.Any())
 {
 Console.WriteLine(" Parameters:");

 foreach (var p in ps)
 {
 Console.WriteLine(" {0} = {1}",
 p.ParameterKey, p.ParameterValue);
 }

 }

}

For related API reference information, see Amazon.CloudFormation and
Amazon.CloudFormation.Model in the Amazon SDK for .NET API reference.

Resource APIs

The the SDK provides the Amazon Resource APIs for .NET for programming with Amazon
CloudFormation. These resource APIs provide a resource-level programming model that enables you
to write code to work more directly with Amazon CloudFormation resources as compared to their low-
level API counterparts. (For more information about the Amazon Resource APIs for .NET, including
how to download and reference these resource APIs, see Programming with the Amazon Resource APIs
for .NET (p. 42).)

The following example shows how to use the Amazon Resource APIs for .NET to list accessible resources
in Amazon CloudFormation:

// using Amazon.CloudFormation.Resources;

var cf = new CloudFormation();

foreach (var stack in cf.GetStacks())
{
 Console.WriteLine("Stack: {0}", stack.Name);
 Console.WriteLine(" Status: {0}", stack.StackStatus);
 Console.WriteLine(" Created: {0}", stack.CreationTime);

 var ps = stack.Parameters;

 if (ps.Any())
 {
 Console.WriteLine(" Parameters:");

46

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming
with the Amazon SDK for .NET

 foreach (var p in ps)
 {
 Console.WriteLine(" {0} = {1}",
 p.ParameterKey, p.ParameterValue);
 }

 }

}

For related API reference information, see Amazon.CloudFormation.Resources.

Amazon DynamoDB Programming with the
Amazon SDK for .NET

Version 2 content (see announcement above)
The Amazon SDK for .NET supports Amazon DynamoDB, which is a fast NoSQL database service offered
by Amazon.

The following information introduces you to the DynamoDB programming models and their APIs. There
are also links to additional DynamoDB programming resources within the the Amazon SDK for .NET.

Programming Models

The the SDK provides three different programming models for communicating with DynamoDB. These
programming models include the low-level model, the document model, and the object persistence
model. The following information describes these models, how to use them, and when you might want
to use them.

Topics

• Low-Level (p. 47)

• Document (p. 50)

• Object Persistence (p. 51)

Low-Level

The low-level programming model wraps direct calls to the DynamoDB service. You access this model
through the Amazon.DynamoDBv2 namespace.

Of the three models, the low-level model requires you to write the most code. For example, you must
convert .NET data types to their equivalents in DynamoDB. However, this model gives you access to the
most features.

The following example shows how to use the low-level model to create a table in DynamoDB:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();

var request = new CreateTableRequest

47

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NCloudFormationResourcesNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NDynamoDBv2NET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming
with the Amazon SDK for .NET

{
 TableName = "AnimalsInventory",
 AttributeDefinitions = new List<AttributeDefinition>
 {
 new AttributeDefinition
 {
 AttributeName = "Id",
 // "S" = string, "N" = number, and so on.
 AttributeType = "N"
 },
 new AttributeDefinition
 {
 AttributeName = "Type",
 AttributeType = "S"
 }
 },
 KeySchema = new List<KeySchemaElement>
 {
 new KeySchemaElement
 {
 AttributeName = "Id",
 // "HASH" = hash key, "RANGE" = range key.
 KeyType = "HASH"
 },
 new KeySchemaElement
 {
 AttributeName = "Type",
 KeyType = "RANGE"
 },
 },
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = 10,
 WriteCapacityUnits = 5
 },
};

var response = client.CreateTable(request);

Console.WriteLine("Table created with request ID: " +
 response.ResponseMetadata.RequestId);

In the preceding example, the table is created through the AmazonDynamoDBClient class’s
CreateTable method. The CreateTable method uses an instance of the CreateTableRequest class
containing characteristics such as required item attribute names, primary key definition, and throughput
capacity. The CreateTable method returns an instance of the CreateTableResponse class.

Before you begin modifying a table, you should make sure that the table is ready. The following example
shows how to use the low-level model to verify that a table in DynamoDB is ready:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var status = "";

do
{
 // Wait 5 seconds before checking (again).
 System.Threading.Thread.Sleep(TimeSpan.FromSeconds(5));

 try
 {
 var response = client.DescribeTable(new DescribeTableRequest

48

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming
with the Amazon SDK for .NET

 {
 TableName = "AnimalsInventory"
 });

 Console.WriteLine("Table = {0}, Status = {1}",
 response.Table.TableName,
 response.Table.TableStatus);

 status = response.Table.TableStatus;
 }
 catch (ResourceNotFoundException)
 {
 // DescribeTable is eventually consistent. So you might
 // get resource not found.
 }

} while (status != TableStatus.ACTIVE);

In the preceding example, the target table to check is referenced through the AmazonDynamoDBClient
class’s DescribeTable method. Every 5 seconds, the code checks the value of the table’s TableStatus
property. When the status is set to ACTIVE, then the table is ready to be modified.

The following example shows how to use the low-level model to insert two items into a table in
DynamoDB:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();

var request1 = new PutItemRequest
{
 TableName = "AnimalsInventory",
 Item = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "1" }},
 { "Type", new AttributeValue { S = "Dog" }},
 { "Name", new AttributeValue { S = "Fido" }}
 }
};

var request2 = new PutItemRequest
{
 TableName = "AnimalsInventory",
 Item = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "2" }},
 { "Type", new AttributeValue { S = "Cat" }},
 { "Name", new AttributeValue { S = "Patches" }}
 }
};

client.PutItem(request1);
client.PutItem(request2);

In the preceding example, each item is inserted through the AmazonDynamoDBClient class’s
PutItem method, using an instance of the PutItemRequest class. Each of the two instances of the
PutItemRequest class takes the name of the table to be inserted into, along with a series of item
attribute values.

For more information and examples, see:

• Working with Tables Using the Amazon SDK for .NET Low-Level API

49

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/LowLevelDotNetWorkingWithTables.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming
with the Amazon SDK for .NET

• Working with Items Using the Amazon SDK for .NET Low-Level API

• Querying Tables Using the Amazon SDK for .NET Low-Level API

• Scanning Tables Using the Amazon SDK for .NET Low-Level API

• Working with Local Secondary Indexes Using the Amazon SDK for .NET Low-Level API

• Working with Global Secondary Indexes Using the Amazon SDK for .NET Low-Level API

Document

The document programming model provides an easier way to work with data in DynamoDB. This model
is specifically intended for accessing tables and items in tables. You access this model through the
Amazon.DynamoDBv2.DocumentModel namespace.

Of the three models, the document model is easier to code against DynamoDB data compared to the
low-level programming model. For example, you don’t have to convert as many .NET data types to their
equivalents in DynamoDB. However, this model doesn’t provide access to as many features as the low-
level programming model. For example, you can use this model to create, retrieve, update, and delete
items in tables. However, to create tables, you must use the low-level model. Finally, this model requires
you to write more code to store, load, and query .NET objects compared to the object persistence model.

The following example shows how to use the document model to insert an item into a table in
DynamoDB:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DocumentModel;

var client = new AmazonDynamoDBClient();
var table = Table.LoadTable(client, "AnimalsInventory");
var item = new Document();

item["Id"] = 3;
item["Type"] = "Horse";
item["Name"] = "Shadow";

table.PutItem(item);

In the preceding example, the item is inserted into the table through the Table class’s PutItem
method. The PutItem method takes an instance of the Document class; the Document class is simply
a collection of initialized attributes. To determine the table to insert the item into, the Table class’s
LoadTable method is called, specifying an instance of the AmazonDynamoDBClient class and the
name of the target table in DynamoDB.

The following example shows how to use the document model to get an item from a table in DynamoDB:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DocumentModel;

var client = new AmazonDynamoDBClient();
var table = Table.LoadTable(client, "AnimalsInventory");
var item = table.GetItem(3, "Horse");

Console.WriteLine("Id = " + item["Id"]);
Console.WriteLine("Type = " + item["Type"]);
Console.WriteLine("Name = " + item["Name"]);

In the preceding example, the item is retrieved through the Table class’s GetItem method. To
determine the item to get, in this example, the GetItem method uses the hash-and-range primary key

50

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/LowLevelDotNetItemCRUD.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/LowLevelDotNetQuerying.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/LowLevelDotNetScanning.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/LSILowLevelDotNet.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GSILowLevelDotNet.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NDynamoDBv2DocumentModel.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming
with the Amazon SDK for .NET

of the target item. To determine the table to get the item from, the Table class’s LoadTable method
uses an instance of the AmazonDynamoDBClient class and the name of the target table in DynamoDB.

The preceding example implicitly converts the attribute values for Id, Type, Name to strings for the
WriteLine method. You can do explicit conversions by using the various AsType methods of the
DynamoDBEntry class. For example, you could explicitly convert the attribute value for Id from a
Primitive data type to an integer through the AsInt method:

int id = item["Id"].AsInt();

Or, you could simply perform an explicit cast here by using (int):

int id = (int)item["Id"];

For more information about data type conversions with DynamoDB, see DynamoDB Data Types and
DynamoDBEntry.

For more information and examples about the DynamoDB document model, see .NET: Document Model.

Object Persistence

The object persistence programming model is specifically designed for storing,
loading, and querying .NET objects in DynamoDB. You access this model through the
Amazon.DynamoDBv2.DataModel namespace.

Of the three models, the object persistence model is easiest to code against whenever you are storing,
loading, or querying DynamoDB data. For example, you work with DynamoDB data types directly.
However, this model provides access only to operations that store, load, and query .NET objects in
DynamoDB. For example, you can use this model to create, retrieve, update and delete items in tables.
However, you must first create your tables using the low-level model, and then you can use this model to
map your .NET classes to the tables.

The following example shows how to define a .NET class that represents an item in a table in DynamoDB:

// using Amazon.DynamoDBv2.DataModel;

[DynamoDBTable("AnimalsInventory")]
class Item
{
 [DynamoDBHashKey]
 public int Id { get; set; }
 [DynamoDBRangeKey]
 public string Type { get; set; }
 public string Name { get; set; }
}

In the preceding example, the DynamoDBTable attribute specifies the table name, while the
DynamoDBHashKey and DynamoDBRangeKey attributes model the table’s hash-and-range primary key.

The following example shows how to use an instance of this .NET class to insert an item into a table in
DynamoDB:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DataModel;

var client = new AmazonDynamoDBClient();

51

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DataModel.html#DataModel.DataTypes
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/TDynamoDBv2DocumentModelDynamoDBEntry.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DotNetSDKMidLevel.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NDynamoDBv2DataModel.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming
with the Amazon SDK for .NET

var context = new DynamoDBContext(client);
var item = new Item
{
 Id = 4,
 Type = "Fish",
 Name = "Goldie"
};

context.Save(item);

In the preceding example, the item is inserted through the DynamoDBContext class’s Save method,
which takes an initialized instance of the .NET class that represents the item. (The instance of the
DynamoDBContext class is initialized with an instance of the AmazonDynamoDBClient class.)

The following example shows how to use an instance of this .NET object to get an item from a table in
DynamoDB:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DataModel;

var client = new AmazonDynamoDBClient();
var context = new DynamoDBContext(client);
var item = context.Load<Item>(4, "Fish");

Console.WriteLine("Id = {0}", item.Id);
Console.WriteLine("Type = {0}", item.Type);
Console.WriteLine("Name = {0}", item.Name);

In the preceding example, the item is retrieved through the DynamoDBContext class’s Load method,
which takes a partially-initialized instance of the .NET class that represents the hash-and-range primary
key of the item to be retrieved. (As before, the instance of the DynamoDBContext class is initialized with
an instance of the AmazonDynamoDBClient class.)

For more information and examples, see .NET: Object Persistence Model.

Additional Resources

For additional information and examples of programming DynamoDB with the the SDK, see:

• DynamoDB APIs

• DynamoDB Series Kickoff

• DynamoDB Series - Document Model

• DynamoDB Series - Conversion Schemas

• DynamoDB Series - Object Persistence Model

• DynamoDB Series - Expressions

• Amazon DynamoDB Programming with Expressions by Using the Amazon SDK for .NET (p. 53)

• JSON Support in Amazon DynamoDB with the Amazon SDK for .NET (p. 62)

• Managing ASP.NET Session State with Amazon DynamoDB (p. 64)

Topics

• Amazon DynamoDB Programming with Expressions by Using the Amazon SDK for .NET (p. 53)

• JSON Support in Amazon DynamoDB with the Amazon SDK for .NET (p. 62)

• Managing ASP.NET Session State with Amazon DynamoDB (p. 64)

52

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DotNetSDKHighLevel.html
http://blogs.aws.amazon.com/net/post/Tx17SQHVEMW8MXC/DynamoDB-APIs
http://blogs.aws.amazon.com/net/post/Tx2XQOCY08QMTKO/DynamoDB-Series-Kickoff
http://blogs.aws.amazon.com/net/post/Tx2R0WG46GQI1JI/DynamoDB-Series-Document-Model
http://blogs.aws.amazon.com/net/post/Tx2TCOGWG7ARUH5/DynamoDB-Series-Conversion-Schemas
http://blogs.aws.amazon.com/net/post/Tx20L86FLMBW51P/DynamoDB-Series-Object-Persistence-Model
http://blogs.aws.amazon.com/net/post/TxZQM7VA9AUZ9L/DynamoDB-Series-Expressions

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming with
Expressions by Using the Amazon SDK for .NET

Amazon DynamoDB Programming with Expressions
by Using the Amazon SDK for .NET
Version 2 content (see announcement above)

The following code examples demonstrate how to use the the SDK to program DynamoDB with
expressions. Expressions denote the attributes that you want to read from an item in a DynamoDB table.
You also use expressions when writing an item, to indicate any conditions that must be met (also known
as a conditional update) and to indicate how the attributes are to be updated. Some update examples are
replacing the attribute with a new value, or adding new data to a list or a map. For more information see
Reading and Writing Items Using Expressions.

Topics

• Sample Data (p. 53)

• Get a Single Item by Using Expressions and the Item’s Primary Key (p. 56)

• Get Multiple Items by Using Expressions and the Table’s Primary Key (p. 56)

• Get Multiple Items by Using Expressions and Other Item Attributes (p. 57)

• Print an Item (p. 58)

• Create or Replace an Item by Using Expressions (p. 59)

• Update an Item by Using Expressions (p. 61)

• Delete an Item by Using Expressions (p. 61)

• Additional Resources (p. 62)

Sample Data

The code examples in this topic rely on the following two example items in a DynamoDB table named
ProductCatalog. These items describe information about product entries in a fictitious bicycle store
catalog. These items are based on the example that is provided in Case Study: A ProductCatalog Item.
The data type descriptors such as BOOL, L, M, N, NS, S, and SS correspond to those in the JSON Data
Format.

{
 "Id": {
 "N": "205"
 },
 "Title": {
 "S": "20-Bicycle 205"
 },
 "Description": {
 "S": "205 description"
 },
 "BicycleType": {
 "S": "Hybrid"
 },
 "Brand": {
 "S": "Brand-Company C"
 },
 "Price": {
 "N": "500"
 },
 "Gender": {
 "S": "B"
 },
 "Color": {

53

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Expressions.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Expressions.CaseStudy.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DataFormat.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DataFormat.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming with
Expressions by Using the Amazon SDK for .NET

 "SS": [
 "Red",
 "Black"
]
 },
 "ProductCategory": {
 "S": "Bike"
 },
 "InStock": {
 "BOOL": true
 },
 "QuantityOnHand": {
 "N": "1"
 },
 "RelatedItems": {
 "NS": [
 "341",
 "472",
 "649"
]
 },
 "Pictures": {
 "L": [
 {
 "M": {
 "FrontView": {
 "S": "http://example/products/205_front.jpg"
 }
 }
 },
 {
 "M": {
 "RearView": {
 "S": "http://example/products/205_rear.jpg"
 }
 }
 },
 {
 "M": {
 "SideView": {
 "S": "http://example/products/205_left_side.jpg"
 }
 }
 }
]
 },
 "ProductReviews": {
 "M": {
 "FiveStar": {
 "SS": [
 "Excellent! Can't recommend it highly enough! Buy it!",
 "Do yourself a favor and buy this."
]
 },
 "OneStar": {
 "SS": [
 "Terrible product! Do not buy this."
]
 }
 }
 }
},
{
 "Id": {
 "N": "301"
 },

54

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming with
Expressions by Using the Amazon SDK for .NET

 "Title": {
 "S": "18-Bicycle 301"
 },
 "Description": {
 "S": "301 description"
 },
 "BicycleType": {
 "S": "Road"
 },
 "Brand": {
 "S": "Brand-Company C"
 },
 "Price": {
 "N": "185"
 },
 "Gender": {
 "S": "F"
 },
 "Color": {
 "SS": [
 "Blue",
 "Silver"
]
 },
 "ProductCategory": {
 "S": "Bike"
 },
 "InStock": {
 "BOOL": true
 },
 "QuantityOnHand": {
 "N": "3"
 },
 "RelatedItems": {
 "NS": [
 "801",
 "822",
 "979"
]
 },
 "Pictures": {
 "L": [
 {
 "M": {
 "FrontView": {
 "S": "http://example/products/301_front.jpg"
 }
 }
 },
 {
 "M": {
 "RearView": {
 "S": "http://example/products/301_rear.jpg"
 }
 }
 },
 {
 "M": {
 "SideView": {
 "S": "http://example/products/301_left_side.jpg"
 }
 }
 }
]
 },
 "ProductReviews": {

55

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming with
Expressions by Using the Amazon SDK for .NET

 "M": {
 "FiveStar": {
 "SS": [
 "My daughter really enjoyed this bike!"
]
 },
 "ThreeStar": {
 "SS": [
 "This bike was okay, but I would have preferred it in my color.",
 "Fun to ride."
]
 }
 }
 }
}

Get a Single Item by Using Expressions and the Item’s Primary Key

The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.GetItem
method and a set of expressions to get and then print the item that has an Id of 205. Only the following
attributes of the item are returned: Id, Title, Description, Color, RelatedItems, Pictures, and
ProductReviews.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new GetItemRequest
{
 TableName = "ProductCatalog",
 ProjectionExpression = "Id, Title, Description, Color, #ri, Pictures, #pr",
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#pr", "ProductReviews" },
 { "#ri", "RelatedItems" }
 },
 Key = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "205" } }
 },
};
var response = client.GetItem(request);

// PrintItem() is a custom function.
PrintItem(response.Item);

In the preceding example, the ProjectionExpression property specifies the attributes to be
returned. The ExpressionAttributeNames property specifies the placeholder #pr to represent the
ProductReviews attribute and the placeholder #ri to represent the RelatedItems attribute. The call
to PrintItem refers to a custom function as described in Print an Item (p. 58).

Get Multiple Items by Using Expressions and the Table’s Primary Key

The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.Query method
and a set of expressions to get and then print the item that has an Id of 301, but only if the value of
Price is greater than 150. Only the following attributes of the item are returned: Id, Title, and all of
the ThreeStar attributes in ProductReviews.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

56

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming with
Expressions by Using the Amazon SDK for .NET

var client = new AmazonDynamoDBClient();
var request = new QueryRequest
{
 TableName = "ProductCatalog",
 KeyConditions = new Dictionary<string,Condition>
 {
 { "Id", new Condition()
 {
 ComparisonOperator = ComparisonOperator.EQ,
 AttributeValueList = new List<AttributeValue>
 {
 new AttributeValue { N = "301" }
 }
 }
 }
 },
 ProjectionExpression = "Id, Title, #pr.ThreeStar",
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#pr", "ProductReviews" },
 { "#p", "Price" }
 },
 ExpressionAttributeValues = new Dictionary<string,AttributeValue>
 {
 { ":val", new AttributeValue { N = "150" } }
 },
 FilterExpression = "#p > :val"
};
var response = client.Query(request);

foreach (var item in response.Items)
{
 // Write out the first page of an item's attribute keys and values.
 // PrintItem() is a custom function.
 PrintItem(item);
 Console.WriteLine("=====");
}

In the preceding example, the ProjectionExpression property specifies the attributes to be
returned. The ExpressionAttributeNames property specifies the placeholder #pr to represent the
ProductReviews attribute and the placeholder #p to represent the Price attribute. #pr.ThreeStar
specifies to return only the ThreeStar attribute. The ExpressionAttributeValues property
specifies the placeholder :val to represent the value 150. The FilterExpression property specifies
that #p (Price) must be greater than :val (150). The call to PrintItem refers to a custom function as
described in Print an Item (p. 58).

Get Multiple Items by Using Expressions and Other Item Attributes

The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.Scan method
and a set of expressions to get and then print all items that have a ProductCategory of Bike. Only the
following attributes of the item are returned: Id, Title, and all of the attributes in ProductReviews.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new ScanRequest
{
 TableName = "ProductCatalog",
 ProjectionExpression = "Id, Title, #pr",
 ExpressionAttributeValues = new Dictionary<string,AttributeValue>
 {
 { ":catg", new AttributeValue { S = "Bike" } }

57

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming with
Expressions by Using the Amazon SDK for .NET

 },
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#pr", "ProductReviews" },
 { "#pc", "ProductCategory" }
 },
 FilterExpression = "#pc = :catg",
};
var response = client.Scan(request);

foreach (var item in response.Items)
{
 // Write out the first page/scan of an item's attribute keys and values.
 // PrintItem() is a custom function.
 PrintItem(item);
 Console.WriteLine("=====");
}

In the preceding example, the ProjectionExpression property specifies the attributes to be
returned. The ExpressionAttributeNames property specifies the placeholder #pr to represent the
ProductReviews attribute and the placeholder #pc to represent the ProductCategory attribute. The
ExpressionAttributeValues property specifies the placeholder :catg to represent the value Bike.
The FilterExpression property specifies that #pc (ProductCategory) must be equal to :catg
(Bike). The call to PrintItem refers to a custom function as described in Print an Item (p. 58).

Print an Item

The following example shows how to print an item’s attributes and values. This example is used in the
preceding examples that show how to Get a Single Item by Using Expressions and the Item’s Primary
Key (p. 56), Get Multiple Items by Using Expressions and the Table’s Primary Key (p. 56), and Get
Multiple Items by Using Expressions and Other Item Attributes (p. 57).

// using Amazon.DynamoDBv2.Model;

// Writes out an item's attribute keys and values.
public static void PrintItem(Dictionary<string, AttributeValue> attrs)
{
 foreach (KeyValuePair<string, AttributeValue> kvp in attrs)
 {
 Console.Write(kvp.Key + " = ");
 PrintValue(kvp.Value);
 }
}

// Writes out just an attribute's value.
public static void PrintValue(AttributeValue value)
{
 // Binary attribute value.
 if (value.B != null)
 {
 Console.Write("Binary data");
 }
 // Binary set attribute value.
 else if (value.BS.Count > 0)
 {
 foreach (var bValue in value.BS)
 {
 Console.Write("\n Binary data");
 }
 }
 // List attribute value.
 else if (value.L.Count > 0)
 {

58

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming with
Expressions by Using the Amazon SDK for .NET

 foreach (AttributeValue attr in value.L)
 {
 PrintValue(attr);
 }
 }
 // Map attribute value.
 else if (value.M.Count > 0)
 {
 Console.Write("\n");
 PrintItem(value.M);
 }
 // Number attribute value.
 else if (value.N != null)
 {
 Console.Write(value.N);
 }
 // Number set attribute value.
 else if (value.NS.Count > 0)
 {
 Console.Write("{0}", string.Join("\n", value.NS.ToArray()));
 }
 // Null attribute value.
 else if (value.NULL)
 {
 Console.Write("Null");
 }
 // String attribute value.
 else if (value.S != null)
 {
 Console.Write(value.S);
 }
 // String set attribute value.
 else if (value.SS.Count > 0)
 {
 Console.Write("{0}", string.Join("\n", value.SS.ToArray()));
 }
 // Otherwise, boolean value.
 else
 {
 Console.Write(value.BOOL);
 }

 Console.Write("\n");
}

In the preceding example, each attribute value has several data-type-specific properties that can be
evaluated to determine the correct format to print the attribute. These properties include properties
such as B, BOOL, BS, L, M, N, NS, NULL, S, and SS, which correspond to those in the JSON Data Format. For
properties such as B, N, NULL, and S, if the corresponding property is not null, then the attribute is of
the corresponding non-null data type. For properties such as BS, L, M, NS, and SS, if Count is greater
than zero, then the attribute is of the corresponding non-zero-value data type. If all of the attribute’s
data-type-specific properties are either null or the Count equals zero, then the attribute corresponds
to the BOOL data type.

Create or Replace an Item by Using Expressions

The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.PutItem
method and a set of expressions to update the item that has a Title of 18-Bicycle 301. If the item
doesn’t already exist, a new item is added.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

59

DataFormat.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming with
Expressions by Using the Amazon SDK for .NET

var client = new AmazonDynamoDBClient();
var request = new PutItemRequest
{
 TableName = "ProductCatalog",
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#title", "Title" }
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>
 {
 { ":product", new AttributeValue { S = "18-Bicycle 301" } }
 },
 ConditionExpression = "#title = :product",
 // CreateItemData() is a custom function.
 Item = CreateItemData()
};
client.PutItem(request);

In the preceding example, the ExpressionAttributeNames property specifies the placeholder
#title to represent the Title attribute. The ExpressionAttributeValues property specifies
the placeholder :product to represent the value 18-Bicycle 301. The ConditionExpression
property specifies that #title (Title) must be equal to :product (18-Bicycle 301). The call to
CreateItemData refers to the following custom function:

// using Amazon.DynamoDBv2.Model;

// Provides a sample item that can be added to a table.
public static Dictionary<string, AttributeValue> CreateItemData()
{
 var itemData = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "301" } },
 { "Title", new AttributeValue { S = "18\" Girl's Bike" } },
 { "BicycleType", new AttributeValue { S = "Road" } },
 { "Brand" , new AttributeValue { S = "Brand-Company C" } },
 { "Color", new AttributeValue { SS = new List<string>{ "Blue", "Silver" } } },
 { "Description", new AttributeValue { S = "301 description" } },
 { "Gender", new AttributeValue { S = "F" } },
 { "InStock", new AttributeValue { BOOL = true } },
 { "Pictures", new AttributeValue { L = new List<AttributeValue>{
 { new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "FrontView", new AttributeValue { S = "http://example/
products/301_front.jpg" } } } } },
 { new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "RearView", new AttributeValue {S = "http://example/
products/301_rear.jpg" } } } } },
 { new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "SideView", new AttributeValue { S = "http://example/
products/301_left_side.jpg" } } } } }
 } } },
 { "Price", new AttributeValue { N = "185" } },
 { "ProductCategory", new AttributeValue { S = "Bike" } },
 { "ProductReviews", new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "FiveStar", new AttributeValue { SS = new List<string>{
 "My daughter really enjoyed this bike!" } } },
 { "OneStar", new AttributeValue { SS = new List<string>{
 "Fun to ride.",
 "This bike was okay, but I would have preferred it in my color." } } }
 } } },
 { "QuantityOnHand", new AttributeValue { N = "3" } },
 { "RelatedItems", new AttributeValue { NS = new List<string>{ "979", "822", "801" } } }
 };

 return itemData;

60

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon DynamoDB Programming with
Expressions by Using the Amazon SDK for .NET

}

In the preceding example, an example item with sample data is returned to the caller. A series of
attributes and corresponding values are constructed, using data types such as BOOL, L, M, N, NS, S, and
SS, which correspond to those in the JSON Data Format.

Update an Item by Using Expressions

The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.UpdateItem
method and a set of expressions to change the Title to 18" Girl's Bike for the item with Id of
301.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new UpdateItemRequest
{
 TableName = "ProductCatalog",
 Key = new Dictionary<string,AttributeValue>
 {
 { "Id", new AttributeValue { N = "301" } }
 },
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#title", "Title" }
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>
 {
 { ":newproduct", new AttributeValue { S = "18\" Girl's Bike" } }
 },
 UpdateExpression = "SET #title = :newproduct"
};
client.UpdateItem(request);

In the preceding example, the ExpressionAttributeNames property specifies the placeholder
#title to represent the Title attribute. The ExpressionAttributeValues property specifies
the placeholder :newproduct to represent the value 18" Girl's Bike. The UpdateExpression
property specifies to change #title (Title) to :newproduct (18" Girl's Bike).

Delete an Item by Using Expressions

The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.DeleteItem
method and a set of expressions to delete the item with Id of 301, but only if the item’s Title is 18-
Bicycle 301.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new DeleteItemRequest
{
 TableName = "ProductCatalog",
 Key = new Dictionary<string,AttributeValue>
 {
 { "Id", new AttributeValue { N = "301" } }
 },
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#title", "Title" }
 },

61

DataFormat.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

JSON Support in Amazon DynamoDB
with the Amazon SDK for .NET

 ExpressionAttributeValues = new Dictionary<string, AttributeValue>
 {
 { ":product", new AttributeValue { S = "18-Bicycle 301" } }
 },
 ConditionExpression = "#title = :product"
};
client.DeleteItem(request);

In the preceding example, the ExpressionAttributeNames property specifies the placeholder
#title to represent the Title attribute. The ExpressionAttributeValues property specifies the
placeholder :product to represent the value 18-Bicycle 301. The ConditionExpression property
specifies that #title (Title) must equal :product (18-Bicycle 301).

Additional Resources

For additonal information and code examples, see:

• DynamoDB Series - Expressions

• Accessing Item Attributes with Projection Expressions

• Using Placeholders for Attribute Names and Values

• Specifying Conditions with Condition Expressions

• Modifying Items and Attributes with Update Expressions

• Working with Items Using the Amazon SDK for .NET Low-Level API

• Querying Tables Using the Amazon SDK for .NET Low-Level API

• Scanning Tables Using the Amazon SDK for .NET Low-Level API

• Working with Local Secondary Indexes Using the Amazon SDK for .NET Low-Level API

• Working with Global Secondary Indexes Using the Amazon SDK for .NET Low-Level API

JSON Support in Amazon DynamoDB with the
Amazon SDK for .NET
Version 2 content (see announcement above)

The Amazon SDK for .NET supports JSON data when working with Amazon DynamoDB. This enables you
to more easily get JSON-formatted data from, and insert JSON documents into, DynamoDB tables.

Topics

• Get Data from a DynamoDB Table in JSON Format (p. 62)

• Insert JSON Format Data into a DynamoDB Table (p. 63)

• DynamoDB Data Type Conversions to JSON (p. 63)

• Additional Resources (p. 64)

Get Data from a DynamoDB Table in JSON Format

The following example shows how to get data from a DynamoDB table in JSON format:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DocumentModel;

62

http://blogs.aws.amazon.com/net/post/TxZQM7VA9AUZ9L/DynamoDB-Series-Expressions
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ExpressionPlaceholders.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Expressions.SpecifyingConditions.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Expressions.Modifying.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/LowLevelDotNetItemCRUD.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/LowLevelDotNetQuerying.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/LowLevelDotNetScanning.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/LSILowLevelDotNet.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GSILowLevelDotNet.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

JSON Support in Amazon DynamoDB
with the Amazon SDK for .NET

var client = new AmazonDynamoDBClient();
var table = Table.LoadTable(client, "AnimalsInventory");
var item = table.GetItem(3, "Horse");

var jsonText = item.ToJson();
Console.Write(jsonText);

// Output:
// {"Name":"Shadow","Type":"Horse","Id":3}

var jsonPrettyText = item.ToJsonPretty();
Console.WriteLine(jsonPrettyText);

// Output:
// {
// "Name" : "Shadow",
// "Type" : "Horse",
// "Id" : 3
// }

In the preceding example, the Document class’s ToJson method converts an item from the table into a
JSON-formatted string. The item is retrieved through the Table class’s GetItem method. To determine
the item to get, in this example, the GetItem method uses the hash-and-range primary key of the
target item. To determine the table to get the item from, the Table class’s LoadTable method uses an
instance of the AmazonDynamoDBClient class and the name of the target table in DynamoDB.

Insert JSON Format Data into a DynamoDB Table

The following example shows how to use JSON format to insert an item into a DynamoDB table:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DocumentModel;

var client = new AmazonDynamoDBClient();
var table = Table.LoadTable(client, "AnimalsInventory");
var jsonText = "{\"Id\":6,\"Type\":\"Bird\",\"Name\":\"Tweety\"}";
var item = Document.FromJson(jsonText);

table.PutItem(item);

In the preceding example, the Document class’s FromJson method converts a JSON-formatted string
into an item. The item is inserted into the table through the Table class’s PutItem method, which uses
the instance of the Document class that contains the item. To determine the table to insert the item into,
the Table class’s LoadTable method is called, specifying an instance of the AmazonDynamoDBClient
class and the name of the target table in DynamoDB.

DynamoDB Data Type Conversions to JSON

Whenever you call the Document class’s ToJson method, and then on the resulting JSON data you
call the FromJson method to convert the JSON data back into an instance of a Document class, some
DynamoDB data types will not convert as expected. Specifically:

• DynamoDB sets (the SS, NS, and BS types) will be converted to JSON arrays.

• DynamoDB binary scalars and sets (the B and BS types) will be converted to base64-encoded JSON
strings or lists of strings.

In this scenario, you must call the Document class’s DecodeBase64Attributes method to replace the
base64-encoded JSON data with the correct binary representation. The following example replaces a
base64-encoded binary scalar item attribute in an instance of a Document class, named Picture, with

63

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Managing ASP.NET Session State with Amazon DynamoDB

the correct binary representation. This example also does the same for a base64-encoded binary set item
attribute in the same instance of the Document class, named RelatedPictures:

item.DecodeBase64Attributes("Picture", "RelatedPictures");

Additional Resources

For additional information and examples of programming JSON with DynamoDB with the the SDK, see:

• DynamoDB JSON Support

• Amazon DynamoDB Update - JSON, Expanded Free Tier, Flexible Scaling, Larger Items

Managing ASP.NET Session State with Amazon
DynamoDB
Version 2 content (see announcement above)

ASP.NET applications often store session-state data in memory. However, this approach doesn’t scale
well. After the application grows beyond a single web server, the session state must be shared between
servers. A common solution is to set up a dedicated session-state server with Microsoft SQL Server. But
this approach also has drawbacks: you must administer another machine, the session-state server is a
single point of failure, and the session-state server itself can become a performance bottleneck.

Amazon DynamoDB, a NoSQL database store from Amazon, provides an effective solution for sharing
session state across web servers without incurring any of these drawbacks.

Note
Regardless of the solution you choose, be aware that Amazon DynamoDB enforces limits on
the size of an item. None of the records you store in DynamoDB can exceed this limit. For more
information, see Limits in DynamoDB in the Amazon DynamoDB Developer Guide.

The Amazon SDK for .NET includes AWS.SessionProvider.dll, which contains an ASP.NET session
state provider. It also includes the AmazonDynamoDBSessionProviderSample sample, which demonstrates
how to use Amazon DynamoDB as a session state provider.

For more information about using Session State with ASP.NET applications, go to the MSDN
documentation.

Create the ASP.NET_SessionState Table

When your application starts, it looks for an Amazon DynamoDB table named, by default,
ASP.NET_SessionState. We recommend you create this table before you run your application for the
first time.

To create the ASP.NET_SessionState table

1. Choose Create Table. The Create Table wizard opens.

2. In the Table name text box, enter ASP.NET_SessionState.

3. In the Primary key field, enter SessionId and set the type to String.

4. When all your options are entered as you want them, choose Create.

The ASP.NET_SessionState table is ready for use when its status changes from CREATING to ACTIVE.

64

http://blogs.aws.amazon.com/net/post/Tx14U0PAQWWHGXM/DynamoDB-JSON-Support
http://amazonaws-china.com/blogs/aws/dynamodb-update-json-and-more
http://www.amazonaws.cn/dynamodb/
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Limits.html
http://msdn.microsoft.com/en-us/library/ms178581.aspx
http://msdn.microsoft.com/en-us/library/ms178581.aspx

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Managing ASP.NET Session State with Amazon DynamoDB

Note
If you decide not to create the table beforehand, the session state provider will create the table
during its initialization. See the web.config options below for a list of attributes that act as
configuration parameters for the session state table. If the provider creates the table, it will use
these parameters.

Configure the Session State Provider

To configure an ASP.NET application to use DynamoDB as the session state server

1. Add references to both AWSSDK.dll and AWS.SessionProvider.dll to your Visual Studio
ASP.NET project. These assemblies are available by installing the Amazon SDK for .NET (p. 4). You can
also install them by using NuGet (p. 39).

In earlier versions of the SDK, the functionality for the session state provider was
contained in AWS.Extension.dll. To improve usability, the functionality was moved to
AWS.SessionProvider.dll. For more information, see the blog post AWS.Extension Renaming.

2. Edit your application’s Web.config file. In the system.web element, replace the existing
sessionState element with the following XML fragment:

 <sessionState timeout="20"
 mode="Custom"
 customProvider="DynamoDBSessionStoreProvider">
 <providers>
 <add
 name="DynamoDBSessionStoreProvider"
 type="Amazon.SessionProvider.DynamoDBSessionStateStore"
 AWSProfileName="{profile_name}"
 Region="us-west-2" />
 </providers>
</sessionState>

The profile represents the Amazon credentials used to communicate with DynamoDB to store and
retrieve the session state. If you are using the Amazon SDK for .NET and are specifying a profile
in the appSettings section of your application’s Web.config file, you do not need to specify a
profile in the providers section; the Amazon .NET client code will discover it at run time. For more
information, see Configuring Your Amazon SDK for .NET Application (p. 8).

If the web server is running on an Amazon EC2 instance that is configured to use IAM roles
for EC2 instances, then you do not need to specify any credentials in the web.config file. In
this case, the Amazon .NET client will use the IAM roles’ credentials. For more information, see
Tutorial: Grant Access Using an IAM Role and the Amazon SDK for .NET (p. 102) and Security
Considerations (p. 66).

Web.config Options

You can use the following configuration attributes in the providers section of your web.config file:

AWSAccessKey

Access key ID to use. This can be set either in the providers or appSettings section. We
recommend not using this setting. Instead, specify credentials by using AWSProfileName to specify
a profile.

AWSSecretKey

Secret key to use. This can be set either in the providers or appSettings section. We recommend
not using this setting. Instead, specify credentials by using AWSProfileName to specify a profile.

65

http://blogs.aws.amazon.com/net/post/Tx27RWMCNAVWZN9/AWS-Extensions-renaming

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Managing ASP.NET Session State with Amazon DynamoDB

AWSProfileName

The profile name associated with the credentials you want to use. For more information, see
Configuring Your Amazon SDK for .NET Application (p. 8).

Region

Required string attribute. The Amazon region in which to use Amazon DynamoDB. For a list of
Amazon regions, see Regions and Endpoints: DynamoDB.

Application

Optional string attribute. The value of the Application attribute is used to partition the session
data in the table so that the table can be used for more than one application.

Table

Optional string attribute. The name of the table used to store session data. The default is
ASP.NET_SessionState.

ReadCapacityUnits

Optional int attribute. The read capacity units to use if the provider creates the table. The default is
10.

WriteCapacityUnits

Optional int attribute. The write capacity units to use if the provider creates the table. The default
is 5.

CreateIfNotExist

Optional boolean attribute. The CreateIfNotExist attribute controls whether the provider will
auto-create the table if it doesn’t exist. The default is true. If this flag is set to false and the table
doesn’t exist, an exception will be thrown.

Security Considerations

After the DynamoDB table is created and the application is configured, sessions can be used as with any
other session provider.

As a security best practice, we recommend you run your applications with the credentials of an IAM user.
You can use either the Amazon Management Console or the Amazon Toolkit for Visual Studio to create
IAM users and define access policies.

The session state provider needs to be able to call the DeleteItem, DescribeTable, GetItem, PutItem, and
UpdateItem operations for the table that stores the session data. The sample policy below can be used
to restrict the IAM user to only the operations needed by the provider for an instance of DynamoDB
running in us-west-2:

{ "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "1",
 "Effect" : "Allow",
 "Action" : [
 "dynamodb:DeleteItem",
 "dynamodb:DescribeTable",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"],
 "Resource" : "arn:aws:dynamodb:us-west-2{<YOUR-AWS-ACCOUNT-ID>}:table/
ASP.NET_SessionState"

66

https://docs.amazonaws.cn/general/latest/gr/rande.html#ddb_region
http://www.amazonaws.cn/iam/
https://console.amazonaws.cn/iam/home
https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DeleteItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DescribeTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/PutItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/UpdateItem.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Amazon Elastic Compute Cloud

Programming with the Amazon SDK for .NET
 }
]
}

Amazon Elastic Compute Cloud Programming with
the Amazon SDK for .NET

Version 2 content (see announcement above)
The Amazon SDK for .NET supports Amazon Elastic Compute Cloud (Amazon EC2), which is a web service
that provides resizable computing capacity—literally, servers in Amazon’s data centers—that you use to
build and host your software systems.

Topics
• Tutorial: Creating Amazon EC2 Instances with the Amazon SDK for .NET (p. 67)
• Tutorial: Amazon EC2 Spot Instances (p. 77)

Tutorial: Creating Amazon EC2 Instances with the
Amazon SDK for .NET
Version 2 content (see announcement above)

You can access the features of Amazon EC2 using the Amazon SDK for .NET. For example, you can create,
start, and terminate EC2 instances.

The sample code in this tutorial is written in C#, but you can use the Amazon SDK for .NET with any
compatible language. The Amazon SDK for .NET installs a set of C# project templates, so the simplest
way to start this project is to open Visual Studio, select New Project from the File menu, and then select
Amazon Empty Project.

Prerequisites

Before you begin, be sure that you have created an Amazon account and that you have set up your
Amazon credentials. For more information, see Getting Started with the Amazon SDK for .NET (p. 3).

Tasks

The following tasks demonstrate how to manage EC2 instances using the Amazon SDK for .NET.

• Create an Amazon EC2 Client Using the the SDK (p. 67)
• Create a Security Group Using the the SDK (p. 68)
• Create a Key Pair Using the the SDK (p. 71)
• Launch an EC2 Instance Using the the SDK (p. 72)
• Terminate an EC2 Instance Using the the SDK (p. 77)

Create an Amazon EC2 Client Using the the SDK

Create an Amazon EC2 client to manage your EC2 resources, such as instances and security groups. This
client is represented by an AmazonEC2Client object, which you can create as follows:

67

http://www.amazonaws.cn/sdk-for-net/
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2EC2NET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Creating Amazon EC2 Instances
with the Amazon SDK for .NET

var ec2Client = new AmazonEC2Client();

The permissions for the client object are determined by the policy that is attached to the profile that
you specified in the App.config file. By default, we use the region specified in App.config. To use a
different region, pass the appropriate RegionEndpoint value to the constructor. For more information,
see Regions and Endpoints in the Amazon Web Services General Reference.

Create a Security Group Using the the SDK

Create a security group, which acts as a virtual firewall that controls the network traffic for one or more
EC2 instances. By default, Amazon EC2 associates your instances with a security group that allows no
inbound traffic. You can create a security group that allows your EC2 instances to accept certain traffic.
For example, if you need to connect to an EC2 Windows instance, you must configure the security group
to allow RDP traffic. You can create a security group using the Amazon EC2 console or the the SDK.

You create a security group for use in either EC2-Classic or EC2-VPC. For more information about EC2-
Classic and EC2-VPC, see Supported Platforms in the Amazon EC2 User Guide for Windows Instances.

Alternatively, you can create a security group using the Amazon EC2 console. For more information, see
Amazon EC2 Security Groups in the Amazon EC2 User Guide for Windows Instances.

Enumerating Your Security Groups

You can enumerate your security groups and check whether a particular security group exists.

To enumerate your security groups for EC2-Classic

Get the complete list of your security groups using DescribeSecurityGroups with no parameters. The
following example checks each security group to see whether its name is my-sample-sg.

string secGroupName = "my-sample-sg";
SecurityGroup mySG = null;

var dsgRequest = new DescribeSecurityGroupsRequest();
var dsgResponse = ec2Client.DescribeSecurityGroups(dsgRequest);
List<SecurityGroup> mySGs = dsgResponse.SecurityGroups;
foreach (SecurityGroup item in mySGs)
{
 Console.WriteLine("Existing security group: " + item.GroupId);
 if (item.GroupName == secGroupName)
 {
 mySG = item;
 }
}

To enumerate your security groups for a VPC

To enumerate the security groups for a particular VPC, use DescribeSecurityGroups with a filter. The
following example checks each security group for a security group with the name my-sample-sg-vpc.

string secGroupName = "my-sample-sg-vpc";
SecurityGroup mySG = null;
string vpcID = "vpc-f1663d98";

Filter vpcFilter = new Filter
{
 Name = "vpc-id",
 Values = new List<string>() {vpcID}

68

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRegionEndpointNET45.html
https://docs.amazonaws.cn/general/latest/gr/rande.html#ec2_region
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/ec2-supported-platforms.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/using-network-security.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2DescribeSecurityGroupsNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2DescribeSecurityGroupsNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Creating Amazon EC2 Instances
with the Amazon SDK for .NET

};
var dsgRequest = new DescribeSecurityGroupsRequest();
dsgRequest.Filters.Add(vpcFilter);
var dsgResponse = ec2Client.DescribeSecurityGroups(dsgRequest);
List<SecurityGroup> mySGs = dsgResponse.SecurityGroups;
foreach (SecurityGroup item in mySGs)
{
 Console.WriteLine("Existing security group: " + item.GroupId);
 if (item.GroupName == secGroupName)
 {
 mySG = item;
 }
}

Creating a Security Group

The examples in this section follow from the examples in the previous section. If the security group
doesn’t already exist, create it. Note that if you were to specify the same name as an existing security
group, CreateSecurityGroup throws an exception.

To create a security group for EC2-Classic

Create and initialize a CreateSecurityGroupRequest object. Assign a name and description to the
GroupName and Description properties, respectively.

The CreateSecurityGroup method returns a CreateSecurityGroupResponse object. You can get the ID of
the new security group from the response and then use DescribeSecurityGroups with the security group
ID to get the SecurityGroup object for the security group.

if (mySG == null)
{
 var newSGRequest = new CreateSecurityGroupRequest()
 {
 GroupName = secGroupName,
 Description = "My sample security group for EC2-Classic"
 };
 var csgResponse = ec2Client.CreateSecurityGroup(newSGRequest);
 Console.WriteLine();
 Console.WriteLine("New security group: " + csgResponse.GroupId);

 List<string> Groups = new List<string>() { csgResponse.GroupId };
 var newSgRequest = new DescribeSecurityGroupsRequest() { GroupIds = Groups };
 var newSgResponse = ec2Client.DescribeSecurityGroups(newSgRequest);
 mySG = newSgResponse.SecurityGroups[0];
}

To create a security group for EC2-VPC

Create and initialize a CreateSecurityGroupRequest object. Assign values to the GroupName, Description,
and VpcId properties.

The CreateSecurityGroup method returns a CreateSecurityGroupResponse object. You can get the ID of
the new security group from the response and then use DescribeSecurityGroups with the security group
ID to get the SecurityGroup object for the security group.

if (mySG == null)
{
 var newSGRequest = new CreateSecurityGroupRequest()
 {
 GroupName = secGroupName,

69

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2CreateSecurityGroupRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2CreateSecurityGroupRequestGroupNameNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2CreateSecurityGroupRequestDescriptionNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2CreateSecurityGroupCreateSecurityGroupRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2CreateSecurityGroupRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2DescribeSecurityGroupsNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2CreateSecurityGroupRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2CreateSecurityGroupRequestGroupNameNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2CreateSecurityGroupRequestDescriptionNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2CreateSecurityGroupRequestVpcIdNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2CreateSecurityGroupCreateSecurityGroupRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2CreateSecurityGroupRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2DescribeSecurityGroupsNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Creating Amazon EC2 Instances
with the Amazon SDK for .NET

 Description = "My sample security group for EC2-VPC",
 VpcId = vpcID
 };
 var csgResponse = ec2Client.CreateSecurityGroup(newSGRequest);
 Console.WriteLine();
 Console.WriteLine("New security group: " + csgResponse.GroupId);

 List<string> Groups = new List<string>() { csgResponse.GroupId };
 var newSgRequest = new DescribeSecurityGroupsRequest() { GroupIds = Groups };
 var newSgResponse = ec2Client.DescribeSecurityGroups(newSgRequest);
 mySG = newSgResponse.SecurityGroups[0];
}

Adding Rules to Your Security Group

Use the following procedure to add a rule to allow inbound traffic on TCP port 3389 (RDP). This enables
you to connect to a Windows instance. If you’re launching a Linux instance, use TCP port 22 (SSH)
instead.

Note
You can get the public IP address of your local computer using a service. For example, we
provide the following service: http://checkip.amazonaws.com/. To locate another service that
provides your IP address, use the search phrase “what is my IP address”. If you are connecting
through an ISP or from behind your firewall without a static IP address, you need to find out the
range of IP addresses used by client computers.

The examples in this section follow from the examples in the previous sections. They assume that mySG
is an existing security group.

To add a rule to a security group

1. Create and initialize an IpPermission object.

string ipRange = "0.0.0.0/0";
List<string> ranges = new List<string>() {ipRange};

var ipPermission = new IpPermission()
{
 IpProtocol = "tcp",
 FromPort = 3389,
 ToPort = 3389,
 IpRanges = ranges
};

IpProtocol

The IP protocol.
FromPort and ToPort

The beginning and end of the port range. This example specifies a single port, 3389, which is used
to communicate with Windows over RDP.

IpRanges

The IP addresses or address ranges, in CIDR notation. For convenience, this example uses
0.0.0.0/0, which authorizes network traffic from all IP addresses. This is acceptable for a short
time in a test environment, but it’s unsafe in a production environment.

2. Create and initialize an AuthorizeSecurityGroupIngressRequest object.

var ingressRequest = new AuthorizeSecurityGroupIngressRequest();
ingressRequest.GroupId = mySG.GroupId;

70

http://checkip.amazonaws.com.cn/
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2IpPermissionNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2IpPermissionIpProtocolNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2IpPermissionFromPortNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2IpPermissionToPortNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2IpPermissionIpRangesNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2AuthorizeSecurityGroupIngressRequestNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Creating Amazon EC2 Instances
with the Amazon SDK for .NET

ingressRequest.IpPermissions.Add(ipPermission);

GroupId

The ID of the security group.

IpPermissions

The IpPermission object from step 1.

3. (Optional) You can add additional rules to the IpPermissions collection before going to the next
step.

4. Pass the request object to the AuthorizeSecurityGroupIngress method, which returns an
AuthorizeSecurityGroupIngressResponse object.

var ingressResponse = ec2Client.AuthorizeSecurityGroupIngress(ingressRequest);
Console.WriteLine("New RDP rule for: " + ipRange);

Create a Key Pair Using the the SDK

You must specify a key pair when you launch an EC2 instance and specify the private key of the key pair
when you connect to the instance. You can create a key pair or use an existing key pair that you’ve used
when launching other instances. For more information, see Amazon EC2 Key Pairs in the Amazon EC2
User Guide for Windows Instances.

Enumerating Your Key Pairs

You can enumerate your key pairs and check whether a particular key pair exists.

To enumerate your key pairs

Get the complete list of your key pairs using DescribeKeyPairs with no parameters. The following
example checks each key pair to see whether its name is my-sample-key.

string keyPairName = "my-sample-key";
KeyPairInfo myKeyPair = null;

var dkpRequest = new DescribeKeyPairsRequest();
var dkpResponse = ec2Client.DescribeKeyPairs(dkpRequest);
List<KeyPairInfo> myKeyPairs = dkpResponse.KeyPairs;

foreach (KeyPairInfo item in myKeyPairs)
{
 Console.WriteLine("Existing key pair: " + item.KeyName);
 if (item.KeyName == keyPairName)
 {
 myKeyPair = item;
 }
}

Creating a Key Pair and Saving the Private Key

The example in this section follows from the example in the previous section. If the key pair doesn’t
already exist, create it. Be sure to save the private key now, because you can’t retrieve it later.

To create a key pair and save the private key

Create and initialize a CreateKeyPairRequest object. Set the KeyName property to the name of the key
pair.

71

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2AuthorizeSecurityGroupIngressRequestGroupIdNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2AuthorizeSecurityGroupIngressRequestIpPermissionsNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2AuthorizeSecurityGroupIngressAuthorizeSecurityGroupIngressRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2AuthorizeSecurityGroupIngressResponseNET45.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2DescribeKeyPairsNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2CreateKeyPairRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2CreateKeyPairRequestKeyNameNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Creating Amazon EC2 Instances
with the Amazon SDK for .NET

Pass the request object to the CreateKeyPair method, which returns a CreateKeyPairResponse object.

The response object includes a CreateKeyPairResult property that contains the new key’s KeyPair object.
The KeyPair object’s KeyMaterial property contains the unencrypted private key for the key pair. Save
the private key as a .pem file in a safe location. You’ll need this file when you connect to your instance.
This example saves the private key in the current directory, using the name of the key pair as the base
file name of the .pem file.

if (myKeyPair == null)
{
 var newKeyRequest = new CreateKeyPairRequest()
 {
 KeyName = keyPairName
 };
 var ckpResponse = ec2Client.CreateKeyPair(newKeyRequest);
 Console.WriteLine();
 Console.WriteLine("New key: " + keyPairName);

 // Save the private key in a .pem file
 using (FileStream s = new FileStream(keyPairName + ".pem", FileMode.Create))
 using (StreamWriter writer = new StreamWriter(s))
 {
 writer.WriteLine(ckpResponse.KeyPair.KeyMaterial);
 }
}

Topics

• Launch an EC2 Instance Using the the SDK (p. 72)

• Terminate an EC2 Instance Using the the SDK (p. 77)

Launch an EC2 Instance Using the the SDK

Version 2 content (see announcement above)

Use the following procedure to launch one or more identically configured EC2 instances from the same
Amazon Machine Image (AMI). After you create your EC2 instances, you can check their status. After your
EC2 instances are running, you can connect to them.

Topics

• Launching an EC2 Instance (p. 72)

• Checking the State of Your Instance (p. 76)

• Connecting to Your Running Instance (p. 77)

Launching an EC2 Instance

You launch an instance in either EC2-Classic or in a VPC. For more information about EC2-Classic and
EC2-VPC, see Supported Platforms in the Amazon EC2 User Guide for Windows Instances.

To launch an EC2 instance in EC2-Classic

1. Create and initialize a RunInstancesRequest object. Make sure that the AMI, key pair, and security
group that you specify exist in the region that you specified when you created the client object.

string amiID = "ami-e189c8d1";
string keyPairName = "my-sample-key";

72

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2CreateKeyPairCreateKeyPairRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2CreateKeyPairResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2CreateKeyPairResultNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2KeyPairNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2KeyPairKeyMaterialNET45.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/ec2-supported-platforms.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2RunInstancesRequestNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Creating Amazon EC2 Instances
with the Amazon SDK for .NET

List<string> groups = new List<string>() { mySG.GroupId };
var launchRequest = new RunInstancesRequest()
{
 ImageId = amiID,
 InstanceType = "t1.micro",
 MinCount = 1,
 MaxCount = 1,
 KeyName = keyPairName,
 SecurityGroupIds = groups
};

ImageId

The ID of the AMI. For a list of public AMIs provided by Amazon, see Amazon Machine Images.
InstanceType

An instance type that is compatible with the specified AMI. For more information, see Instance
Types in the Amazon EC2 User Guide for Windows Instances.

MinCount

The minimum number of EC2 instances to launch. If this is more instances than Amazon EC2 can
launch in the target Availability Zone, Amazon EC2 launches no instances.

MaxCount

The maximum number of EC2 instances to launch. If this is more instances than Amazon EC2
can launch in the target Availability Zone, Amazon EC2 launches the largest possible number of
instances above MinCount. You can launch between 1 and the maximum number of instances
you’re allowed for the instance type. For more information, see How many instances can I run in
Amazon EC2 in the Amazon EC2 General FAQ.

KeyName

The name of the EC2 key pair. If you launch an instance without specifying a key pair, you can’t
connect to it. For more information, see Create a Key Pair Using the the SDK (p. 71).

SecurityGroupIds

The identifiers of one or more security groups. For more information, see Create a Security Group
Using the the SDK (p. 68).

2. (Optional) To launch the instance with an IAM role (p. 102), specify an IAM instance profile in the
RunInstancesRequest object.

Note that an IAM user can’t launch an instance with an IAM role without the permissions granted by
the following policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:PassRole",
 "iam:ListInstanceProfiles",
 "ec2:*"
],
 "Resource": "*"
 }]
}

For example, the following snippet instantiates and configures an IamInstanceProfileSpecification
object for an IAM role named winapp-instance-role-1.

73

http://www.amazonaws.cn/marketplace/search/results/&searchTerms=AMISAWS?browse=1
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/instance-types.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/instance-types.html
http://www.amazonaws.cn/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
http://www.amazonaws.cn/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2IamInstanceProfileSpecificationNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Creating Amazon EC2 Instances
with the Amazon SDK for .NET

var instanceProfile = new IamInstanceProfile();
instanceProfile.Id = "winapp-instance-role-1";
instanceProfile.Arn = "arn:aws:iam::|ExampleAWSAccountNo2H|:instance-profile/winapp-
instance-role-1";

To specify this instance profile in the RunInstancesRequest object, add the following line.

launchRequest.IamInstanceProfile = instanceProfile;

3. Launch the instance by passing the request object to the RunInstances method. Save the ID of the
instances, as you need it to manage the instance.

Use the returned RunInstancesResponse object to get the instance IDs for the new instances. The
Reservation.Instances property contains a list of Instance objects, one for each EC2 instance
that you successfully launched. You can retrieve the ID for each instance from the Instance object’s
InstanceId property.

var launchResponse = ec2Client.RunInstances(launchRequest);
var instances = launchResponse.Reservation.Instances;
var instanceIds = new List<string>();
foreach (Instance item in instances)
{
 instanceIds.Add(item.InstanceId);
 Console.WriteLine();
 Console.WriteLine("New instance: " + item.InstanceId);
 Console.WriteLine("Instance state: " + item.State.Name);
}

To launch an EC2 instance in a VPC

1. Create and initialize a network interface.

string subnetID = "subnet-cb663da2";

List<string> groups = new List<string>() { mySG.GroupId };
var eni = new InstanceNetworkInterfaceSpecification()
{
 DeviceIndex = 0,
 SubnetId = subnetID,
 Groups = groups,
 AssociatePublicIpAddress = true
};
List<InstanceNetworkInterfaceSpecification> enis = new
 List<InstanceNetworkInterfaceSpecification>() {eni};

DeviceIndex

The index of the device on the instance for the network interface attachment.

SubnetId

The ID of the subnet to launch the instance into.

GroupIds

One or more security groups. For more information, see Create a Security Group Using the the
SDK (p. 68).

74

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2RunInstancesRunInstancesRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2RunInstancesResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2InstanceNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Creating Amazon EC2 Instances
with the Amazon SDK for .NET

AssociatePublicIpAddress

Indicates whether to auto-assign a public IP address to an instance in a VPC.

2. Create and initialize a RunInstancesRequest object. Make sure that the AMI, key pair, and security
group that you specify exist in the region that you specified when you created the client object.

string amiID = "ami-e189c8d1";
string keyPairName = "my-sample-key";

var launchRequest = new RunInstancesRequest()
{
 ImageId = amiID,
 InstanceType = "t1.micro",
 MinCount = 1,
 MaxCount = 1,
 KeyName = keyPairName,
 NetworkInterfaces = enis
};

ImageId

The ID of the AMI. For a list of public AMIs provided by Amazon, see Amazon Machine Images.

InstanceType

An instance type that is compatible with the specified AMI. For more information, see Instance
Types in the Amazon EC2 User Guide for Windows Instances.

MinCount

The minimum number of EC2 instances to launch. If this is more instances than Amazon EC2 can
launch in the target Availability Zone, Amazon EC2 launches no instances.

MaxCount

The maximum number of EC2 instances to launch. If this is more instances than Amazon EC2
can launch in the target Availability Zone, Amazon EC2 launches the largest possible number of
instances above MinCount. You can launch between 1 and the maximum number of instances
you’re allowed for the instance type. For more information, see How many instances can I run in
Amazon EC2 in the Amazon EC2 General FAQ.

KeyName

The name of the EC2 key pair. If you launch an instance without specifying a key pair, you can’t
connect to it. For more information, see Create a Key Pair Using the the SDK (p. 71).

NetworkInterfaces

One or more network interfaces.

3. (Optional) To launch the instance with an IAM role (p. 102), specify an IAM instance profile in the
RunInstancesRequest object.

Note that an IAM user can’t launch an instance with an IAM role without the permissions granted by
the following policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:PassRole",
 "iam:ListInstanceProfiles",
 "ec2:*"

75

TEC2RunInstancesRequestNET45.html
http://www.amazonaws.cn/marketplace/search/results/&searchTerms=AMISAWS?browse=1
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/instance-types.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/instance-types.html
http://www.amazonaws.cn/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
http://www.amazonaws.cn/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2RunInstancesRequestIamInstanceProfileNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Creating Amazon EC2 Instances
with the Amazon SDK for .NET

],
 "Resource": "*"
 }]
}

For example, the following snippet instantiates and configures an IamInstanceProfileSpecification
object for an IAM role named winapp-instance-role-1.

var instanceProfile = new IamInstanceProfile();
instanceProfile.Id = "winapp-instance-role-1";
instanceProfile.Arn = "arn:aws:iam::|ExampleAWSAccountNo2H|:instance-profile/winapp-
instance-role-1";

To specify this instance profile in the RunInstancesRequest object, add the following line.

InstanceProfile = instanceProfile

4. Launch the instances by passing the request object to the RunInstances method. Save the IDs of the
instances, as you need them to manage the instances.

Use the returned RunInstancesResponse object to get a list of instance IDs for the new instances. The
Reservation.Instances property contains a list of Instance objects, one for each EC2 instance
that you successfully launched. You can retrieve the ID for each instance from the Instance object’s
InstanceId property.

RunInstancesResponse launchResponse = ec2Client.RunInstances(launchRequest);

List<String> instanceIds = new List<string>();
foreach (Instance instance in launchResponse.Reservation.Instances)
{
 Console.WriteLine(instance.InstanceId);
 instanceIds.Add(instance.InstanceId);
}

Checking the State of Your Instance

Use the following procedure to get the current state of your instance. Initially, your instance is in the
pending state. You can connect to your instance after it enters the running state.

To check the state of your instance

1. Create and configure a DescribeInstancesRequest object and assign your instance’s instance ID to
the InstanceIds property. You can also use the Filter property to limit the request to certain
instances, such as instances with a particular user-specified tag.

var instanceRequest = new DescribeInstancesRequest();
instanceRequest.InstanceIds = new List<string>();
instanceRequest.InstanceIds.Add(instanceId);

2. Call the EC2 client’s DescribeInstances method, and pass it the request object from step 1. The
method returns a DescribeInstancesResponse object that contains information about the instance.

var response = ec2Client.DescribeInstances(instanceRequest);

3. The DescribeInstancesResponse.Reservations property contains a list of reservations. In this
case, there is only one reservation. Each reservation contains a list of Instance objects. Again, in this
case, there is only one instance. You can get the instance’s status from the State property.

76

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2IamInstanceProfileSpecificationNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2RunInstancesRunInstancesRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2RunInstancesResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2InstanceNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2DescribeInstancesRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2DescribeInstancesDescribeInstancesRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2DescribeInstancesResponseNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Amazon EC2 Spot Instances

Console.WriteLine(response.Reservations[0].Instances[0].State.Name);

Connecting to Your Running Instance

After an instance is running, you can remotely connect to it using an RDP client on your computer.
Before connecting to your instance, you must ensure that the instance’s RDP port is open to traffic. To
connect, you need the instance ID and the private key for instance’s key pair. For more information, see
Connecting to Your Windows Instance Using RDP in the Amazon EC2 User Guide for Windows Instances.

When you have finished with your EC2 instance, see Terminate an EC2 Instance Using the the
SDK (p. 77).

Terminate an EC2 Instance Using the the SDK
Version 2 content (see announcement above)

When you no longer need one or more of your EC2 instances, you can terminate them.

To terminate an EC2 instance

Create and initialize a TerminateInstancesRequest object. Set the InstanceIds property to a list of one
or more instance IDs. In this example, instanceIds is the list that you saved when you launched the
instances.

Pass the request object to the client object’s TerminateInstances method.

var deleteRequest = new TerminateInstancesRequest()
{
 InstanceIds = instanceIds
};
var deleteResponse = ec2Client.TerminateInstances(deleteRequest);
foreach (InstanceStateChange item in deleteResponse.TerminatingInstances)
{
 Console.WriteLine();
 Console.WriteLine("Terminated instance: " + item.InstanceId);
 Console.WriteLine("Instance state: " + item.CurrentState.Name);
}

To list the terminated instances

You can use the response object as follows to list the terminated instances.

List<InstanceStateChange> terminatedInstances =
 termResponse.TerminateInstancesResult.TerminatingInstance;
foreach(InstanceStateChange item in terminatedInstances)
{
 Console.WriteLine("Terminated Instance: " + item.InstanceId);
}

Tutorial: Amazon EC2 Spot Instances
Version 2 content (see announcement above)

Overview

Spot Instances enable you to bid on unused Amazon EC2 capacity and run any instances that you acquire
for as long as your bid exceeds the current Spot Price. Amazon EC2 changes the Spot Price periodically

77

https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2TerminateInstancesRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PEC2TerminateInstancesRequestInstanceIdsNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MEC2EC2TerminateInstancesTerminateInstancesRequestNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Amazon EC2 Spot Instances

based on supply and demand, and customers whose bids meet or exceed it gain access to the available
Spot Instances. Like On-Demand Instances and Reserved Instances, Spot Instances provide another
option for obtaining more compute capacity.

Spot Instances can significantly lower your Amazon EC2 costs for applications such as batch processing,
scientific research, image processing, video encoding, data and web crawling, financial analysis, and
testing. Additionally, Spot Instances are an excellent option when you need large amounts of computing
capacity but the need for that capacity is not urgent.

To use Spot Instances, place a Spot Instance request specifying the maximum price you are willing to pay
per instance hour; this is your bid. If your bid exceeds the current Spot Price, your request is fulfilled and
your instances will run until either you choose to terminate them or the Spot Price increases above your
bid (whichever is sooner). You can terminate a Spot Instance programmatically as shown this tutorial or
by using the Amazon Console or by using the Amazon Toolkit for Visual Studio.

It’s important to note two points:

1. You will often pay less per hour than your bid. Amazon EC2 adjusts the Spot Price periodically as
requests come in and available supply changes. Everyone pays the same Spot Price for that period
regardless of whether their bid was higher. Therefore, you might pay less than your bid, but you will
never pay more than your bid.

2. If you’re running Spot Instances and your bid no longer meets or exceeds the current Spot Price, your
instances will be terminated. This means that you will want to make sure that your workloads and
applications are flexible enough to take advantage of this opportunistic—but potentially transient—
capacity.

Spot Instances perform exactly like other Amazon EC2 instances while running, and like other Amazon
EC2 instances, Spot Instances can be terminated when you no longer need them. If you terminate
your instance, you pay for any partial hour used (as you would for On-Demand or Reserved Instances).
However, if your instance is terminated by Amazon EC2 because the Spot Price goes above your bid, you
will not be charged for any partial hour of usage.

This tutorial provides an overview of how to use the .NET programming environment to do the following.

• Submit a Spot Request
• Determine when the Spot Request becomes fulfilled
• Cancel the Spot Request
• Terminate associated instances

Prerequisites

This tutorial assumes that you have signed up for Amazon, set up your .NET development environment,
and installed the Amazon SDK for .NET. If you use the Microsoft Visual Studio development environment,
we recommend that you also install the Amazon Toolkit for Visual Studio. For instructions on setting up
your environment, see Getting Started with the Amazon SDK for .NET (p. 3).

Step 1: Setting Up Your Credentials

To begin using this code sample, you need to populate the App.config file with your Amazon
credentials, which identify you to Amazon Web Services. You specify your credentials in the files
appSettings element. The preferred way to handle credentials is to create a profile in the SDK Store,
which encrypts your credentials and stores them separately from any project. You can then specify the
profile by name in the App.config file, and the credentials are automatically incorporated into the
application. For more information, see Configuring Your Amazon SDK for .NET Application (p. 8).

Now that you have configured your settings, you can get started using the code in the example.

78

https://console.amazonaws.cn/ec2/home

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Amazon EC2 Spot Instances

Step 2: Setting Up a Security Group

A security group acts as a firewall that controls the traffic allowed in and out of a group of instances. By
default, an instance is started without any security group, which means that all incoming IP traffic, on
any TCP port will be denied. So, before submitting your Spot Request, you will set up a security group
that allows the necessary network traffic. For the purposes of this tutorial, we will create a new security
group called “GettingStarted” that allows connection using the Windows Remote Desktop Protocol (RDP)
from the IP address of the local computer, that is, the computer where you are running the application.

To set up a new security group, you need to include or run the following code sample that sets up the
security group programmatically. You only need to run this code once to create the new security group.
However, the code is designed so that it is safe to run even if the security group already exists. In this
case, the code catches and ignores the “InvalidGroup.Duplicate” exception.

In the code below, we first use AWSClientFactoryClass to create an AmazonEC2 client object. We then
create a CreateSecurityGroupRequest object with the name, “GettingStarted” and a description for
the security group. Finally, we call the ec2.createSecurityGroup API to create the group.

AmazonEC2 ec2 = AWSClientFactory.CreateAmazonEC2Client();

try
{
 CreateSecurityGroupRequest securityGroupRequest = new CreateSecurityGroupRequest();
 securityGroupRequest.GroupName = "GettingStartedGroup";
 securityGroupRequest.GroupDescription = "Getting Started Security Group";

 ec2.CreateSecurityGroup(securityGroupRequest);
}
catch (AmazonEC2Exception ae)
{
 if (string.Equals(ae.ErrorCode, "InvalidGroup.Duplicate",
 StringComparison.InvariantCulture))
 {
 Console.WriteLine(ae.Message);
 }
 else
 {
 throw;
 }
}

To enable access to the group, we create an ipPermission object with the IP address set to the CIDR
representation of the IP address of the local computer. The “/32” suffix on the IP address indicates
that the security group should accept traffic only from the local computer. We also configure the
ipPermission object with the TCP protocol and port 3389 (RDP). You will need to fill in the IP address
of the local computer. If your connection to the Internet is mediated by a firewall or some other type of
proxy, you will need to determine the external IP address that the proxy uses. One technique is to query
a search engine such as Google or Bing with the string: “what is my IP address”.

// TODO - Change the code below to use your external IP address.
String ipSource = "XXX.XXX.XXX.XX/32";

List<String> ipRanges = new List<String>();
ipRanges.Add(ipSource);

List<IpPermissionSpecification> ipPermissions = new List<IpPermissionSpecification>();
IpPermissionSpecification ipPermission = new IpPermissionSpecification();
ipPermission.IpProtocol = "tcp";
ipPermission.FromPort = 3389;
ipPermission.ToPort = 3389;
ipPermission.IpRanges = ipRanges;

79

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Amazon EC2 Spot Instances

ipPermissions.Add(ipPermission);

The final step is to call ec2.authorizeSecurityGroupIngress with the name of our security group
and the ipPermission object.

try {
 // Authorize the ports to be used.
 AuthorizeSecurityGroupIngressRequest ingressRequest = new
 AuthorizeSecurityGroupIngressRequest();
 ingressRequest.IpPermissions = ipPermissions;
 ingressRequest.GroupName = "GettingStartedGroup";
 ec2.AuthorizeSecurityGroupIngress(ingressRequest);
} catch (AmazonEC2Exception ae) {
 if (String.Equals(ae.ErrorCode, "InvalidPermission.Duplicate",
 StringComparison.InvariantCulture))
 {
 Console.WriteLine(ae.Message);
 }
 else
 {
 throw;
 }
}

You can also create the security group using the Amazon Toolkit for Visual Studio. Go to the Amazon
Toolkit for Visual Studio User Guide for more information.

Step 3: Submitting Your Spot Request

To submit a Spot Request, you first need to determine the instance type, the Amazon Machine Image
(AMI), and the maximum bid price you want to use. You must also include the security group we
configured previously, so that you can log into the instance if you want to.

There are several instance types to choose from; go to Amazon EC2 Instance Types for a complete list.
For this tutorial, we will use t1.micro. You’ll also want to get the ID of a current Windows AMI. For
more information, see Finding an AMI in the Amazon EC2 User Guide for Windows Instances.

There are many ways to approach bidding for Spot instances. To get a broad overview of the various
approaches, you should view the Bidding for Spot Instances video. However, to get started, we’ll describe
three common strategies: bid to ensure cost is less than on-demand pricing; bid based on the value of
the resulting computation; bid so as to acquire computing capacity as quickly as possible.

• Reduce Cost Below On-Demand You have a batch processing job that will take a number of hours
or days to run. However, you are flexible with respect to when it starts and when it completes. You
want to see if you can complete it for less cost than with On-Demand Instances. You examine the
Spot Price history for instance types using either the Amazon Web Services Management Console or
the Amazon EC2 API. For more information, go to Viewing Spot Price History. After you’ve analyzed
the price history for your desired instance type in a given Availability Zone, you have two alternative
approaches for your bid:
• You could bid at the upper end of the range of Spot Prices (which are still below the On-Demand

price), anticipating that your one-time Spot Rrequest would most likely be fulfilled and run for
enough consecutive compute time to complete the job.

• Or, you could bid at the lower end of the price range, and plan to combine many instances launched
over time through a persistent request. The instances would run long enough, in aggregate, to
complete the job at an even lower total cost. (We will explain how to automate this task later in this
tutorial.)

• Pay No More than the Value of the Result You have a data processing job to run. You understand the
value of the job’s results well enough to know how much they are worth in terms of computing costs.
After you’ve analyzed the Spot Price history for your instance type, you choose a bid price at which the

80

https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/
https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/finding-an-ami.html
http://www.youtube.com/watch?v=WD9N73F3Fao&feature=player_embedded
using-spot-instances-history.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Amazon EC2 Spot Instances

cost of the computing time is no more than the value of the job’s results. You create a persistent bid
and allow it to run intermittently as the Spot Price fluctuates at or below your bid.

• Acquire Computing Capacity Quickly You have an unanticipated, short-term need for additional
capacity that is not available through On-Demand Instances. After you’ve analyzed the Spot Price
history for your instance type, you bid above the highest historical price to provide a high likelihood
that your request will be fulfilled quickly and continue computing until it completes.

After you choose your bid price, you are ready to request a Spot Instance. For the purposes of this
tutorial, we will set our bid price equal to the On-Demand price ($0.03) to maximize the chances that the
bid will be fulfilled. You can determine the types of available instances and the On-Demand prices for
instances by going to Amazon EC2 Instance Types .

To request a Spot Instance, you simply need to build your request with the parameters we have specified
so far. We start by creating a RequestSpotInstanceRequest object. The request object requires the
number of instances you want to start (2) and the bid price ($0.03). Additionally, you need to set the
LaunchSpecification for the request, which includes the instance type, AMI ID, and security group
you want to use. Once the request is populated, you call the requestSpotInstances method on the
AmazonEC2Client object. An example of how to request a Spot Instance is shown below.

RequestSpotInstancesRequest requestRequest = new RequestSpotInstancesRequest();

requestRequest.SpotPrice = "0.03";
requestRequest.InstanceCount = 2;

LaunchSpecification launchSpecification = new LaunchSpecification();
launchSpecification.ImageId = "ami-fbf93092"; // latest Windows AMI as of this writing
launchSpecification.InstanceType = "t1.micro";

launchSpecification.SecurityGroup.Add("GettingStartedGroup");

requestRequest.LaunchSpecification = launchSpecification;

RequestSpotInstancesResponse requestResult = ec2.RequestSpotInstances(requestRequest);

There are other options you can use to configure your Spot Requests. To learn more, see
RequestSpotInstances in the Amazon SDK for .NET.

Running this code will launch a new Spot Instance Request.

Note
You will be charged for any Spot Instances that are actually launched, so make sure that you
cancel any requests and terminate any instances you launch to reduce any associated fees.

Step 4: Determining the State of Your Spot Request

Next, we want to create code to wait until the Spot Request reaches the “active” state before proceeding
to the last step. To determine the state of our Spot Request, we poll the describeSpotInstanceRequests
method for the state of the Spot Request ID we want to monitor.

The request ID created in Step 2 is embedded in the result of our requestSpotInstances request. The
following example code gathers request IDs from the requestSpotInstances result and uses them
to populate the SpotInstanceRequestId member of a describeRequest object. We will use this
object in the next part of the sample.

// Call the RequestSpotInstance API.
RequestSpotInstancesResponse requestResult = ec2.RequestSpotInstances(requestRequest);

// Create the describeRequest object with all of the request ids
// to monitor (e.g. that we started).

81

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2RequestSpotInstancesRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TEC2DescribeSpotInstanceRequestsRequestNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Amazon EC2 Spot Instances

DescribeSpotInstanceRequestsRequest describeRequest = new
 DescribeSpotInstanceRequestsRequest();
foreach (SpotInstanceRequest spotInstanceRequest in
 requestResult.RequestSpotInstancesResult.SpotInstanceRequest)
{
 describeRequest.SpotInstanceRequestId.Add(spotInstanceRequest.SpotInstanceRequestId);
}

// Create a variable that will track whether there are any
// requests still in the open state.
bool anyOpen;

// Create a list to store any instances that were activated.
List<String> instanceIds = new List<String>();

do
{
 // Initialize the anyOpen variable to false, which assumes there
 // are no requests open unless we find one that is still open.
 anyOpen = false;
 instanceIds.Clear();

 try
 {
 // Retrieve all of the requests we want to monitor.
 DescribeSpotInstanceRequestsResponse describeResponse =
 ec2.DescribeSpotInstanceRequests(describeRequest);

 // Look through each request and determine if they are all in
 // the active state.
 foreach (SpotInstanceRequest spotInstanceRequest in
 describeResponse.DescribeSpotInstanceRequestsResult.SpotInstanceRequest)
 {
 // If the state is open, it hasn't changed since we attempted
 // to request it. There is the potential for it to transition
 // almost immediately to closed or canceled, so we compare
 // against open instead of active.
 if (spotInstanceRequest.State.Equals("open",
 StringComparison.InvariantCulture))
 {
 anyOpen = true;
 break;
 }
 else if (spotInstanceRequest.State.Equals("active",
 StringComparison.InvariantCulture))
 {
 // Add the instance id to the list we will
 // eventually terminate.
 instanceIds.Add(spotInstanceRequest.InstanceId);
 }
 }
 }
 catch (AmazonEC2Exception e)
 {
 // If we have an exception, ensure we don't break out of
 // the loop. This prevents the scenario where there was
 // blip on the wire.
 anyOpen = true;

 Console.WriteLine(e.Message);
 }

 if (anyOpen)
 {

82

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Amazon EC2 Spot Instances

 // Wait for the requests to go active.
 Console.WriteLine("Requests still in open state, will retry in 60 seconds.");
 Thread.Sleep((int)TimeSpan.FromMinutes(1).TotalMilliseconds);
 }
} while (anyOpen);

If you just ran the code up to this point, your Spot Instance Request would complete—or possibly fail
with an error. For the purposes of this tutorial, we’ll add some code that cleans up the requests after all
of them have transitioned out of the open state.

Step 5: Cleaning up Your Spot Requests and Instances

The final step is to clean up our requests and instances. It is important to both cancel any outstanding
requests and terminate any instances. Just canceling your requests will not terminate your instances,
which means that you will continue to pay for them. If you terminate your instances, your Spot Requests
may be canceled, but there are some scenarios—such as if you use persistent bids—where terminating
your instances is not sufficient to stop your request from being re-fulfilled. Therefore, it is a best practice
to both cancel any active bids and terminate any running instances.

The following code demonstrates how to cancel your requests.

try
{
 // Cancel requests.
 CancelSpotInstanceRequestsRequest cancelRequest = new
 CancelSpotInstanceRequestsRequest();

 foreach (SpotInstanceRequest spotInstanceRequest in
 requestResult.RequestSpotInstancesResult.SpotInstanceRequest)
 {
 cancelRequest.SpotInstanceRequestId.Add(spotInstanceRequest.SpotInstanceRequestId);
 }

 ec2.CancelSpotInstanceRequests(cancelRequest);
}
catch (AmazonEC2Exception e)
{
 // Write out any exceptions that may have occurred.
 Console.WriteLine("Error cancelling instances");
 Console.WriteLine("Caught Exception: " + e.Message);
 Console.WriteLine("Reponse Status Code: " + e.StatusCode);
 Console.WriteLine("Error Code: " + e.ErrorCode);
 Console.WriteLine("Request ID: " + e.RequestId);
}
}

To terminate any outstanding instances, we use the instanceIds array, which we populated with the
instance IDs of those instances that transitioned to the active state. We terminate these instances by
assigning this array to the InstanceId member of a TerminateInstancesRequest object, then
passing that object to the ec2.TerminateInstances API.

if (instanceIds.Count > 0)
{
 try
 {
 TerminateInstancesRequest terminateRequest = new TerminateInstancesRequest();
 terminateRequest.InstanceId = instanceIds;

 ec2.TerminateInstances(terminateRequest);
 }
 catch (AmazonEC2Exception e)

83

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon S3 Glacier Programming
with the Amazon SDK for .NET

 {
 Console.WriteLine("Error terminating instances");
 Console.WriteLine("Caught Exception: " + e.Message);
 Console.WriteLine("Reponse Status Code: " + e.StatusCode);
 Console.WriteLine("Error Code: " + e.ErrorCode);
 Console.WriteLine("Request ID: " + e.RequestId);
 }
}

Conclusion

Congratulations! You have just completed the getting started tutorial for developing Spot Instance
software with the Amazon SDK for .NET.

Amazon S3 Glacier Programming with the Amazon
SDK for .NET

Version 2 content (see announcement above)
The Amazon SDK for .NET supports Amazon S3 Glacier, which is a storage service optimized for
infrequently used data, or “cold data.” The service provides durable and extremely low-cost storage with
security features for data archiving and backup. For more information, see S3 Glacier.

The following information introduces you to the S3 Glacier programming models in the the SDK.

Programming Models

The the SDK provides three programming models for working with S3 Glacier. These programming
models are known as the low-level, high-level, and resource models. The following information describes
these models, why you would want to use them, and how to use them.

Low-Level APIs

The the SDK provides low-level APIs for programming with S3 Glacier. These low-level APIs map closely
the underlying REST API supported by S3 Glacier. For each S3 Glacier REST operation, the low-level
APIs provide a corresponding method, a request object for you to provide request information, and a
response object for you to process the S3 Glacier response. The low-level APIs are the most complete
implementation of the underlying S3 Glacier operations.

The following example shows how to use the low-level APIs to list accessible vaults in S3 Glacier:

// using Amazon.Glacier;
// using Amazon.Glacier.Model;

var client = new AmazonGlacierClient();
var request = new ListVaultsRequest();
var response = client.ListVaults(request);

foreach (var vault in response.VaultList)
{
 Console.WriteLine("Vault: {0}", vault.VaultName);
 Console.WriteLine(" Creation date: {0}", vault.CreationDate);
 Console.WriteLine(" Size in bytes: {0}", vault.SizeInBytes);
 Console.WriteLine(" Number of archives: {0}", vault.NumberOfArchives);

 try

84

http://www.amazonaws.cn/glacier

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon S3 Glacier Programming
with the Amazon SDK for .NET

 {
 var requestNotifications = new GetVaultNotificationsRequest
 {
 VaultName = vault.VaultName
 };
 var responseNotifications =
 client.GetVaultNotifications(requestNotifications);

 Console.WriteLine(" Notifications:");
 Console.WriteLine(" Topic: {0}",
 responseNotifications.VaultNotificationConfig.SNSTopic);

 var events = responseNotifications.VaultNotificationConfig.Events;

 if (events.Any())
 {
 Console.WriteLine(" Events:");

 foreach (var e in events)
 {
 Console.WriteLine("{0}", e);
 }
 }
 else
 {
 Console.WriteLine(" No events set.");
 }

 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine(" No notifications set.");
 }

 var requestJobs = new ListJobsRequest{
 VaultName = vault.VaultName
 };
 var responseJobs = client.ListJobs(requestJobs);
 var jobs = responseJobs.JobList;

 if (jobs.Any())
 {
 Console.WriteLine(" Jobs:");

 foreach (var job in jobs)
 {
 Console.WriteLine(" For job ID: {0}",
 job.JobId);
 Console.WriteLine("Archive ID: {0}",
 job.ArchiveId);
 Console.WriteLine("Archive size in bytes: {0}",
 job.ArchiveSizeInBytes.ToString());
 Console.WriteLine("Completed: {0}",
 job.Completed);
 Console.WriteLine("Completion date: {0}",
 job.CompletionDate);
 Console.WriteLine("Creation date: {0}",
 job.CreationDate);
 Console.WriteLine("Inventory size in bytes: {0}",
 job.InventorySizeInBytes);
 Console.WriteLine("Job description: {0}",
 job.JobDescription);
 Console.WriteLine("Status code: {0}",
 job.StatusCode.Value);
 Console.WriteLine("Status message: {0}",
 job.StatusMessage);

85

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon S3 Glacier Programming
with the Amazon SDK for .NET

 }

 }
 else
 {
 Console.WriteLine(" No jobs.");
 }

}

For additional examples, see:

• Using the Amazon SDK for .NET
• Creating a Vault
• Retrieving Vault Metadata
• Downloading a Vault Inventory
• Configuring Vault Notifications
• Deleting a Vault
• Uploading an Archive in a Single Operation
• Uploading Large Archives in Parts
• Downloading an Archive
• Deleting an Archive

For related API reference information, see Amazon.Glacier and Amazon.Glacier.Model in the
Amazon SDK for .NET API Reference.

High-Level APIs

The the SDK provides high-level APIs for programming with S3 Glacier. To further simplify application
development, these high-level APIs offer a higher-level abstraction for some of the operations, including
uploading an archive and downloading an archive or vault inventory.

For examples, see:

• Using the Amazon SDK for .NET
• Creating a Vault
• Deleting a Vault
• Upload an Archive to a Vault
• Uploading an Archive
• Uploading Large Archives in Parts
• Download an Archive from a Vault
• Downloading an Archive
• Delete an Archive from a Vault
• Deleting an Archive

For related API reference information, see Amazon.Glacier.Transfer in the Amazon SDK for .NET API
reference.

Resource APIs

The the SDK provides the Amazon Resource APIs for .NET for programming with S3 Glacier. These
resource APIs provide a resource-level programming model that enables you to write code to work more
directly with S3 Glacier resources as compared to their low-level and high-level API counterparts. (For

86

https://docs.amazonaws.cn/amazonglacier/latest/dev/using-aws-sdk-for-dot-net.html.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/creating-vaults-dotnet-sdk.html#create-vault-dotnet-lowlevel.html.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/retrieving-vault-info-sdk-dotnet.html.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/retrieving-vault-inventory-sdk-dotnet.html.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/configuring-notifications-sdk-dotnet.html.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/deleting-vaults-sdk-dotnet.html#deleting-vault-sdk-dotnet-low-level.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/uploading-an-archive-single-op-using-dotnet.html#uploading-an-archive-single-op-lowlevel-using-dotnet.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/uploading-an-archive-mpu-using-dotnet.html#uploading-an-archive-in-parts-lowlevel-using-dotnet.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/downloading-an-archive-using-dotnet.html#downloading-an-archive-using-dotnet-lowlevel-api.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/deleting-an-archive-using-dot-net.html#delete-archive-using-dot-net-low-level.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/
https://docs.amazonaws.cn/amazonglacier/latest/dev/using-aws-sdk-for-dot-net.html.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/creating-vaults-dotnet-sdk.html#create-vault-dotnet-highlevel.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/deleting-vaults-sdk-dotnet.html#deleting-vault-sdk-dotnet-high-level.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/getting-started-upload-archive-dotnet.html.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/uploading-an-archive-single-op-using-dotnet.html#uploading-an-archive-single-op-highlevel-using-dotnet.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/uploading-an-archive-mpu-using-dotnet.html#uploading-an-archive-in-parts-highlevel-using-dotnet.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/getting-started-download-archive-dotnet.html.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/downloading-an-archive-using-dotnet.html#downloading-an-archive-using-dotnet-highlevel-api.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/getting-started-delete-archive-dotnet.html.html
https://docs.amazonaws.cn/amazonglacier/latest/dev/deleting-an-archive-using-dot-net.html#delete-archive-using-dot-net-high-level.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NGlacierTransfer.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon S3 Glacier Programming
with the Amazon SDK for .NET

more information about the Amazon Resource APIs for .NET, including how to download and reference
these resource APIs, see Programming with the Amazon Resource APIs for .NET (p. 42).)

The following example shows how to use the Amazon Resource APIs for .NET to list accessible vaults in
S3 Glacier:

// using Amazon.Glacier.Resources;
// using Amazon.Runtime.Resources;

var g = new Glacier();

foreach (var vault in g.GetVaults())
{
 Console.WriteLine("Vault: {0}", vault.Name);
 Console.WriteLine(" Creation date: {0}", vault.CreationDate);
 Console.WriteLine(" Size in bytes: {0}", vault.SizeInBytes);
 Console.WriteLine(" Number of archives: {0}", vault.NumberOfArchives);

 try
 {
 var n = vault.GetNotification();

 Console.WriteLine(" Notifications:");
 Console.WriteLine(" Topic: {0}", n.SNSTopic);

 var events = n.Events;

 if (events.Any())
 {
 Console.WriteLine(" Events:");

 foreach (var e in events)
 {
 Console.WriteLine("{0}", e);
 }
 }
 else
 {
 Console.WriteLine(" No events set.");
 }

 }
 catch (ResourceLoadException)
 {
 Console.WriteLine(" No notifications set.");
 }

 var jobs = vault.GetJobs();

 if (jobs.Any())
 {
 Console.WriteLine(" Jobs:");

 foreach (var job in jobs)
 {
 Console.WriteLine(" For job ID: {0}",
 job.Id);
 Console.WriteLine("Archive ID: {0}",
 job.ArchiveId);
 Console.WriteLine("Archive size in bytes: {0}",
 job.ArchiveSizeInBytes.ToString());
 Console.WriteLine("Completed: {0}",
 job.Completed);
 Console.WriteLine("Completion date: {0}",
 job.CompletionDate);

87

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management
Programming with the Amazon SDK for .NET

 Console.WriteLine("Creation date: {0}",
 job.CreationDate);
 Console.WriteLine("Inventory size in bytes: {0}",
 job.InventorySizeInBytes);
 Console.WriteLine("Job description: {0}",
 job.JobDescription);
 Console.WriteLine("Status code: {0}",
 job.StatusCode.Value);
 Console.WriteLine("Status message: {0}",
 job.StatusMessage);
 }

 }
 else
 {
 Console.WriteLine(" No jobs.");
 }

}

For related API reference information, see Amazon.Glacier.Resources.

Amazon Identity and Access Management
Programming with the Amazon SDK for .NET

Version 2 content (see announcement above)
The Amazon SDK for .NET supports Amazon Identity and Access Management (IAM), which is a web
service that enables Amazon Web Services customers to manage users and user permissions in Amazon.

The following information introduces you to the IAM programming models in the the SDK. There are also
links to additional IAM programming resources within the the SDK.

Programming Models

The the SDK provides two programming models for working with IAM. These programming models are
known as the low-level model and the resource model. The following information describes these models
and how to use them.

Low-Level APIs

The the SDK provides low-level APIs for programming with IAM. These low-level APIs typically consist
of sets of matching request-and-response objects that correspond to HTTP-based API calls focusing on
their corresponding service-level constructs.

The following example shows how to use the low-level APIs to list accessible user accounts in IAM. For
each user account, its associated groups, policies, and access key IDs are also listed:

// using Amazon.IdentityManagement;
// using Amazon.IdentityManagement.Model;

var client = new AmazonIdentityManagementServiceClient();
var requestUsers = new ListUsersRequest();
var responseUsers = client.ListUsers(requestUsers);

foreach (var user in responseUsers.Users)
{
 Console.WriteLine("For user {0}:", user.UserName);
 Console.WriteLine(" In groups:");

88

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NGlacierResourcesNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management
Programming with the Amazon SDK for .NET

 var requestGroups = new ListGroupsForUserRequest
 {
 UserName = user.UserName
 };
 var responseGroups = client.ListGroupsForUser(requestGroups);

 foreach (var group in responseGroups.Groups)
 {
 Console.WriteLine(" {0}", group.GroupName);
 }

 Console.WriteLine(" Policies:");

 var requestPolicies = new ListUserPoliciesRequest
 {
 UserName = user.UserName
 };
 var responsePolicies = client.ListUserPolicies(requestPolicies);

 foreach (var policy in responsePolicies.PolicyNames)
 {
 Console.WriteLine(" {0}", policy);
 }

 var requestAccessKeys = new ListAccessKeysRequest
 {
 UserName = user.UserName
 };
 var responseAccessKeys = client.ListAccessKeys(requestAccessKeys);

 Console.WriteLine(" Access keys:");

 foreach (var accessKey in responseAccessKeys.AccessKeyMetadata)
 {
 Console.WriteLine(" {0}", accessKey.AccessKeyId);
 }
}

For additional examples, see Tutorial: Grant Access Using an IAM Role and the Amazon SDK
for .NET (p. 102).

For related API reference information, see Amazon.IdentityManagement and
Amazon.IdentityManagement.Model.

Resource APIs

The the SDK provides the Amazon Resource APIs for .NET for programming with IAM. These resource
APIs provide a resource-level programming model that enables you to write code to work more directly
with IAM resources as compared to their low-level API counterparts. (For more information about the
Amazon Resource APIs for .NET, including how to download and reference these resource APIs, see
Programming with the Amazon Resource APIs for .NET (p. 42).)

The Amazon Resource APIs for .NET are currently provided as a preview. This means that these resource
APIs may frequently change in response to customer feedback, and these changes may happen without
advance notice. Until these resource APIs exit the preview stage, please be cautious about writing and
distributing production-quality code that relies on them.

The following example shows how to use the Amazon Resource APIs for .NET to list accessible user
accounts in IAM. For each user account, its associated groups, policies, and access key IDs are also listed:

// using Amazon.IdentityManagement.Resources;

89

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NIAMNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NIAMNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

var iam = new IdentityManagementService();
var users = iam.GetUsers();

foreach (var user in users)
{
 Console.WriteLine("For user {0}:", user.Name);
 Console.WriteLine(" In groups:");

 foreach (var group in user.GetGroups())
 {
 Console.WriteLine(" {0}", group.Name);
 }

 Console.WriteLine(" Policies:");

 foreach (var policy in user.GetPolicies())
 {
 Console.WriteLine(" {0}", policy.Name);
 }

 Console.WriteLine(" Access keys:");

 foreach (var accessKey in user.GetAccessKeys())
 {
 Console.WriteLine(" {0}", accessKey.Id);
 }
}

For additional examples, see Amazon Identity and Access Management Code Examples with the Amazon
Resource APIs for .NET (p. 90).

For related API reference information, see Amazon.IdentityManagement.

Topics
• Amazon Identity and Access Management Code Examples with the Amazon Resource APIs

for .NET (p. 90)
• Tutorial: Grant Access Using an IAM Role and the Amazon SDK for .NET (p. 102)

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET
Version 2 content (see announcement above)

The following code examples demonstrate how to program with IAM by using the Amazon Resource APIs
for .NET.

The Amazon Resource APIs for .NET provide a resource-level programming model that enables you
to write code to work more directly with resources that are managed by Amazon services. For more
information about the Amazon Resource APIs for .NET, including how to download and reference these
resource APIs, see Programming with the Amazon Resource APIs for .NET (p. 42).

The Amazon Resource APIs for .NET are currently provided as a preview. This means that these resource
APIs may frequently change in response to customer feedback, and these changes may happen without
advance notice. Until these resource APIs exit the preview stage, please be cautious about writing and
distributing production-quality code that relies on them.

Topics
• Get User Account Information (p. 91)

90

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NIAMNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

• Get Group Information (p. 92)
• Get Role Information (p. 93)
• Create a User Account (p. 94)
• Create a Group (p. 94)
• Create a Role (p. 95)
• Add a User Account to a Group (p. 96)
• Add a Policy to a User Account, Group, or Role (p. 96)
• Create an Access Key for a User Account (p. 101)
• Create a Login Profile for a User Account (p. 101)
• Create an Instance Profile (p. 101)
• Attach an Instance Profile to a Role (p. 102)

Get User Account Information

The following example displays information about an existing user account, including its associated
groups, policies, and access key IDs:

// using Amazon.IdentityManagement.Resources;
// using Amazon.IdentityManagement.Model;

var iam = new IdentityManagementService();

try
{
 var user = iam.GetUserByName("DemoUser");

 Console.WriteLine("For user {0}:", user.Name);
 Console.WriteLine(" In groups:");

 foreach (var group in user.GetGroups())
 {
 Console.WriteLine(" {0}", group.Name);
 }

 Console.WriteLine(" Policies:");

 foreach (var policy in user.GetPolicies())
 {
 Console.WriteLine(" {0}", policy.Name);
 }

 Console.WriteLine(" Access keys:");

 foreach (var accessKey in user.GetAccessKeys())
 {
 Console.WriteLine(" {0}", accessKey.Id);
 }
}
catch (NoSuchEntityException)
{
 Console.WriteLine("User 'DemoUser' does not exist.");
}

The following example displays a list of all accessible user accounts. For each user account, its associated
groups, policies, and access key IDs are also displayed:

// using Amazon.IdentityManagement.Resources;

91

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

var iam = new IdentityManagementService();
var users = iam.GetUsers();

foreach (var user in users)
{
 Console.WriteLine("For user {0}:", user.Name);
 Console.WriteLine(" In groups:");

 foreach (var group in user.GetGroups())
 {
 Console.WriteLine(" {0}", group.Name);
 }

 Console.WriteLine(" Policies:");

 foreach (var policy in user.GetPolicies())
 {
 Console.WriteLine(" {0}", policy.Name);
 }

 Console.WriteLine(" Access keys:");

 foreach (var accessKey in user.GetAccessKeys())
 {
 Console.WriteLine(" {0}", accessKey.Id);
 }
}

Get Group Information

The following example displays information about an existing group, including its associated policies and
user accounts:

// using Amazon.IdentityManagement.Resources;
// using Amazon.IdentityManagement.Model;

var iam = new IdentityManagementService();

try
{
 var group = iam.GetGroupByName("DemoGroup");

 Console.WriteLine("For group {0}:", group.Name);
 Console.WriteLine(" Policies:");

 foreach (var policy in group.GetPolicies())
 {
 Console.WriteLine(" {0}", policy.Name);
 }

 Console.WriteLine(" Users:");

 foreach (var user in group.GetUsers())
 {
 Console.WriteLine(" {0}", user.Name);
 }
}
catch (NoSuchEntityException)
{
 Console.WriteLine("Group 'DemoGroup' does not exist.");
}

The following example displays a list of all accessible groups. For each group, its associated policies and
user accounts are also displayed:

92

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

// using Amazon.IdentityManagement.Resources;

var iam = new IdentityManagementService();
var groups = iam.GetGroups();

foreach (var group in groups)
{
 Console.WriteLine("For group {0}:", group.Name);
 Console.WriteLine(" Policies:");

 foreach (var policy in group.GetPolicies())
 {
 Console.WriteLine(" {0}", policy.Name);
 }

 Console.WriteLine(" Users:");

 foreach (var user in group.GetUsers())
 {
 Console.WriteLine(" {0}", user.Name);
 }
}

Get Role Information

The following example displays information about an existing role, including its associated policies and
instance profiles:

// using Amazon.IdentityManagement.Resources;
// using Amazon.IdentityManagement.Model;

var iam = new IdentityManagementService();

try
{
 var role = iam.GetRoleByName("DemoEC2");

 Console.WriteLine("For role {0}:", role.Name);
 Console.WriteLine(" Policies:");

 foreach (var policy in role.GetPolicies())
 {
 Console.WriteLine(" {0}", policy.Name);
 }

 Console.WriteLine(" InstanceProfiles:");

 foreach (var instanceProfile in role.GetInstanceProfiles())
 {
 Console.WriteLine(" {0}", instanceProfile.Name);
 }
}
catch (NoSuchEntityException)
{
 Console.WriteLine("Role 'DemoEC2' does not exist.");
}

The following example displays a list of all accessible roles. For each role, its associated policies and
instance profiles are also displayed:

// using Amazon.IdentityManagement.Resources;

93

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

var iam = new IdentityManagementService();
var roles = iam.GetRoles();

foreach (var role in roles)
{
 Console.WriteLine("For role {0}:", role.Name);
 Console.WriteLine(" Policies:");

 foreach (var policy in role.GetPolicies())
 {
 Console.WriteLine(" {0}", policy.Name);
 }

 Console.WriteLine(" InstanceProfiles:");

 foreach (var instanceProfile in role.GetInstanceProfiles())
 {
 Console.WriteLine(" {0}", instanceProfile.Name);
 }
}

Create a User Account

The following example creates a new user account and then displays some information about it:

// using Amazon.IdentityManagement.Resources;
// using Amazon.IdentityManagement.Model;

var iam = new IdentityManagementService();

try
{
 var user = iam.CreateUser("DemoUser");

 Console.WriteLine("User Name = '{0}', ARN = '{1}'",
 user.Name, user.Arn);
}
catch (EntityAlreadyExistsException)
{
 Console.WriteLine("User 'DemoUser' already exists.");
}

Create a Group

The following example creates a new group and then confirms whether the group was successfully
created:

// using Amazon.IdentityManagement.Resources;
// using Amazon.IdentityManagement.Model;

var iam = new IdentityManagementService();

try
{
 var group = iam.CreateGroup("DemoGroup");

 Console.WriteLine(group.Name + " was created.");
}
catch (EntityAlreadyExistsException)
{
 Console.WriteLine("Group 'DemoGroup' already exists.");
}

94

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

Create a Role

The following example creates a new role and then confirms whether the group was successfully created.

// using Amazon.IdentityManagement.Resources;
// using Amazon.IdentityManagement.Model;

var iam = new IdentityManagementService();
// GenerateAssumeRolePolicy() is a custom method.
string assumeRole = GenerateAssumeRolePolicy();

try
{
 var role = iam.CreateRole(new CreateRoleRequest
 {
 RoleName = "DemoEC2",
 AssumeRolePolicyDocument = assumeRole
 });

 Console.WriteLine(role.Name + " was created.");
}
catch (EntityAlreadyExistsException)
{
 Console.WriteLine("Role 'DemoEC2' already exists.");
}

The preceding example relies on the following example to create the new policy.

The following example doesn’t use the Amazon Resource APIs for .NET, as the resource APIs currently
don’t support creating a policy document. However, this example is presented for completeness:

public static string GenerateAssumeRolePolicy()
{
 // using Amazon.Auth.AccessControlPolicy;

 // Create a policy that looks like this:
 /*
 {
 "Version": "2012-10-17",
 "Id": "DemoEC2Trust",
 "Statement": [
 {
 "Sid": "DemoEC2TrustStatement",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 */

 var action = new ActionIdentifier("sts:AssumeRole");
 var actions = new List<ActionIdentifier>();

 actions.Add(action);

 var principal = new Principal("ec2.amazonaws.com")
 {
 Provider = "Service"
 };
 var principals = new List<Principal>();

95

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

 principals.Add(principal);

 var statement = new Statement(Statement.StatementEffect.Allow)
 {
 Actions = actions,
 Id = "DemoEC2TrustStatement",
 Principals = principals
 };
 var statements = new List<Statement>();

 statements.Add(statement);

 var policy = new Policy
 {
 Id = "DemoEC2Trust",
 Version = "2012-10-17",
 Statements = statements
 };

 return policy.ToJson();
}

Add a User Account to a Group

The following example adds an existing user account to an existing group and then displays a list of the
group’s associated user accounts:

// using Amazon.IdentityManagement.Resources;
// using Amazon.IdentityManagement.Model;

var iam = new IdentityManagementService();

try
{
 var group = iam.GetGroupByName("DemoGroup");

 group.AddUser("DemoUser");

 Console.WriteLine("Users in group {0}:", group.Name);

 foreach (var user in group.GetUsers())
 {
 Console.WriteLine(" {0}", user.Name);
 }

}
catch (NoSuchEntityException)
{
 Console.WriteLine("Group 'DemoGroup' or " +
 "user 'DemoUser' does not exist.");
}

Add a Policy to a User Account, Group, or Role

Add a Policy to a User Account

The following example creates a new policy, adds the new policy to an existing user account, and then
displays a list of the user account’s associated policies:

// using Amazon.IdentityManagement.Resources;
// using Amazon.IdentityManagement.Model;

96

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

var iam = new IdentityManagementService();

try
{
 var user = iam.GetUserByName("DemoUser");
 // GenerateUserPolicyDocument() is a custom method.
 string policyDoc = GenerateUserPolicyDocument();

 user.CreatePolicy(policyDoc, "ListDeploymentsPolicy");

 Console.WriteLine("Policies for user {0}:", user.Name);

 foreach (var policyItem in user.GetPolicies())
 {
 Console.WriteLine(" {0}", policyItem.Name);
 }

}
catch (NoSuchEntityException)
{
 Console.WriteLine("User 'DemoUser' does not exist.");
}

The preceding example relies on the following example to create the new policy.

The following example doesn’t use the Amazon Resource APIs for .NET, as the resource APIs currently
don’t support creating a policy document. However, this example is presented for completeness:

public static string GenerateUserPolicyDocument()
{
 // using Amazon.Auth.AccessControlPolicy;

 // Create a policy that looks like this:
 /*
 {
 "Version" : "2012-10-17",
 "Id" : "ListDeploymentsPolicy",
 "Statement" : [
 {
 "Sid" : "ListDeploymentsStatement",
 "Effect" : "Allow",
 "Action" : "codedeploy:ListDeployments",
 "Resource" : "*"
 }
]
 }
 */

 var action = new ActionIdentifier("codedeploy:ListDeployments");
 var actions = new List<ActionIdentifier>();

 actions.Add(action);

 var resource = new Resource("*");
 var resources = new List<Resource>();

 resources.Add(resource);

 var statement = new Statement(Statement.StatementEffect.Allow)
 {
 Actions = actions,
 Id = "ListDeploymentsStatement",
 Resources = resources

97

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

 };
 var statements = new List<Statement>();

 statements.Add(statement);

 var policy = new Policy
 {
 Id = "ListDeploymentsPolicy",
 Version = "2012-10-17",
 Statements = statements
 };

 return policy.ToJson();
}

Add a Policy to a Group

The following example creates a new policy, adds the new policy to an existing group, and then displays
a list of the group’s associated policies:

// using Amazon.IdentityManagement.Resources;
// using Amazon.IdentityManagement.Model;

var iam = new IdentityManagementService();

try
{
 var group = iam.GetGroupByName("DemoGroup");
 // GenerateGroupPolicyDocument() is a custom method.
 string policyDoc = GenerateGroupPolicyDocument();

 group.CreatePolicy(policyDoc, "ListDeploymentConfigsPolicy");

 Console.WriteLine("Policies for group {0}:", group.Name);

 foreach (var policyItem in group.GetPolicies())
 {
 Console.WriteLine(" {0}", policyItem.Name);
 }

}
catch (NoSuchEntityException)
{
 Console.WriteLine("Group 'DemoGroup' does not exist.");
}

The preceding example relies on the following example to create the new policy.

The following example doesn’t use the Amazon Resource APIs for .NET, as the resource APIs currently
don’t support creating a policy document. However, this example is presented for completeness:

public static string GenerateGroupPolicyDocument()
{
 // using Amazon.Auth.AccessControlPolicy;

 // Create a policy that looks like this:
 /*
 {
 "Version" : "2012-10-17",
 "Id": "ListDeploymentConfigsPolicy",
 "Statement" : [
 {
 "Sid" : "ListDeploymentConfigsStatement",

98

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

 "Effect" : "Allow",
 "Action" : "codedeploy:ListDeploymentConfigs",
 "Resource" : "*"
 }
]
 }
 */

 var action = new ActionIdentifier("codedeploy:ListDeploymentConfigs");
 var actions = new List<ActionIdentifier>();

 actions.Add(action);

 var resource = new Resource("*");
 var resources = new List<Resource>();

 resources.Add(resource);

 var statement = new Statement(Statement.StatementEffect.Allow)
 {
 Actions = actions,
 Id = "ListDeploymentConfigsStatement",
 Resources = resources
 };
 var statements = new List<Statement>();

 statements.Add(statement);

 var policy = new Policy
 {
 Id = "ListDeploymentConfigsPolicy",
 Version = "2012-10-17",
 Statements = statements
 };

 return policy.ToJson();
}

Add a Policy to a Role

The following example creates a new policy and then adds the new policy to an existing role.

The following example doesn’t use the Amazon Resource APIs for .NET, as the resource APIs currently
don’t support adding a policy to a role. However, this example is presented for completeness:

// using Amazon.IdentityManagement;
// using Amazon.IdentityManagement.Model;

var client = new AmazonIdentityManagementServiceClient();
// GenerateRolePolicyDocument() is a custom method.
string policyDoc = GenerateRolePolicyDocument();

var request = new PutRolePolicyRequest
{
 RoleName = "DemoEC2",
 PolicyName = "DemoEC2Permissions",
 PolicyDocument = policyDoc
};

try
{
 client.PutRolePolicy(request);
}
catch (NoSuchEntityException)

99

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

{
 Console.WriteLine
 ("Role 'DemoEC2' or policy 'DemoEC2Permissions' does not exist.");
}

The preceding example relies on the following example to create the new policy.

The following example doesn’t use the Amazon Resource APIs for .NET, as the resource APIs currently
don’t support creating a policy document. However, this example is presented for completeness:

public static string GenerateRolePolicyDocument()
{
 // using Amazon.Auth.AccessControlPolicy;

 // Create a policy that looks like this:
 /*
 {
 "Version" : "2012-10-17",
 "Id" : "DemoEC2Permissions",
 "Statement" : [
 {
 "Sid" : "DemoEC2PermissionsStatement",
 "Effect" : "Allow",
 "Action" : [
 "s3:Get*",
 "s3:List*"
],
 "Resource" : "*"
 }
]
 }
 */

 var actionGet = new ActionIdentifier("s3:Get*");
 var actionList = new ActionIdentifier("s3:List*");
 var actions = new List<ActionIdentifier>();

 actions.Add(actionGet);
 actions.Add(actionList);

 var resource = new Resource("*");
 var resources = new List<Resource>();

 resources.Add(resource);

 var statement = new Statement(Statement.StatementEffect.Allow)
 {
 Actions = actions,
 Id = "DemoEC2PermissionsStatement",
 Resources = resources
 };
 var statements = new List<Statement>();

 statements.Add(statement);

 var policy = new Policy
 {
 Id = "DemoEC2Permissions",
 Version = "2012-10-17",
 Statements = statements
 };

 return policy.ToJson();
}

100

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Identity and Access Management Code
Examples with the Amazon Resource APIs for .NET

Create an Access Key for a User Account

The following example creates an access key for a user account and then displays the access key’s ID and
secret access key:

// using Amazon.IdentityManagement.Resources;
// using Amazon.IdentityManagement.Model;

var iam = new IdentityManagementService();

try
{
 var user = iam.GetUserByName("DemoUser");
 var accessKey = user.CreateAccessKey();

 Console.WriteLine("For user {0}:", user.Name);
 Console.WriteLine(" Access key = {0}", accessKey.Id);
 // This is the only time that the secret access key will be displayed.
 Console.WriteLine(" Secret access key = {0}", accessKey.SecretAccessKey);
}
catch (NoSuchEntityException)
{
 Console.WriteLine("User 'DemoUser' does not exist.");
}
catch (LimitExceededException)
{
 Console.WriteLine("You can have only 2 access keys per user.");
}

Create a Login Profile for a User Account

The following example creates a login profile for a user account.

The following example doesn’t use the Amazon Resource APIs for .NET, as the resource APIs currently
don’t support creating a login profile for a user account. However, this example is presented for
completeness:

// using Amazon.IdentityManagement;
// using Amazon.IdentityManagement.Model;

var client = new AmazonIdentityManagementServiceClient();
var request = new CreateLoginProfileRequest
{
 UserName = "DemoUser",
 Password = "ksdD9JHm",
 PasswordResetRequired = true
};

try
{
 client.CreateLoginProfile(request);
}
catch (NoSuchEntityException)
{
 Console.WriteLine("User 'DemoUser' doesn't exist.");
}

Create an Instance Profile

The following example creates an instance profile.

The following example doesn’t use the Amazon Resource APIs for .NET, as the resource APIs currently
don’t support creating an instance profile. However, this example is presented for completeness:

101

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Grant Access Using an IAM
Role and the Amazon SDK for .NET

// using Amazon.IdentityManagement;
// using Amazon.IdentityManagement.Model;

var client = new AmazonIdentityManagementServiceClient();
var request = new CreateInstanceProfileRequest
{
 InstanceProfileName = "DemoEC2-InstanceProfile"
};

try
{
 client.CreateInstanceProfile(request);
}
catch (EntityAlreadyExistsException)
{
 Console.WriteLine(
 "The instance profile 'DemoEC2-InstanceProfile' already exists.");
}

Attach an Instance Profile to a Role

The following example attaches an instance profile to a role.

The following example doesn’t use the Amazon Resource APIs for .NET, as the resource APIs currently
don’t support attaching an instance profile to a role. However, this example is presented for
completeness:

// using Amazon.IdentityManagement;
// using Amazon.IdentityManagement.Model;

var client = new AmazonIdentityManagementServiceClient();
var request = new AddRoleToInstanceProfileRequest
{
 RoleName = "DemoEC2",
 InstanceProfileName = "DemoEC2-InstanceProfile"
};

try
{
 client.AddRoleToInstanceProfile(request);
}
catch (NoSuchEntityException)
{
 Console.WriteLine(
 "The role 'DemoEC2' or the instance profile " +
 "'DemoEC2-InstanceProfile' does not exist.");
}
catch (LimitExceededException)
{
 Console.WriteLine("The role 'DemoEC2' already has " +
 "an instance profile attached.");
}

Tutorial: Grant Access Using an IAM Role and the
Amazon SDK for .NET
Version 2 content (see announcement above)

All requests to Amazon must be cryptographically signed using credentials issued by Amazon. Therefore,
you need a strategy for managing credentials for software that runs on Amazon EC2 instances. You must

102

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Grant Access Using an IAM
Role and the Amazon SDK for .NET

distribute, store, and rotate these credentials in a way that keeps them secure but also accessible to the
software.

We designed IAM roles so that you can effectively manage Amazon credentials for software running on
EC2 instances. You create an IAM role and configure it with the permissions that the software requires.
For more information about the benefits of this approach, see IAM Roles for Amazon EC2 in the Amazon
EC2 User Guide for Windows Instances and Roles (Delegation and Federation) in the IAM User Guide.

To use the permissions, the software constructs a client object for the Amazon service. The constructor
searches the credentials provider chain for credentials. For .NET, the credentials provider chain is as
follows:

• The App.config file
• The instance metadata associated with the IAM role for the EC2 instance

If the client does not find credentials in App.config, it retrieves temporary credentials that have the
same permissions as those associated with the IAM role. The credentials are retrieved from instance
metadata. The credentials are stored by the constructor on behalf of the customer software and are used
to make calls to Amazon from that client object. Although the credentials are temporary and eventually
expire, the SDK client periodically refreshes them so that they continue to enable access. This periodic
refresh is completely transparent to the application software.

The following walkthrough uses a sample program that retrieves an object from Amazon S3 using
the Amazon credentials that you’ve configured. Next, we create an IAM role to provide the Amazon
credentials. Finally, we launch an instance with an IAM role that provides the Amazon credentials to the
sample program running on the instance.

Topics
• Create a Sample that Retrieves an Object from Amazon S3 (p. 103)
• Create an IAM Role (p. 105)
• Launch an EC2 Instance and Specify the IAM Role (p. 105)
• Run the Sample Program on the EC2 Instance (p. 105)

Create a Sample that Retrieves an Object from Amazon S3

The following sample code retrieves an object from Amazon S3. It requires a text file in an Amazon
S3 bucket that you have access to. For more information about creating an Amazon S3 bucket and
uploading an object, see the Amazon S3 Getting Started Guide. It also requires Amazon credentials
that provide you with access to the Amazon S3 bucket. For more information, see Configuring Amazon
Credentials (p. 9).

using System;
using System.Collections.Specialized;
using System.IO;

using Amazon;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples.retrieveobject
{
 class S3Sample
 {
 public static void Main(string[] args)
 {
 ReadS3File("bucket-name", "s3-file-name", "output-file-name");

103

https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/iam-roles-for-amazon-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/WorkingWithRoles.html
https://docs.amazonaws.cn/AmazonS3/latest/gsg/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Grant Access Using an IAM
Role and the Amazon SDK for .NET

 Console.WriteLine("Press enter to continue");
 Console.ReadLine();
 }

 public static void ReadS3File(
 string bucketName,
 string keyName,
 string filename)
 {

 string responseBody = "";

 try
 {
 using (var s3Client = new AmazonS3Client())
 {
 Console.WriteLine("Retrieving (GET) an object");

 var request = new GetObjectRequest()
 {
 BucketName = bucketName,
 Key = keyName
 };

 using (var response = s3Client.GetObject(request))
 using (var responseStream = response.ResponseStream)
 using (var reader = new StreamReader(responseStream))
 {
 responseBody = reader.ReadToEnd();
 }
 }

 using (var s = new FileStream(filename, FileMode.Create))
 using (var writer = new StreamWriter(s))
 {
 writer.Write(responseBody);
 }
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine(s3Exception.Message, s3Exception.InnerException);
 }
 }
 }
}

To test the sample code

1. Open Visual Studio and create an Amazon Console project.

2. Replace the code in the Program.cs file with the sample code.

3. Replace bucket-name with the name of your Amazon S3 bucket and folder/file-name.txt with
the name of a text file in the bucket.

4. Compile and run the sample program. If the program succeeds, it displays the following output and
creates a file named s3Object.txt on your local drive that contains the text it retrieved from the
text file in Amazon S3.

Retrieving (GET) an object

If the program fails, ensure that you are using credentials that provide you with access to the bucket.

5. (Optional) Transfer the sample program to a running Windows instance on which you haven’t set up
credentials. Run the program and verify that it fails because it can’t locate credentials.

104

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Tutorial: Grant Access Using an IAM
Role and the Amazon SDK for .NET

Create an IAM Role

Create an IAM role that has the appropriate permissions to access Amazon S3.

To create the IAM role

1. Open the IAM console.
2. In the navigation pane, click Roles, and then click Create New Role.
3. Enter a name for the role, and then click Next Step. Remember this name, as you’ll need it when you

launch your EC2 instance.
4. Under Amazon Service Roles, select Amazon EC2. Under Select Policy Template, select Amazon S3

Read Only Access. Review the policy and then click Next Step.
5. Review the role information and then click Create Role.

Launch an EC2 Instance and Specify the IAM Role

You can launch an EC2 instance with an IAM role using the Amazon EC2 console or the the SDK.

• To launch an EC2 instance using the console, follow the directions in Launching a Windows Instance
in the Amazon EC2 User Guide for Windows Instances. When you reach the Review Instance Launch
page, click Edit instance details. In IAM role, specify the IAM role that you created previously.
Complete the procedure as directed. Notice that you’ll need to create or use an existing security group
and key pair in order to connect to the instance.

• To launch an EC2 instance with an IAM role using the the SDK, see Launch an EC2 Instance Using the
the SDK (p. 72).

Note that an IAM user can’t launch an instance with an IAM role without the permissions granted by the
following policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:PassRole",
 "iam:ListInstanceProfiles",
 "ec2:*"
],
 "Resource": "*"
 }]
}

Run the Sample Program on the EC2 Instance

To transfer the sample program to your EC2 instance, connect to the instance using the Amazon Web
Services Management Console as described in the following procedure.

Note
Alternatively, connect using the Toolkit for Visual Studio (as described in Connecting to an
Amazon EC2 Instance in the Amazon Toolkit for Visual Studio User Guide) and then copy
the files from your local drive to the instance. The Remote Desktop session is automatically
configured so that your local drives are available to the instance.

To run the sample program on the EC2 instance

1. Open the Amazon EC2 console.
2. Get the password for your EC2 instance as follows:

105

https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html
https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/managing-ec2.html
https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/managing-ec2.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Amazon Route 53 Programming
with the Amazon SDK for .NET

1. In the navigation pane, click Instances. Select the instance, and then click Connect.
2. In the Connect To Your Instance dialog box, click Get Password. (It will take a few minutes after the

instance is launched before the password is available.)
3. Click Browse and navigate to the private key file you created when you launched the instance. Select

the file and click Open to copy the entire contents of the file into contents box.
4. Click Decrypt Password. The console displays the default administrator password for the instance in

the Connect To Your Instance dialog box, replacing the link to Get Password shown previously with
the actual password.

5. Record the default administrator password, or copy it to the clipboard. You need this password to
connect to the instance.

1. Connect to your EC2 instance as follows:

1. Click Download Remote Desktop File. When your browser prompts you to do so, save the .rdp file.
When you have finished, you can click Close to dismiss the Connect To Your Instance dialog box.

2. Navigate to your downloads directory, right-click the .rdp file, and then select Edit. On the Local
Resources tab, under Local devices and resources, click More. Select Drives to make your local drives
available to your instance, and then click OK.

3. Click Connect to connect to your instance. You may get a warning that the publisher of the remote
connection is unknown.

4. Log in to the instance as prompted, using the default Administrator account and the default
administrator password that you recorded or copied previously.

Sometimes copying and pasting content can corrupt data. If you encounter a “Password Failed” error
when you log in, try typing in the password manually. For more information, see Connecting to Your
Windows Instance Using RDP and Troubleshooting Windows Instances in the Amazon EC2 User Guide
for Windows Instances.

1. Copy both the program and the Amazon assembly (AWSSDK.dll) from your local drive to the
instance.

2. Run the program and verify that it succeeds because it uses the credentials provided by the IAM role.

Retrieving (GET) an object

Amazon Route 53 Programming with the Amazon
SDK for .NET

Version 2 content (see announcement above)
The Amazon SDK for .NET supports Amazon Route 53 , which is a Domain Name System (DNS) web
service that provides secure and reliable routing to your infrastructure that uses Amazon products, such
as Amazon Elastic Compute Cloud (Amazon EC2), Elastic Load Balancing, or Amazon Simple Storage
Service (Amazon S3). You can also use Route 53 to route users to your infrastructure outside of Amazon.
This topic describes how to use the Amazon SDK for .NET to create an Route 53hosted zone and add a
new resource record set to that zone.

Note
This topic assumes that you are already familiar with how to use Route 53 and have already
installed the Amazon SDK for .NET. For more information on Route 53, see the Amazon Route

106

https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/troubleshooting-windows-instances.html
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/AboutHZWorkingWith.html
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/resource-record-sets-values.html
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/Welcome.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Amazon Route 53 Programming
with the Amazon SDK for .NET

53 Developer Guide. For information on how to install the Amazon SDK for .NET, see Getting
Started with the Amazon SDK for .NET (p. 3).

The basic procedure is as follows.

To create a hosted zone and update its record sets

1. Create a hosted zone.

2. Create a change batch that contains one or more record sets, and instructions on what action to take
for each set.

3. Submit a change request to the hosted zone that contains the change batch.

4. Monitor the change to verify that it is complete.

The example is a simple console application that shows how to use the the SDK to implement this
procedure for a basic record set.

To run this example

1. In the Visual Studio File menu, click New and then click Project.

2. Select the Amazon Empty Project template and specify the project’s name and location.

3. Specify the application’s default credentials profile and Amazon region, which are added to the
project’s App.config file. This example assumes that the region is set to US East (Northern
Virginia) and the profile is set to default. For more information on profiles, see Configuring Amazon
Credentials (p. 9).

4. Open program.cs and replace the using declarations and the code in Main with the corresponding
code from the following example. If you are using your default credentials profile and region, you can
compile and run the application as-is. Otherwise, you must provide an appropriate profile and region,
as discussed in the notes that follow the example.

using System;
using System.Collections.Generic;
using System.Threading;

using Amazon;
using Amazon.Route53;
using Amazon.Route53.Model;

namespace Route53_RecordSet
{
 //Create a hosted zone and add a basic record set to it
 class recordset
 {
 public static void Main(string[] args)
 {
 string domainName = "www.example.org";

 //[1] Create an Amazon Route 53 client object
 var route53Client = new AmazonRoute53Client();

 //[2] Create a hosted zone
 var zoneRequest = new CreateHostedZoneRequest()
 {
 Name = domainName,
 CallerReference = "my_change_request"
 };

 var zoneResponse = route53Client.CreateHostedZone(zoneRequest);

107

https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/Welcome.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Amazon Route 53 Programming
with the Amazon SDK for .NET

 //[3] Create a resource record set change batch
 var recordSet = new ResourceRecordSet()
 {
 Name = domainName,
 TTL = 60,
 Type = RRType.A,
 ResourceRecords = new List<ResourceRecord>
 {
 new ResourceRecord { Value = "192.0.2.235" }
 }
 };

 var change1 = new Change()
 {
 ResourceRecordSet = recordSet,
 Action = ChangeAction.CREATE
 };

 var changeBatch = new ChangeBatch()
 {
 Changes = new List<Change> { change1 }
 };

 //[4] Update the zone's resource record sets
 var recordsetRequest = new ChangeResourceRecordSetsRequest()
 {
 HostedZoneId = zoneResponse.HostedZone.Id,
 ChangeBatch = changeBatch
 };

 var recordsetResponse = route53Client.ChangeResourceRecordSets(recordsetRequest);

 //[5] Monitor the change status
 var changeRequest = new GetChangeRequest()
 {
 Id = recordsetResponse.ChangeInfo.Id
 };

 while (ChangeStatus.PENDING ==
 route53Client.GetChange(changeRequest).ChangeInfo.Status)
 {
 Console.WriteLine("Change is pending.");
 Thread.Sleep(15000);
 }

 Console.WriteLine("Change is complete.");
 Console.ReadKey();
 }
 }
}

The numbers in the following sections are keyed to the comments in the preceding example.

[1] Create a Client Object

The AmazonRoute53Client class supports a set of public methods that you use to invoke
Amazon Route 53 actions. You create the client object by instantiating a new instance of the
AmazonRoute53Client class. There are multiple constructors. The object must have the following
information:

An Amazon region

When you call a client method, the underlying HTTP request is sent to this endpoint.

108

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRoute53Route53NET45.html
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/Welcome.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Amazon Route 53 Programming
with the Amazon SDK for .NET

A credentials profile

The profile must grant permissions for the actions that you intend to use—the Route 53 actions
in this case. Attempts to call actions that lack permissions will fail. For more information, see
Configuring Amazon Credentials (p. 9).

The example uses the default constructor to create the object, which implicitly specifies the
application’s default profile and region. Other constructors allow you to override either or both
default values.

[2] Create a hosted zone

A hosted zone serves the same purpose as a traditional DNS zone file. It represents a collection of
resource record sets that are managed together under a single domain name.

To create a hosted zone
1. Create a CreateHostedZoneRequest object and specify following request parameters. There are

also two optional parameters that aren’t used by this example.

Name

(Required) The domain name that you want to register, www.example.com for this example.
This domain name is intended only for examples and can’t be registered with a domain name
registrar for an actual site, but you can use it to create a hosted zone for learning purposes.

CallerReference

(Required) An arbitrary user-defined string that serves as a request ID and can be used
to retry failed requests. If you run this application multiple times, you must change the
CallerReference value.

2. Pass the CreateHostedZoneRequest object to the client object’s CreateHostedZone method.
The method returns a CreateHostedZoneResponse object that contains a variety of information
about the request, including the HostedZone.Id property that identifies zone.

[3] Create a resource record set change batch

A hosted zone can have multiple resource record sets. Each set specifies how a subset the domain’s
traffic, such as email requests, should be routed. You can update a zone’s resource record sets with
a single request. The first step is to package all the updates in a ChangeBatch object. This example
specifies only one update, adding a basic resource record set to the zone, but a ChangeBatch object
can contain updates for multiple resource record sets.

To create a ChangeBatch object
1. Create a ResourceRecordSet object for each resource record set that you want to update.

The group of properties that you specify depends on the type of resource record set. For a
complete description of the properties used by the different resource record sets, see Values
that You Specify When You Create or Edit Amazon Route 53 Resource Record Sets. The example
ResourceRecordSet object represents a basic resource record set, and specifies the following
required properties.

Name

The domain or subdomain name, www.example.com for this example.

TTL

The amount of time in seconds that the DNS recursive resolvers should cache information
about this resource record set, 60 seconds for this example.

Type

The DNS record type, A for this example. For a complete list, see Supported DNS Resource
Record Types.

109

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRoute53CreateHostedZoneRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MRoute53Route53CreateHostedZoneCreateHostedZoneRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRoute53CreateHostedZoneResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRoute53HostedZoneNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRoute53ChangeBatchNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRoute53ResourceRecordSetNET45.html
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/resource-record-sets-values.html
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/resource-record-sets-values.html
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/resource-record-sets-values.html
ResourceRecordTypes.html
ResourceRecordTypes.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Amazon Simple Storage Service

Programming with the Amazon SDK for .NET
ResourceRecords

A list of one or more ResourceRecord objects, each of which contains a DNS record value that
depends on the DNS record type. For an A record type, the record value is an IPv4 address,
which for this example is set to a standard example address, 192.0.2.235.

2. Create a Change object for each for each resource record set, and set the following properties.
ResourceRecordSet

The ResourceRecordSet object that you created in the previous step.
Action

The action to be taken for this resource record set: CREATE, DELETE, or UPSERT. For more
information on these actions, see Elements. This example creates a new resource record set in
the hosted zone, so Action is set to CREATE.

3. Create a ChangeBatch object and set its Changes property to a list of the Change objects that
you created in the previous step.

[4] Update the zone’s resource record sets

To update the resource record sets, pass the ChangeBatch object to the hosted zone, as follows.

To update a hosted zone’s resource record sets
1. Create a ChangeResourceRecordSetsRequest object with the following property settings.

HostedZoneId

The hosted zone’s ID, which the example sets to the ID that was returned in the
CreateHostedZoneResponse object. To get the ID of an existing hosted zone, call
ListHostedZones.

ChangeBatch

A ChangeBatch object that contains the updates.
2. Pass the ChangeResourceRecordSetsRequest object to the client object’s

ChangeResourceRecordSets method. It returns a ChangeResourceRecordSetsResponse object,
which contains a request ID that you can use to monitor the request’s progress.

[5] Monitor the update status

Resource record set updates typically take a minute or so to propagate through the system. You can
monitor the update’s progress and verify that it has completed as follows.

To monitor update status
1. Create a GetChangeRequest object and set its Id property to the request ID that was returned by

ChangeResourceRecordSets.
2. Use a wait loop to periodically call the client object’s GetChange method. GetChange returns

PENDING while the update is in progress and INSYNC after the update is complete. You can use
the same GetChangeRequest object for all of the method calls.

Amazon Simple Storage Service Programming
with the Amazon SDK for .NET

Version 2 content (see announcement above)
The Amazon SDK for .NET supports Amazon Simple Storage Service (Amazon S3), which is storage for
the Internet. It is designed to make web-scale computing easier for developers. For more information,
see Amazon Simple Storage Service.

110

TRoute53ResourceRecordNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRoute53ChangeNET45.html
https://docs.amazonaws.cn/Route53/latest/APIReference/API_ChangeResourceRecordSets_Requests.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRoute53ChangeBatchNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRoute53ChangeResourceRecordSetsRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MRoute53Route53ListHostedZonesNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MRoute53Route53ChangeResourceRecordSetsChangeResourceRecordSetsRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRoute53ChangeResourceRecordSetsResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TRoute53GetChangeRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MRoute53Route53GetChangeGetChangeRequestNET45.html
http://www.amazonaws.cn/s3/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Simple Notification Service
Programming with the Amazon SDK for .NET

The following links provide examples of programming Amazon S3 with the the SDK:

• Using the Amazon SDK for .NET for Amazon S3 Programming
• Making Requests Using Amazon Account or IAM User Credentials
• Making Requests Using IAM User Temporary Credentials
• Making Requests Using Federated User Temporary Credentials
• Managing ACLs
• Creating a Bucket
• Upload an Object
• Multipart Upload with the High-Level API
• Multipart Upload with the Low-Level API
• Listing Objects
• Listing Keys
• Get an Object
• Copy an Object
• Copy an Object with the Multipart Upload API
• Deleting an Object
• Deleting Multiple Objects
• Restore an Object
• Configure a Bucket for Notifications
• Manage an Object’s Lifecycle
• Generate a Pre-signed Object URL
• Managing Websites
• Enabling Cross-Origin Resource Sharing (CORS)
• Specifying Server-Side Encryption
• Specifying Server-Side Encryption with Customer-Provided Encryption Keys

Amazon Simple Notification Service Programming
with the Amazon SDK for .NET

Version 2 content (see announcement above)
The Amazon SDK for .NET supports Amazon Simple Notification Service (Amazon SNS), which is a web
service that enables applications, end-users, and devices to instantly send and receive notifications from
the cloud. For more information, see Amazon SNS.

The following information introduces you to the Amazon SNS programming models in the the SDK.

Programming Models

The SDK provides two programming models for working with Amazon SNS. These programming models
are known as the low-level and resource models. The following information describes these models, how
to use them, and why you would want to use them.

Low-Level APIs

The SDK provides low-level APIs for programming with Amazon SNS. These low-level APIs typically
consist of sets of matching request-and-response objects that correspond to HTTP-based API calls
focusing on their corresponding service-level constructs.

111

https://docs.amazonaws.cn/AmazonS3/latest/dev/UsingTheMPDotNetAPI.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/AuthUsingAcctOrUserCredDotNet.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/AuthUsingTempSessionTokenDotNet.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/AuthUsingTempFederationTokenDotNet.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/acl-using-dot-net-sdk.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/create-bucket-get-location-example.html#create-bucket-get-location-dotnet
https://docs.amazonaws.cn/AmazonS3/latest/dev/UploadObjSingleOpNET.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/usingHLmpuDotNet.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/usingLLmpuDotNet.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/list-obj-version-enabled-bucket.html#list-obj-version-enabled-bucket-sdk-examples
https://docs.amazonaws.cn/AmazonS3/latest/dev/ListingObjectKeysUsingNetSDK.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/RetrievingObjectUsingNetSDK.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/CopyingObjectUsingNetSDK.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/CopyingObjctsUsingLLNetMPUapi.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/DeletingOneObjectUsingNetSDK.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/DeletingMultipleObjectsUsingNetSDK.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/restore-object-dotnet.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/ways-to-add-notification-config-to-bucket.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/manage-lifecycle-using-dot-net.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/ShareObjectPreSignedURLDotNetSDK.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/ConfigWebSiteDotNet.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/ManageCorsUsingDotNet.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/SSEUsingDotNetSDK.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/sse-c-using-dot-net-sdk.html
http://www.amazonaws.cn/sns/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Simple Notification Service
Programming with the Amazon SDK for .NET

The following example shows how to use the low-level APIs to list accessible topics in Amazon SNS:

// using Amazon.SimpleNotificationService;
// using Amazon.SimpleNotificationService.Model;

var client = new AmazonSimpleNotificationServiceClient();
var request = new ListTopicsRequest();
var response = new ListTopicsResponse();

do
{
 response = client.ListTopics(request);

 foreach (var topic in response.Topics)
 {
 Console.WriteLine("Topic: {0}", topic.TopicArn);

 var subs = client.ListSubscriptionsByTopic(
 new ListSubscriptionsByTopicRequest
 {
 TopicArn = topic.TopicArn
 });

 var ss = subs.Subscriptions;

 if (ss.Any())
 {
 Console.WriteLine(" Subscriptions:");

 foreach (var sub in ss)
 {
 Console.WriteLine(" {0}", sub.SubscriptionArn);
 }
 }

 var attrs = client.GetTopicAttributes(
 new GetTopicAttributesRequest
 {
 TopicArn = topic.TopicArn
 }).Attributes;

 if (attrs.Any())
 {
 Console.WriteLine(" Attributes:");

 foreach (var attr in attrs)
 {
 Console.WriteLine(" {0} = {1}", attr.Key, attr.Value);
 }
 }

 Console.WriteLine();
 }

 request.NextToken = response.NextToken;

} while (!string.IsNullOrEmpty(response.NextToken));

For related API reference information, see Amazon.SimpleNotificationService,
Amazon.SimpleNotificationService.Model, and Amazon.SimpleNotificationService.Util
in the Amazon SDK for .NET API Reference..

112

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Amazon Simple Notification Service
Programming with the Amazon SDK for .NET

Resource APIs

The SDK provides the Amazon Resource APIs for .NET for programming with Amazon SNS. These
resource APIs provide a resource-level programming model that enables you to write code to work
more directly with Amazon SNS resources as compared to their low-level API counterparts. (For more
information about the Amazon Resource APIs for .NET, including how to download and reference these
resource APIs, see Programming with the Amazon Resource APIs for .NET (p. 42).)

The following example shows how to use the Amazon Resource APIs for .NET to list accessible topics in
Amazon SNS:

// using Amazon.SimpleNotificationService.Resources;

var sns = new SimpleNotificationService();
var topics = sns.GetTopics();

if (topics.Any())
{
 Console.WriteLine("Topics:");

 foreach (var topic in topics)
 {
 Console.WriteLine(" Topic ARN: {0}", topic.Arn);

 if (topic.Attributes.Count > 0)
 {
 Console.WriteLine(" Attributes:");

 foreach (var attr in topic.Attributes)
 {
 Console.WriteLine("{0} = {1}", attr.Key, attr.Value);
 }

 }

 }

}

var subs = sns.GetSubscriptions();

if (subs.Any())
{
 Console.WriteLine("Subscriptions:");

 foreach (var sub in subs)
 {
 Console.WriteLine(" Subscription ARN: {0}", sub.Arn);

 var attrs = sub.Attributes;

 if (attrs.Any())
 {
 Console.WriteLine(" Attributes:");

 foreach (var attr in attrs)
 {
 Console.WriteLine("{0} = {1}", attr.Key, attr.Value);
 }
 }

 }

}

113

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide
Amazon Simple Queue Service

Programming with the Amazon SDK for .NET
For related API reference information, see Amazon.SNS.Resources.

Amazon Simple Queue Service Programming with
the Amazon SDK for .NET

Version 2 content (see announcement above)
The Amazon SDK for .NET supports Amazon Simple Queue Service (Amazon SQS), which is a messaging
queue service that handles message or workflows between other components in a system. For more
information, see the SQS Getting Started Guide.

The following information introduces you to the Amazon SQS programming models in the SDK.

Programming Models

The SDK provides two programming models for working with Amazon SQS. These programming models
are known as the low-level and resource models. The following information describes these models, how
to use them, and why you would want to use them.

Low-Level APIs

The SDK provides low-level APIs for programming with Amazon SQS. These APIs typically consist of sets
of matching request-and-response objects that correspond to HTTP-based API calls focusing on their
corresponding service-level constructs.

The following example shows how to use the APIs to list accessible queues in Amazon SQS:

// using Amazon.SQS;
// using Amazon.SQS.Model;

var client = new AmazonSQSClient();

// List all queues that start with "aws".
var request = new ListQueuesRequest
{
 QueueNamePrefix = "aws"
};

var response = client.ListQueues(request);
var urls = response.QueueUrls;

if (urls.Any())
{
 Console.WriteLine("Queue URLs:");

 foreach (var url in urls)
 {
 Console.WriteLine(" " + url);
 }
}
else
{
 Console.WriteLine("No queues.");
}

For additional examples, see the following:

114

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NSNSResourcesNET45.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSGettingStartedGuide/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Creating and Using an Amazon SQS
Queue with the Amazon SDK for .NET

• Create an Amazon SQS Client (p. 116)
• Create an Amazon SQS Queue (p. 117)
• Send an Amazon SQS Message (p. 118)
• Receive a Message from an Amazon SQS Queue (p. 118)
• Delete a Message from an Amazon SQS Queue (p. 119)

For related API reference information, see Amazon.SQS, Amazon.SQS.Model, and Amazon.SQS.Util
in the Amazon SDK for .NET Reference.

Resource APIs

The the SDK provides the Amazon Resource APIs for .NET for programming with Amazon SQS. These
resource APIs provide a resource-level programming model that enables you to write code to work
more directly with Amazon SQS resources as compared to their low-level API counterparts. (For more
information about the Amazon Resource APIs for .NET, including how to download and reference these
resource APIs, see Programming with the Amazon Resource APIs for .NET (p. 42).)

The following example shows how to use the Amazon Resource APIs for .NET to list accessible queues in
Amazon SQS

// using Amazon.SQS.Resources;

var sqs = new SQS();

// List all queues that start with "aws".
var queues = sqs.GetQueues("aws");

if (queues.Any())
{
 Console.WriteLine("Queue URLs:");

 foreach (var queue in queues)
 {
 Console.WriteLine(" " + queue.Url);
 }
}
else
{
 Console.WriteLine("No queues.");
}

For related API reference information, see Amazon.SQS.Resources.

Topics
• Creating and Using an Amazon SQS Queue with the Amazon SDK for .NET (p. 115)

Creating and Using an Amazon SQS Queue with the
Amazon SDK for .NET
Version 2 content (see announcement above)

This topic demonstrates how to use the Amazon SDK for .NET to create and use an Amazon SQS queue.

The sample code in this topic is written in C#, but you can use the Amazon SDK for .NET with any
language that is compatible with the Microsoft .NET Framework.

115

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NSQSResourcesNET45.html
http://www.amazonaws.cn/sqs/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Creating and Using an Amazon SQS
Queue with the Amazon SDK for .NET

Topics
• Create an Amazon SQS Client (p. 116)
• Create an Amazon SQS Queue (p. 117)
• Amazon SQS Queue URLs (p. 117)
• Send an Amazon SQS Message (p. 118)
• Receive a Message from an Amazon SQS Queue (p. 118)
• Delete a Message from an Amazon SQS Queue (p. 119)
• Related Resources (p. 120)

Create an Amazon SQS Client
Version 2 content (see announcement above)

You will need an Amazon SQS client in order to create and use an Amazon SQS queue. Before
configuring your client, you should create an App.Config file to specify your Amazon credentials.

You specify your credentials by referencing the appropriate profile in the appSettings section of the file.
The following example specifies a profile named {my_profile}. For more information on credentials and
profiles, see Configuring Your Amazon SDK for .NET Application (p. 8).

<?xml version="1.0"?>
 <configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
 </startup>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK"/>
 </configSections> <aws profileName="{my_profile}"/>
 </configuration>

After you create this file, you are ready to create and initialize your Amazon SQS client.

To create and initialize an Amazon SQS client

1. Create and initialize an AmazonSQSConfig instance, and set the ServiceURL property with the
protocol and service endpoint, as follows:

AmazonSQSConfig amazonSQSConfig = new AmazonSQSConfig();

amazonSQSConfig.ServiceURL = "http://sqs.us-west-2.amazonaws.com";

AmazonSQSConfig amazonSQSConfig = new AmazonSQSConfig();

amazonSQSConfig.ServiceURL = "http://sqs.cn-north-1.amazonaws.com";

The Amazon SDK for .NET uses US East (N. Virginia) Region as the default region if you do not specify
a region in your code. However, the Amazon Web Services Management Console uses US West
(Oregon) Region as its default. Therefore, when using the Amazon Web Services Management Console
in conjunction with your development, be sure to specify the same region in both your code and the
console.

Go to Regions and Endpoints for the current list of regions and corresponding endpoints for each of
the services offered by Amazon.

2. Use the AmazonSQSConfig instance to create and initialize an AmazonSQSClient instance, as follows:

116

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSSQSConfigNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/PRuntimeClientConfigServiceURLNET45.html
https://docs.amazonaws.cn/general/latest/gr/rande.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSSQSNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Creating and Using an Amazon SQS
Queue with the Amazon SDK for .NET

amazonSQSClient = new AmazonSQSClient(amazonSQSConfig);

You can now use the client to create an Amazon SQS queue. For information about creating a queue, see
Create an Amazon SQS Queue (p. 117).

Create an Amazon SQS Queue
Version 2 content (see announcement above)

You can use the Amazon SDK for .NET to programmatically create an Amazon SQS queue. Creating an
Amazon SQS Queue is an administrative task. You can create a queue by using the Amazon Management
Console instead of creating a queue programmatically.

To create an Amazon SQS queue

1. Create and initialize a CreateQueueRequest instance. Provide the name of your queue and specify a
visibility timeout for your queue messages, as follows:

CreateQueueRequest createQueueRequest =
 new CreateQueueRequest();

createQueueRequest.QueueName = "MySQSQueue";
createQueueRequest.DefaultVisibilityTimeout = 10;

Your queue name must only be composed of alphanumeric characters, hyphens, and underscores.

Any message in the queue remains in the queue unless the specified visibility timeout is exceeded. The
default visibility timeout for a queue is 30 seconds. For more information about visibility timeouts,
go to Visibility Timeout. For more information about different queue attributes you can set, go to
SetQueueAttributes.

2. After you create the request, pass it as a parameter to the CreateQueue method. The method returns
a CreateQueueResponse object, as follows:

CreateQueueResponse createQueueResponse =
 amazonSQSClient.CreateQueue(createQueueRequest);

For information about how queues work in Amazon SQS, go to How SQS Queues Work.

For information about your queue URL, see Amazon SQS Queue URLs (p. 117).

Amazon SQS Queue URLs
Version 2 content (see announcement above)

You require the queue URL to send, receive, and delete queue messages. A queue URL is constructed in
the following format:

https://{REGION_ENDPOINT}/queue.|api-domain|/{YOUR_ACCOUNT_NUMBER}/{YOUR_QUEUE_NAME}

For information on sending a message to a queue, see Send an Amazon SQS Message (p. 118).

For information about receiving messages from a queue, see Receive a Message from an Amazon SQS
Queue (p. 118).

117

https://console.amazonaws.cn/sqs/home
https://console.amazonaws.cn/sqs/home
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSCreateQueueRequestNET45.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MSQSSQSCreateQueueCreateQueueRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSCreateQueueResponseNET45.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSConcepts.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Creating and Using an Amazon SQS
Queue with the Amazon SDK for .NET

For information about deleting messages from a queue, see Delete a Message from an Amazon SQS
Queue (p. 119).

Send an Amazon SQS Message

Version 2 content (see announcement above)

You can use the Amazon SDK for .NET to send a message to an Amazon SQS queue.

Important
Due to the distributed nature of the queue, Amazon SQS cannot guarantee you will receive
messages in the exact order they are sent. If you require that message order be preserved, place
sequencing information in each message so you can reorder the messages upon receipt.

To send a message to an Amazon SQS queue

1. Create and initialize a SendMessageRequest instance. Specify the queue name and the message you
want to send, as follows:

sendMessageRequest.QueueUrl = myQueueURL; sendMessageRequest.MessageBody =
 "{YOUR_QUEUE_MESSAGE}";

For more information about your queue URL, see Amazon SQS Queue URLs (p. 117).

Each queue message must be composed of only Unicode characters, and can be up to 64 kB in size.
For more information about queue messages, go to SendMessage in the Amazon SQS service API
reference.

2. After you create the request, pass it as a parameter to the SendMessage method. The method returns
a SendMessageResponse object, as follows:

SendMessageResponse sendMessageResponse =
 amazonSQSClient.SendMessage(sendMessageRequest);

The sent message will stay in your queue until the visibility timeout is exceeded, or until it is deleted
from the queue. For more information about visibility timeouts, go to Visibility Timeout.

For information on deleting messages from your queue, see Delete a Message from an Amazon SQS
Queue (p. 119).

For information on receiving messages from your queue, see Receive a Message from an Amazon SQS
Queue (p. 118).

Receive a Message from an Amazon SQS Queue

Version 2 content (see announcement above)

You can use the Amazon SDK for .NET to receive messages from an Amazon SQS queue.

To receive a message from an Amazon SQS queue

1. Create and initialize a ReceiveMessageRequest instance. Specify the queue URL to receive a message
from, as follows:

ReceiveMessageRequest receiveMessageRequest = new ReceiveMessageRequest();

118

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSSendMessageRequestNET45.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSSendMessageRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSSendMessageResponseNET45.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MSQSSQSReceiveMessageReceiveMessageRequestNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Creating and Using an Amazon SQS
Queue with the Amazon SDK for .NET

receiveMessageRequest.QueueUrl = myQueueURL;

For more information about your queue URL, see Your Amazon SQS Queue URL (p. 117).
2. Pass the request object as a parameter to the ReceiveMessage method, as follows:

ReceiveMessageResponse receiveMessageResponse =
 amazonSQSClient.ReceiveMessage(receiveMessageRequest);

The method returns a ReceiveMessageResponse instance, containing the list of messages the queue
contains.

3. The response object contains a ReceiveMessageResult member. This member includes a Messages list.
Iterate through this list to find a specific message, and use the Body property to determine if the list
contains a specified message, as follows:

if (result.Message.Count != 0)
{
 for (int i = 0; i < result.Message.Count; i++)
 {
 if (result.Message[i].Body == messageBody)
 {
 receiptHandle = result.Message[i].ReceiptHandle;
 }
 }
}

Once the message is found in the list, use the ReceiptHandle property to obtain a receipt handle
for the message. You can use this receipt handle to change message visibility timeout or to delete
the message from the queue. For more information about how to change the visibility timeout for a
message, go to ChangeMessageVisibility.

For information about sending a message to your queue, see Send an Amazon SQS Message (p. 118).

For more information about deleting a message from the queue, see Delete a Message from an Amazon
SQS Queue (p. 119).

Delete a Message from an Amazon SQS Queue
Version 2 content (see announcement above)

You can use the Amazon SDK for .NET to receive messages from an Amazon SQS queue.

To delete a message from an Amazon SQS queue

1. Create and initialize a DeleteMessageRequest instance. Specify the Amazon SQS queue to delete a
message from and the receipt handle of the message to delete, as follows:

DeleteMessageRequest deleteMessageRequest = new DeleteMessageRequest();

deleteMessageRequest.QueueUrl = queueUrl;
deleteMessageRequest.ReceiptHandle = recieptHandle;

2. Pass the request object as a parameter to the DeleteMessage method. The method returns a
DeleteMessageResponse object, as follows:

DeleteMessageResponse response =
 amazonSQSClient.DeleteMessage(deleteMessageRequest);

119

https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MSQSSQSReceiveMessageReceiveMessageRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSReceiveMessageResponseNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSReceiveMessageResultNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSMessageNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSChangeMessageVisibilityRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSDeleteMessageRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/MSQSSQSDeleteMessageDeleteMessageRequestNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/TSQSDeleteMessageResponseNET45.html

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Programming Additional Amazon
Services with the Amazon SDK for .NET

Calling DeleteMessage unconditionally removes the message from the queue, regardless of the
visibility timeout setting. For more information about visibility timeouts, go to Visibility Timeout.

For information about sending a message to a queue, see Sending an Amazon SQS Message (p. 118).

For information about receiving messages from a queue, see Receiving a Message from an Amazon SQS
Queue (p. 118).

Related Resources
Version 2 content (see announcement above)

The following table lists related resources that you’ll find useful when using Amazon SQS with the
Amazon SDK for .NET.

Resource Description

Windows & .NET Developer Center Provides sample code, documentation, tools, and
additional resources to help you build applications
on Amazon Web Services.

Amazon SDK for .NET Documentation Provides documentation for the Amazon SDK
for .NET.

Amazon Simple Queue Service (SQS)
Documentation

Provides documentation for the Amazon SQS
service.

Programming Additional Amazon Services with the
Amazon SDK for .NET

Version 2 content (see announcement above)
The Amazon SDK for .NET supports programming Amazon services in addition to the ones that are
described previously in this chapter. For information about programming specific services with the the
SDK, see the Amazon SDK for .NET API Reference.

In addition to the namespaces for individual Amazon services, the the SDK also provides the following
APIs:

Area Description Resources

Amazon Support Programmatic access to Amazon
Support cases and Trusted
Advisor features.

See Amazon.AWSSupport and
Amazon.AWSSupport.Model.

General Helper classes and
enumerations.

See Amazon and Amazon.Util.

Other general programming information for the the SDK includes the following:

• Overriding Endpoints in the Amazon SDK for .NET

120

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html
http://www.amazonaws.cn/net/
http://www.amazonaws.cn/documentation/sdkfornet/
http://www.amazonaws.cn/documentation/sqs/
http://www.amazonaws.cn/documentation/sqs/
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NAWSSupportNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NAWSSupportNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NNET45.html
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/NUtilNET45.html
http://blogs.aws.amazon.com/net/post/Tx1P7UD2UN3DHK6/Overriding-Endpoints-in-the-AWS-SDK-for-NET

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Programming Additional Amazon
Services with the Amazon SDK for .NET

• .NET Object Lifecycles

121

http://blogs.aws.amazon.com/net/post/Tx2LIB7WI7JHH69/Object-Lifecycles

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Version 2 content (see announcement above)

Additional Resources

Version 2 content (see announcement above)
Home Page for Amazon SDK for .NET

For more information about the Amazon SDK for .NET, go to the home page for the SDK at Amazon SDK
for .NET.

SDK Reference Documentation

The SDK reference documentation includes the ability to browse and search across all code included with
the SDK. It provides thorough documentation, usage examples, and even the ability to browse method
source. For more information, see the Amazon SDK for .NET API Reference.

Amazon Forums

Visit the Amazon forums to ask questions or provide feedback about Amazon. Amazon engineers
monitor the forums and respond to questions, feedback, and issues. You can also subscribe to RSS feeds
for any of the forums.

Amazon Toolkit for Visual Studio

If you use the Microsoft Visual Studio IDE, you should check out the Toolkit for Visual Studio and the
accompanying Amazon Toolkit for Visual Studio User Guide.

122

http://www.amazonaws.cn/sdk-for-net/
http://www.amazonaws.cn/sdk-for-net/
https://docs.amazonaws.cn/sdkfornet/latest/apidocs/Index.html
https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Document History
The following table describes the important changes since the last release of the Amazon SDK for .NET
Developer Guide.

Last documentation update: July 28th, 2015

Change Description Release Date

New SDK version Version 3 of the Amazon SDK
for .NET released. For more
information, see the Amazon
SDK for .NET Developer Guide.

July 28th, 2015

New topic A new topic was added about
additional options for adding
settings to App.Config and
Web.Config files: Configuration
Files Reference for Amazon SDK
for .NET (p. 18).

February 5, 2015

New topic A new topic was added about
programming with Amazon
DynamoDB: Amazon DynamoDB
Programming with Expressions
by Using the Amazon SDK
for .NET (p. 53).

February 5, 2015

New topics Three new topics were added
about programming with
the new Amazon Resource
APIs for .NET: Amazon
CloudFormation Programming
with the Amazon SDK
for .NET (p. 45), Amazon S3
Glacier Programming with the
Amazon SDK for .NET (p. 84),
and Amazon Simple Notification
Service Programming with the
Amazon SDK for .NET (p. 111).

January 8, 2015

New topics Two new topics were added
about programming with the the
SDK: Amazon Simple Storage
Service Programming with the
Amazon SDK for .NET (p. 110)
and Programming Additional
Amazon Services with the
Amazon SDK for .NET (p. 120).

January 8, 2015

Revised topic An existing topic was revised
to add information about
programming with the new
Amazon Resource APIs for .NET:
Amazon Simple Queue Service

January 8, 2015

123

https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/

This
 co

nte
nt

is
de

pre
ca

ted

See
 th

e c
urr

en
t g

uid
e i

ns
tea

d

Amazon SDK for .NET (version
2, deprecated) Developer Guide

Change Description Release Date

Programming with the Amazon
SDK for .NET (p. 114).

New topics Two new topics were added
about programming with the
new Amazon Resource APIs
for .NET: Programming with
the Amazon Resource APIs
for .NET (p. 42) and Amazon
Identity and Access Management
Code Examples with the Amazon
Resource APIs for .NET (p. 90).

December 16, 2014

Reorganized Table of Contents The Programming Amazon
Services with the Amazon
SDK for .NET (p. 42) section
of the Table of Contents was
reorganized to group topics by
service. As a result, four new
topics were added: Amazon
Identity and Access Management
Programming with the
Amazon SDK for .NET (p. 88),
Amazon Elastic Compute
Cloud Programming with the
Amazon SDK for .NET (p. 67),
Amazon Simple Queue Service
Programming with the Amazon
SDK for .NET (p. 114), and
Amazon Route 53 Programming
with the Amazon SDK
for .NET (p. 106).

December 16, 2014

New topics Two new topics were added
about programming with
Amazon DynamoDB: Amazon
DynamoDB Programming with
the Amazon SDK for .NET (p. 47)
and JSON Support in Amazon
DynamoDB with the Amazon
SDK for .NET (p. 62).

December 3, 2014

Renamed topic The Examples and Tutorials topic
was renamed to Programming
Amazon Services with the
Amazon SDK for .NET (p. 42).

December 3, 2014

Support for .NET SDK version 2 This guide has been modified to
support the latest version of the
Amazon SDK for .NET.

November 8, 2013

New topic This topic tracks recent changes
to the Amazon SDK for .NET
Developer Guide. It is intended
as a companion to the release
notes.

September 9, 2013

124

	Amazon SDK for .NET (version 2, deprecated)
	Table of Contents
	
	Amazon SDK for .NET Developer Guide
	Version 2 content (see announcement above)
	How to Use This Guide
	Supported Services and Revision History
	About Amazon Web Services

	Getting Started with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Create an Amazon Account and Credentials
	Install the .NET Development Environment
	Requirements

	Install the Amazon SDK for .NET
	Start a New Project

	Programming with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	
	Configuring Your Amazon SDK for .NET Application
	Version 2 content (see announcement above)
	Configuring Amazon Credentials
	Version 2 content (see announcement above)
	Using the SDK Store
	Using a Credentials File
	Using Credentials in an Application
	Specifying a Profile
	Specifying Roles or Temporary Credentials
	Using Proxy Credentials

	Amazon Region Selection
	Version 2 content (see announcement above)

	Configuring Other Application Parameters
	Version 2 content (see announcement above)
	AWSEndpointDefinition
	AWSLogging
	AWSLogMetrics
	AWSRegion
	AWSResponseLogging
	AWS.DynamoDBContext.TableNamePrefix
	AWS.S3.UseSignatureVersion4

	Configuration Files Reference for Amazon SDK for .NET
	Version 2 content (see announcement above)
	Declaring an Amazon Settings Section
	Allowed Elements
	Elements Reference
	alias
	aws
	dynamoDB
	dynamoDBContext
	ec2
	logging
	map
	property
	proxy
	s3

	Amazon Web Services Asynchronous APIs for .NET
	Version 2 content (see announcement above)
	Asynchronous API for .NET 4.5, Windows Store, and Windows Phone 8
	Asynchronous API for .NET 3.5
	Syntax of Async Request Methods
	Begin Method Syntax
	Synchronous Method
	Asynchronous Method
	AsyncCallback callback
	Object state

	Calling Patterns
	Examples
	Using IAsyncResult.AsyncWaitHandle
	No Callback Specified
	Simple Callback
	Callback with Client
	Callback with State Object

	Complete Sample
	See Also

	Retries and Timeouts
	Version 2 content (see announcement above)
	Retries
	Timeouts
	Example

	Migrating Your Code to the Version 2 of the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Introduction
	What’s New
	What’s Different
	Architecture
	Removal of the “With” Methods
	Removal of SecureString
	Breaking Changes
	Amazon DynamoDB
	Amazon EC2
	Amazon Redshift
	Amazon S3
	Amazon Simple Workflow Service

	Configuring the Amazon Region
	Response and Result Classes

	Platform Differences in the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Amazon SDK for .NET Framework 3.5
	Amazon SDK for .NET Framework 4.5
	Amazon SDK for Windows RT
	Amazon SDK for Windows Phone 8

	Install Amazon Assemblies with NuGet
	Version 2 content (see announcement above)
	Installation
	NuGet from Solution Explorer
	NuGet Package Manager Console

	Programming Amazon Services with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	
	Programming with the Amazon Resource APIs for .NET
	Version 2 content (see announcement above)
	Download and Reference the Amazon Resource APIs for .NET
	Code Examples for Resource APIs

	Amazon CloudFormation Programming with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Programming Models
	Low-Level APIs
	Resource APIs

	Amazon DynamoDB Programming with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Programming Models
	Low-Level
	Document
	Object Persistence

	Additional Resources

	Amazon DynamoDB Programming with Expressions by Using the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Sample Data
	Get a Single Item by Using Expressions and the Item’s Primary Key
	Get Multiple Items by Using Expressions and the Table’s Primary Key
	Get Multiple Items by Using Expressions and Other Item Attributes
	Print an Item
	Create or Replace an Item by Using Expressions
	Update an Item by Using Expressions
	Delete an Item by Using Expressions
	Additional Resources

	JSON Support in Amazon DynamoDB with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Get Data from a DynamoDB Table in JSON Format
	Insert JSON Format Data into a DynamoDB Table
	DynamoDB Data Type Conversions to JSON
	Additional Resources

	Managing ASP.NET Session State with Amazon DynamoDB
	Version 2 content (see announcement above)
	Create the ASP.NET_SessionState Table
	Configure the Session State Provider
	Web.config Options

	Security Considerations

	Amazon Elastic Compute Cloud Programming with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Tutorial: Creating Amazon EC2 Instances with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Tasks
	Create an Amazon EC2 Client Using the the SDK
	Create a Security Group Using the the SDK
	Enumerating Your Security Groups
	To enumerate your security groups for EC2-Classic
	To enumerate your security groups for a VPC

	Creating a Security Group
	To create a security group for EC2-Classic
	To create a security group for EC2-VPC

	Adding Rules to Your Security Group
	To add a rule to a security group

	Create a Key Pair Using the the SDK
	Enumerating Your Key Pairs
	Creating a Key Pair and Saving the Private Key

	Launch an EC2 Instance Using the the SDK
	Version 2 content (see announcement above)
	Launching an EC2 Instance
	Checking the State of Your Instance
	Connecting to Your Running Instance

	Terminate an EC2 Instance Using the the SDK
	Version 2 content (see announcement above)

	Tutorial: Amazon EC2 Spot Instances
	Version 2 content (see announcement above)
	Overview
	Prerequisites
	Step 1: Setting Up Your Credentials
	Step 2: Setting Up a Security Group
	Step 3: Submitting Your Spot Request
	Step 4: Determining the State of Your Spot Request
	Step 5: Cleaning up Your Spot Requests and Instances
	Conclusion

	Amazon S3 Glacier Programming with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Programming Models
	Low-Level APIs
	High-Level APIs
	Resource APIs

	Amazon Identity and Access Management Programming with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Programming Models
	Low-Level APIs
	Resource APIs

	Amazon Identity and Access Management Code Examples with the Amazon Resource APIs for .NET
	Version 2 content (see announcement above)
	Get User Account Information
	Get Group Information
	Get Role Information
	Create a User Account
	Create a Group
	Create a Role
	Add a User Account to a Group
	Add a Policy to a User Account, Group, or Role
	Add a Policy to a User Account
	Add a Policy to a Group
	Add a Policy to a Role

	Create an Access Key for a User Account
	Create a Login Profile for a User Account
	Create an Instance Profile
	Attach an Instance Profile to a Role

	Tutorial: Grant Access Using an IAM Role and the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Create a Sample that Retrieves an Object from Amazon S3
	Create an IAM Role
	Launch an EC2 Instance and Specify the IAM Role
	Run the Sample Program on the EC2 Instance

	Amazon Route 53 Programming with the Amazon SDK for .NET
	Version 2 content (see announcement above)

	Amazon Simple Storage Service Programming with the Amazon SDK for .NET
	Version 2 content (see announcement above)

	Amazon Simple Notification Service Programming with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Programming Models
	Low-Level APIs
	Resource APIs

	Amazon Simple Queue Service Programming with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Programming Models
	Low-Level APIs
	Resource APIs

	Creating and Using an Amazon SQS Queue with the Amazon SDK for .NET
	Version 2 content (see announcement above)
	Create an Amazon SQS Client
	Version 2 content (see announcement above)

	Create an Amazon SQS Queue
	Version 2 content (see announcement above)

	Amazon SQS Queue URLs
	Version 2 content (see announcement above)

	Send an Amazon SQS Message
	Version 2 content (see announcement above)

	Receive a Message from an Amazon SQS Queue
	Version 2 content (see announcement above)

	Delete a Message from an Amazon SQS Queue
	Version 2 content (see announcement above)

	Related Resources
	Version 2 content (see announcement above)

	Programming Additional Amazon Services with the Amazon SDK for .NET
	Version 2 content (see announcement above)

	Additional Resources
	Version 2 content (see announcement above)

	Document History

