本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
使用 Graviton GPU DLAMI PyTorch
Amazon Deep Learning AMI可随时与基于 Arm 处理器的 Graviton GPU 配合使用,并针对以下方面进行了优化。PyTorchGraviton GPU PyTorch DLAMI 包括一个预先配置了、和TorchServe
验证 PyTorch Python
使用以下命令连接到您的 G5G 实例并激活基本 Conda 环境:
source activate base
您的命令提示符应表明您正在基本 Conda 环境中工作,该环境包含PyTorchTorchVision、和其他库。
(base) $
验证PyTorch环境的默认工具路径:
(base) $ which python /opt/conda/bin/python (base) $ which pip /opt/conda/bin/pip (base) $ which conda /opt/conda/bin/conda (base) $ which mamba /opt/conda/bin/mamba
验证 Torch 和TorchVersion是否可用,检查其版本,然后测试基本功能:
(base) $ python Python 3.8.12 | packaged by conda-forge | (default, Oct 12 2021, 23:06:28) [GCC 9.4.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import torch, torchvision >>> torch.__version__ '1.10.0' >>> torchvision.__version__ '0.11.1' >>> v = torch.autograd.Variable(torch.randn(10, 3, 224, 224)) >>> v = torch.autograd.Variable(torch.randn(10, 3, 224, 224)).cuda() >>> assert isinstance(v, torch.Tensor)
使用以下命令运行训练示例 PyTorch
运行示例 MNIST 训练作业:
git clone https://github.com/pytorch/examples.git cd examples/mnist python main.py
您的输出应类似于以下内容:
... Train Epoch: 14 [56320/60000 (94%)] Loss: 0.021424 Train Epoch: 14 [56960/60000 (95%)] Loss: 0.023695 Train Epoch: 14 [57600/60000 (96%)] Loss: 0.001973 Train Epoch: 14 [58240/60000 (97%)] Loss: 0.007121 Train Epoch: 14 [58880/60000 (98%)] Loss: 0.003717 Train Epoch: 14 [59520/60000 (99%)] Loss: 0.001729 Test set: Average loss: 0.0275, Accuracy: 9916/10000 (99%)
使用以下命令运行推理示例 PyTorch
使用以下命令下载预训练的 densenet161 模型并使用以下命令运行推理:TorchServe
# Set up TorchServe cd $HOME git clone https://github.com/pytorch/serve.git mkdir -p serve/model_store cd serve # Download a pre-trained densenet161 model wget https://download.pytorch.org/models/densenet161-8d451a50.pth >/dev/null # Save the model using torch-model-archiver torch-model-archiver --model-name densenet161 \ --version 1.0 \ --model-file examples/image_classifier/densenet_161/model.py \ --serialized-file densenet161-8d451a50.pth \ --handler image_classifier \ --extra-files examples/image_classifier/index_to_name.json \ --export-path model_store # Start the model server torchserve --start --no-config-snapshots \ --model-store model_store \ --models densenet161=densenet161.mar &> torchserve.log # Wait for the model server to start sleep 30 # Run a prediction request curl http://127.0.0.1:8080/predictions/densenet161 -T examples/image_classifier/kitten.jpg
您的输出应类似于以下内容:
{ "tiger_cat": 0.4693363308906555, "tabby": 0.4633873701095581, "Egyptian_cat": 0.06456123292446136, "lynx": 0.0012828150065615773, "plastic_bag": 0.00023322898778133094 }
使用以下命令取消注册 densenet161 模型并停止服务器:
curl -X DELETE http://localhost:8081/models/densenet161/1.0 torchserve --stop
您的输出应类似于以下内容:
{ "status": "Model \"densenet161\" unregistered" } TorchServe has stopped.