AWS::SageMaker::MonitoringSchedule ClusterConfig - Amazon CloudFormation
Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, see Getting Started with Amazon Web Services in China (PDF).

AWS::SageMaker::MonitoringSchedule ClusterConfig

Configuration for the cluster used to run model monitoring jobs.

Syntax

To declare this entity in your Amazon CloudFormation template, use the following syntax:

JSON

{ "InstanceCount" : Integer, "InstanceType" : String, "VolumeKmsKeyId" : String, "VolumeSizeInGB" : Integer }

YAML

InstanceCount: Integer InstanceType: String VolumeKmsKeyId: String VolumeSizeInGB: Integer

Properties

InstanceCount

The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

Required: Yes

Type: Integer

Minimum: 1

Maximum: 100

Update requires: No interruption

InstanceType

The ML compute instance type for the processing job.

Required: Yes

Type: String

Update requires: No interruption

VolumeKmsKeyId

The Amazon Key Management Service (Amazon KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

Required: No

Type: String

Minimum: 1

Maximum: 2048

Update requires: No interruption

VolumeSizeInGB

The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

Required: Yes

Type: Integer

Minimum: 1

Maximum: 16384

Update requires: No interruption